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Abstract. It has been proposed that the string diagrams of closed string field theory
be defined by a minimal area problem that requires that all nontrivial homotopy
curves have length greater than or equal to 2π. Consistency requires that the
minimal area metric be flat in a neighbourhood of the punctures. The theorem
proven in this paper, yields a criterion which if satisfied, will ensure this requirement.
The theorem states roughly that the metric is flat in an open set, U if there is a
unique closed curve of length 2π through every point in U and all of these closed
curves are in the same free homotopy class.

1. Introduction and Motivation

Consistency Conditions on String Field Theory. The fundamental idea of string
theory is to define an n string amplitude as an integral over the moduli spaces of n
punctured Riemann surfaces of all genera. For on-shell states the integrand arises
from a conformal field theory. In fact the integrand is just the correlation function
of n vertex operators inserted at the location of the punctures. The operator formu-
lation of conformal field theory, which defines correlation functions as vacuum
expectation values of a string of quantum fields, does not tell us how to extend the
definition of amplitudes to off-shell states. This is done naturally in the path integral
approach where we have a prescription for calculating general amplitudes (off and
on shell). Fundamental to this prescription is the notion of a string diagram. A string
diagram is a Riemann surface together with a choice of local coordinate (up to phase
ambiguity) around each puncture. In fact for the purposes of this paper it is sufficient
to say that the problem of defining off-shell string amplitudes is one of defining
string diagrams [SoZ]. It is necessary that the local coordinates be ambiguous up
to phase if the string diagrams are to be globally well defined on moduli space. We
want amplitudes that are independent of the phase that we choose around each
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punciture. This requires that instead of general off-shell states we restrict to those
that satisfy the L0 - L0 condition. Any globally defined choice of string diagrams
will not give off-shell amplitudes satisfying with the requirements of symmetry,
unitarity and factorization. Ensuring these properties requires a consistent set of
string diagrams (described in [SoZ]). This however is only the beginning of the
story. We further want to see that these amplitudes arise from a string field theory.
In string field theory the amplitude is given as a sum over various Feynman diagrams.
Each Feynman diagram corresponds to a set of string diagrams whose contributions
we sum over. This allows us to reinterpret the integral done in computing a single
Feynman diagram as an integral over a region of moduli space. With this picture
in mind there is an additional consistency condition on string field theory. This
requires that the string diagrams defined by string field theory smoothly cover the
moduli spaces of all genera exactly once (henceforth called the smooth covering
condition). The smooth covering of the moduli spaces requires in particular that
there are no discontinuities as we go between Feynman diagrams that border each
other in moduli space.

String Diagrams from Metrics. Certain metrics on a Riemann surface can define
string diagrams. In a local parameter defined on a region 17, a metric is equivalent
to a positive real valued function on 17, say p(z), via the relation dl = p(z)\dz\. If the
metric around the punctures looks like a semiinfinite cylinder going off to infinity
we can define a string diagram. More precisely this condition means that we can
choose a local coordinate around each puncture in which the metric is 1/r. This
prescription defines for us a class of local coordinates related to each other by an
arbitrary complex scaling factor. We had required earlier that the phase of the local
coordinate be undefined. However the scale of the coordinate system remains to be
fixed and is done as follows. In one of the allowed local parameters (defined above)
find the circle of largest radius centered at the origin with the property that the
metric is flat at all points within it. Scale the coordinate system so that this circle
becomes the circle \z\ = 1 in the new local coordinate. This new local coordinate
(and those related to it by a phase factor) serve to define a string diagram.

Metrics from Minimal Area Problems. Having seen that certain metrics can define
string diagrams we move on to the proposal [Z2] that the metric solving the
following minimal area problem (problem M) be used to construct a string field
theory. This minimal area problem cannot have more than one metric as its solution.
In fact such uniqueness is characteristic of minimal area problems on a Riemann
surface [St].

Definition of Problem M

a) R is a compact Riemann surface with a finite set of marked points (punctures).
b) T is the set of non-trivial homotopy curves on R-{punctures}.
c) The length condition L has L(y) = 2π V y e Γ.
d) The allowed metrics are those in the conformal class defined by R.

