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Abstract. We study the fluctuation of one dimensional Ginzburg-Landau models
in nonequilibrium along the hydrodynamic (diffusion) limit. The hydrodynamic
limit has been proved to be a nonlinear diffusion equation by Fritz, Guo-
Papanicolaou-Varadhan, etc. We proved that if the potential is uniformly convex
then the fluctuation process is governed by an Ornstein-Uhlenbeck process whose
drift term is obtained by formally linearizing the hydrodynamic equation.

I. Introduction

In this paper we study the nonequilibrium fluctuations for a system of charges or
spins in a one dimensional periodic lattice. Our model is generally known as a
time dependent Ginzburg-Landau model (TDGL) with a conservation law. The
dynamics in this model are governed by a conservation law together with random
noise which also conserve the total charge. The resulting process is gradient and
reversible with respect to a family of time independent Ginzburg-Landau (Gibbs)
measures (TIGL).

The large scale behavior of TDGL model has been a subject of much interest.
In particular, one can study the limit of the charge density under the diffusive type
sellings - the hydrodynamical scaling limit of the charge density. Under various
assumptions and generalities it has been proved [4,5,6,8] that the hydrodynamic
limit of the charge density in TDGL is governed by a nonlinear diffusion equation
- the macroscopic equation. The macroscopic equation has also been studied
considerably before and properties such as uniqueness, existence and a priori
bounds are well known [see 8 and references therein]. Thus, the hydrodynamic
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behavior of the charge density is in some way understood. [For a review of
hydrodynamical scaling limit see 3 or 11.]

On the other hand, the behaviors of the more interesting fluctuations are much
less understood. The only known result concerning fluctuations of this model is a
theorem proved by Zhu [15] (following an approach outlined by Spohn [19]) and
by Chang [2] which states that the limiting behavior of the fluctuations in equilibrium
is governed by a stationary Ornstein-Uhlenbeck process. Their result is strictly
restricted to GL models without finite range interactions. In this case the invariant
measures degenerate into product measures and correlations come entirely from
the noise. It should be noted that the assumption of equilibrium is critical in either
Zhu's or Chang's approach. To gain some feeling of this, let us consider the nature

( N \and basic problem of estimating the susceptibility I i.e. ]Γ <x1,x j > ) at time t
\ j=ι J

assuming that it is bounded at t = 0. In equilibrium the susceptibility is always zero
because the density of the system is always a product. On the contrary in nonequili-
brium it seems hopeless to obtain any bound on susceptibility at later time t since
the time derivative of the susceptibility generates infinitely many new terms! It is
widely believed that, in fact, one should try to avoid the problem of bounding
susceptibility directly in nonequilibrium.

Our main result of this paper is that the limiting behavior of the fluctuations
in nonequilibrium is governed by a nonstationary Ornstein-Uhlenbeck process.
Similar results concerning nonequilibrium fluctuations but for different models
were obtained before by Ferrari-Presutti-Vares [18] and by Dietrich [17]. The
methods we employ here are completely different from those of [2, 10, 15, 17-19].
We first need an approach avoiding the problem of bounding susceptibility directly.
Apart from this we have to bound the error of the hydrodynamic limit which is
trivially equal to zero in the equilibrium. We note that in all previous works
[4, 5, 6, 8] this control of error terms is out of reach since they all depend on some
sort of compactness arguments. For this purpose, we give another proof of the
hydrodynamic limit with error estimates to the accuracy we need. A sketch of our
approach and bounds on the hydrodynamic errors will be given later in Sect. 2.

We now introduce the setup. Let S be the unit circle represented as the interval
[0, 1] with 0 and 1 identified. For each positive integer N, their are N scaled
periodic lattice points located at sites i/N in 5, i = 1,2,...,N. Let xf(ί) represent
the continuous charges or magnetizations at site i/N at time t. The dynamics of
the charge configurations is governed by the infinitesimal generator

=ι
(1.1)

where ^eC^R) is a potential satisfying J e~φ(x)dx = 1. The generator LN is formally
symmetric with respect to the product measure

and hence defines a reversible process with invariant measure ΦN(dx). The system
(1.1) is called the one dimensional Ginzburg-Landau model (without finite range
interactions).
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The evolution of TDGL is determined via the infinitesimal generator L^ as
follows. Starting with initial density /N(0;x1?...,xN)ΦN, the system at time t will
have a density /N(f;x1,...,xN)ΦN with fN satisfying

^fN(t) = LNfM fN(t = Q) = fN(Q). (1.2)
ot

Equivalently, one can describe the dynamics by the stochastic differential equations

dβi+1\ (1.3)

where βt are independent Brownian motions.
Define the empirical measure by

= -Txδ (14)
N

We shall say that the empirical measure defined by a distribution f(x)ΦN(dx) has
the macroscopic density m(θ) if for any smooth function J and any δ > 0,

lim J f(x)ΦN(dx) = 09 (1.5)
N-00ANtj,6

i\ }
><5J. (1.6)

We need the concept of entropy to state the hydrodynamic theorem of GPV [6].
Let us denote the relative entropy of / w.r.t. ΦN by

HN(f) = J /log fΦN(dx). (1.7)

The main result of GPV can be summarized as, roughly speaking, that if the system
has a macroscopic density m0(θ) at time ί = 0 then the system has a macroscopic
density m(ί, θ) at later time ί provided the initial entropy is bounded by a constant
times N, i.e.

(1.8)

Furthermore, the density m(ί, θ) satisfies the nonlinear diffusion equation

ot 2

Here the function h is the free energy defined by

(1.10)

p(λ) = logM(λ) = log le^-^dx. (1.11)

The results of GPV have been extended to GL with finite range interactions by
Rezakhanlou [8]. The results of [6] have also been proved previously by Fritz
[4, 5] under stronger assumptions.

We pause to remark that we have followed the convention of notations in
GPV which differs considerably from the usual convention in physics literature.
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For example, we have used xt to represent the "field" at the point — and φ(xt) for
N

the potential of the "field" xh while in physics one uses φ(x) as the "field" at x
and V(φ(x)) as the potential.

Define the empirical fluctuation field by

Cf (0 = jNξ»(t) = yϊv x,(ί) - mt, (1.12)

where m(t,θ) is the solution to (1.9). Define the Sobolev norm by

peZ

where ζ(p) is the Fourier coefficient of ζ defined by

When α = 1 we make the following convention by defining

1 N

IKIIi^-Σί K-^Γ'Πi, (1-13')
•ίV i= i

where ( — JV2^)"1 is the inverse of the operator —N2Δ with the discrete Laplacian
Δ defined by (Δζ)t = ζί+1— 2ζt -f C/_ j . Certainly the definition (1.13') makes sense

N

only if £ Ci = 0. It is equivalent to (1.13) as N -> oo.
i = l

Our assumptions for the main results are the following:
(Al) The potential φ is strictly convex, i.e., there exist two positive constants

y1 and y2 s.t.

