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Abstract. Following Woronowicz’s proposal the bicovariant differential calculus
on the quantum groups SU/(N) and SO (N) is constructed. A systematic
construction of bicovariant bimodules by using the R matrix is presented. The
relation between the Hopf algebras generated by the hnear functionals relating the
left and right multiplication of these bicovariant bimodules, and the g-deformed
universal enveloping algebras is given. Imposing the conditions of bicovariance
and consistency with the quantum group structure the differential algebras and
exterior derivatives are defined. As an application the Maurer-Cartan equations
and the g-analogue of the structure constants are formulated.

1. Introduction

Recently a class of non-commutative non-cocommutative Hopf algebra has been
found in the investigations of the integrable systems. These Hopf algebras are
g-deformed function algebras of classical groups. This structure is called “quantum
group” [Dri].

The structure of the quantum groups suggests the possibility of investigating a
geometry where we can even consider discarding the commutativity of the algebra
of coordinate functions. It is interesting to ask whether one can find applications of
this new class of symmetry to some physical systems other than the integrable
models.

Following this idea, the first step one has to make is to provide the appropriate
tools for this investigation. To this end we take the usual application of the group
theory as a guiding principle for the generalization of the g-deformed quantities.
This is also useful since in the limit g—1 we wish to reproduce the results obtained
in the ordinary classical group case.

* Address after 1 Dec. 1990, Institute of Theoretical Physics, University of Miinchen
** On leave of absence from Department of Physics, College of General Education, Tohoku
University, Kawauchi, Sendai 980, Japan
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In this paper we formulate the differential calculus on quantum groups to
investigate their geometrical aspects. This also gives an example of the non-
commutative geometry. The framework of such a non-commutative differential
calculus has been developed by Woronowicz following the general ideas of Connes
[Connes]. In a series of papers, introducing the bimodule over the quantum group
various theorems concerning the differential forms and exterior derivatives were
presented. Generalizations of the construction of bicovariant bimodules to other
quantum groups are also investigated in [Rosso]. However, the concrete
constructions of the differential calculus must still be developed. For the SU ,(2)
case, two types of differential calculi called 3D [Worl] which is not bicovariant
and the bicovariant 4D, calculus [Wor3, Stach, PW, Weich] have been given.
[The 3D calculus has been extended to the case of GL,(1|1) [SVZ] and GL, ,(2)
[SWZ].]

In [Wor3] the author presented the bicovariant differential calculus for
quantum groups where the differential forms transform under both left and right
transformations covariantly. This is a natural g-deformation of the differential
calculus on classical groups.

The aim of this paper is to develop the concrete bicovariant differential calculus
for various other known quantum groups following Woronowicz’s programme in
[Wor3] applying the formulation of the quantum groups proposed by Faddeev et
al. [FRT, Takh].

The paper is organized as follows. In Sect. 2 we introduce briefly the quantum
groups and the concept of bicovariant bimodules following Woronowicz to
establish our notations. In Sect. 3 we construct the fundamental bicovariant
bimodules which provide the building block for constructing any bicovariant
bimodules. We also show that the algebras of the functionals defining the relation
between the left and right multiplication are equivalent to the universal enveloping
algebras. The bicovariant bimodule including the adjoint representation is
constructed in Sect. 4. In Sect. 5 using the result of Sect. 4, we construct the first
order differential calculus using the idea of the extended module of [Wor1, Wor3].
In Sect. 6 the higher order differential calculus is constructed. As an application in
Sect. 7 we write down the g-analogue of the Maurer-Cartan equation and the
structure constants.

2. Quantum Groups and Bicovariant Bimodule

In this section we introduce briefly some necessary concepts in order to formulate
the differential calculus on the quantum groups.

2.1. Quantum Groups

The quantum group & is a non-commutative non-cocommutative Hopf algebra
generated by N? elements M: ;(i,j=1,...,N). The algebra .o/ has a unit element
which we denote by 1. The coalgebra of the quantum group is defined by the
following maps.

The coproduct 4 of the quantum groups, a multiplicative algebra homomor-
phism 4:.o/ -/ @, is defined for the generators M as

AM ) =M, @M, 2.1)

where the summation over repeated indices k runs from 1 to N.
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The antipode (coinverse) x of &/ is a linear antimultiplicative map «: &/ -/
which is defined for the generators by

K(Mik)M"j=M"kx(M"j)=6§1. 2.2)
The counit &, an algebra homomorphism €:.</ —C, is defined for the generators

as . )
(M) =0";. 2.3)

These maps defining the coalgebra on ./ satisfy the standard axioms of a Hopf
algebra [Abe].

The quantum groups are a class of Hopf algebras obtained by the g-de-
formation of the algebra Fun(G), the algebra of the functions on the group G.
[Strictly speaking it is developed on the polynomials of the generators Mij, a
subset of C®(G).]

In these algebras the non-commutativity is controlled by the qu matrix which is
a solution of the Yang-Baxter equation

R;JJl qkqu k' qk]qulR;le (24)
The commutation relation between the generators M'; is then given by
Ry, M7\ M =M M/ R ... (2.5)

In this paper we consider mainly the quantum groups SU,(N) and SO,(N)
which were introduced with the help of R matrices [ FRT, Takh, Rosso], and the
parameter of the deformation, g is in general a positive real number.

The SU/(N) is a g-deformed Fun(SU(N)) and its generators satisfy the
unimodularity condition

detM=1. (2.6

We also consider the quantum group SO,(N). The SO/(N) is a g-deformed
Fun(SO(N)) and instead of the unimodularity condition (2.6) the generators M’;
satisfy the orthogonality condition

C,;M' M, =C,

where C;; is an N x N matrix corresponding to the metric.
Furthermore in order to define these quantum groups we have to consider the
*-structure [Wor2]. The #-structure is defined by an antilinear *-operation:

2.7)

i'j's

x99/ 3a—>a*ed, (2.8)

such that Va, be o/ and YieC:
(Aab)* = A*b*a*, 2.9
k(k(@*)*)=a, (2.10)

where A* is the complex conjugate of 1. The coproduct and counit are
*-homomorphisms. We call the Hopf algebra with #-structure a *-Hopf algebra.
The conjugated element is denoted as

(M) = M* = M"Y,. (2.11)

Note that we introduce the M in order to keep the manifest covariance as in the
commuting case, i.e. a lower suffix transforms as a covariant and an upper index as
a contravariant quantity.
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Then the unitarity condition is represented as

The *-operation is a generalization of the complex conjugation. Therefore it is
convenient to consider the bigger algebra generated by M‘; and M"; with the
commutation relations (2.5) and

Rliljk'l’M ”le Tklk =M ”j'M Tii’szlkl > (2.13)
and
RAfl'jk’lM Tii’M klk= ij'M ”'lszj}kl” (214)
or
R‘q— Wi, MY MK, = ij,Mﬂ'qu' W (2.15)

Then the unitarity condition reduces the bigger algebra to the original /. The
commutation relations (2.13)+2.15) are simply defined so that they are equivalent
to (2.5) when one substitutes the unitarity condition (2.12).