lflp(y) is the length of the curve γ in the metric p and A(p] is the area of p (we use the
regularized area; see [Zl]) then the solutions to problem M are the metrics in the
allowed class which minimize A and satisfy lp(y) ^ L(y) V y e T.
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Properties Required of the Minimal Area Metric. The minimal area metric, pm will
define a string diagram if the metric looks like a semiinfinite cylinder going off to
infinity (see discussion earlier on metrics and string diagrams). If pm does define string
diagrams then it was shown [Z2] that this set of string diagrams would be a con-
sistent set (i.e. would ensure symmetry, unitarity and factorization of the amplitude).
In addition a choice of propagator and procedure for constructing vertices was
suggested that would give rise to string diagrams arising from the minimal area
metric. This method would be correct (give a single covering of moduli space with
string diagrams arising from the minimal area metric) if two crucial properties of
pm hold. One is the property that was used earlier, stating that the metric around a
puncture looks like a semiinfinite cylinder going off to infinity. To understand the
other, referred to as the amputation property, consider the bordered surface got by
amputating the Riemann surface, along circles of constant radius in the local co-
ordinates around the punctures. The amputation property is the requirement that
the minimal area metric, under the condition that all nontrivial closed curves on
the bordered surface have length greater or equal 2π, be the restriction of pm to the
amputated surface. One way in which we could verify that these two properties hold
is to check that the metric pm arises from a Jenkins-Strebel quadratic differential.
Jenkins-Strebel quadratic differentials are those for which all of the horizontal
trajectories are closed. In fact in the class of problems in which length conditions
are applied only on a set of homotopy classes for which we can simultaneously
choose a set of non-intersecting representatives (an admissible set of classes), the
minimal area metric arises from a Jenkins-Strebel quadratic differential [St] [Zl].
This does not tell us if ρm arises from a Jenkins-Strebel quadratic differential since
the set of all nontrivial homotopy classes is not an admissible set. A partial result
was obtained, stating that Jenkins-Strebel quadratic differentials did yield pm for
all the genus zero surfaces [Zl]. Further in many of the higher genus surfaces
Jenkins-Strebel quadratic differentials yield pm, but there are indications that this
will not be true for all the higher genus surfaces. We must therefore try a more direct
method to establish the truth of the two properties.

What This Paper Does and Does Not Show. Establishing that the minimal area
metric, pm looks like a semiinfinite cylinder going off to infinity around the punctures
will be our concern in this paper. Let us remember that this property came up at
two points in the discussion above. This property follows from the flatness of the
metric in a neighborhood of the puncture if for any point P in that neighborhood
the length of the shortest closed curve, among those that encircle the puncture and
pass through p, is 2π. The latter fact will be established in the paragraph below. We
will establish a criterion, stated in the form of the theorem below, that ensures
flatness in an open set on the Riemann surface. Loosely stated the criterion requires
that there be a unique closed curve of length 2π through every point peU and that
the free homotopy class of these closed curves be independent of p. More precisely
let Δp be the set of all homotopy classes of closed curves passing through a point p
on the Riemann surface. Let apeΔp be a nontrivial homotopy class of closed curves
passing through p. Let SΛp = inf l(y).

γeap

Theorem. Let U be an open set on the Riemann surface R. Let pm be the minimal area
metric solving problem M. Assume that the minimal area metric is C1-continuous.
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Assume there exists a free homotopy class of closed curves, v such that for every peU

there is a closed curve of length 2π in the class vp (this implies that SVp = 2π). Assume
further that VpeC/ and Vαp / vp ocpeΔp, S

Λp >ΐ > 2π. We can then conclude that pm

is flat in U.

The conditions of this theorem are in fact satisfied in a sufficiently small open
set enclosing a puncture if pm has the properties of continuity and completeness.
After defining continuity and completeness we will indicate roughly why these
properties ensure the conditions stipulated in the theorem. Continuity of the metric
is continuity of the real valued function pm in every local parameter. Completeness
is the requirement that any curve having one of its end points at a puncture be of
infinite length. It was shown in [Z2] that in the minimal area metric pm the infimum

of lengths of closec curves through a point p is 2π i.e. inf SΛp = 2π .Completeness
\ «peJp J

tells us that for any point p, in a sufficiently small neighbourhood of a puncture, U,
all closed curves through p not in the homotopy class going around the puncture,
have length greater than 2π. In fact when we combine these two facts with the
continuity of the metric we can show the existence of a unique closed geodesic
encircling the puncture for every point p, in U. The arrow diagram below indicates
the logical context for the above theorem.

Continuity unique foliation Theorem flatness in metric around
and => in neighbourhood => neighbourhood => puncture looks like

Completeness of puncture of puncture semiinfinite cylinder

While we cannot claim to have proved flatness around punctures until
continuity and completeness of pm are established, we believe that the reduction of
the result to the verification of these two properties is a useful step. The authors of
[WZ] have an alternate proof of the theorem above and a proof of the amputation
property. They are investigating issues of existence, completeness and continuity.

2. Structure of Proof

In the first part of this section the crucial idea of localization is discussed and leads
to a short sketch of the arguments to follow. This should be useful even though
some of the terms used will be defined later in this section. Next, to bring out the
logic involved in implementing this idea, three questions are asked and answered.
An understanding of these without their justification will give the reader an idea of
the gross features of the proof. The answer to the second question is justified in full
in this section. The answers to the first and third question are justified in Sects. 3
and 4 respectively.