0 < γi < φ"(x) <y2<oo, VxeR.

(A2) The relative entropy of the initial distribution satisfies the linear bound
(fN(V))^CN.
(A3) The initial fluctuation satisfies the following bounds.

1 N 1 " ( i\
Here x = — Y x, and m = — Y ml — 1.

ΛΓ (tΊ Λ f A \NJ
(A4) The initial fluctuation has a weak limit in M(//_α) for some α > f (M(H_J

denotes the space of measures on H_ a with weak topology), i.e. there is a measure
/ in A f ( H _ ) s.t.

for all / bounded uniformly continuous on Ha. Here P^ is the initial law given
by fN(0)ΦN.
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We use the symbol E*on for the expectation w.r.t. the process with initial

distribution fn(Q)ΦN. When restricted to t = 0, £ ôn is the same as Ep°. If fN(0) = 1
we write E"q.

Note that (A3) is a very weak technical assumption since one expects that
£ n o n Π l ί o l l - ι ] < °° and ^nonΠ*-™!2]-^'1 if the central limit theorem holds
at t = 0. The assumption (A2), as will become clear later, will not be used in full
strength in most parts of this paper. The assumption (A3) is inevitable since one
needs "something" to begin with. The real main restriction comes from the
assumption (Al). We make this assumption for the purpose of using the logarithmic
Sobolev inequality.

We may now state our main results. For simplicity we restrict the time to the
interval [0,1]. Certainly they hold for any finite interval.

Theorem 1. Let PN denote the stochastic process governed by (1.2) or (1.3). Suppose
that the assumptions (A1)-(A4) are satisfied. Then PN converges weakly in C([0S 1],
//_α) (α>9/2) to a generalized Ornstein-Uhlenbeck process characterized by the
SDE

dζ«(t) = iδβδβ(A"(m(ί, θ))ζ»(t))dt + ddeB(t), (1.15)

where dθB(t) is the Gaussian random field with covariance

EldθB(s)(J1)dθB(t)(J2)^ = δ(s - ί)f j;(0)J'2(0)d0. (1.16)

Theorem 2. Suppose that the potential φ satisfies the assumption (Al) and the initial
distribution satisfies (A1)-(A3). Then we have

(1) The bounds in (A3) continuous to hold at any time t > 0.

(2) Let I be a positive parameter other than N and let 2K + 1 = ^/N(2l + 1). Let
xitK(t)'s denote the average ofxj(t)'s with [/— i\^K. Then

lim ikϋ Elf4= £ (x ίJt(f)-m(S,-j-)Y«fa = 0 (1.17)
ί-ooN^oo 0^/Ni=l\ \ NJJ

uniformly on compact t-intervals.

Remark 1. Theorem 2 indeed holds if one replaces (A2) by a weaker assumption
H(fN(0)) ^ o(ΛΓ4/3). Since this is not needed in proving Theorem 1, we choose (A2)
for simplicity. Interested readers can check the proof and find the optimal assump-
tions.

Remark. 2. If one is only interested in proving "low of large numbers," one can
choose K to be independent of N, namely K = I. In this case, a form of Theorem 2
holds under much weaker assumptions. It holds for GL model with finite range
interactions in any dimension with initial entropy of order less than Nd+2.

The rest of this paper is organized as follows. In Sect. 2 we give outlines of
proofs of Theorems 1 and 2. The details appear in Sects. 3-5. Theorem 2 is proved
in Sect. 4.

II. Sketch of Proofs for Theorem 1 and Theorem 2

Let us start with a sketch of proof of Theorem 1 assuming Theorem 2.

First we replace ml ί,— 1 in ζ. by mt-(i) which is the solution of the discrete
V Nl
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equation

-H)mί(0) = m 0,- . (2.1)

One can check that \m(i/N, t) - m^t)] < const. N~ 1 [9]. Hence this replacement does
not affect our results in this paper since we are interested up to order N~ 1/2. From
now on we shall use mf(ί) instead of m(ί/N, t) without further explanation.

Note that we have abused notation of Δ in (2.1). A slightly clearer notation
would write A(h'(m$) as [4(/ι'(m( •)))]*• We shall however continue to use this
simplified notation.

Combining (1.3) and (2.1),

TV5/2

dβi + 1). (2.2)

It is easy to see that the last term of (2.2) converges to the last term in (1.15). The
main difficulty in proving Theorem 1, as in the case of hydrodynamic limit, is to
show that in a sense

N5/2Δ (φ'(Xi) - fc'(m,)) => dθdθh"(m(t, 0)K°°(ί). (2.3)

We know from the proof of hydrodynamic limit in GPV that </>'(*,) ~ h'(xitK) with
xiκ defined in Theorem 2. For simplicity of notation, we omit the subscript K in
this section. Hence we decompose φ'(Xi) — ̂ (m^ as

N5'2Δ(φ'(xί) - hf(mt)) = N5'2Δί(φ'(Xi) - h'(Xi)) + hW - Λ'(m£)]. (2.4)

The second term on the right side can be written by Taylor expansion as

Λ'ft) - Λ'(m,) = h'lm^x, - m f) + 0((Xi - ro,)2). (2.5)

It is not difficult to see that the first term N5/2Δhff(mi)(xi-mi) converges to
d9deh"(m(t9θ))ζco. Hence our main job is to show that the error terms converges
weakly to zero, i.e.,

K(Xtn=>δQ9 (2.6)

-m,)2^. (2.7)

Equation (2.7) holds by Theorem 2 if K is chosen as in Theorem 2. For (2.6) note
that it requires in a sense that φ'(Xi) — h'(Xd~o(N~~l/2) since N2Δ~dθdθ is an
operator of order 1. Should one be interested only in the hydrodynamic limit, the
required bound for φ'(xι) — h'(xt) is much weaker, namely φ'(Xi) - /ι'(xt) ~ 0(1). In
general, we are unable to accomplish the bound of o(N~1/2). In the case in which
φ is convex, we have logarithmic Sobolev inequality and a bound of o(N~1/2) is
possible if one uses some large deviation estimates. We shall delay this until we
sketch a proof of Theorem 1 since a similar estimate is needed there too. For now
we only remark upon an important feature of (2.6).

