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Abstract. We obtain the induced action Γ[h9 b~] for chiral W3 gravity in the c-» ± oo
limit from the induced action of a gauged S/(3, R) Wess-Zumino-Witten model by
imposing constraints on the currents of the latter. In the process we find a closed
gauge algebra for the gauge sector of W3 gravity in which the currents T and W
become auxiliary fields. An explicit realization of T and W in terms of the gauge
fields is given. In terms of new fields r and s, which are a generalization of
Polyakov's / variable for ordinary gravity, the complete induced action
Γ[h, b; c-> + oo] becomes local.

1. Introduction

Gravity in two dimensions has been extensively studied. Surprisingly, it was found
that in the weakly coupled regime (c< 1), three equivalent descriptions exist for
d = 2 gravity. There is the direct approach which starts from the induced action for
d = 2 gravity:

This action has been studied both in the conformal gauge, where it reduces to the
Liouville action, and in the light cone gauge where it becomes the Polyakov action
[1]. In both cases Eq. (1.1) becomes local.

An alternative approach relies on a discretization of the two-dimensional space
and leads to the study of matrix models. A third formulation ofd = 2 gravity theory
is through a topological quantum field theory.
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In two dimensions, there exist higher spin extensions of gravity. These theories
are based upon an algebra which is of Wtype. Reviews of the recent activity in this
field, which so far mainly focussed on the classical theory, can be found in [2]. In
this paper, we focus on quantum W3 gravity in the chiral light cone gauge, with
gauge fields h _ _ and b Our main result, which we present in Sect. 4, will be an
all order result for the induced action of W3 gravity, which is exact in the limit of
large c. We will derive this action by using the hidden Sl(3, R) symmetry in the
theory.

Before we come to this, we will first, in this introductory section, review some
algebraic aspects of classical and quantum gravity theories and indicate how they
generalize to the case of d = 2 W3 gravity. In Sect. 2, we will then review the
treatment of d = 2 induced gravity as a reduced S/(2,R) Wess-Zumino-Witten
(WZW) model. In Sect. 3, we discuss induced W3 gravity, both for infinite and for
finite central charge c. After the presentation of our main results in Sect. 4, we will,
in Sect. 5, discuss some ideas about the geometry of W3 gravity, which we base on a
"W3 superspace." We will also comment on the construction of the covariant
induced action and on the description of W3 gravity coupled to minimal W3 matter
systems through matrix models and topological quantum field theories.

The results of this paper for the induced action of quantum W3 gravity extend
the results of [3], where the lowest terms (through 3-loop, but without restricting c
to be large) of the induced action were computed explicitly. We will argue that the
full effective action, which includes the effects of fluctuations in the quantum fields
/ι__ and b , is obtained from the action constructed in this paper, by
renormalizing some constants, which are the level fc = c/24+... of the S/(3,R)
algebra and z-factors for the fields Jz__ and b (see [4], for a detailed
discussion).

Let us now briefly elucidate the algebraic structure underlying classical and
quantum (induced) gravity. The general starting point is the construction of a
gauge theory for some algebra, which is then supplied with constraints on the
curvatures. One uses here the observation that a general coordinate transforma-
tion on a gauge field can be written as a field dependent gauge transformation
modulo terms proportional to the Yang-Mills curvature. Indeed, consider an
infinitesimal general coordinate transformation with parameter ξ, on a gauge
field A:

δgctAμ = ξvdvAμ + dμζ*Av

= dμ(ξΆ) + lξ A9Aμ] + ζ*Rvμ. (1.2)

By putting certain curvature tensors to zero, general coordinate transformations
become equal to gauge transformations [5], In gravity one puts the curvature
tensors corresponding to the translations (which are among the gauge trans-
formations) to zero. This has two implications:

i) The spin connection (the gauge field associated with local Lorentz trans-
formations) can be solved in terms of the vielbeins (the gauge fields associated
with translations),
ii) Local translations are identified with general coordinate transformations.

In the two-dimensional case one starts with the group 5/(2, R) with its Lie
algebra generated by T+ and To,

[T0,Γ±]=±2Γ±,

iττ^λτ
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where λ is a real constant. For /l->0, this algebra reduces the Poincare algebra in
two dimensions, ISO(2). The gauge fields A± and Λ° transform as usual

δA± =dη± ±2η°A± +2η±Λ°,

A-λ-A+

and one has the curvature tensors

R±=dA±+2A°ΛA±,
(1.5)

R° = dA°-λA+ΛA-.

According to the previous discussion, one now puts R±=0 and solves this
constraint for A0. The resulting theory describes an anti-De Sitter gravity theory
with zweibeins A±. One could wonder whether an additional constraint R° = 0
(constant Riemann curvature) makes sense. This condition is dynamical and can
be viewed as the equation of motion for the effective gravity theory. Indeed,
parametrizing the zweibeins as

A+=eφ+(dz + h__dz), A~ =eφ-(dz + h++dz), (1.6)

one finds that in the chiral gauge, h+ + =0 and φ+=φ_=0, the constraint is
d2h-_ = — 2λ and in the conformal gauge, φ+=ψ- and /z__=/ί+ + =0, one gets
ddφ = λexp(2φ). One sees that in the conformal gauge, one obtains the Liouville
equation, which is indeed the equation of motion for the induced action of d = 2
gravity. The interpretation in the chiral gauge is not completely clear. Upon taking
an extra derivative one obtains d3h _ _ = 0, which is indeed the equation of motion
of the induced gravity theory in the chiral gauge. (Use Eq. (2.24) and the on-
shell condition w = 0.)