Localization. The idea of the proof is to localize the global minimal area problem
to a local one. The length condition in problem M is applied on "large" curves (non-
trivial homotopy curves). Our intuition tells us that in a neighbourhood D, of a
point p, pm\D is the solution to a local minimal area problem in which a length
condition is applied on the curves in D that run between two points on its boundary.
We now give the precise definition of a local minimal area problem followed by the
definition of two length conditions l{ and le.
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Definition of Local Minimal Area Problem

D: D is a subset ofR2 which is a conformal image of the unit disc \z\ ̂  1.
B: B is the boundary ofD.
P: P is the set of pairs of points on the boundary (i.e. P = {(bl9b2):bl9b2eB}).
I: I is a length condition (i.e. l:P\-*R).
p: In a local parameter the metric p is a positive real valued function on D (i.e.

We seek the minimal area metric, pe (denoted pe,pf, etc. to indicate that the length
condition in the problem is le, lf, etc.) such that any curve between b± and b2 is
longer than Ie(bι,b2)

Definition of /, and le

h(bι,b2) = length of shortest path between bί and b2.
Ie(bι,b2) = [2π - (length of shortest path in any noninternal homotopy class, between
b^ and b2)]. Non-internal homotopy class here means that the curve is a nontrivial
closed curve on the space obtained by identifying points in the region D. Notice that
le could be negative for certain values ofb^ and b2.

One might suspect that the length condition le (and/or /^) would have pm\D as
the associated minimal area metric. This could be established if le (and/or ίj was
known to satisfy an inequality (triangle inequality). However it is not apparent why
le (and/or ί£) should satisfy this inequality. Even if they did yield pm\D it would not
help since it is not clear why they should give rise to minimal area metrics that are
flat. We will solve the problem of localization by finding a class of length conditions
giving rise to flat metrics. All length conditions in this class will be found to satisfy
the triangle inequality. In this class of length conditions we will find one that has
pm D as its solution.

Ql. Is there a class of length conditions on the disc for which the minimal area
metric is flat?
ANS. Yes. It is shown in Sect. 3 that the minimal area metric, pu is flat if
Iu(bι,b2) = \u(b1) — u(b2)\, where u is a real valued continuous function on the
boundary B with only two extrema. It will be useful later to recognize that the
triangle inequality lu(bί, ί>3) ̂  lu(b^, b2) + Iu(b29b3) is satisfied by lu for any choice of
the function u.

Q2. What condition on u ensures pu = pm\DΊ
ANS. We prove now that if Ie(bl9b2)^lu(b^b2)^li(b^b2) then ρu = ρm\D. This
inequality will be central to our arguments and will be referred to as the central
inequality. Our method will be to establish first that, pm\D is admissible to the local
minimal area problem defined by lu and secondly that A(pu) = A(pm\D). These two
facts coupled with the known uniqueness of solutions to the minimal area problem
defined by lu implies that pu = pm\D. The first step is easy since Iu(bl9b2) g /i(feι,b 2 )
implies that pm\D is admissible for the problem defined by lu. In addition we have
already advanced one step in proving A(pu) = Λ(pm\D) since the last statement
implies A(pu) ^ A(pm\D). All we need show to complete the argument is A(pu)^
A(pm\D). To do this define a metric pnew on the Riemann surface by replacing pm by
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Fig. 1. Proving that pnew is admissible to Problem M

pu in the region D and leaving it unchanged elsewhere. If pnew is admissible to
problem M then we can conclude that A(pu) ^ A(pm\D).

We now show that pnew is admissible to problem M. Consider an arbitrary
non-trivial homotopy curve on R, say y, which intersects D. As we move from t = 0
to ί = 1 the curve intersects the boundary at the points b1-"bn (assumed finite). Of
the n segments b^b2, b2b3,...,bnb1 at least one is an open curve in an external
homotopy class (referred to as the outside segment with length /out). For the
remaining segments we can say that excepting for endpoints they lie either in the
interior oϊD or its exterior and will be referred to as interior and exterior segments
respectively. See Fig. 1.

The length of y in the new metric, denoted /new(y), is the sum of the length of its
segments. Denoting the length of segments b^b29 b2b3,..., bnb1 asl12J23,...Jnlwe
can write

Separate out the contributions of the outside, interior and exterior segments.
Use now the trivial fact that the exterior segments cannot be shorter than the
shortest curves between their endpoints (i.e. those defining lt length condition) to
obtain

(2)
int

Now use /U(b!,b2) = h(bι,b2) to reestimate the length of the exterior segments.
For the interior segments notice that their lengths are defined in terms of the metric
pu and therefore must satisfy the lu length condition. As a result

int ext

The lu length condition satisfies a triangle inequality of the form Iu(bl9b3)^
Iu(bι,b2) + Iu(b2,b3). This, used repeatedly, implies that Iu(bl9bn) ^ Σ'« + Σ'« ^s a

result we get int ext
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If we use the fact that le(b t, bn) ̂  Iu(bΐ9 bn) together with the definition of le(b±, bn)
as in Eq. 5 we see that the length of γ is not less than 2π,

/new(y)^'e(^A) + Lt^27L (5)