Let us first pretend that the family {φ'(Xi(t)) — h'(Xi(t))} is a family of i.i.d. for
each time t fixed. Then (2.6) is clearly wrong since Nll2(φ'(Xi) — h'(Xi)) is order 1
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by central limit theorem. In our case {φ'(Xi) — Λ'(x, )} is certainly not i.i.d., but we
cannot hope for anything better than space-time CLT since our goal is to prove
a version of CLT, i.e. a generalized Ornstein-Uhlenbeck process. What saves us
here is that (2.6) holds only after time average. In other words, even though
Nll2(φ'(Xi) — h'(Xi)) is an object of order 1 for each time t fixed, it fluctuates so
much that it vanishes after time averaging. This cancellation effect of fluctuations
is usually referred to as Boltzmann-Gibbs principle and is the hardest part of our
proof. As we shall see later, our proof of "(0'(x;) — Λ'(xf)) = 0(N~ 1/2)" is consider-
ably easier than the proof of Boltzmann-Gibbs principle.

We now sketch a proof of Theorem 2. From (2.4) it is easy to compute that

(2.8)
ί

where dM is the martingale term and Gf = Ft — Tt is defined by

Ti = (x~m)(φ'(xi)-h'(mi)\

Ft = (xt ~ mMφ'M - Λ'ίm,)) - 1. (2.9)

If we assume a form of local ergodicity that Σg^x^ can be replaced by <£$/(xf)
with & defined by

gt(y) = M(λ)~ * JΛ(x)expμ* - φ(x))dx9 λ = h'(y). (2.10)

Theorem 2 follows by taking expectation of (2.9) since

Fι(y) - TAy) = (y- m£)(fc'(y) - *'(*,)) - (* - m)(h'(y) - Ufa))

^ε(y-mi)
2-2ε-1(x-m)2. (2.11)

Here the equality is just a simple computation while the Schwartz inequality and
convexity of h are used in the last inequality. Therefore, once one realizes the key
relations (2.8)-(2.1 1), the proof of Theorem 2 depends on the control of g(xt) - Qfa)
which appears also in the proof of Theorem 1.

Let us denote by X our key object to be bounded, namely,

o

We shall bound X by entropy method. Recall the entropy inequality asserting
that for any two probability measures μ and v one has

Jfcdv ^ β~ 1 log $exp(βh)dμ + β~γH(v/μ\ β>0. (2.12)

Hence the expectation of X w.r.t. the nonequilibrium process starting with /0 can
be bounded by

β>0. (2.13)

As β-> oo, the last term tends to zero by assumption HN ^ CN. The first term on
the right side of (2.13) can be bounded using Feynman-Kac formula or the large
deviation bound [14] by:

JN
(2.14)
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where IN(f) is the Dirichlet form of /defined by

/*(/)= ΣUA

We have now reduced everything to the TV-body eigenvalue problem (2.14). This
eigenvalue problem, although difficult, is tractable when the potential φ is convex
and we have the logarithmic Sobolev inequality. The details to bound (2.14) will
be given in the next section.

III. Bounds on Principal Eigenvalue

We shall prove in this section several estimates regarding the principal eigenvalue
of operators of the form (2.14). As we have explained in Sect. II, they are our
key technical estimates. The main results of this section will be summarized in
Theorem 3.5. Our basic tools are logarithmic Sobolev inequality and asymptotic
expansions of the central limit theorem. The logarithmic Sobolev inequality is in
some sense a substitute of Rayleigh-Schrόdinger perturbation theory. Our results
can also be obtained by the Rayleigh-Schrodinger perturbation expansion.

Let us start with the following lemma concerning the asymptotic expansion of
large deviation for i.i.d. Since it is a more or less known result, we shall delay its
proof to the appendix.

Let Φκ(dx) and Φκ,y(dx) be the probability measure defined by

Φκ(dx)= Π exp(-φ(xj))dxp (3.1)
i= -K

ΦKιy(dx) = δ(x-y)Φκ(dx)Z^y, x = (2K + lΓ1 Σ *j, (3-2)
j=-κ

where ZXιJ, is the normalization factor.

Lemma 3.1. Suppose that φ satisfies the convexity bound (Al) and F satisfies

|F(x)|^Co(l + |x|2). (3.3)

Then the following bound holds for

l)mm(l,yl/2c0). (3.4)

1 Σ F(Xj)]φκ,
j=-κ J

(dx)

2)/K2), (3.5)

;1], (3.6)
(3.7)
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Here the expectation < >y is defined by

</>, = M(λΓllf(x)exp(λx - φ(x))dx, λ = h'(y), (3.9)

where h is defined in (1.11). As usual, <;> denotes the truncated (or corrected) cor-
relation.

Corollary 3.2. Define Fκ by

Fκ(y) = $(2K + l)-ι £ F(Xj)ΦKty(dx). (3.10)
j=-κ

Then
Fκ(y) = (Fyy + Gl(F,y)(2K+lΓ1 + 0(K-2). (3.11)

Proof of the Corollary. By convexity we have for all β > 0,

1 Σ F(xj)]φκ.,dx£FκJ=-K J

j)]φKt,
J

£ F(Xj)φKt,(dx). (3.12)
J=-K

Choose β = l/K and we have Corollary 3.2. Π

Let { F ( i ) } be a family of functions indexed by i, i= 1,...,N. Suppose X is a
positive integer less than N. For τ > 0, define

AF, K, τ) = (2K+\Γl X [F(ί)(x,) - F«>(xitKm\Xt.κ\ < τ), (3-13)
| j-i|^«

l)-1 X x, , (3.14)

X J(i/N)Vt(F9K,τ). (3.15)
i = l

Lemma 3.3. Suppose that {F(/)} αnίί φ satisfy (3.3) (uniformly in i) and (Al) respectively.
Let K < N be a positive integer and let I = KN~i/2. Then for β satisfying

\β\\\J\\ao<comt.N*'2K-2 (3.16)

we have the following bound uniformly in τ.

sup spec {j5W1 / 2< J, V(F,K,τ)y - NIN} ^ const, [α2/2 + α/-2N~1/2],

. (3.17)

Here IN is the Dirichlet form defined in (2.15) and sup spec means sup spectrum.
Furthermore, if F(l) satisfies the linear bound

(3.18)

uniformly in i then (3.17) holds for all β and J independent of assumption (3.16).