In [6,7], it was shown that gauge fixing the symmetries generated by T+ and To

by putting A° = 0 and A~ = constant, results in the fact that Aζ can be viewed as
the light-cone component /ι_ _ of the metric. Surprisingly, A* transforms then as
the effective energy-momentum tensor under the remaining T_ transformation.
Two of the curvature constraints turn out to be algebraic again, while the third one
reproduces the Ward identity of induced gravity. Starting from the observation
that the curvature constraints can be seen as the Ward identities for a gauged
Wess-Zumino-Witten theory in the light-cone gauge, one can solve the gravita-
tional Ward identity (i.e. construct the induced action) using the known induced
action of the gauged Wess-Zumino-Witten model. This will be shown in the next
section. Though at first this looks rather arbitrary, a more systematic derivation
can be given, along the lines of [6], by starting from an S/(2,R) Chern-Simons
theory in 2 +1 dimensions.

Finally, let us give some comments on the situation for W3 gravity [2]. The
quantum W3 algebra [8] is generated by {Lm,Wn;m,neZ} with commutation
relations:

A2 - i)δm+nι0+(m-ή)Lm+n,

lLm,Wn-]=(2rn-n)Wm+n> ( J

^ 2

+ (m-n) \—(m + n + 3)(m+n+2)- -(m + 2)(n + 2)\Lm+n

1

6

+ β(m-n)Λm+H9
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where

and

Λm= Σ :Lm_nLn:-^-(m + 3)(m+2)Lm, (1.9)

and the normal ordering prescription is given by

:LmLn:=LmLn if m^-2

= LnLm if m > - 2 . (1.10)

As can be seen from Eq. (1.7), the novel feature of W type algebras is the
appearance of composite terms at the right-hand side of the commutators. The W3

transformations globally defined on the sphere are w = {L±ί,L0, W±2, W±ί, Wo}.
From Eq. (1.7) it follows that, due to the presence of the non-linear terms, these
generators do not form a subalgebra. One might expect that in the c-> oo (classical)
limit, the W3 algebra linearizes. However, the relation

lLmJΛJ = (3m-n)βΛm+n+^(rn*-m)Lm+n, (1.11)

shows that simply dropping the nonlinear terms in the limit c->oo is not a
consistent procedure. Nevertheless, the previous equation (take m = ± 1 and m = 0)
does imply that only in the subalgebra w, the non-linear terms can consistently be
put to zero. The resulting algebra, which can be seen as the on-shell version of the
projective subalgebra, is isomorphic to su(2,1). Indeed identifying

T±ί=±^(WΨ1+L;1), Γ ± 2 = + ^ r ( W ; i - L τ l ) , (1.12)
1/8 |/o

T - 1 w
i ± 3 = 4 yyT2 >

where

f^U (1.13)

one finds that {T1,Γ2,T±1,T±2,T±3} satisfy the S/(3,R) commutation rules.
Taking into account the factors i in Eq. (1.13), one has that over R, the algebra
{L±l9L0, W±l9 W±ί, Wo} is isomorphic to SU(2,1).

The previous analysis suggests a natural generalization of the Poincare algebra
to the W3 case. For pure gravity, {L_UL__ULO — Lo} (the unbarred generators are
left movers while the barred generators are right movers, left and right movers
mutually commute) generate the Poincare algebra, which, as we mentioned above,
is a contraction of S/(2, R). For W3, it is natural to define as a Poincare-like algebra,
the algebra generated by {L0-Lψ WO-WO,L_UL_U W.u W_u W.2, ΐ^_2}.This
algebra is precisely the contraction of the S/(3,R) algebra used by Li in [9].
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As such, it is to be expected that S/(3, R) will play a role in Wj-gravity, similar to
the role played by S/(2, R) in d = 2 gravity. This connection will be made precise in
Sect. 4, where we will show how the W3 gravity Ward identities (in the chiral gauge)
arise from the S/(3, R) structure. The co variant formulation of induced W3 gravity
will be treated elsewhere [10].

2. Gauged Wess-Zumino-Witten Models

In this section we review some basic results on WZW models [11, 12]. As an
application we shall rederive the effective action for induced gravity from an
S/(2,R) theory (see also [13, 14]).

An afϊϊne Lie algebra is determined by the following OPE1,

Ja(χ)Jb(y)= - ^gatix-yr'H^-yyV^Jciyn ... (2.1)

The generating functional for current correlation functions Γ[A\ is defined by

e~™= /exp - — \d2x tτ{J(x)A(x)}\ (2.2)

and transforms as

δΓlA-] = -^d2xtr{ηdA} (2.3)

under

δA = $η + lη9A]. (2.4)

The relation (2.3) states that the anomaly comes only from the lowest order
(2-point) diagram.