Q3. Can we construct a u satisfying the above conditions?
ANS. Yes. We have assumed that through every point peD there is a unique
geodesic of length 2π, called a saturating geodesic. These geodesies form a foliation.
Using the tangent vector to a geodesic we can define a vector at every point in D.
This vectof field has zero curl. This allows us to integrate the vector field to get a
real valued function u. The restriction of this function to the boundary B, is the
function that we seek. The detailed argument proving this is given in Sect. 4 but
now we give a sketch of the argument. Observe first that le(b±, b2) ̂  l^b^, b2) follows
directly from the fact that pm is the solution to problem M. To understand why lu

defined in this way satisfies the central inequality notice that the length conditions
le(bι, b2\ /i(ί?ι, b2) and lu(b±, b2) are the lengths of certain geodesic segments between
bl and b2. Since geodesies are solutions to an extremal length problem, the change
in their length as their endpoints are changed can be computed in terms of line
integrals of vector fields along any pair of paths from the initial to the final endpoints
(see Lemma 3). To establish the central inequality for a pair of points (bl9b2) we
first choose a point b2 such that the central inequality holds for the pair (b1, δ2)(e.g.
b2 = b1). Then we choose a path from b2 to b2. As mentioned earlier the difference
in value of either of the three length conditions between pairs (bί, b2) and (bl, b2) is
the line integral of certain vector fields along this path. We will divide the path into
two parts. On the first part the vector fields to be integrated will be so oriented that
they will satisfy an infinitesimal form of the central inequality (an inequality on
scalar products). This implies that the contribution from the first part does not alter
the central inequality. On the second part of the path the scalar product inequality
will not be valid but the contribution of the second part to the length conditions
can be shown to be small enough to ensure that the central inequality is still valid.

3. Length Conditions Yielding Flat Metric in a Disc

We justify here the answer to the first question. In other words we establish that
pM, the minimal area metric such that any curve between b^ and b2 is longer than
tu(bl9b2) = \u(b^ - u(b2)\, is flat. This problem is a generalization of the problem
where u is defined and constant on disconnected segments of the boundary and is
left undefined elsewhere \_A\. A criterion by Beurling gives us a sufficient condition
for a metric to be of minimal area [A}. We will now use this criterion to prove that
Pu — I VM|, where u is the solution to the Dirichlet problem defined by the boundary
value u(B). As can be verified easily such a metric is flat. To make the argument
simple we will make the technical assumption that u has only two extrema. We
believe however that the result could be established for more general u(B).

Firstly the metric p = \Vu\ is admissible since if η(t\ ίe[0,1] is a curve with
τ/(0) = b1 and η(l) = b2 then

i
= lu(b1,b2). (6)
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we note that the curves that saturate the length condition are the integral
curves of the vector field VM (Fig. 2). To see this let b^ and b2 be two points on the
boundary lying on the same integral curve y. Then we see that

) = JVκ(ί)| |Λ (f)|; = J| Vu(ί) dr(ί)| = J Vιι(

Denote the set of saturating curves by Γ. See Fig. 2. The Beurling criterion requires
us to check that J hpdxdy ^ 0 for every real valued function h on D satisfying

D
^0 VyeΓ (8)

To do this consider v, the harmonic function conjugate to u. It is well defined
since D is a simply connected domain. Let z = x + iy then we can show that the
analytic function /(z) = u + iv is univalent in D. In fact consider the closed curve
which is the image of B under /(z). The argument principle in the theory of complex
variables tells us that if /(z) is not univalent then f(B) must wind around some point
more than once. However this would require that u has more than two extrema.
Univalence of /(z) tells us that u and v define a coordinate system on D. We now
compute the metric in this coordinate system.

dudv = \Vu\2dxdy = p2dxdy.

This change of variables means that in the coordinate system defined by u and
v the metric is identically one. If we rewrite the Beurling criterion in terms of the
new variables it is clear that it is satisfied.

\hpdxdy =\-dudv = \dv\du^^b. (9)
D DP P

In the last step above we have used the fact that along the curves in Γ (which are

the constant v curves) du = p\dz\ which implies that J -du= J h\dr\^.Q.
γeΓP γeΓ

4. Central Inequality and Extrema of u(B)

At this stage flatness can be established at a point pel/ if there is a region D
containing p, on the boundary of which a function M, with two extrema, can be

Saturating
curves

-B

Fig. 2. Beurling criterion
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defined satisfying the central inequality le(b^, b2) ̂  lu(bι, b2) ̂  li(b±, ί>2) I
n the series

of lemmas in the first subsection we set up the picture of foliating geodesies,
understand the geodesies defining the various length conditions and define u. This
will set up the groundwork and the language needed later. The second subsection
is devoted to obtaining a region D with properties that will be necessary in the proof
of the central inequality. At the end of the second subsection we will verify that u
restricted to the boundary has exactly two extrema. The last section will establish
the central inequality.