Proof. Denote X /,- = Iiκ. Then the left side of (3.17) is bounded by
\J-ί\*K

const, sup sup supspecNll2[θLVi(F9K9τ)-Γ^K2IitK]. (3.19)
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Since our estimate will be the same for each i, we shall assume i = 0 and drop the
subscript (or superscript) L We first observe that Iκ is infinite degenerate. But the
degeneracy can be removed by keeping the average x = (2K -Hi)" 1 ]Γ Xj fixed.

Since V vanishes when x > τ, we only have to bound the sup spec for x lies inside
the compact interval |x| g τ. We shall assume for simplicity of notation that x = 0.
Let us choose y{ = xh i = — K, . . . , K — 1 as independent variable in the hyperplane
x = 0 and define

= ί Σ <"W<ix). (3-20)

Clearly by change of variable and Schwartz inequality

K 2 K

i=-κ \Syi i=-κ\dxi dxκ

ί const. K 2 *Σ ί̂ -^-T (3 21)
i=-κ\dXi Sxi+1J

Also, one can check that the density Φκo is log concave (by assumption (Al)) and
one has the logarithmic Sobolev inequality [16].

ϊκ(t) ^ const. J/2 logf2Φκ,0(dx) = const. H(f2). (3.22)

Combining (3.20) to (3.22), we can bound (3.19) by

const. N1/2Γ 3 sup {α/3 f F(F, X, τ)/2 Φκ 0(dx) - H ( f 2 ) } . (3.23)

By entropy inequality (2.12) we can bound (3.23) by

const. Nl/2Γ 3 log{ J exp[α/3 K(F, X, τ)] Φκ,0(dx)}. (3.24)

By Lemma 3.1 and (3.11) we can bound (3.24) by

const. aJV1 / 2{a/3X'1G2(F,0) + (l +α2/6)K'2}, (3.25)

provided that

α/3 ̂  const. K = const. N1 / 2/. (3.26)

Since G2(F, 0) is bounded, the first term in the bracket of (3.25) is bounded by
const. α/2ΛΓ1 / 2. Hence (3.25) is bounded by

const, [α2/2 + αΓ2AΓ 1/2 + α3/4ΛΓ 1/2] g const [α2/2 + αΓ2ΛΓ 1/2], (3.27)

provided that the assumption (3.16) is satisfied. This proves (3.17). For the case
F satisfies (3.18) we only have to prove that (3.24) is bounded by (3.27) if (3.26)
is violated, namely α > const. N1/2Γ2. By the assumption (3.18) and Schwartz
inequality

K
α/3 V(F9K)£ const. α^X'1 £ ( l x j l + 1)

j=-κ

^ const. [ε-'α^K^+εΣx2]. (3 28)
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Hence (3.24) is bounded by

const. {fi-^^^ΛΓ^/ ^ogJexpCfiΣxΦ^oίdx)}. (3.29)

By choosing ε small enough, we can bound the integral by exp(const. K). Thus
(3.29) is bounded by const, (α2/2 + Γ2N) <* const, α2/2, since α ̂  N1/2Γ2. Combining
this with (3.19) ~ (3.24), we have proved (3.17) independent of (3.16) provided that
(3.18) is satisfied. Π

Lemma 3.4. Let Lbea positive integer of order N3/1° and let M = (2K + 1)/(2L + 1)
be an integer. Denote F®( )l(\ \ < τ ) = F®τ( ) and define V(F, X, L, τ, τ') by

Vt(F, K, L, τ, τ') = M- * £ [F^OU - f(0(j>i)] l( lΛ I < τ'), (3.30)
α = l

where yt — xiκ and yia is the average ofx in the αth box of(2L + I) sites around i, i.e.

ί-K + (2L+l)α-l

j^CL+lΓ1 X x-CL+lΓ1 Σ *j (3-31)

Ifτ'<τ are large enough and L ~ N3/1° then for any constant β (independent ofN)

fim ϊϊm jSN1/2<J,K(F,X,L,T,T r)>-N/N^0, (3.32)
ί-*oo N-» co

where I = KN~1/2. If F<? satisfies that

{x I F<?>(x) > 0} is compact, (3.33)

ίAen for β>OandJ=l (3.32) holds with V defined by

Vi(F^L^τ') = M~ι X [F Ĵ - ̂ (^1(1^1 <τ')]. (3.34)
a = l

Proo/. Let us start with the proof of (3.32). As in Lemma 3.3, we can use the
logarithmic Sobolev inequality to have

sup ΛΓ 1/ 2/- 3{logίexpΓj?/ 3M- 1 f F(?τ(yiq)} Φκ,ydx- βl3F«\
y . l < τ ' ( [_ q = l ' J

(3.35)

Again as in Lemma 3.3, we shall bound (3.35) only for i = 0 and omit all indices i.
Note that the integration in (3.35) can be thought of as integration over yq

with yq identically distributed according to the density

exp[-(2L+ 1)M^)] =ίδ(x-yq)ΦL(dx). (3.36)

By Brascamp-Lieb [1] theorem hL is strictly convex with y2 > h"L > γλ. We claim
that (3.35) can be bounded by (assume β > 0 for simplicity of notation)

>, + M^G,(FL^ y) + βl3G2(FL,τ,

- F(y) + 01(1+ β2l6)M~2L- x/2] }, (3.37)
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where the expectation is defined by
1 J/(z)exp[(2L + \)(λz - hL(z})^dz. (3.38)

Here M(λ) denotes the normalization constant and λ is chosen such that <z>y = y.
As in Corollary 3.2 we also have

M~l Σ lFMΦκ,y(dx) = (FL^y + M-iG,(FL^y)
q=l

2G2(FL^y)) + 0(M-2L-1/2). (3.39)

Note that G1 and G2 are defined in (3.7) with expectation defined in (3.38).
To prove (3.37), let us first make a few comments and normalization. First of

all we shall prove (3.37) with FLτ replaced by any bounded smooth function U.
Recall that y is the average of yq. By translation we can assume that y = 0. By
changing hj(yq) to hL(yq) + λyq - logM(λ), we can assume that <^> = 0 = y. For
simplicity, we shall assume that λ = 0. Finally one can check that if (3.37) holds
for some function 17, it holds with U replaced by U + const. Hence we can assume
the normalization condition that 17(0) = 0. Clearly U satisfies the trivial bound
(recall that U is bounded)

Let wβ be the real variable defined by wq = L1/2yq and let ξ(w) be defined by ξ(w) =
L1/2 ί/(wL" 1/2). Clearly £(w) ̂  const. (1 + w2) and wβ has the density exp[ - \l/(wq)~\
with const. 7i < ψ"(z) < const. y2 for all zeR. Hence the expectation in (3.35)
becomes

α = l

We can thus apply Lemma 3.1. By changing the variable back to yq we conclude
(3.37). Note that there is an extra factor L~1/2 in the error term of (3.37) which
comes from the L"1/2 factor in the exponent of the above expectation.