From (2.3) and (2.4) we derive the following Ward identity

5u-[A,ύ] = δA, (2.5)

where

This Ward identity can be solved for Γ\_A~] yielding

Γ[A) =

1 We normalize such that if [Γα, Tb]=/α

c

&Tc then /β

d

c/ώ= - % β & , where K is the dual Coxeter
number. In a representation R we have tr(TaTb) = — xgab, where x is the index of the representation
(x = Kϊoτ the adjoint representation). For Sl{n, R) one has K= n and x = i for the vector (defining)
representation. Finally, we always work in a two-dimensional Euclidean space. We will use
complex coordinates and denote them by x and x (or z and z) instead of x~ and x+
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Σ -4=(\U-])"-A-
fo n + 2\|_δ J/ δ J

Polyakov and Wiegemann [12] found a very elegant alternative formulation
for Γ[i4]. Parametrizing A as ,4 = 3gg~ \ one finds that u = dgg~1 because Eq. (2.5)
states that the curvature for the Yang-Mills fields {Λ,u} vanishes. In this
parametrization one has

^ 1 } , (2.8)

where (expη)g = g -f <5g, which is recognized as the equation of motion for the Wess-
Zumino-Witten action

*tr{dg^g}

with d3x = dx3dx+dx~ and ε3 + " = - 1 and where d = dz and d = dz.
It is also easy to find the covariant action. Indeed

^$d2xtr{A(x)Ά(x)} (2.10)

is invariant under Eq. (2.4) and

δA = dη + lη,X]. (2.11)

The covariant action (2.10) can be viewed as the induced action of a gauged
Wess-Zumino-Witten model. Indeed, let us consider a WZW action Γ[Λ], which is
invariant under

(2.12)

The currents associated with these symmetries are (use Eq. (2.8))

j(x)=-llh-ίdh, 7{x)=^dhh-\ (2.13)

and J(x) satisfies the OPE Eq. (2.1) with the same OPE for J(x). We now consider
the action Γ(h,A9A]:

Γ[M,;Ϊ] = Γ[A]-— $d2xtr\ JA + JA-^AA+^AhAh-1 . (2.14)
TCX I Z* /* I

Parametrizing A and A as A = Ugg ~i and A = dg'g' ~J one finds using the identity

h-ιdh-\, (2.15)

which is obtained through direct computation, that

Γ[h, A, A] = Γ[g'-!%] -Γίg" x g]. (2.16)
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From this we immediately read off that the action has a vectorial gauge invariance

h'+γhy-1, g'-^yg\ g-+yg (2.17)

while the axial transformations

g~+yg (2.18)g'-ΓV,
are not symmetries. In [15], it was shown that after integrating out matter i.e., the
fields h{x\ the induced action of the gauge WZW model is indeed given by Eq.
(2.10). Upon choosing a chiral gauge Ά=0, we retrieve our point of departure
Eq.(2.2).

We now restrict our discussion to 5/(2, R). We choose as basis

_ p °Ί Γ _ Γ 0 Π Γ - Γ ° °Ί
-[_o - i j ' +~|_o oj' Γ--|_i oj

with metric 1-4 0 θ\

gβ 6= 0 0 - 2 .

\ 0 - 2 0/

We impose the following constraints on the currents u

M = L« o j

(2.19)

(2.20)

(2.21)

where a is a real constant. The reason for these constraints will become clear. Using
(2.21) and (2.5) we can eliminate A+ and Λ° as independent variables, giving

A =
2a a\2a

2a

(2.22)

and the Ward identities reduce to a single equation:

' 2_._ 1 Λ + 1 , 3 , _
d oA A d )u = ~—-ΎdόA .

a a ) 2a

Compare this now with the Ward identity for induced gravity [1]:

where

and

u(x) =
12π δΓjfϊ]

~T δh(x)

e-rw = / e χ p _ 1 j d2χT{x)h(x)\.

We note that upon identifying

h=-A~,
a

u= —2au+,

(2.23)

(2.24)

(2.25)

(2.26)

(2.27)
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Eqs. (2.23) and (2.24) coincide. This observation implies that one can obtain Γ[K]
from Γ[A\ as follows.

On the one hand, u+ is defined by

A+=A+(A~). (2.28)

On the other hand, the object u(x) in pure gravity is obtained by varying an
effective action Γ[K], This suggests that Γ[ft] is related to Γ[A] in which the
constraints have already been imposed on A. Therefore, we reverse the order in
which we differentiate with respect to A~ and impose constraints, and find from
the chain rule

where we used

From (2.27) and (2.25) we have

6π

(2.29)

(2.30)

(2.31)

(2.32)

The leading or classical term in the KPZ-formula [16, 17, 14], is k = c/6.
Before deriving a more manageable form for Γ\_A~] we first reduce the

transformation rules. From δu = dη + [η, ύ] and the constraints, one obtains

U = — — M = —

2α αc cm
Combining Eqs. (2.29) and (2.31) yields

2α a\2a

From δA = ciη + \_η, A] one finds then that

δh=δε + εdh—dεh,

where ε = η '/a. The stress tensor transforms according to

δu=d3ε+εdu+2dεu.

(2.33)

(2.34)

(2.35)

A local expression for Γ[K] is obtained by using a Gaussian parametrization for
S/(2,R)

1 ή/Γ1 0\/l 0

o IJVO λ)\φ
(2.36)
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The constraints in (2.21) can now be solved explicitly, giving

2a dφ '
(2.37)

-2_ "
λ ~δφ

and

XΛ
 ( 1 3 8 )

dφ'

where we used that A = c)gg~1 and u = dgg~ι and Eq. (2.27).
Substituting the Gaussian decomposition into the action in (2.32) one obtains

2 4 π J f l X2 4 π J f l X l (δφ)3 (dφ)2 j

with k = c/6, which is indeed the action for induced gravity in the light-cone gauge.
It is amusing to note that the correction term in Eq. (2.32) precisely cancels the
kinetic term of the WZ W-action. As such the action for induced gravity arises from
the WZW-term.