2.2. Bicovariant Bimodule

The differential 1-forms on a Lie group manifold are sections of the cotangent
bundle. The space of all sections on the cotangent bundle C*(T*(G)) is a bimodule
over C®(G). On this space there is a natural action of the group G which is
expressed by the coaction of C*(G) in the Hopf algebra terminology. In order to
construct the differential calculus on the quantum groups we employ these
algebraic structures. Therefore we introduce the bimodule-bicomodule over <.
We consider here especially the case that those bimodule-bicomodules are
bicovariant, i.e. bicovariant bimodules over o [Wor3].

On the bicovariant bimodule I' there exist left coaction 4, and right coation 4,
of o

A, T—>AQT, (2.16)
Ag:T-T®A . 2.17)

Following the general definition of the bicovariant bimodule [ Definitions 2.1-2.3
in [Wor3]] we require that the coactions have the following properties:

After identifying coactions and coproduct on </ the coactions are bimodule
homomorphisms

4y (agb)=A4(a)4,(0) A(b), (2.18)
Ag(agb)=A(a) Ax(e) 4(b), (2.19)
and they satisfy
(e®id)4.(0)=0, (2.20)
(id®<g)4g(0)=0. (2.21)

Furthermore we require that the left coaction and the right coaction commute:
(d®4R) 4, =(4,®id) 4. (2:22)



Bicovariant Differential Calculus 609

We call an element ge I’ left invariant if
4(0=1Qe, (2.23)

and right invariant if
AR(@)=0®1, (224

where 1 is the unit of the algebra /.
The *-structure in the algebra .« can be extended to the bicovariant bimodule I’
in a natural way. There exists a unique antilinear antimultiplicative map [Wor3]:

*:'sp—po*el*, (2.25)
such that Va, be «/:
(agb)* =b*p*a*. (2.26)

The #-operation commutes with the coactions

A e)* =4.¢%), (2.27)
Ag(@)* = 4r(@*). (2.28)

In any bicovariant bimodule, one can find a linear right invariant subspace I},

Let the basis of this subspace be 5’ eI}, Then any element gel’ can be
represented in the form

0= g am’, (2.29)

where the index J runs over all elements of the right invariant basis and the
elements a; e o/ are determined uniquely (Theorem 2.3 in [Wor3]).
The left coaction on right invariant elements is defined by

Am)=T";®n’, (2.30)

where T';e o/ is uniquely determined when we fix the basis #’. Note that
throughout this paper we use the upper case indices such as I, J, K to distinguish
the right invariant basis and we also abbreviate the summation symbol over upper
case indices if it is apparent.

The left invariant basis w’ € I' can be introduced as

o’ =x(T ", (2.31)

with the T'; being the matrix defined in Eq. (2.30). It is easy to confirm that w’ is
left invariant using the above definitions. The @’ form the left invariant basis of I'
since any element of I" can be represented as in Eq. (2.29). The right coaction on o’
is given by

Ag(@’)=*@K(T’y). (2.32)
The bicovariant bimodule is characterized by the following functionals which
relate the right multiplication to the left multiplication of ae.«/ on gerI.

Let #’ be the basis of the right invariant subspace I},,, there exist linear
functionals f7;,

[l sa—f1)(a)eC, (2.33)
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such that Va, be o/:
b=y (b*fT)n’, (2.34)
J

aﬂ'=;ﬂ’(a*f’J°K), (2.35)

where the indices I, J run over the full basis of right invariant elements. The
convolution product of an element a € & and a functional f is defined as [Wor3]:

ax[=(f@id)A(@)= T f(d)a5, (236)
where 4(a)= %: as®as.
The functionals introduced above satisfy Va, be .o :
[ lab)= xS Txla) f¥(b), (2.37)
and
fL=4,. (2.38)

The main problem of the explicit construction of the differential calculus is
therefore to find the explicit form of the f7,. The functionals {7, introduced above
are elements of the linear functionals on ., Hom(s#, C). In Hom(s#, C), one can
define a product, the convolution product [Wor3]: for two functionals f;,
f,eHom(s,C) and ae o/

Ji*fa)=(/i®1)4(a). (2.39)

Definition. </’ is the unital C-algebra generated by the functionals f'; with the
convolution product (2.39).

The Hopf algebra structure of .o/ induces a Hopf algebra structure on 2/’. From
Eqgs. (2.37) and (2.38) we can read off how the coproduct 4’ and the counit &’ of &7’
are acting on the functionals f7;:

AT )=1"®f%, (240
g(f1)=0". (2.41)

We can also prove that they satisfy Yae .«/:
LS (f ko x) (@)= dxela), (242

J

and therefore the antipode x' of the algebra &/’ is

K(f')=f"sex. (2.43)

This means that the functionals f7; are a special set of elements of .o/’ such that
their coproducts are represented by matrix multiplication and the antipode is
given by the inverse of the matrix.

Since #/ is a *-Hopf algebra, one of the important properties of the algebra ./’ is
that one can find an induced *-structure:

Proposition 1. Let y e .o/". Define the *-operation of </’ asVaeof:
r¥@):= {x(x(@*)}*. (2.44)
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Then this *-operation in &' is an antimultiplicative involution and satisfies
KK () =x. (2.45)
Proof. 1) The operation is an involution of &/’ since for all elements ae &/ it
satisfies:
(o (@)= {x*(x(a*)}*
= x(k(r(a*)*))
=yx(a). (2.46)
2) The operation is antimultiplicative: Let &, y €./, then Vae .o/,
(0 x & (@)= {(x * &) ((a*)}*
={(x®¢) A(x(a*)}*
= ; {0 ®0) (re(as*)@c(as*)}*
= 3 1@ Eap)

=(¢**x*)(a), (2.47)
where Y as®ag=A4(a).

3) The coproduct A’ commutes with the %-operation: For any element a, be o7,
4(z*)(@®b)=7*(ab)

= {(x(a*)k(b*)}*

= % {xs(r(@®) xs(re(@*)}*

= % (xs*®xs*) (@®b)=A'(x)*(a®b), (2.48)
where 4)= ¥ (1s®73)
4) Equation (2.45) can be shown using Eq. (2.10):

K (' (0)*) (@) = {'(*) (re(rc(@)*)) }*

={x'(x*) (a*)}*

= {x*(e(a*)}*
From this it follows that =x(kta(@)*)=x(a). QED. 249)
(rox™H*=y*ox. (2.50)

In the following section we explicitly construct the functionals f7; for various
bicovariant bimodules. Given the definitions above we write down the defining
conditions for f7,.