To prove (3.37) for FLτ, we only have to check where we have used the
assumption of smoothness of 17. Clearly, we need it only to have that U is bounded
by const. |z|. For this purpose, the smoothness of U in a neighborhood of y suffices.
By assumption | j;| < τ' < τ and thus FLτ is smooth in a neighborhood of y. Therefore
the above argument works for FLτ as well. We now continue our proof of (3.32).

The expectation in (3.38) can be computed asymptotically since hL is strictly
convex and L is large. Suppose that the unique minimum of hL(z) — λz occurs at
z = z0. If / is smooth in a neighborhood of z0 and grows at most polynomially,
we have

!</>,- [/(*o) + $f"(z0)h"(z0)(2L + I)' *] I ̂  const. L~ 3/2. (3.40)

Indeed, if g is also of polynomial growth and g equals / in a neighborhood of z0,
then <0>y and </>y is arbitrarily close in the sense that

cnL~\ VneN. (3.41)

By considering /(z) = z we have that

|y-z0 |^const.L-3 / 2. (3.42)

Since \y\ < τ' < τ, all the expectations in (3.37) and (3.39) involving FLτ can be
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replaced by FL( ) with arbitrary small errors. But by definition

M-1 Σ^L(yq)ΦKty(dx) = Fκ(y).
q=l

By Corollary 3.2, \FK(y)- F(y)\ ^ const. K~l and thus we can bound (3.37) by

const. (j5,/)N1/2[M-2L-1/2-hM-1 |G2(FL,};)|]H-^N1/2χ-1. (3.43)

A simple computation shows that the zeroth and first order (L"1) terms vanish
in G2. Thus |G2 | ̂  const. L~3/2 and we can bound (3.43) by

(3.44)

where we have used the assumption that L~ΛΓ3 / 1°. This concludes (3.32).
To prove (3.32) assuming (3.33) and (3.34) we only have to consider the case

|y |^τ' . Since τ' is large, by assumption (3.33) we can find a bounded smooth

function W(i) such that F<?Jτ(z) ̂  W(ΐ)(z\ W(i\z) = FL,τ(z) for \z\ < τ' - 2 and W(z) = 0
for \z\ ̂  τ' — 1. Clearly we obtain an upper bound of (3.35) by replacing F(£τ by
W(i\ We then proceed as in the previous proof. Note that we need the error term
in (3.37) to be uniform with respect to y, i.e. it is bounded by const. (1 + β2l6)M ~ 2L~ 1/2

with the const, independent of y. This is not difficult to see because we can make
a translation to have y = 0 while maintaining the assumptions of Lemma 3.1: The
assumption (3.3) is satisfied independent of translations of y because Wτ is bounded;
the convexity bound is also satisfied independent of translations since h"L(y) > }/
for all y. Hence it remains to bound the first three terms in (3.37) (the term F
vanishes in this case). As in the previous case, they can be approximated by using
(3.40) ~ (3.42). But since l y l ^ τ ' , we have, by (3.42) and our construction of W,
that W(z) = 0 in a neighborhood of z0. This implies that all expectations involving
W are zero up to, say, L~100. Therefore, we have the same bound as before and
have proved (3.32) assuming (3.33) and (3.34). Π

Theorem 3.5. Suppose that φ satisfies the convexity bound (Al):

(i) // F satisfies (3.3) then for all β, J and K = IN1'2 with I a fixed constant,

Γ *N~ Mog Efq Γexp \βN3/2 } <J, V(F9 K, τ)(s)><fajl ^ const. (/)[£2 ||J|β + 1],
L L o J J

(3.45)
where V is defined in (3.15).
(ii) // the initial entropy satisfies the linear bound (A2) and F(i) satisfies (3.3) then

O, (3.46)
0

provided that K satisfies lim KN~ί/2 = Q and lim N1I2K~2 = Q. Furthermore, if
Λf- oo JV-*oo

F(£ satisfies (3.33) then for τ' <τ large enough, L ~ JV3/1° and V defined in (3.34)

ΐϊm ϊϊm N1/2E%on\](l9V(F,K9L,τ9τ')y(s)ds[^Q. (3.47)
ί-»oo N->oo (^o J

//^rβ F may depend explicitly on the time in both (3.46) and (3.47).
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(iii) // the initial entropy satisfies the linear bound (A2) and F(i\x, s) = F(x) satisfies
(3.3) then

lim sup EN

Π\N112

„ „, ^ « non I
= 0 (3.48)

provided that K satisfies lim KN~ί/2 = Q and'lim N1/2K~2 = 0. Also for τ' <τ
ΛΓ-» oo ΛT- oo

large enough, L ~ N3/1° and V defined in (3.30)

lim lim sup EN \N1/2

, . . »τ . - II T I I r nonί-xx> N->oo
j < J, K(F, K, L, τ, τ')(s)ds > [ = 0. (3.49)

Here F is independent of time in either (3.48) or (3.49).

Proof. The bound (3.45) is an immediate corollary of (2.14) and Lemma 3.3. For
(3.46) let us integrate (3.17) to have

(3.50)^ β~ί j NIN(f(s)1/2)ds + const. \_βl2 + Γ2ΛΓ 1/2]ί,
o

where f(s) is the density of the system at time 5. But it is well known that the
Dirichlet form of f(s) satisfies the bound [6] (recall also the assumption (A2))

N2 } IN(f(s)ll2)ds ί HN(fN(0)) ^ CN.
o

Hence (3.46) follows by taking β-+ao after ΛΓ->oo. (Note that / = /CΛΓ1/2->0 by
assumption). By a similar argument but using Lemma 3.4 one can prove (3.47).

Finally we have to prove (iii). By entropy inequality (2.12) we have for any X,

/W X
J J

+ H(fN(Q))/βN. (3.51)

Using the elementary inequality e |α| ̂  ea + e a we only have to bound (3.51) with
r ί

replaced by j X or — J A". Hence it reduces to an eigenvalue problem again.
o o

We can now proceed as in the proof of (ii) and conclude (iii). Π

Lemma 3.6. Suppose the assumption (Al) and (A2) in Theorem I is satisfied. Then
for any family of functions {F(i)} with F(l) satisfying (3.3) we have the following bound.

ί = l )

Here the constant depends on the constants in (3.3) and (A2) but is independent ofN.