Note that the previous construction provides us with a Lax pair [20,19] for the
Virasoro Ward identity. Indeed consider (d — u)ψ = 0 and (<f— Λ)ψ = 0, these have
the WZW Ward identity as integrability condition. Upon imposing the con-
straints, these equations reduce to

( ^ \ = O, (2.40)

which indeed have the Virasoro Ward identity as integrability condition. Consider
the two independent solutions to the Lax pair, \px and ψ2. From the second
equation in Eq. (2.40) it follows that we can identify φ = ψjψ2 since it yields
h = dφ/dφ and from the first equation in (2.40) one immediately gets the explicit
form for ψx and ψ2 in terms of φ while it also gives u as the Schwarzian derivative,
Eq. (2.38).

If we compare this analysis to the work of Bershadsky and Ooguri [14] we see
that the main difference lies in the constraint imposed on u. While in the present
work we impose the constraints u~ = constant and w° = 0, in [14], one imposed
u~ = constant and φ = 0. It is interesting to note that while our constraints identify
φ with the coordinate transformation /, the choice of [14] (see also [13]) resulted
in the identification of φ with the inverse transformation F defined through

F(f(x,x),x) = x. (2.41)
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In the work of [14], the induced action for gravity in terms of the F variable arose
completely from the kinetic term of the Wess-Zumino- Witten action, while here it
arises from the Wess-Zumino term.

Finally, the previous construction explains the residual S/(2, R) symmetry of
effective gravity theories [1]. The A fields are the Noether currents associated
with this symmetry. As can be seen by combining Eq. (2.33) with δΓ[K\
= c/12π$d2xd3εh and ε = η~/a, the induced action has indeed a residual affine
5/(2, R) symmetry.

3. Induced W3 Gravity

Before we study the relation between SΪ(3,R) WZW models and induced W3

gravity, we first review some properties of the latter. We restrict ourselves
throughout this article to "pure W3 gravity" as given by its abstract algebra. For an
alternative approach based on a realization of the currents in terms of n scalar
matter fields φ\ see [3].

The VF3-algebra is generated by currents T(x) and W(x) satisfying the operator
product expansions

(3.1)

\~2

\~1

2βΛ(y)+-d2T(y)

15'

where

(3.2)

and β was defined in Eq. (1.8). These OPE's are equivalent to the commutation
relations Eq. (1.7).

We again consider the generating functional for current correlation functions

e-nh,b]= / e χ p _ I ̂ d2x[_h(x)T

Under the variations

δh = ()ε + εdh — dεh,

δb = εdb-2dεb9

the induced action Γ[h, b~\ transforms as

(3.3)

(3.5)
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while under

δh=^- λd3b - - ί δλd2b + - ί d2λdb - ^- d3λb,
J. J ±\J x\J -I «•

(3.6)

one has that

δχΓlh, ¥] = - - ^ f <ί2xA35& - - f d2xλ(x)(2db + bd)Λeίf(x). (3.7)

Here

ef fM = (A(X)exp - Ĵd2yίh(y)T(y) + b(y)W(y)-]\je~Γ

= Urn l(τ(y)T(x)- C-{y-x)^-2(y-xr2T{x)

( 3 8 )

where M(X) = — ) : ' = — Teff. We have used the identity δx~1 = π<52(x). The

explicit form for δλh in (3.6) follows by requiring that all ̂ -independent Te f f terms
cancel in the right-hand side of the Ward identity. In a different context we found
this same δλh rule in [3]. Part of these results were also found in [18], though there
the incorrect assumption was made that the non-linear terms decouple in the large
c limit. I

In the limit c->±oo one obtains c~2Λe{{= —— u2, and Eq. (3.7) becomes
c c

δΓlh9bl=-^——id2xλd5b----{d2xλ(2db + bd)uu. In this limit we can also
360π 45π

reduce the A-anomaly to the minimal one by adding an extra term to the h
transformation rule Eq. (3.6):

δh=^-{λdb-bdλ)u. (3.9)

However, it turns out to be more advantageous to make a different choice for

^ (3.10)
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Indeed, for this choice we have that u and υ transform according to the operator
product expansion in the limit c-> ± oo,

-j-zλdv+ —-dλv,

λd
3
 + 9dλd

2
 + 15d

2
λd + lθd

3
λ)u

+ 16(d λuu + λudu),

where
360π 5Γ[Λ,6] 360 m . . „ , „

v=—-kέ=-w*M- (3 12)

The algebra becomes then

[Sfcά <5(ε2)] = δ(ε3 = ε2dεi - ε ^ ) ,

λ2)] = δ(λ3 = 2λ2dεx - εγdλ2), (3.13)

ά δ(λ2)-] = δ (ε3 = ^- Q&λ^ - ?>d2λγdλ2 + 3dλxd
2λ2 - 2λ^λ2)

As we will see later on, it is precisely this choice for δh which will emerge from a
constrained S/(3, R) theory. The drawback of this choice is that the ^-anomaly is
not the minimal one:

^ ^ (3.14)

A useful check of this result is the analysis of the Wess-Zumino conditions for
consistent anomalies, which are indeed satisfied (compare with our analysis in [3]).
Using the chain rule for δΓ and Eqs. (3.4H3.6), (3.10), and (3.14) we find the final
form of the Ward identities in the c-^ ± oo limit:

"- 2dh - hd)u -(jQdb+jζ)

(3.15)
"- 3dh - hd)v - (10d3b +15d2bd + 9dbd2 + 2bd3)u - 8(23b + bd)uu = d5b.

In fact, Eq. (3.15) and the consistency of the anomalies hold whether or not we
impose Eq. (3.10).