Condition 1. Bicovariance: The bicovariance of Eq.(2.34) requires that the
functionals f7; must satisfy

Agln)Ab)= LAbxf " Axl’), (2.51)
4" A(b)= YAbxf 'NA4n’). (2.52)
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By the definition of the convolution product b * f7; the right covariance (2.51) is
trivially satisfied. The condition for f”; required from the left covariance is
obtained by the following considerations:

In order to define the functionals f/; it is sufficient to define the values of
(M J) i.e. when its argument is a generator. Therefore in Eq. (2.34) we take the
element b=M", Using the definition of the convolution product we get

'MA=f1AME )M’ (2.53)
The left coaction on the left-hand side of Eq. (2.53) gives
A ('M*)=T',M¥, n'M",
=T ;M*® [ k(M", ) M" X" (2.54)
The left coaction of the right-hand side gives
A AMEIM ") = f1(M¥,) A (M" )
= f1,(M~,) (M", T ¢ @ M™ ). (2.55)

The condition (2.52) requires that (2.54) and (2.55) are equivalent. Therefore
comparing these two equations, we get an equation for f7,(M" i)

T MY, f7((M",) = 1 (M* ) M", T (2.56)
(This is the analogue to the Eq. (2.39) in [Wor3].)
Condition 2. Consistency with the quantum group relations:

a) The consistency with the commutation relations of the generators M’; given in
Eq. (2.5) leads to the following condition:
’(R,”, MY —M M/ R )

(R M7 M MM R ) (2.57)

The left-hand side is zero due to Eq. (2.5). The right-hand side is obtained by using
the commutation relations (2.34). Because of the uniqueness of the expansion of
Eq. (2.29) the coefficients on the right-hand side have to vanish. This leads to

Ry f1AM7 1) f7 (M )= f1 M) f7 (M) R (2.58)

b) Other quantum group relations such as the unimodularity (2.6) or orthogo-
nality (2.7) must also be compatible with the bimodule structure.

3. Fundamental Bimodule of SU, (V) and SO,(N)

The construction of the bicovariant bimodule can be performed in an analogous
way to the construction of the representations of classical groups. In this section
we construct the fundamental bicovariant bimodules of SU(N) and SO (N). They
are the analogues to the sections in the bundles of the fundamental representations
over the groups SU(N) or SO(N). Other bicovariant bimodules can be constructed
using them as building blocks.



Bicovariant Differential Calculus 613

3.1. Fundamental Bimodule of SU (N)

We use the R matrix for the SU(N) given in [FRT]. As for our convention see
[CSSW]. The commutation relatlons of the generators M’; i.are given in Eq 2.5).
Another condition for the SU (N)is the unitarity which is formulated by using the ¢
tensor, the g-deformed antisymmetric tensor. Since we need some properties of this
antisymmetric tensor for the construction of the bimodule we first give its
definition and its relation to the R, matrix. For later discussion we also introduce
the graphical representation which clarifies the relation to the braid group.
The definition of the N™ rank antisymmetric tensor ¢ is

N(N-1)
&, .ixn=q * ("‘1)“”), (3.1

where o denotes the permutation of the suffices (i, ..., iy)=0(1,2, ..., N) and £(0) is
the minimal number of inversions in the permutation ¢ [Dri, Wor4]. The overall
constant is chosen such that the formulas below become simple. To keep the
manifest covariance we also introduce the ¢ tensor with upper indices as:

N(N-1)

grin=(— Wl & x(—g)f@. (3.2)

In Fig. 1 we gave the graphical representation of these fundamental quantities
[Res, Wor4].

l J
19 = 646, = I I
a
k l
i J
K
RV = /
b k !
i J
Ry = \/\
c k l
€ilirin —
d i1l LN
tilg ... IN
eixiz-"iN —

¢

Fig. 1a—e. The graphical representatlon of the basic quantities of SU,(N). a The unit operator, b, ¢
the matrices R”k, and R Y5, d, e the e-tensors €™ and ¢;, deﬁned in Egs. (3.1) and (3.2)
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tyty ... in k i1lp ... liN k i1t2 ... Iin _k
\/ =4 \\\J =
l l
k k
/\ o P -
1) \ s
l ilig lN l 1l llv l ili'_} l.N

Fig. 2. The graphical representation of the relations among the R matrix and the e-tensor. The
multiplications of the ﬁ matrices and the ¢-tensors are represented by drawing the diagrams one
below the other and connectmg the lines corresponding to the indices which are summed

Some important properties for the construction of the modules are

kh kyia Dks— 11 Dk - 1i k
Sil... q 11k1R ! lzkz"‘RqS si'sks R YN l*qgu 5! 3 (33)

iy...in Pkil Pkii> Pks - 1ig
€ Ry Ry, - R0, -

N GRRC (34
(see Fig. 2) and

ki1 .. kniy...ip _ pit..itki+1...kn
€ kg€ =¢ Elra s

J1 e ikt 1. ky cokNjy .t

(=IO, (3

2, is the projector to the I'™® order antisymmetric tensor representation (see Fig. 3)
and

[N]'=[N][N—1]...[1], (3.6)

with the definition of the g-number [x]

[x=L=L (37)

Especially the projection operator to the second rank antisymmetric tensor %,
and the one to the second rank symmetric tensor play an important role in the

iviy ... i ivde ... i

(=1)(N-D-1)

Iy =1

fedr
Pl Jie i T

Jij2 ... i Jijr .- Jt
Fig. 3. The graphical representation of the projection operator for the I* rank antisymmetric

tensor representation &, in Eq. (3.5). We write the [I] at the intermediate line to express the
corresponding representation
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i 12
'Pfixizjsz = ’P;h]ﬁh = A
! J J2
i i i i 0 is
Pgllziljz = s = I l - A
b J1 J2 2 J2 J1 J2

Fig. 4a,b. The projection operators to the second rank tensor in Egs. (3.8) and (3.9): the
antisymmetrizer 2, in a, and the symmetrizer % in b

following. We denote them as
Ps=P, (3.8)
and

P=1-2,, (3.9)

where 19,,=6.8]. The graphical representation of these projectors is given in
Fig. 4.
Using the projectors, we can represent the qu matrix as [Res, Wor4, FRT]

RUy=4Ps—q " ' Py - (3.10)
The unimodularity condition is represented by using the e-tensor:

(=¥

detM = W

Sk‘ -~kaMllk1Ml2k2 ..-MlNstll_,,lN=1 M (3'11)

The antipode is given by
- 1
“IN=aT e

and the inverse of the antipode is

K(M; koMb M Mg

(3.12)

kn-19y...In-1j>

- i 1 i

K 1(M j)= []‘V‘Tﬂ! lel .”lN>1Mllk1Mle2 .. -MIN~ lkN_ 18k1~--kN— ! . (3.13)
Now we can introduce the fundamental bicovariant bimodule of SU,(N) as

follows:

Definition of the Fundamental Bicovariant Bimodule. The fundamental bicovariant
bimodule is the bimodule where the right invariant subspace is an N dimensional
linear space with the basis #' (i=1, ..., N). The left coaction on #' is defined by

AL(n')=M";®1’. (3.14)
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Therefore we can identify the matrix T, in Eq. (2.30) with M’;. Then Eq. (2.34)
implies the existence of functionals f; such that

n'b=(b*f*)n’ (3.15)

holds for any element be.«Z, and i, j=1,...,N.