Proof. By entropy inequality (2.12) we only have to prove that (β > 0)
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Since the equilibrium measure is product, one needs only to check the integrability
of exp\β\F(i*(XJ\] with respect to exp(-φ(x))dx. By (Al) and (3.3), this can be
achieved if β is chosen small enough. Π

IV. Proof of Theorem 2

Our goal in this section is to prove Theorem 2. Indeed, we shall prove the following
straightened version of Theorem 2.

Lemma 4.1. Suppose that assumptions (Al), (A2) and (A3) are satisfied. As before,
L ~ N3/1° and 2K + 1 = (2L + 1)M . Let Yτ and Uτ be defined by

Yτ>i(s) = (2L+lΓ1 Σ ^Wldx^l^τ) (4.1)
\J-i\^L

Uτ.ι(s) = (*,» - m,(s))2l(|x(»| < τ). (4.2)

Then for τ' and τ large enough with τf <τ we have

Πm Πin CWJC = 0, l = N~1/2K. (4.3)
/->oo N-*<X)

Here y1 is defined in (Al) and ζ is defined in (A3) of Sect. L

Proof. By the SDE (1.3) we have (omitting all superscripts N)

dζ(t) = ±N5'2Δ{φ'(Xi(t)) - h'faWdt + N3/2{dft(ί) - dβl+l(t)}. (4.4)

A simple computation using Ito's formula then yields that

+ £non[~\dsN-1 '2 X {1 -(^(xl.(S))-/ι'(mί(5)))(xl.(s)-mί(S))}| (4.5)
LO i = ι J

By assumption £non[(x — m)2] = o(N~l/2) and thus

^ 3/2N- 1/2Eson[ || CHi^s)] + o(l). (4.6)

For each term in the summation of (4.5) we replace it by its local average, namely
replace (φ'(xt) - h'(mί))(Xί - m,) by (2L+IΓ1 Σ (Φ'(xj) - V(m,))(Xj - m,). This
produces an error term ij-ΊSί-

" 1 / 2Σ(2^+l)" 1 Σ
i = l |j-i|S

- h'(mj(t)))Xί(t) + (m,(ί) - m.,(t))0'(x t(ί))}. (4.7)
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Since m is a "smooth" solution to (2.1), the coefficients of x£ and φ'(xt ) are 0(L2N~2\
Similarly the first term of (4.7) is also of 0(N~1/2). Thus by Lemma 3.6 we can
bound (4.7) by C/ΛΓ1/2.

Combining (4.5) with (4.7) we have

1 Σ F(0(X;(4s) + o(l), (4.8)
o . i=l U-i\ ZL JJ

where F{'\x, s) is defined by

F (ί)(x, 5) = 1 - (φ'(x) - h'(m,(s))(x - m;(5))). (4.9)

Decompose (2L+1Γ1 Σ F(ί\Xj,s) as W\» + W(? + Wf\ where W{°} is
defined by l j ~ ί | = L

By (3.46) we can bound Ww by

= °
N-oo _ o

Also, by convexity of φ we have for τ sufficiently large

Therefore,

(4.12)
O LO / = !

Decompose the last term as

j V - ι / 2

Λ^ N

+ N~1/2 X H^ + ΛT1/2 ^ F ( 0(|x l f J C |<τ /), (4.13)
i = 1 i = 1

where V is defined in (3.34) and W(4) is defined by (with yiΛ defined in (3.31))
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As in (4.7) one can check that W(4) is negligibly small in the sense that

lirn m Nl/2E^n$\(l9W
(4>(s))\ds = 0. (4.14)

/->• oo N-* oo 0

The expectation of the first term on the right side of (4.13) is also negligibly small
by (3.47). Finally the last term can be bounded by using the fact that

F(i\y) =

m}\ (4.15)

where we have used the convexity of h. Combining (4.8) ~ (4.15), we have proved
Lemma 4.1. Π

Proof of Theorem 2. By Lemma 4.1 we have for all τ large enough,

lim lϊm Λr 1 / 2 £ϊ r

o n Γf<l,l/ t >(5)dsl = 0, (4.16)
> oo N-> oo

Λr 1 / 2 £lj<ι,r t χs)ds = o. (4.ιη
/-»αo N-* oo I Q I

We claim that for τ large enough

3<l,y t / 3 >^<l, l/-I/ t >, 17 = !/,= «,. (4.18)

This follows from the inequalities (with τ ίϊ mf and yia defined in (3.31))

(x,A - m^ldx^l ^ τ) < [3x,% - τ2]l(|x,κ| ̂  τ)

α= 1

1 X [^l(|Λ.J^τ/3)]l(|x,,κ|^τ) (4.19)
α= 1

and that

(2L+1Γ1 X x 7

2 ^xf L . (4.20)

Theorem 2 then follows from (4.16)-(4.20) and Lemma 4.1. D

V. Proof of Theorem 1

Recall that ζ satisfies SDE (2.2). Let Ω and ZN be defined by

Ωt(s) = N 1 / 2 ^ f ( X i ( s ) ) - Λ'(Wi(s)) - ^'(w^Hx^s) - wt (s))], (5.1)

ZN(t) = - j UN(t, s)N2ΔΩ(s)ds, (5.2)
2o
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where UN is the semigroup of the equation

^ = iN24[fc>£(i))/]. (5.3)
ot 2

Then we can integrate (2.2) to have

ζN(t) = UN(t, 0)£N(0) + 1 UN(t, s)N3/2Vdβ(s) + ZN(t). (5.4)
o

Let I J\Λ be defined by

!«/!«= Σ H a l l o o , (5.5)
i = 0

where J(i) is the (scaled) lattice difference operator of order i, e.g. J(1)(i/N) =
N[J((ϊ + 1)/ΛO - J(i/ΛΓ)]. We have the following lemma.

Lemma 5.1. Suppose that assumptions (A1)-(A3) are satisfied. Then

lim lim sup £L[|<J,Z*(f)>|] = 0. (5 6)
/->oo JV->oo |J|4<1

Proof. We first claim that it suffices to show that

lim lim sup EN

ΛOJ }<J,i2(5)>ds 1 = 0 (5.7)
l^oo N^oo |J|2S1 L o J

uniformly on compact ί-intervals. To see this we integrate the ί-integration by parts,

ί ί i s

J < Λ U(t9 s)N2ΔΩ(s) > ds = J < N2 4 J, β(s) > ds - f J < 7, Λ(τ
0 0 00

where J is given by

,
ds

with U* denoting the adjoint of U. By parabolic regularity, \J\2 ^ C\ J\4. Thus by
(5.7) each term on the right side vanishes after taking expectation. We now
prove (5.7).