Finally, let us briefly comment upon the situation for finite c. For this purpose,
we first define a reference functional, denoted by ΓL[h, b], which is defined by the
property that

= + π ± ι;= + 3 0 π ^ (3.16)w= + π , ι; + 3 0 π ^
on do

satisfy Eqs. (3.15). Similarly, we define WL[u,v] by the property that

. 4 — M ,
δu δv

satisfy the same Eqs. (3.15). Obviously, ΓL and WL are related by a simple Legendre
transformation. We now consider the generating functional W[t, w] of connected
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Green's functions of quantum h and b fields, defined by

e~W[t>w] = $DhDbe π ' W . (3.18)

The above results for the c->oo limit of the induced action Γ[h,b~\ can now be
stated as follows

•00 C

(3.19)
nrΓ Ί t-co c „ Γl2 360 "1

If we now look at finite c, we should consider 1/c corrections to the formulas (3.19).
Such corrections were first obtained in [3]. Recently, we found strong evidence
that the full result for W\t, w] can be written as

W[_t, w] = 2kcWLί^t, 4 w ) w], (3.20)

where kc, z<(), and z'w) are c-dependent factors. The leading 1/c corrections are givenkc, z

The result for kc, which has the interpretation of the renormalized level of a S/(3, R)
current algebra, is consistent with the all order formula first proposed in [14, 18],

= 50-c+l/(c-2)(c-98), (3.22)

which is the conjectured outcome of a KPZ-type analysis of constraints in a
covariant formulation of W3 gravity. We finally remark that the validity of
Eq. (3.20) crucially depends on the cancellation of certain non-local terms in the
Ward identity, coming from i) the induced action itself, ii) the determinant factors
for taking into account fluctuations around the saddle point of the path integral
Eq. (3.18). This clearly shows that it is Wit, w] or, equivalently, the full effective
action and not the induced action Eq. (3.3) which can be directly related to the
constrained S/(3, R) WZW model. Details of these new results for finite c will be
published elsewhere [4].

4. From 5/(3, R) to W3

We now extend the analysis of S/(2, R), which reproduced pure gravity, to the case
of SZ(3,R). Some earlier work in this direction was presented in [7, 19, 20]. Our
purpose is to reproduce the Ward identities, transformation laws and action of W3

gravity, and then to express all objects (h, b as well as u, v) as local expressions in
terms of new variables r and s.
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We choose the following basis for S7(3,R):

* + l = ^ 1 2 > *+2 = ^23> * + 3 Ξ ^ 1 3 > V* l)

T-1=e21, T-2 = ^32? ^ - 3 = ^315

Where e^ are 3x3 matrices, (e^ )fc/ = δikδjV The metric gab is given by g+if _ t = — 2 for
ί = l,2 or 3 while g i i=g22 = ~4 and g i 2 = + 2 . We impose the following
constraints2:

/o .« ,«\
u s 1 0 0 . (4.2)

\0 1 0 /
Again the Ward identities du — [A,u] = dA can be reduced to two independent
equations. First the fields A1, A2, A±2

y A + 1, and A + 3 are expressed in terms of
A"1, A~3 and their conjugates u + 1 , w+3

A1 = -Ud2A~3 -idA-1 -u+1A~3),

(4.3)

A+3 = lUAA-3-^3A~l -δ2(u+1A-3)\ +δ(u+3A-3)+u+3A-1,

and then these results are used to obtain the two Ward identities

=^-2dΆ-1-Ά-χδ)u+1-(2A-3δ + 3δA-3)ΰ+3,
(4.4)

=^r(2A-3δ3 + 9dA-3d2 + 15δ2A-3δ+l0d3A-3)u+1

12

where

^ ^ (4.5)

2 Instead of u x = u 2 = 1, one can choose arbitrary real constants without changing any of the
final results
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Comparing Eq. (4.4) with the W3 Ward identities in Eq. (3.15), one finds that they
are the same if one identifies

+ 1

v=-15γύ+3,

hλ,
where γ2 = -2/5.

From δu = δη + [η,ύ], we can express η1, η2, η±2,η+1, and η+3 in terms of η'1,
η~3,u+1, and u+3. The result can, of course, immediately be read off from the fact
that BΉ — [_A,u]=dA and δu—\_η,u] — dη have a similar structure,

(4.7)

3

3

For the transformation rules of u and v we find

<5« = d3ε + εδu + 2dεu + — λdv + — dλv,

(4.8)
δv = εdv + 3dεv + δ5λ + (2λd3 + 9dλd2 +15d2λd + 10d2λ)u

)uu,

where
ε = η-ι-^dη-3,

* - , - , - . ( 4 ' 9 )

which again agrees with W3 gravity, Eqs. (3.11). Combining this with
δA = ()η + [//, A~] and Eqs. (4.6) we obtain

δh = Uε + εδh ~Sεh+^- (2λd3 - 3dλd2 + 3d2 λd - 2d3λ)b

+ ~(λdb-bdλ)u,

δb = εdb-2dεb + δλ + 2λδh-dλh,

in agreement with (3.6) and (3.10).
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The action Γ[Λ, fe] for induced W3 gravity can now be obtained from the S7(3, R)
action in exactly the same way as we obtained the action Γ\K\ for induced pure
gravity from S/(2,R). We find

Γ[h,b]=-Γwzw[A~1,A~3l + -$d2x(u+1A~1 + 2u+3A~3)9 (4.11)
π

where we should put

The latter identification is made such as to agree with the leading term of a W3

KPZ formula (this indeed agrees with conjectured formulae in [14, 18] and can
also directly be checked using the results of the preceding section).