As we described in the previous sectlon to define the functionals f*;, it is
sufficient to find their values on the generators M*, ie. to find the tensor

fHAM").
From Eq. (2.53) we get as the defining equation of the tensor f*(M*):
n'M*=fT(M* )M’ (3.16)
We impose Conditions 1-2 given in the previous section.
Condition 1.
MiME, [ (M) = fIAME )M, MY, . (3.17)

This means that the tensor f '(M*) must be represented by a linear combi-
nation of R, and R; .

Condition 2.

a) The consistency with the commutation relation of the generators is
R fYAMY 1) f1MF ) = £ (M) [l M) R (3.18)

b) Another requirement for SU,(N) is that the determinant of M ij defined in
Eq. (3.11) commutes with any element ge[I.
This implies that

. YNt . .
f‘](detM)—([[N )1]]‘ Ey. i) L (ME ) I (MY el =460 (3.19)

From these requirements we get two solutions. We call them f} ;:

fiM*)=q~""R¥,;, (3.20)
and
fij(Mkl)qu/NRAq_ likzj- (3.21)

*-Conjugation of the Fundamental Bimodule. For a complex representation of the
ordinary SU(N) there exists the complex conjugate representation with the same
dimension. In the case of the quantum group SU (N) there are also the modules
conjugate to the above fundamental bimodules.

Applying the *-operation on both sides of Eq.(3.14) the coaction on the
conjugate representation is obtained

A’y =M")*®(n')*. (3.22)

Since the coaction commutes with the *-operation this defines the coaction on the
conjugate module. Denoting the conjugate module as

'y =n*=i;, (3.23)
we can rewrite Eq. (3.22) as
A1) = M",®1,= (M) ®7;. (3.24)
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We denote the functional which defines the commutation relation between any
element be .o and 7 as [

fiib=(b*f)i;. (3.25)

As we shall show below, there is a one to one correspondence between the
functionals f*; and f*; And therefore, we have two functionals corresponding to
fi;in Egs. (3.20) and (3.21). We denote these two functionals as f7 ;. Their relation
is as follows:

Proposition 2. The functionals f%; corresponding to the right invariant bases 1’y
defined in Eq. (3.15) and the functionals f1 ; corresponding to the bases j . ; defined in
Egq. (3.25) are related by

fij=f§ji5 ;ij (3.26)
with the x-operation defined in Eq. (2.44).

Proof. From Eq. (3.15) and using the general properties of the functionals f we get
Vae o

a*n'= X n f*{k(as)as*, (3.27)
where A(a)= Y (ag®as).
S

Applying the *-operation on both sides of (3.27) and using the definition of the
x-operation on &7’ given in Eq. (2.44), we get

n*a= IRl '(rc(ag) *agn*!

= £/* fax)agn®
=(f*;®id)d(@)n*. (3.28)
Therefore, using the definitions (3.23) and (2.44) we obtain
ma=(a*f*)7;. (3.29)

Comparing (3.25) and (3.29) we get the relation (3.26). Q.E.D.
Using the unitarity condition (2.12), we can find a further identity between f1;
and f}; for SU (N), which allows us to relate them by using «'~'.

Proposition 3.
H=1I=x"1f%). (3.30)

Proof. We apply the *-operation on both sides of Eq. (3.16). Since the qu matrix is
real we can write the result as
M* ¥ = fL (M*)n*IM*,. (3.31)
Substituting the unitarity condition (2.12) into M*;, we get
K(MY)7; =fij(Mkt)ﬁjK(Mlt)
= fLAM*) 2 (M ) k(M )17, (332
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where we have used the definition of f (3.25). This equation gives a condition for
the value of the functionals f and f:

Z fi M) F2 (x(M"))= 675 . (3.33)

The symmetry of the R, matrix RY,,=RY,, implies that

q ij

fife(M*)=fi (M*). (3.34)

Since this relation can be generalized to any element ae </ using the proper-
ties of the functionals f we get the relation between the f and f* given in
Eq.(3.30). Q.E.D.

Since we have two independent functionals which define the relation between
the right and left multiplication, we obtain two types of fundamental bimodules
and their conjugates. Therefore we distinguish their bases n* and i’ by the suffix +
corresponding to these functionals f%; respectively. We specify the bicovariant
bimodule by a pair consisting of a basis and the corresponding functionals (1,
fi ;- Then the relations under the *-operation are

*:(0', f1) =040 1) =000 f19), (3.35)
x:(n, f1)>(0-0 L) =00 f15). (3.36)

Due to Eq. (3.30), the fundamental bicovariant bimodules and their conjugates
are completely defined by Eqgs. (3.20) and (3.21).

In order to analyze the structure of the product representation it is convenient
to use the quantities with upper indices instead of the ones with lower indices such
as 7, This also enables us to use the graphical representations.

The representation with upper index of 77 is defined by using the ¢ tensor given in
Eq.(3.2).

ﬁ[j];l~~~jN—1]Eﬁii8ijl-~jN-l’ (3.37)

where the symbol [...] is introduced to remind that the indices are antisym-
metrized. To simplify the notation we denote N—1 antisymmetrized indices
collectively as [j]:

Ul=Uy-in-11- (3:38)
Using this notation Eq. (3.37) becomes
AP =160 (3.37)

Then the coaction is
A ) = A G4 iv-1)

=M7y LMY @il (3.39)
The corresponding functional f is defined by Vae .«/:
Pa=(a *ﬁ;ﬂm)ﬁm s (3.40)
where the relation to the f] is given by

; 1 R
fg][ﬂ= [[N— 1]]' 8[j']j’ f:-t“ i’el w . (341)
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Using Eq. (3.30),

fi k1= N lJN ¥ *f:i'zjz *filjl'@gll—nl.jzv_lkl..‘kn_1 . (342)
This shows the following equivalence of the two right invariant bases:
Ta o= =Bl (34))

Clearly, this relation among the bimodules is the analogue of the well-known
relation between the fundamental representation and its complex conjugate in the
ordinary SU(N). [For the definition of the product of modules in the right-hand
side of (3.43) see Eq. (4.4).]

3.2. Fundamental Bicovariant Bimodule of SO (N)

We take the R matrix and the metric given in [FRT]. [As for our convention see
also [CSW1].] The commutation relations of the generators M; are the same as in
Eq. (2.5). The extra condition for the SO (N) is the orthogonality condition which
is given by the metric C;; as in Eq. (2.7).