4.1 The Groundwork

Definition 1 (Saturating geodesies and the associated vector Held). A closed geodesic
of length 2π, is called a saturating geodesic and it defines a vector field H(p) = pm(p)7(p),
where ~ΐ(p) is the unit tangent (in the local parameter) to the foliating geodesic
through p.

Lemma 1 (Geodesic foliation). Given an open set U c R satisfying the conditions of
the theorem we define an annular region Aυ as the set of points through which the
saturating geodesies through U pass. The C1 continuity of the metric implies [_WZ~\
that VqeΛv there is a unique saturating geodesic in the homotopy class vq and these
geodesies are non-trivial Jordan curves in Av. The saturating geodesies in Aυ (denoted
λl9λs etc) are totally ordered and the ordering will be denoted, e.g. ̂  -< Λ,5 (See Fig. 3).
This ordering is obtained by mapping the annular region to an annulus centered at the
origin of the complex plane. Since saturating geodesies never intersect each other λ1

is always inside λ5(λ^ -< λ5) or λ^ is always outside λ5(λ1 >• λ5).

Lemma 2 (Geodesies defining /,- & le). There exists an open setV^U such that peV
and Vp l 5 p 2

e ^ there are only three types of paths between them that are relevant in
the definition oflt and le. These are φnt(pl,p2), %xt(Pι,P2) and φ£(pl9p2) referring
to the shortest paths (hence geodesies) in the internal, left external and right external
homotopy class of paths from between px and p2. The path defining Ie(bl9b2) is either
φ^t(p1,p2) or Φrf(pι,p2) Since these paths lie completely in Λv (Av is defined
analogous to Aυ above) we will be able to restrict our attention to Λvfor the arguments
that follow this lemma. See Fig. 3.

Fig. 3. Geodesies defining / t and le
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Proof. While the existence of the three paths can be established easily, proving that
%e

h

xt(p1,p2) and ΦS'ίPiίRz) are the only external paths relevant in defining le

requires more work. We know that for any peU, S*p ̂  /' > 2π Vαp ̂  vp. Choose a
sufficiently small open set Kc U to ensure that any two points of V can be joined

If _ -Λ

by a curve of length less than - . This ensures that the shortest external path

between p1 and p2 other than ̂ I(pl9p2) and ̂ ^(Pi^Pi) will always be longer than

/' -- = - . However since ^xt(/>i , p2) is the shortest path in its homotopy

class /OPJSr&^ft)) < /(^>ι>Pι)) + /PP' 'ίPi.Λ) < 2π + '̂  < ί̂ . Similarly
/' -I- 2τr

'0PΓT(Pι,P2))<-^— This implies that ^(pl9p2) and y%(pl9p2) are shorter

than any other external paths between pί and p2.

Lemma 3 (Geodesic length and endpoint variation). Let y(s) (se[z, /]) be a family of
geodesies with endpoints y0(s) and y^s). Let the unit tangent vectors (in the local
parameter) at the endpoints be 70(s) and T ŝ). Define ^(yo(5Xfι(s)) = Pm(yι(s)ϊ^ι(s)-
The ordering of the endpoints in the parentheses indicates that the geodesic y(s) is to
parameterized from y0 to yl. The caret above one of the endpoints indicates that we
choose the tangent vector at that endpoint. See Fig. 4. We assert that

f
s))'dγl -T>(Us),yί(s)) 'dγo] (10)

Proof. This follows from the fact that geodesies are the solution of a minimal length

problem. The lagrangian for this problem would be ρm(y(t)) /( — 1 + I — ) . The
\l\dtj \dtj

first order variation in length of a geodesic receives contributions only from the end
point variation. In symbols δl = ~p.δ~f, where the canonical momentum ~p=pmT.
The lemma is just an integrated form of this result.

4 _^
Lemma 4 (u is well defined). u(q) — §H(q)' dr is a well defined function of the point q.

E
The integration is done along any path from E to q. The vector field H(q) is defined
in Definition I.

s=i Y0M 5(%(s)f){(s)) s = f

Fig. 4. Computing changes in the length of geodesies
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Fig. 5. Proving that w is a well defined function

Proof. Consider an arbitrary closed curve in D, say η. Without loss of generality
we choose η so that the saturating geodesies don't intersect the boundary more than
twice. See Fig. 5. We need to show that

§u(q)-Ίr = 0. (11)
η

Associate with a parameter se[0,1] a saturating geodesic interesting η at b^(s)
and ί?τ(s). We require that the saturating geodesies satisfy λ(sΐ) < λ(s2) iϊs1 < s2. Let

ί(s)= f
E

- J
E

(12)

Lemma 3 tells us that /(s) is the length of the shortest curve running between
and ί?τ(s). Since §H(q)-~dr = 1(1) = 0 we have the required result.