Let us decompose Ω as

Ω = Ω(1} + Ω(2) + Ω(3) + Ω(4\ (5.8)

where Ω(σ) is defined by (with τ' denoting some large constant)

- Λ'ίm,) - ^(w^ίy, - m£)] l( | tt l < τ'),
f(mt) + h"(mt)(yi - in,)

fl(4) = Nι/2 (2χ + 1Γ i Σ (φ,(Xi) _ φf(Xj}} + h»(mι)(yι _ x.)

L i j - f i ^ «
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By summation by parts, regularity of solutions to (2.1) and Lemma 3.6 we can
bound β<4> by

Urn" ϊίm" ENΪ sup ί|<J,β(4>>|(s)ds] = 0. (5.9)
/->oo ΛΓ-»oo |_|J| 2<1 o J

By the Taylor theorem,

|/2<2)| ̂  const. N^\yί - m,)2l(| tt| < τ').

Hence by Theorem 2,

__ r ί η
lim lim EM sup ί|<J,ί2(2)>(s)|ds =0. (5.10)
/->oo ΛΓ->oo |_|J| 2<1 o J

To bound β(3), note that by a similar argument given in (4.19)

g const. N^M-1 £ y l

2

βl(|yι.|>τ73)l(|y l |>τ').
α = l

Hence by Lemma 4.1

ϊϊm HrnElΓ sup \\(J,Ω™y(s)\ds] = 0. (5.11)
ί-^oo ΛΓ-^α |_|J|2<1 o J

We now decompose Ω(1) as Ω(6) -f Ω(1) + Ω(S) with β(σ) defined by (τ' < τ as
in Theorem 3.5)

> Σ(2L4-1)'1 Σ [.Φ'(xj)-h'L(yiΛ)-]l(\yiΛ\<τ\
α = l jeα(ί)

jeα(i)

α = l

where we have followed the conventions of notations in (3.31). By (3.48),

ΐϊm ϊϊm sup ̂ on
l->oo N-»oo |J|2<1

(5.12)

By assumption (Al), we can bound <J,ί2(7)> by const. N1/2 < 1, Y τ> if τ is
sufficiently large. Thus

m m sup
/-^oo Λ^-^oo |_|/| 2<1 o

To bound Ω(8) we decompose it further into Ω(9) + ̂ (10) with
M

α = l
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By (3.49),

lim lϊm sup E»J }<J,ί2<9>>(s)ds 1 = 0.
l^oo N->σo \J\2<1 |_ 6 J

Hence it remains to bound Ω(10). Since ||/^( )1(IΊ < τ)!!^ is bounded,

|ί2<10)| ̂  const. N1/2(yi - mt)
2.

It follows from (1.17) that

__ Γ t η
lim lim EjM sup f |<J,ί2(10)>(s)|ds =0. (5.13)
l->co ΛT->oo |_|J|2<1 o J

Combining (5.8)-(5.13), we have proved Lemma 5.1. Π

Lemma 5.2. Assume the assumptions (A1)-(A4). Let QN be the distribution of the
process ZN. Then for α > 9/2 QN converge weakly to the delta function concentrated
αίOiπC([0,l],H_J.

Proof. We only have to prove the tightness of the family {QN} since by Lemma 5.1
the only possible limit point of {QN} is the delta function concentrated at 0.

Recall that the standard criterion for tightness is to prove that for all ε > 0,

lim lim sup QN sup || ZN(s) - ZN(t) || _α > ε = 0, (5.14)
<5->0 N->oo 0 < s < ί ^ l

\t-s\<δ

lim lim sup QN \ sup | |ZN(ί)| |-α>M| -0. (5.15)
M-*oo N-»oo |_0<ί^l J

Since the proofs of (5.14) and (5.15) are similar, we shall only prove (5.14).
We first replace || X \\ _α by sup < J, x>. By definition we can write

, , . (5.16)
2 o

Integrate the right side of (5.16) by parts,

(5.17)
0

where J1 and J2 are given by

-N2AJ, J2(t,τ) = -N2Δd-UN(t,τ)*J. (5.18)
2 2 dτ

Subtract <J,Z*(s)> from (5.17),

/

-fdτ( J2(t,τ)- J2(s,τ),\Ω(σ}dσ }. (5.19)
o \ o
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From standard results of PDE we have

and for all δl > 0 there is a δ such that

sup sup||J3(s,ί,τ)| |α_2<ί51,
\s-t\<δ τ

229

(5.20)

(5.21)

where J3(s,f,τ) = J2(t,τ) —J2(s,τ). Thus the probability in (5.14) can be bounded
by the sum of the following three terms:

s,ί | |Jι | |«-2<C J^Ωdσ

sup sup δ
> i τ S l | | J2l) a -2<C

sup sup

(5.22)

(5.23)

(5.24)

Here the sup always means that \s — t\<δ and 0 ̂  s < t ̂  1. We shall prove that
s,ί

each of the above three terms tends to zero as <5->0.
First we note that the event (5.24) is similar to the event in (5.23) by normalizing

J3, i.e. J3-><?!J3. Hence we only have to prove that (5.22) and (5.23) tend to zero.
But the events of (5.22) and (5.23) are in fact related by the inequality

sup
0 < τ < 1

Thus we only have to prove that (5.22) tends to zero as <5-»0. Since the range of
J λ is symmetric under the transformation Jί -> — J l 9 we can take out the absolute
value outside the integration of Ω. We shall also drop the subscript of Jv from
now on. 4

Recall (5.8) that Ω can be decomposed as Ω = £ /2(σ) with Ω(σ} satisfies
<r=l

SUP
| J | 2 < l o

= 2,3,4. (5.25)

By Sobole v's lemma, | J \ 2 ^ const. || 7 1| α if α > 5/2. Hence by choosing / large enough,
we can neglect Ω(σ\ σ = 2,3,4 in bounding (5.22). Now we decompose ί2(1) as
B + W with

W = - h'(yi))l(\yi\ < τ'). (5.26)

As in the proof of Lemma 5.1, |<J,B>| can be bounded by N1 / 2<1, Y τ / / 2 > and
thus it satisfies (5.25) with Ω(σ} replaced by B. Hence we only have to prove that

_
lim lim £^on 4 sup sup ( J, f W(σ)dσ } > ε/5 \ = 0,

n°n J
(5.27)
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where the integer K is chosen to be l^/N with / large enough such that the expecta-
tion in (5.25) is smaller than ε/100.