The antipode is

K(Mlj) = Cii,Mj,i'Cj'j 3 (3.44)
and the inverse of the antipode is
kY (M )=C;;M7.C", (3.45)

where C¥ is the inverse matrix of C;;.

We also need to consider the following projection operators: The symmetrizer
P, the antisymmetrizer 2, and the projection operator to the singlet 2,. Using
them the R, matrix is represented as

R,=qPs—q 'P,+q' M2,. (3.46)

For the graphical representation see Fig. 5.
The R, matrix and the metric satisfy the following relations (see Fig. 6):

C R; ﬂRk l} k= 5jCik N (3.47)
CVRY R, = 81C™. (3.48)

As in the case of SU,(N) we construct the fundamental bicovariant bimodule.

Definition of the Fundamental Bicovariant Bimodule. The fundamental bicovariant
bimodule of SO(N) is the bimodule where the right invariant subspace is an N
dimensional linear space with the basis #' (i=1, ..., N). The left coaction on 5’ is
defined by

An)=M";@n’. (3:49)

Therefore we identify the matrix T, in Eq. (2.30) with M*;. Equation (2.34) implies
that there exist functionals f*; such that Vbe o/:

nb=(b*fi)n’, (3.50)

where the indices i,j run 1,...,N.
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11 i2
Cii N
a il ig
i iy
iliz‘ . —_—
P, = I
b 2 J2
il 12
1 u
Pl = N /—\
¢ v 2

Fig. 5. a The graphical representation of C*? and C,,;,, the analogue of the metric in the usual
SO(N) group. The graphical representation of the R matrix for SO,(N) is the same as for the
SU(N) case. b The projection operators Z5 and 2, correspondmg to the antisymmetric and the
symmetric traceless product of two N dimensional representations, respectively. The index r
represents either S or A. ¢ The projection operator to the singlet representation corresponding to
the trace part of the product of two N dimensional representations. Q5! is a normalization

constant
/l Ql l
%=/\=/\
j ik j ik J 1

k

Fig. 6. Some graphical relations including the metric and the R}matrix

As in the case of SU (N) to define the functionals f; it is sufficient to find the
tensor f*{M*) appearing in the relation:

n'ME=f (M5 )M’ (3.51)

The defining condition for the f*(M*)) are Eqs. (3.17) and (3.18) replacing the
generators M’; by those of SO (N):

Condition 1. . . ; .
M MY, fi(M?”,) = (M*)M", M7, . (3.52)

This means that the tensor f*(M*) must be represented by a linear combin-
ation of R, R; !, and 2,.

Condition 2.

a) The requirement of consistency with the commutation relations of the
generators leads to

Ry f1AM7 1) f7dMP )= fL(M) fr(MP) R o (3.53)
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The difference between the quantum groups SU(N) and SO,(N) appears in
Condition 2b). Instead of the condition on detM we require.

Condition 2b'). The orthogonality condition (2.7) must be consistent with the
bimodule structure. This implies that

[ CerM¥ MY )= Cpoy f1(M¥)) f¥ {M" )= 6",Cyy. (3.54)
From these requirements we again get two solutions. We call them f :
fij(Mk ) Rq lj> (3.55)
and
fLMe)=R; ¥, (3.56)

We also dlStlngUISh the two right invariant bases corresponding to the two
solutions f as ', like in the case of the SU(N). This result as well as (3.20) and
(3.21) agrees with the one obtained in [Rosso] which has been constructed from
the quasitriangular structure of g-deformed universal enveloping algebra.

Reality Condition. For the quantum group SO,(N) we also consider the
*-operation since by construction we have to distinguish M‘; and M like in
SU (N). This means that in order to get the g-deformed SO (N ) we have to divide
by a Z, symmetry which identifies an element with its conjugate to reduce the
number of degrees of freedom. This identification corresponds to the reality
condition which restricts SO(N, C) to SO(N,R) in the limit g—1.

The *-operation in the SO (N) can be defined in the same way like in the SU (N)
and we can also prove

H=fli=1"1(f). (3.57)

The reality condition for the generators M*; of SO,(N) is given by the unitarity
condition (2.12): ) )
M=Kk~ (M*)=k(M)*. (3.58)

The operation * on the element of the bimodule is defined by the action on the
right invariant basis 7', and the condition (2.26).
Then the reality condition for the fundamental bimodule is

f+;=1%C;; (3.59)
with the definition
iei=(4)*. (3.60)

Note that Eq. (3.59) means that the fundamental bicovariant bimodule of
SO,(N) is not real since the *-conjugation maps #, into #_ and vice versa.
However, we shall see that the bicovariant bimodule corresponding to the adjoint
representation constructed by using these fundamental bimodules becomes real.

3.3. Relation to g-Deformed Universal Enveloping Algebra
Before we finish this section, let us establish the relations between the functionals

fi; and the generators of the g-deformed universal enveloping algebras given in
[FRT].
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As a consequence of the above results, we can show the following relations
among the functionals:

q11f+k*f4]-l—f +1 *fil-k A,t;,l,lk’ (361)
R [l fLy=fLo L RE (3.62)
q11f+k*fjl"‘fj *f+k . (3.63)

To prove this it is sufficient to prove the equlvalenqe of the value of both sides
when we apply those functionals on the generators M*; and 1. For 1 it is trivially
satisfied. To show the equivalence on the M'; we apply the left-hand side of (3.61)
on M°® and get

Ry [ L) (M2) =Ry f1(M° fé'z(Ms',)
=o?RY,. RS, RIS, (3.64)

On the other hand the right-hand side of (3.61) gives
(fir*fie) (Ms)Rq w=S{ (M )f+k(Ms )Rq Ik
—azRqs,R‘s R e, (3.65)
where for § Uq(N ) we have substituted the value of the /% (M*)) given in Eq. (3.20)

and a=q V. For SO, N) we use Eq.(3.55) and a=1. Therefore both sides of

Eq. (3. 61) are equivalent due to the Yang-Baxter equation for the R matrix. The

proof of the other relations (3.62) and (3.63) can be performed analogously
Using the same method as above we can also prove for the case of SU(N)

Cioin S ® o i =6, 8 (3.66)
For SO (N) the functionals satisfy
mzfi J2 f:t irT J1Jz (3‘67)

The relations (3.61-63), (3.66) or (3.67) and the *-operations on the functionals
(3.30) or (3.57) are equivalent to the relations which were imposed on the
subalgebra of Hom(<, C) by Faddeev et al. [FRT]. Therefore, the algebra </’
generated by the functionals f%; with induced *-operation and imposing the
relations (3.61-63), (3.66) or (3.67) is equivalent to the one introduced by Faddeev
et al. with the identification:

fi=Ly;, (3.68)

where L', ; is the one in [FRT]. Therefore, in this way the algebra generated by the
functionals which relate left and right multiplication of the bimodule coincides
with the g-deformed universal enveloping algebra in [Dri, Jim].