4.2. Construction ofD Satisfying Required Properties

We now construct the region D with a view to ensuring that it satisfies a set of
properties. These properties which are defined shall be used in proving the
assumptions on the function u that we had made earlier. In order to proceed to the
next subsection, where the actual proof of the inequality is presented, one could just
understand these properties and skip everything else in this subsection. The fact
that u has only two extrema is a simple corollary of these properties and this is
shown at the end of this subsection. First we define the idea of Conjugate points
and Uncrossed pairings which will be required in stating the properties of the
region D.

Definition 2 (Conjugate points).
and p2 are said to be conjugate to each other.

Definition 3 (Uncrossed pairings). A pairing is a collection of pairs of distinct points
on the boundary such that every point is contained in exactly one pair. Consider two
pairs of points on the boundary, B. Choose one of the pairs. It cuts the boundary into
two segments. If both points in the other pair lie in the same segment then the two
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pairs1 are uncrossed. A pairing is an uncrossed pairing if any two pairs that it defines
is uncrossed.

Let us call the direction defined by the ~u (p) to be the vertical and the direction
perpendicular to this to be the horizontal. Choose a local parameter whose origin
is at the point p and aligned such that the x axis is along the horizontal and ~u(p)
points along the positive y axis. The local parameter allows us to use the concepts
of planar geometry such as straight line segments and circles. These should be
distinguished from the entities intrinsic to the metric such as geodesic segments.
In addition we can define the angle between two vectors based at different points,
Ang (VV(P! ), ~v(p2)), as the lesser of the two angles that the axes defined by them make.

This definition implies that Ang will always be less than -. Choose a circular

disc W (in this local parameter), of sufficiently small radius to ensure that the

following constraints hold. ( The value of ε will be fixed later on. For the present it

will be sufficient if ε < -.
o

Constraint 1: Ang(~w(p),~w(g))^ε,
Constraint 2: At p^ and p2 the geodesies ^Xt(pι,p2)

 and ^^(Pi^Pi) define vectors
rhVe(Pι>P2)>ihVe(Pι>P2) etc by the prescription given earlier defining vectors from
geodesies (see definition of H in Subsect. 4.1). We use the generic symbol ~ve(βι,p2)
for any of these vectors. We require Ang("w(p),7e(p1,p2)) ̂  ε» Vp 1 ? p 2 e VK
Constraint 3: The geodesic segment (shortest path) between two points in W should
be "sufficiently straight." More precisely we require that for any two points on the
path, the angle between the tangent vectors to the path be less than ε.

Let ?i(pι,p2) be the length of the geodesic segment and I ( p l , p 2 ) the length of the
straight line segment between pv and p2; the lengths of these curves being computed
using a metric that is identically one on the disc. A consequence of Constraint 3
which will be useful in understanding Constraint 4 below is that /(Pι,p2) = ί(Pι>P2) =
sec(ε) /(p1,p2).

Constraint 4. The length /i(pι,p2), of the geodesic segment connecting p1 and p2

satisfies (1 - e)-p(p)'l(pl9p2) ^ Ii(pl9p2) ^ (1 + ε)-p(p)Ί(pί9p2).

Let us see why Constraint 4 can be satisfied. Clearly the definition of lengths in
the metric p impliesΊi(p^p2\pm{n ^ /i(pι,p2) ̂  £(Pι>P2) /W ™here Pmin and Pmaxa r e

the minimum and maximum values of the metric on the disc W. Our comment (below
Constraint 3) can now be used to conclude that I(pl9p2)'pmin ^ li(Pι,P2> ^ ί(Pι>P2)'
sec(ε) pmax. Continuity of the metric at the point p implies that for sufficiently small
disc W the last inequality yields Constraint 4.

Estimate I. Consider two points p1 and p2 in W which are the conjugates of each
other. We ask for the maximum angle, 0max that the straight line segment p^p2 can
make with the horizontal. Constraint 2 tells us that for all q on the segment pι/?2,
θ > ε implies that rhVe(q, Pi) and ihVe(q, PI) have opposite sign for their scalar product
with the tangent to the straight line segment Pιp2. If we now integrate along the
straight line segment pip2 to compute /(ΦfΛ

xt(/?ι,p2)) and '(Φr/Γ(Pι>P2)) we see that
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Fig. 6. Construction of the region D

one of them increases monotonically whereas the other decreases monotonically.
We conclude that I(^(pl9p2)) Φ W(Pι,P2))if θ > £ and hence that θ

m™ = ε

Construction ofEFGH. The horizontal through p intersects the boundary of W at
two points. Choose one of these to be the point E. Any point conjugate to E lies in
a cone of angle 2ε with apex at E. Let the cone intersect the circle W at two points
Γ! and r2. Notice that IW^for^lW^farJ) but W£(E9r2))£lW%\E9r2)).
Constraint 2 implies that l(^l(E9b)) and /(φ,f(£, fc)) vary monotonically as b
moves along the boundary from r t to r2. This shows that there is a unique point G
on the boundary of W conjugate to E. Now send out a pair of geodesies from both
E and G at 45° to the straight line segment EG as shown in Fig. 6. Let them meet
at F and H as shown in Fig. 6. D is then the geodesic quadrilateral EFGH. It can
be verified that the construction ensures that p lies in the interior of D.