Let us now choose a Gaussian parametrization for S/(3,R):

0 0 \ / 1 0 0\

λV 0 U 2 1 0 . (4.13)

0 W \Φs Φi 1/
The constraints express all variables in terms of two independent variables. The
mere fact that in general only two nonlocal expressions occur, guarantees that one
can introduce two new coordinates, in terms of which all results become local. It
turns out that r = φt and s = φ3 are such a set of coordinates. The solution of the
constraints, Eq. (4.2), reads

__\ δ3sdr-δsd3r
ψ2~~3 d2sdr-dsd2r'

From A = δgg * and Eq. (4.6) we obtain

y d3sdr — dsd3r y ,

3 d2sdr — dsd2r 2

_1 (dsdr-δrds) (4.15)
}~7 (d2sdr-d2rds)'
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The effective currents u and v are

(4.16)

V= — 1

Combining the solution of the constraints with the fact that (δgg x) = η yields

δr = εdr + yλd2r - Ί- dλdr - y λdrd In \_{d2sdr - d2rds)],

(4.17)

δs = εds + γλd2s - Ί- dλds - y λdsΰ In \_{d2sdr - d2rds)].

A different parametrization, which stays closer to the Polyakov parametri-
zation, is given by

r = f ; (4.18)

In linearized form, this parametrization was already found in [3]. In these
variables one has that

(4.19)

b =
7

where

$ = (dfyιd. (4.20)

The ε and λ transformations of these variables read

5/ = εd/— yλdzf— - ydλdf— - yλ -—^-,
2 3 1+ # g

i (4.21)
(5g = εδg + yλ(df)2 + yAδ2g - - ydλdg

2 ί d2f

3 \ df

In these variables, the reduction from W3 gravity to W2 gravity becomes
transparent; it is simply given by putting g = 0.
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We can now substitute the Gaussian decomposition into the action in (4.11).
There is now no cancellation between the kinetic term of the WZW model and the
uΛ correction term and one finds the following surprisingly simple expression for
the induced action:

i

cϊsdr—cϊrds Γdλ2 ^fdλ1

d2sdr-d2rds\_~λ2~

drj JdλΛ drJ<H± ^ 2
lΊΓJ + dr U i + λ2

Oλί / Cλ2

—r-d\ ^~

(4.22)

By using the expressions in Eq. (4.14), this can be further reduced to an expression
in terms of r and 5 only. An expression of Γ in terms of h and b seems hard to
obtain, as it is not clear to us how the relations (4.15) or (4.19) can be inverted
explicitly.

We finally draw the reader's attention to the following variables

which play the role of "connections" in the theory. They obey the following
differential equations,

-~

-y(d2ω1

dω2 = yd2b +

+ hdω2 + -y- dω2db + y ( - (dω2)
2 + 2dω2dωί2 \3

- -^(d2ω2 + dωίdω2)b - γ dω2db,

-f θ 2
(4.24)

Using

2,

3'

A dλ2 1,
a n d Ί 7 = 3( (4.25)

and Eq. (4.16), one expresses the effective currents u and v in terms of the
ω-variables. The relations (4.24) then reduce to the fundamental Ward identities
(3.15). Under ε and λ transformations ωγ and ω2, like u and v, transform (non-
linearly) into themselves, but with inhomogeneous terms proportional to dε and
d2λ rather than to d3ε and d5λ as in (3.11). These observations suggest that (ωl9 ω2),
rather than (M, V) should be considered as the fundamental W3 multiplet at the
quantum level.
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Finally, the previous construction provides us with a Lax pair for the W3 Ward
identities. Indeed a similar reasoning as in the S7(2, R) case yields the following Lax
pair:

(d3-u+ίd-u+3)ψ = 0,

(4.26)

and one can easily check that Eqs. (4.4) are reproduced as its integrability
condition.

5. Concluding Remarks

It is clear that one of the major open problems in the study of W3 gravity is the
understanding of its geometry. We expect that it will be possible to understand this
geometry in a "W3 superspace," which will be similar to the chiral superspace used
for d = 2 supergravity. For this reason, we first take a closer look at induced N = ί
supergravity (in the chiral gauge). In [21] and [19], the Ward identities for induced
N = 1 supergravity in x-space were derived from a reduction of an OSp(l |2) WZW
model. However, in this formulation the geometry of supergravity is obscure. A
natural framework to study supergravity is in superspace. Indeed the Neveu-
Schwarz algebra has a natural realization as analytic reparametrizations of the
superplane. In the following we will show that the reduction of OSp(l |2) in x-space
already suggests the structure of chiral JV=1 superspace.