4. Bimodule with Adjoint Representation

The right or left invariant one forms in the ordinary differential calculus on the
group manifold belong to the adjoint representation. Therefore to construct the
differential calculus on the quantum group which coincides with the commuting
case in the limit g—1, we need the bicovariant bimodule which contains the right
invariant basis of the adjoint representation.
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To generalize the transformation of the adjoint representation to the quantum
group one can use the left coaction ad, and right coaction adg [Wor3]. Their
actions on the generators M'; is

ad(M')= M (M7 )QM" @.1)
adg(Mi)=M", @x(M') M7 . 4.2)

In our construction therefore we need consider the right invariant basis on
which the left coaction acts like ad; in Eq. (4.1). We denote such a right invariant
basis as 6'; and the corresponding bicovariant bimodule as I'y4.

Then the left coaction on the basis §'; must be

A(6')= M (M7 )@ ;. 4.3)

One easily sees that such a right invariant left covariant basis 6°; can be
obtained by simply multiplying the two fundamental modules defined in the
previous section.

The product of the two bimodules I'; and I', can be defined by the tensor
product over «/: For g, €I'; and ¢, eTI’, we have

I'®1,3010,=0,® 402> (4.4)
where ® ., means that Vae.o/: —
010® 40,=01® 400, . 4.5)

In this way the product I'y ® I, becomes a bimodule as well. The coactions on
this bimodule are defined by

AR(0102)=4g(01)4r(02) (4.6)
41(e102)=41(e1)4(e2), 4.7)
where the product on the right-hand side is defined as Va, be o/:
(a®0,) (b®¢,)=(ab®¢;0,), (4.8)
(01®a)(e,®b)=(010.®ab). (4.9)
The *-operation is generalized on the bimodule I', ® I, as
(0102)* =030t (4.10)

In order to define the bicovariant differential calculus with the *-structure we
have to require that the *-operation is a bimodule antiautomorphism:

(Tad)*=T4qa- 4.11)

With this requirement we can find two different types of right invariant bases
containing the adjoint representation. They are given by #'.77, ; and #77_;. For
example we know for the first choice

('1i+ﬁ+j)*='1{l-ﬁ+i' (4.12)

Consequently the bimodule generated by this basis is closed under the *-operation
and thus (4.11) holds.
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According to (4.6) the left coaction is

AL('IiJrﬁﬂ) = AL('?i+)AL(’7+j)
=(Mii’®ni-;-)(K(Mj,j)®ﬁ+j’)

=(M' k(M7 )17 ) (4.13)
Comparing (4.13) with (4.3) we can identify
0'=n' 1+, 4.14)

to get the bimodule I, as the product of two fundamental bimodules.

The other choice, i.e. 77 _ ; can be also taken as the right invariant basis. It has
a different bimodule structure; however the following constructions are performed
in a completely parallel way. In the following we choose the first possibility (4.14)
to construct the right invariant basis of I',,.

The basis 6'; given in Eq. (4.14) corresponds to the basis of the tensor product of
the two bundles of the fundamental and its conjugate representation in the limit
q—1. Therefore this basis of I'y4 is reducible. We impose no constraints to make
them irreducible as a representation of the quantum group and thus the basis '
has N? components. To extract the irreducible components belonging to the
adjoint representation we may multiply the corresponding projection operators
(see below). However considering the bimodule generated by the basis projected to
the adjoint representation one sees that such a projection does not close with
respect to the left and right bimodule structure. In other words I', 4 is the smallest
bicovariant bimodule containing the adjoint representation. Consequently to
construct the bicovariant bimodule which contains the adjoint representation it is
necessary to keep the basis with N? components.

The induced bimodule structure of I'y4 is given as follows:

For any element a€ o/

eija =(a *fAdijkl) 6, (4.15)
where
fAdijklzf-Ilj*fik: (4.16)
and where the convolution product of the two functionals y and ¢ is defined as
Vaed:
1*E@)=(x®%)4(a). (4.17)

Proof of Eq.(4.15). Using the representation of the basis ¢'; by fundamental
modules in Eq. (4.14) the left-hand side of Eq. (4.15) is

(' ®dﬁ+j)a=’7i+ ® (a *fllj)ﬁ+l
=((a*fI)*fL) (s ® il ) (4.18)
Using the property of the convolution product we get Eq. (4.15). Q.E.D.

In order to analyze the structure of the functional f, 4 it is convenient to use only
upper indices.

1) SU/(N) case. Using the tensor ¢ we introduce the following basis:
gioll = o e 4.19)

where the notation [ -] is the one introduced in (3.38).
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In this basis the left coaction is now

Ay (0= Mo, MIty L MY @6FM, 4.20)
The relation between the left and right multiplication is
Qiolily — (a % fAdio[i]jom) giolil , (4_2])
with
fAdiO[l]Jo[ﬂ [[N1 1]]1 ey fAd i'jo il
= flx flo, 4.22)

where we have used the definition of fU; given in Eq. (3.42).
The value of this functional acting on the generators is

Fad ™M)
N 2

—g N Riolo R-1liii  R-1izl R~ lin-1k , 1. N -1
=4 Rq UORG loiqu lu"z"'Rq lN—ZjN—\WN_l JieedN-1" (423)

The structure of this equation can be seen more easily by the graphical
representation. See Fig. 7a.

2) SO,(N) case.
For SO ,(N) we consider the basis

gisi= gis Ci2, (4.24)
Then the coaction is given by
A0 = M, M=, @01, (4.25)
The relation between the left and right multiplication is
01 2a=(a* fuq"?},;,) 0772, (4.26)
where .
fA lll21112 K(f"' 12) f“j,
=fi xfh . 4.27)
Using Egs. (2.39), (3.55), and (3.56) we obtain
a2 (M) =Ry Ry (4.28)

See also Fig. 7b.

fAdlo{t]JO[)](AI = q— \
J

a 0 J1
i s k

.l N
fAd“ ,J'x.l*( M* 1) = x<
d ! JiJe

Fig.7. The graphical representation of the value of the functionals f,4: a SUN) case
corresponding to Eq. (4.23). b SO (N) case corresponding to Eq. (4.28)
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Note that for SO(N) the two bases ', 7. ;and "] _ ; yield the same bicovariant
bimodule. This is due to the following fact.

Consider the basis §*2 which is a linear combination of the second choice of
basis n'-7j_;:

H'iliz — R‘lll izklkzrlk—lﬁ' jCij . (429)

Then we can construct the bicovariant bimodule I', 4 using the basis 6". For this
bimodule I',, the relation between the left and right multiplication is given by the
same functional f as for the bimodule I',4, i.e.