Property 1. D is geodesically convex. This means that the geodesic connecting two
points bi and b2 on the boundary B, in the metric pm, lies completely within the region D.

Proof. The edges of the quadrilateral are geodesic segments. Choose any edge. The
entire quadrilateral lies on the side of the geodesic defining this edge. This implies
geodesic convexity.

Property 2. The saturating geodesies intersect B at precisely two points except for
the ones passing through E and G alone. This defines the f-pairing. If b^ and b2 are
paired in this manner then we write b2 = b1l. If bi^eEFG then b1 $eGHE and vice
versa. Further the f-pairing is uncrossed.

Proof. Let b^ and b2 be on the same saturating geodesic. Using the Constraint 1
on ~u(p] we find that the maximum angle that the line segment blb2 makes with the
vertical is ε. This shows that the pairing is well defined. The pairing is uncrossed
since otherwise the saturating geodesies would intersect and this is impossible.

Property 3. Conjugate points on the boundary can be paired and this will be called
the c-pairing. This pairing excludes the points F and H. If two points bλ and b2 on the
boundary are paired then we write b2 = b^. If b1 εHEF then b^eHGF and vice versa.
In addition the c~pairing is uncrossed.
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Proάf. We will first establish that the c-pairing is well defined. The maximum angle
that a pair of conjugate points can make with the horizontal is ε (Estimate 1). If
blεHEF, the geometry of the region D, requires that any point conjugate to it lie
in HGF. In fact an argument similar to the one given in the paragraph entitled
"Construction of EFGH" tells us that there is a unique point b^eHGF conjugate
to frj. It is useful to observe that E~ = G by the construction of D. Having
established the existence of the c-pairing we will now check that it is an uncrossed
pairing. Consider the conjugate pair bί9 b". If we move downwards (upwards) from
b1 to b2 then to get b^ we must move downwards (upwards) from b~ to ensure that
equality is regained between /(^Xt(pι,p2)) and I(φ%\pι9p2)). This implies that the
c-pairing is uncrossed.

We will establish now that u(B) has exactly tw£ extrema. Constraint 1 tells us
that H(b)' dr(b) Φ 0 at any point beB. Further ~ΐί(b)'~dr(b} changes sign only at F and
H. This implies that the function u (see Lemma 4 for its definition) restricted to B
has extrema only at F and H.

4.3. The Central Inequality, I e ( b l 9 b 2 ) ^ I u ( b ί 9 b 2 ) ^ I t ( b i 9 b 2 )

Sketch. It is useful to notice that I e ( b ί , b 2 ) ^ Ii(b^b2) follows directly from the fact
that pm is the solution to problem M. It is only sandwiching lu between le and /f that
requires detailed argument below. Choose a point b^. Associated to this point are
the vector fields (depending on the variable b) ~?e(£,bι), ~ubί(b) and ~vl (bl9b). The
vector field Hbl(b) is related to the vector field H(b) (see the next page for details).
The length conditions Ie(bί9 b2\ Iu(b^b2) and l^b^ b2) are the line integrals of these
vector fields.

b2 b2

le(b1,b2)=$lϊe(b,bl) Ίr(bl /M(&ι,& 2)= ί ubί(b)'Mb),
bι bι

It(bι9b2)=ζl>\bl9b) 'dr(b). (13)
fci

We can say roughly that the central inequality iŝ a consequence of the inequality
on scalar products, ~ve(b,b^-dr^H(b) dr^ ~v\b^b\dr (see Fig. 7). There are four
vectors involved in the scalar product inequality. First we will give conditions, on
the configuration of the four vectors, that are sufficient to ensure the scalar product
inequality. Next we discuss the nature of the three vector fields with regard to these
sufficiency conditions. The concluding section of the proof considers two differing
choices for the path of integration, depending on the relative configuration of the
points b^ and b2. For either configuration we will in general need to break the path
of integration into two segments. Only on one of these segments will the scalar
product inequality be valid. We will therefore need to establish that the contribution
from the other segment does not make the central inequality invalid.

Inequality on Scalar Products. The scalar product inequality, 've(b,bί) dr^
H(b)' dr ^ ~vί(bι,b)' dr, is the crux of the proof of the central inequality. We will now
establish conditions that are sufficient to ensure the scalar product inequality. Let
Pi <P2 (Pι>Pι)' See Fig. 7. The scalar product inequality will be valid at a point
q on the path of integration from p1 to p2 if
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Fig. 7. Vector fields and the scalar product inequality

a) the tangent vector at q (to the path) points in the direction of increasing
(decreasing) grading. The grading referred to is the one given to the saturating
geodesies in Subsect. 4.1.
b) !le(b, bj, ~ϊίbί(b) and T>l(bi9b) all lie on the same side of the tangent to the path.