The derivation of the supergravity Ward identities in x-space goes very similar
as before. Consider the superalgebra OSp(l |2). It is defined by the following vector
representation

(5.1)

(5.2)

1

0

0

0

- 1

0

0

0

0

"o
0

0

1

0

0

o"
0

0

, τ= =
"o
1

0

0

0

0

0

0

0_

0

0

0

0

0

- 1

Γ
0

0

, τ_ =
0

0

1

0

0

0

0

1

0

From this we immediately deduce the abstract commutation rules:

ITo,7;] = +2T Φ , [ T 0 , Γ = ] = - 2 Γ = ,

[Γ Φ ,Γ = ] = ΓO,

(5.3)

[τ + , τ = ] = - τ _



534 H. Ooguri, K. Schoutens, A. Sevrin, and P. van Nieuwenhuizen

We consider again Lie algebra valued gauge fields A and effective currents u which
satisfy the Ward identity Eq. (2.5) and we impose the constraints

u =

0

1

0

u*

0

-u+

u+

0

0

(5.4)

We can proceed in exactly the same way as before and use the Ward identity,
Eq. (2.5), to express Aφ, A0, and A+ in terms of A=, A~, wφ, and u+. We are then
left with two independent Ward identities:

(5.5)

d2ψ= I d—~dh — hd)v—-ψu,

where

h = A=, w = 2ίA~,
(5.6)

u=-2u+, v = 2iu+,

and these are precisely the Ward identities for induced supergravity [21]. We can
view the constraints as a gauge fixing of the subalgebra of OSp(l\2) generated by
{T+, To, T+ }. From δu = dη + [_η, u] and Eq. (5.4) one finds that ηφ, η°, and η + are
given as functions of η=, η~, w+, and u+. The fields h, ψ, u, and v transform as

δh = dε + εdh — dεh +-κψ9

δψ = ΘK + - Kdh — dκ\ι + εdψ — - dεxp,

3 1 ( 5 J )

δu = d3ε + εdu + 2dεu + - dxv + - Kdv,

δv = εdv + - dεv +-κu,

where

ε = η=, κ = 2iη~. (5.8)

The induced supergravity action can now be obtained starting from an OSp(2\l)
WZW-model and using the same techniques as in Sects. 2 and 3.

This reduction procedure suggests a natural coset in which to formulate the
supergravity theory. Indeed consider ^ = OSp(l\2) and its subgroup Jf generated
by {Tφ, To, T+}. The reduction procedure looks somewhat like a modding out
of k'. We parametrize the elements of the non-reductive coset 0/jf by

fc = exp(zT=+0T_). (5.9)
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Using standard methods (for a review, see [22]), we can construct the isometries of
this coset space [i.e. the action of OSp(ί\2) on the coset]:

T==δ,

T+=zD, T_=D, (5.10)

where d = d/dz and D = d/dθ + θd/dz. Compare this now with the algebra of regular
Neveu-Schwarz transformations:

[L m ,LJ-(m-n)L w + π ,

m + r , (5.11)

where m,neZ, m,n^H-l, r,seZ + l/2, and r,s£Ξ+1/2. One sees that upon
identifying L ^ Ξ Γ ^ L O Ξ I ^ T O , L ^ Ξ Ξ - T Φ , G + 1 / 2 = Γ_, and G_1 / 2 = Γ+, one
obtains a realization of the projective subalgebra on the cosetspace. In order to
recover the whole of Eq. (5.11), one takes the group ^ of Neveu-Schwarz
transformations regular at the origin, generated by {Lm, G r |m^ +1, r ̂  +1/2} and
its subgroup Jf7 generated by {Lm, Gr\m ^0, r ̂  —1/2}. We consider the coset space

with representant k:

/2 ( 5 1 2 )

Again, using coset space techniques, we obta in the Killing vectors:

F r o m this, one sees tha t the super conformal t ransformations can be rewritten
t h r o u g h the introduct ion of a superfϊeld E(z,θ):

z), (5.14)

where
P(7\— V Pm 7l-m tc(τ\— V Kr7^l2~r (ς)\ς)\

and we have that

(5.16)

The finite transformations are then given by

where
Dz' = θ'DΘ'. (5.18)
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A further application of the theory of induced representations leads immediately
to the definition of N = l primary fields Φ(Z) which transform as

δΦ(Z) = EdΦ(Z) + )- DEDΦ(Z) + hdEΦ(Z). (5.19)

Now that we constructed the superplane, the question arises whether we can derive
the Ward identities for induced supergravity in superspace.

Consider a chiral superspace, i.e. the left-movers are parametrized by the
coordinates z and θ while the right-movers are parametrized with the coordinate z.
The corresponding gauge fields are HM = {Λ^uz,uθ}, the Yang-Mills curvatures
Rzz, Rθz, Rθz, and Rθθ are defined

RMN = DMHN-(-)MNDNHM-HMHN + (-)MNHNHM- T?NHP. (5.20)

The torsions T£N are defined by

DMDN-(-)MNDNDM=T^NDP, (5.21)

where only the torsion component Tθ

z

θ = 2 is non-vanishing. We impose the
following constraints on the two lowest dimensional curvatures

R θ θ = Rθ-z = 0. (5.22)

The Bianchi identities imply then that also Rθz = Rzz = 0. The constraint Rθθ = 0 is
easily solved and yields

HZ = DΘHΘ-HΘHΘ. (5.23)

We now take the gauge group to be the supergroup O*Sp(l|2) and we partially fix
the gauge by

0 wφ 0

0 0 1

1 0 0

(5.24)

In much the same way as before we can solve the constraint Rθz = 0 such that A *,
A%, A?, and A^ are expressed in terms of A^ and Uβ. One of the components of
Rθz = 0 remains and expresses uθ* as a function of Aζ:

^ ^ H d J U , (5.25)

where H= —A^ and U = 2UQ. Equation (5.25) is recognized as the Ward identity
for induced N = 1 supergravity [23,24]. Indeed consider the generating functional:

with x-space expansions H = h + θψ, where h is the graviton and ψ the gravitino in
the lightcone gauge, and Q = G + ΘT, where T is the energy-momentum tensor and
G the dimension 3/2 supercurrent. Under the transformation

δH = dE + EdH + X- DEDH - dEH (5.27)
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one has that

I = - j — I d2xdθEd2DH. (5.28)

Defining U through

SΓIH] = -^-U2xdθUδH, (5.29)
L J 12πJ v '

one finds Eq. (5.25) back by combining Eqs. (5.27) and (5.28). In components,
Eq. (5.25) reduces to Eqs. (5.5).