Replace sup ( f W,J ) by C

'

w
2-α

A = sup I*

. Let A denote the event

ε

'5 '

By the standard entropy inequality [6]

QN(A) g [log2 + HN][log(l + P^μ)-1)]'1.

By assumption (A2) HN ^ const. N. Hence it suffices to prove the superexponential
bound of the event A in the equilibrium, namely

PN (A) g exp[- WC(<5)1 lim C(δ) = oo. (5.28)
q <5->0

Since there is a sup appeared in the definition of A9 we need the following lemma
s,r

of Garsia [12]: For any continuous function g we have

s 'ϊV fίfWo \u2J

o o P(k-τ|)

where p and ψ are strictly increasing continuous functions satisfying some technical
conditions. The Garsia lemma also holds if g is a continuous function with value
in a Banach space. Let us choose

Then

suup
<r<

$W(σ)dσ
/4B' -

2-o

0 0

|ί-s -1/2

2-α

(5.30)

Since ψ 1(y) — N 1 log(l -f y)9 we can integrate the right side of (5.29) by parts

sup J W(σ)dσ
2-Λ

Hence

(5.31)

2. (5.32)
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If we can show that for each / fixed
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(5.33)

then (5.32) and (5.33) prove (5.27). So our final task is to prove (5.33). Since / is
fixed, we shall omit all / indices.

First we use Schwartz inequality to bound the exponent in B, i.e.
2

N W (t-sΓ1/2<a2N
2-α

w
2-α

Hence it suffices to prove that

Γ ία2 ' 2 11
exp l -Nd-sΓ 1 $W

L 1 Z s 2 - α J J

aCN (5.34)

Let dμβty be the Gaussing measure on Hβ with covariance S = (1 — N2Δ) γ. (Note
that N2Δ ~ dfj.) The existence of such a measure with γ > \ is guaranteed by
Prohorov Theorem [13]. Let < yβ denote the inner produce in Hβ, i.e.
</,#>/? = </,(! - N2Δ)βgy. Then we have the identity [13]

\\2_β_y-]. (5.35)

(5.36)

Γ ι _ ^ \ i \ / / μ-M

Since we are interested in bounding (5.34), we shall choose

_/f-y = 2-α.

Thus (5.34) is equivalent to

\

<etCN (5.37)

From (3.45)

E" (5.38)
\_ \ \. \ s i j _j

By Sobolev inequality, | J\l < C|| J||2. Thus the left side of (5.37) is less than

The last identity is a simple property of Gaussian measure. It holds with the
determinant finite if α is small enough and if β ̂  2 (recall y > 1/2). Putting all this
together we find that (5.37) holds if (recall (5.36))

-α + /J + y=-2, /J^2, y>±. (5.40)

Clearly, there exists at least one pair of (β, y) satisfying (5.40) if α > f. This concludes
Lemma 5.2. Π

Proof of Theorem 1. By Lemma 5.2 it remains to show the convergence of the
first two terms on the right side of (5.4). We began by proving thatproving

} UN(t,s)N3/2Vdβ(s)=>\ Uco(t,s)dθdB(s).
0 0

(5.41)
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First, it is easy to prove the tightness of the family of the left side of (5.41). Then
since everything involved is Gaussian, we only have to check the convergence of
the covariances. But this is straightforward and we omit the details. So our final
task is to show that

UN(t, 0)ζN(0) => l/°°(t, 0)C°°(0) (5.42)

in C([0, l],#_α). Clearly, it suffices to show that

Ό™(t, 0)ζN(0)=> l/°°(ί, 0)f °°(0), (5.43)

The convergence of (5.43) follows immediately from the convergence of ζ* to ξ£
since I/00 is just a "change of coordinate" in C([0, l],f/_α).

Let VN = I/00 - UN. Then

\ \ V N ζ N \ \ _ Λ = sup (J,VNζNy= sup <(VN)*J9ζ
Ny^yN\\ζN\\,Λ9

where yN is defined by

yN= sup \\(VN)*J\\Λ.

Clearly, yN^0 as N-+ oo. Thus || VNζN\\ _α-»0 with probability 1 and we conclude
(5.44). Combining (5.41) to (5.44) we have proved Theorem 1. Π

Appendix

We shall prove Lemma 3.1 in this appendix. Let us first recall the following version
of the asymptotic expansion of the central limit theorem [7].

Lemma A.I. Let {Xj} be a sequence o/i.i.d. with mean zero and variance σ2 >0.
Letf(x) be the common density. Suppose that /'(x) is integrable and E[X*] < oo.

N

Let gN be the density ofσ~1N~1/2 £ Xj. Then gN satisfies

v = l

uniformly in x. Here pv is a real polynomial of degree 3v with coefficients depending
only on EXj = μj9 j = 1,..., 8. For example,

p2(x) = [μ2H6/72σ6] + [(μ4 - 3σ4)H4/24σ4],

with HJ the Hermite polynomial of degree j:

H3(x) = x3 - 3x, H4(x) = x4- 6x3 + 3,

Proof of Lemma 3.1. We shall assume without loss of generality that j; = 0 and
exp( — φ(x)) has mean 0. By subtracting a constant from F if necessary, we can
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assume that |F (x)exp( — φ(x))dx = 0. Let us choose a μ such that (L = 2K + 1)

Jxexp(μx + βL~1F(x) - φ(x))dx = 0. (A.I)

Clearly, μ can be solved as

μ= -β^xF(x)y<^x2y1L-1^0(β2/K2), (A.2)

where < > denotes expectation with respect to the density exp( — φ(x)). Let Z be
a random variable with density given by

exp (μx + βL~ lF(x) - φ(x))M(μ, F)~ \ (A.3)

where M(μ,F) is the normalization. Let {Zj} be the i.i.d. with density given by

(A.3) and let 0Z>L (with gL = gZ(μ = o,β = 0),L) denote the density of L~~lσ~1 £ ZΓ Then

we can express the expectation in (3.5) as I = 1

M(μ, F)Lσgz,LmσzgL(W Λ P2

Z = £[Z2] (A.4)

By (A.2) and Lemma A.I we have

= 1 + β2G2(F, 0)L- 2 + 0(j?3/*3), (A.5)

l(F,Q) + 0(β2/K2)}, (A.6)

3). (A.7)

Here the expectation in pz >v is with respect to the random variable Z. Since the
difference between pv(0) (Z = X) and pz>v(0) is of order \β\K~\ we have

\ 1 - 0z.L(0)/0L(0) I < const. j?/X2. (A.8)

Lemma 3.1 follows from (A.4)-(A.8). D
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