We leave the proof of this simple result to the reader. Let us look ahead and see
whether the two conditions above will hold for the paths chosen in the proof. The
path chosen will never pass through the points E and G. This will ensure the first
requirement that the tangent vectors to the path always point the right way. In
addition for all points b on the path ~ve(b, bj and 'vί(bl,b) will be outward pointing.
However ~ubl(b) will not in general be outward pointing for all points b on the path.

Vector Field for le. The geodesic defining the vector field for le switches between
Φjjf(ί?ι,ί?) and ^^(b^b). In fact as b varies along the boundary (with b^ fixed) this
switching occurs only at b = b~. We can verify using Property 3 that if bleGHE
(b^eEFG) then the vector field defining le is outward pointing along the boundary
segments b^Hb" (b^Fb^} and EFG (GHE). Later we will see that the path chosen
for performing the line integrals above will lie within the segments on which this
vector field is outward pointing.

Vector Field for lu. We need to be more careful with IM(bι,b2) = \u(bι)- u(b2)\
because of the absolute value symbol in its definition. As an example of the kind of
behavior we expect consider keeping bl fixed and varying b. If | u(b) — uφjl becomes
zero then we will have to reverse the vector field we have been using because of the
absolute value sign. This kind of reasoning leads us to assert that ~ubί(b) = + H(b\

b ^

where we choose the plus or minus sign at a point b depending on whether J ~u(b)- dr
bι

is greater than or less than zero. This rule for the choice of sign will later determine
that on the chosen path of integration ~ΰbί(b) is outward pointing on the first segment
of the path and inward pointing on the second segment.
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F F

Fig. 8. The path of integration and its division into segments

Vector Field for lt. 'vi(bl,b) is outward pointing for any two points b± and b since
the region D is a geodesically convex.

Case 1. bί9b2eGHE (or bl9b2eEFG) Property 3 implies that either b2eb1Fb~ or
b1Gb2Fb^ but not both. Choose b^ as the base point if the first statement holds, b2

otherwise. Say b± is the base point. Choose the path y1 2 c: B from b1 to b2 to exclude
ί?~, E and G. See Fig. 8a. With bi as the base point integrate from b^ to b2 along
y12 in Eqs. 13. Assume that Iu(bl9 b) never becomes zero for any point b on y12.Jhis
will mean that Hbl(b) is outward pointing on all of γί2 and hence that ~v e(b, b^- dr ̂

H(b)' dr ̂  ~vi(b1,b) dr for all points fo, on γί2. Since all of the length conditions are
zero for b = bί the inequality on scalar products implies Ie(bl9b2)^lu(bί9b2)^
WM

If however Iu(bl9b) does becomes zero at b = b0 we cannot assert that ~u is
outward pointing on all of y12. We break γ12 into two segments. See Fig. 8a. On the
first segment (b1 to b0)9 H will be outward pointing and hence the inequality on scalar
products will be valid. As a consequence we can assert that Ie(bl9b0) ^ Iu(bί9b0) ^
Ii(bι9b0). Now we must compute the contribution from the segment b0b2. On this
segment ~ve(b, b^)- dr ^ ~u(b)- dr is valid as can be seen by checking the signs of these
scalar products. Hence we see that Ie(bl9b2) ^ Iu(bl9b2) will be true. Let us now prove
that ljbί9b2) rg h(bi9b2). Let the length of b0b2 in the metric pm be μ. We see that
Iu(bl9b2) ^ μ and I ί ( b l 9 b 2 ) ^ I i ( b l 9 b 0 ) — μ since these arise from integrals (Eqs. 13) in
which the maximum magnitude of the integrand is p(b). This tells us that
Iu(bl9b2) ^ I i ( b l 9 b 2 ) if μ ̂  I i ( b ί 9 b 0 ) - μ; that is if μ ̂  ̂ Ii(bί9b0). Constraints 1 and 2
imply that the maximum angle that the straight line segments b^bQ and bib2 can
make with each other at the point b^ is 2ε. This would lead us to expect that
μ&2εΊi(bί9b0). In fact we can use Constraints 3 and 4 to establish the rigorous

bound μ^g(ε)Ίi(bί9b0)9 where g(ε) = . If we choose ε so that
1 — ε sin (π/4 — 4ε)

g(ε) < \ then μ ̂  ̂ Ii(bί9b0) as was to be shown.

Case 2. b^^eEHG and b2εEFG (or viceversa). Now we choose the path from b1 J to
b2 that does not pass through E or G. See Fig. 8b. Since I e ( b ί 9 b ^ J) = I u ( b ί 9 b i I ) =
I i ( b l 9 b 1 1 ) we see that the relative ordering of Ie(bί9b2)9 Iu(bl9b2) and I i ( b ί 9 b 2 ) is the
same as the relative ordering of the contributions from the path. An argument
similar to that of Case 1 gives the desired result.
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