9/i1i2a=(a *fAdiliz' . )9’]1}2’ (430)
JiJ2

due to the relation (3.63). Therefore the two bimodules I'y; and I'y 4’ are equivalent.

5. Differential Calculus

In the differential calculus on the ordinary classical group G we can consider the
exterior derivative d as a map from the space of smooth functions over G onto the
space of the sections of the cotangent bundle C*(T*(G)):

d: C*(G)=C*(T*G)). (5.1)

In order to generalize the differential calculus to the quantum group &/ we
adopt this picture. As the algebra o/ corresponds to the algebra C®(G) the
bicovariant bimodule over &/ corresponds to C*(T*(G)). Since we want to
formulate the differential calculus which coincides with the one on the group
manifold in the limit g—1, we take the I'y; constructed in the previous section as
the bimodule of 1-forms. Thus we introduce the exterior derivative d on the
quantum group as a map from the algebra .o/ to the bicovariant bimodule I'y4
following [Wor3]:

d:oA>T,,. (5.2)
We also require that the derivative d satisfies the Leibniz rule
Va, be o/ :d(ab)=(da)b+ a(db). (5.3)

Therefore, once the bicovariant bimodule is defined it is rather straightforward
to develop the first order differential calculus on the quantum group. Since the first
order differential calculus has the same structure for SU,(N) and SO, (N) we
consider both cases simultaneously.

In this paper we are constructing the bicovariant differential calculus and
therefore the left and right coaction and the derivative d have to satisfy the
relations [Wor3]

4(da)=(id®d)4(a), (54

Ap(da)=(d®id) A(a). (5.5)

Using the right invariant basis introduced in the previous section we can find an

explicit form of the exterior derivative which satisfies the above requirements, i.e.
Leibniz rule (5.3) and bicovariance (5.4) and (5.5) as follows:

As already remarked the right invariant basis 6°; constructed in the previous
section is not an irreducible representation. Among its representations there is a
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singlet representation which is both left and right invariant. We denote this
element by X which is defined as

X =g 0, (5.6)
for SU,(N) and
X=C, ; 02, (5.7

i1ia

for SO (N). The left invariance of X is apparent. This left right invariant element X
plays the role of the additional scalar element introduced in Woronowicz’s
extended module.

We define the exterior derivative as Vae </:

1
da= YA [X,a]_= % (Xa—aX), (5.8)

where A4 €C is the normalization constant which will be defined later.

By this definition of the exterior derivative, the Leibniz rule is trivially satisfied.
It is also easy to show that the left and right coaction on da satisfies the properties
required in Egs. (5.4) and (5.5) due to Egs. (2.18) and (2.19).

As discussed by Woronowicz we also preserve the #-structure so that the
resulting calculus becomes a *-differential calculus. For example, for SU(2)

X*=X, (5.9
we take the normalization constant as pure imaginary:
N¥=—N. (5.10)

In this way, with the appropriate choice of the normalization constant, we can
always achieve that the following relation holds

(da)* =d(a*). (.11)

Since the difference between the multiplication from the left and right is defined
by the bimodule structure the commutator on the right-hand side of Eq. (5.8) can
be evaluated in terms of the functional f,,.

Right Invariant Vector Field. In order to obtain the concrete relation between the
derivative and the functional f,, we introduce functionals ¥,

1 —C, (5.12)

where the suffix I denotes I =iy, [i]) for SUq(N) and I =(i,,i,) for SO (N). They are
defined as

X1=Xio = — 1 7 @iotin fad i © 10— Eior®) (5.13)
for SU,(N) and

X=X, = — —}(lejz fad"? ii 0k —Ciy1,8), (5.14)
for SO(N).

Since the exterior derivative of a € &/, da defined in Eq. (5.8)is an element of I' 4,
it can be represented by using the right invariant basis 6. It is rather
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straightforward to show that such a representation is given by
da=0axy,), (5.15)
with the functional y; defined above.

Proof. We give the proof for the SU (N) case. Using Egs. (5.8) and (4.21) we can
show:

1 - -
da=—> &iop(0°a— abel™)

1

= 7 6;0[i](9i°ma _ gjo[ﬂ(a * fAdi"mjom ° K))

= —7 07U a* (&8 — it faa ™ot ° ) (5.16)

Comparing with Eq. (5.15) we obtain Eq. (5.13). Q.E.D.

For SO,(N) the proof is performed analogously.
¥z corresponds to a generalization of the right invariant vector field and defines
the derivative on the quantum group. Therefore denoting

Via=(a*y,), (5.17)

we can consider V; as differential operators on the quantum group. These
differential operators satisfy the following generalized Leibniz rule:

Vi{ab}=(Va)b+(a* faq' 1o 1) (V,b). (5.18)
In order to define the constant .4" let us compute the values of x(M*). These are
the derivatives of the matrix elements evaluated at unity:
xi(@)=g(a* x1)=Vialapsi, =5 - (5.19)
Using the definition of the derivative we get for SU (N)

—qg-1 1 _
onm(Mkz)=—qllN(i—;—){ﬂN—}} gjornd 1 +(—1Ng" ”5’}08[,]1}, (5.20)

and for SO(N)

LM = =4 v
Jij2 l N J1jal
We give the graphical representation of Eq. (5.21) in Fig. 8. In Fig. 9 we give also
the graphical representation of the Leibniz rule (5.18) for the SO (N) case.

If we want to get nonzero values in the limit g— 1 the normalization constant A"
must be proportional to (q—q~!). Consequently we define

N =(q—q" ") N0, (5.22)

where the constant 45 has a nonzero value in the limit g—1.

In the commutative differential calculus on the ordinary group manifold a basis
of the right invariant 1-forms can be constructed with the entries of dUU ! with
the matrix representation U. Thus to see further relations to the usual differential

P — 1kk'
Rq

Ce).- (5.21)

Jiiz
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k k

lejz(*Mkl) = —Wl' [\/{ - \ ]
7N M
o J2 l 1 Je l

Fig. 8. The graphical representation of the differential operator when acting on the generator M;
for the SO(N) case corresponding to Eq. (5.21)

" S \ |
Xiin (M M?) = v / - \\
AN AN

1 t Jv J2

k s\ k s
-1 \ \
v R\ -
o ad
o J2 Lt o J2 [t

k s

J2 Lt

Fig. 9. The graphical representation of the Leibniz rule (5.18). We only give here the derivative of
the product of the generators for the SO (N) case

ks
\\_
+J'(/\j\lf J

calculus on the group manifold it is instructive to consider the following new right
invariant basis 6: ) . .
i} =AM’ k(M*)). (5.23)

Using the definition of the derivative d the relation between the basis 6'; and g j
can be easily found

gkl =0/ (M, * ) k(M") =0y, (M"). (5.24)

Therefore the basis  is simply the linear transform over C of the basis 6.
Substituting the value of x(M";) in Egs. (5.20) and (5.21) into Eq. (5.24) we get
the explicit formulas for SU(N) and SO (N), respectively.