From previous remarks, one expects that starting from an N=ί OSp(l|2)
WZW model in a chiral superspace [25], one can construct the action for in-
duced supergravity.

From the reduction procedure in Sect. 4 and the remarks above, one again
expects a cosetspace structure for a "W3 plane." The groups involved are
# = 5/(3, R) and j f generated by {Tl9 T29 T+l9T±29T+3}. The local structure of the
W3 plane should be given by the coset ^/Jf. We choose to represent an element k of

by

It is not hard to find the Killing vectors:

T-X = dx9 T_2=-xdy, T_3 = dy,

T1=2xdx + ydy, T2 = ydy-xdx, (5.31)

T+1=-x2dx-xydy, T+2=-ydx, T+3=-y2dy-xydx.

"Superfields" in this space will in general be 5/(2) multiplets as Jf7 consists of an
5/(2) algebra and a vector representation of it. However, if we want to recover the
whole conformal structure, it looks more natural to consider a 3-dimensional
space.

Indeed, consider the group 9 of regular W3 transformations in the c-»oo limit.
This group is generated by {Lm, W |̂m^ +1, n^ +2} with commutation relations

LLm,Ln]=(m-n)Lm+n,

1 Ί ( 5 3 2 )

- ( + 2)( + 2)J
1 f\

xLm+n+—(m-n)(LL)m+n.

As was explained in the first section, one cannot drop the non-linear terms. This
can easily be seen from the [LWW] Jacobi identity. Working in the limit c-> oo has
the advantage that the non-linear terms do not need to be regularized. Precisely
because of the presence of the non-linear terms, the algebra given above is not a
subalgebra of the W3 algebra as the Jacobi identities require that the sum in
Λn = Σ Lm-nLn runs over the whole of Z. However, the algebra realized on fields,

neZ

given by Eq. (3.13) with the restriction that ε(z) and λ{z) are analytic, is closed
provided we introduce field dependent structure functions, which depend on
auxiliary fields u(z) and v(z) (which themselves are also analytic), defined by their
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transformation rules Eq. (3.11)3. Explicit realizations of these auxiliary fields as
W3 Schwarzian derivatives can be found in Eqs. (4.16). Starting from the algebra
Eq. (3.13), it is not hard to see that its maximal subalgebra is generated by analytic
parameters ε(z) and λ(z) with ε(0) = λ(0) = dλ(O) = 0. Given these observations, it is
natural to anticipate that the full W3 conformal structure can be most easily
formulated in the 3-dimensional coset &/jf9 where ^ is the algebra Eq. (3.13) and
Jtf is its maximal subalgebra. A further analysis of this requires a generalization of
the theory of induced representations to algebras with field dependent structure
functions. Work in this direction is in progress.

In [6], Verlinde gave a beautiful account of induced gravity in an S/(2,R)
Chern-Simons formulation. Starting from an Sl(2, R) Chern-Simons theory in 2 +1
dimensions in the temporal gauge, an Sl(2, R) breaking polarization was chosen.
The coordinates are A~, Aζ, and A°, while the conjugate momenta are the
remaining gauge fields. Parametrizing the gauge fields as A ~ = eφ(dz + hdz\ A® = ω
and imposing the Gauss law on a state Ψ[ω9φ,K]: R±Ψ = R°Ψ = 0 results in

Ψlω9φ,K]

= exp< f -dφdφ + ωdφ-h(l-dφ + ω) --d2φ-dω) +Γ[Λ]
I π L4 \\2 / 2 /J

(5.33)

where Γ[h] is the induced action for gravity in the light-cone gauge. The norm of
this state,

II ?P[ω, φ, fc] II2 = f ίdφ] [dΛ] [dω]e~ «Sd2(2ωω + eφ + φ(ί " ^ V [ω, φ , K]\2

= J[dφ][dfc]βS[* * ̂ *3 (5.34)

is such that S[h, h, φ, φ] precisely gives the covariant induced action. Presently, we
are investigating whether this approach can be generalized to the case of W3

gravity [10] such as to give both the covariant action for induced W3 gravity as
well as the full set of W3 gauge transformations.

Finally, one wonders whether in the weakly coupled regime, c < 2, there exist
equivalent formulations of W3 gravity in terms of topological quantum field
theories or matrix models. The former question seems to be readily accessible
through the study of twisted N = 2 supersymmetric W3 conformal field theories.
Recently, the N = 2 W3 algebra has been constructed [27] (it consists of a
dimension 2 and a dimension 1 N = 2 superfield) and in view of the previous
motivation, it would be very interesting to work out its representation theory. At
present it is not clear how to construct a matrix model formulation of W3 gravity. It
might happen that the final answer to this question will only come after the
construction of "W3 Riemann surfaces." However, one might speculate that, as the
matrix chains presently studied have incidence relations determined by the weight
lattice of affine SZ(2), the W3 matrix models could be based on incidence relations
determined by the weight lattice of affine 5/(3).

Acknowledgements. We thank Michael Bershadsky, Jim McCarthy, and especially Herman
Verlinde for interesting discussions.

3 This situation is very similar to the one encountered in [26], where a gauge theory of the regular
W3 transformations was constructed
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