1) SU(N).
Grotll = d Mo g (M) '™

—q'N 1 1/N ~ N gkolk
= 7__ {[{NH ngo[k]_|_(__1)N|IN___1]]!q / @¥olk] , (5.25)
0
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2) SO,(N)
k> =M™ ge(M#) CH

= 71/'; Bh‘jz(ql —Naf:(s?: ~Rq_ 1klk2}'u'2)
= :VL @1+ q~ N Ph, 4+ N —q7 P A @Y = )P
0 (5.27)

Equation (5.26) shows that there exists the singlet component in the basis & of
SU (N) therefore in the differential calculus on SU (N) the 1-form basis f has also
N? components. The projector expansion given in Eq. (5.27) shows that the basis §
also has N? components for SO,(N).

In the limit g—1 the components belonging to the adjoint representation
remain nonzero. On the other hand the additional components drop. Therefore §
coincides with the usual right invariant 1-form in the limit g—1.

6. Higher Order Differential Form
6.1. Exterior Product

Automorphism ¢. In this section, we define the higher order differential calculus
introducing a g-deformed A -product and p-forms. For this aim we consider the
freely generated algebra with the ® ,-product of the bimodule I'y4:

Fﬁlp:‘FAd@.ﬂFAd@ﬁ"'@.ﬂrAd' (6.1)
P
Then we divide it by the ideals corresponding to the symmetric product in the limit
q—1 keeping the bicovariance. Therefore the basic operation to define the higher
order differential calculus is the bicovariant bimodule automorphism

6:[®2T82, 62)

such that Va, be o and VteI'$?:
ag(atb)y=ao(1)b. 6.3)

This map o generalizes the permutation operation to the case of the tensor product
of two bicovariant bimodules [Wor3].

We can find the bimodule automorphism ¢ which is bicovariant by using the
basis 6! as

(@' ® ,0°)=0'® 4o (6.4)
w" is the left invariant basis defined by
o’ =k(T' )6, (6.5)

where the indices I, J represent a set of indices I = (i, [i]) for SU (N), and I =(i,, i,)
for SO,(N). The matrix T, is defined from the left coaction on 8" as in Eq. (2.30):

For SU(N) we get from Eq. (4.20),
T =T, = Mo, M, M-, Pl (6.6)

Jieo jN-12
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and for SO,(N) from Eq. (4.25),
T/, =Th=, ; =M"; M"; . (6.7)

Jij2

Due to the property (6 3) the map o is then defined completely by the action on
the basis of I'S? given in Eq. (6.4).

The blcovarlant symmetric and antisymmetric ® ,~-product of two bimodules
are determined by this automorphism o. The wedge product is defined by using the
antisymmetric ® ,-product of bimodules. Therefore it is necessary to analyze the
structure of this operator ¢ in detail.

Using Egs. (6.3) and (6.5) the definition of o (6.4) is

k(T')o (0" ® ,0")=60"® ,Kx(T!,)0" . (6.8)
From this we get
0(0'® 40") =T . (1(T" 1) * fra”5) (07" ® 0”)
= fad’ r((T")) (0" ® ,07). (6.9)

This equation provides the matrix representation of o on the basis 0'® 0.
Since this matrix representation is given in terms of a combination of the R matrix
it is easy to show that ¢ satisfies the Yang-Baxter equation

([d®0,3)(01,®i1d) ([d®0,3) =(0,,®id) ([d®0,;) (0,,®id), (6.10)

where (id® ,0,5) and (0,,®id) act on I's® and 6,5 (0,,) acts on the second and
third (first and second) elements of the F ) &3 . (The relation of ¢ with the R -matrix
has also been pointed out in [Rosso].)

As we expect, the property of the o discussed above shows that it is a generalized
R, matrix of the tensor representation corresponding to the right invariant basis
6", Therefore to define the antisymmetric product defined by the operation ¢ we
must find the expansion of the matrix f,4';(x(T’,,)) in terms of the projection
operators to the irreducible representations.

Using the matrix representation of the operator ¢ derived above we first
consider the characteristic equation satisfied by .

1) For SU,(N) the R, matrix representation of ¢ in Eq. (6.9) gives

0= fundVipn(e(M; MHy LMY=t N PRI 6.11)
Using the Hecke relation
R R y=(g—q~ YRYu+ 03], (6.12)
we obtain
(c—id)(6+¢*id) (6 +g~*id)=0. (6.13)

In order to derive this equation we had to know the Rq matrix corresponding to
the conjugate of the fundamental representation, i.e. #;. Since to analyze the
structure of the matrix ¢ in Eq. (6.11) we use the N —1 rank antisymmetric tensor
. We have to introduce the Rq matrix of the N —1 rank antisymmetric tensor
representation R['”’][k] i Which is defined by

o 1 2 Al
[0 — [i1i' (L1 QUK
Rq M= <[N— 1]]' elte Rq irrpatrm - (6.14)
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i1 iN—-1 Jiedn=1

N 0 m /
[l JJ
Ry g =
[kr’) (1] g

a k]_ k'N_
i
: ‘\S\P]
Ry = K =
(k] !
[N=-1]

Fig. 10. a The graphical representation of the R matrix correspondmg to the commutation of the
two (N —1)' rank antisymmetric tensor representatlons b The ﬁ matrix corresponding to the
commutation of a fundamental representation and a (N— )‘h rank antisymmetric tensor
representation. We use the wavy line to represent the N —1 antisymmetrized lines

This can be represented by a product of (N —1)? of Rijk, which is given graphically
in Fig. 10a.

The factor in the definition of the matrix R is chosen such that it also satisfies
the Hecke relation:

R lmlk 8l JR[k 1 ,][k][l] =(q—q 1)Rm [ﬂ[k][l] + 5[k]5[1] (6.15)

The proof can be easily performed by using the Hecke relation (6.12) for Rq i
We also have to introduce the R, matrix for commuting the fundamental
representation and the (N — 1)—rank antisymmetric representation:

Bin - 2jn - Kk -
:;Ullk]l Ry Ry 2N PN (6.16)

tokn-12
and its inverse R 16, . The graphical representation of RUY, . is also given in
] q m p p 4 k[ g
Fig. 10b.
Using these quantities the matrix representation of the ¢ operation on the basis

g p p

'® 0" in Eq. (6.11) can be represented as
f o[!] (K(Tko[kllo[l])) R_ Lkoio | oo R llk]ioib[k,] Rll;o[i']ml0 R:gk'][i][i']m- (6.17)

q

q kiiy q kiiz‘”

With this representation of ¢ in terms of Rq and ﬁq and the graphical
representation given in Fig. 11a we can easily derive the characteristic equation
(6.13).

2) For SO,(N) the qu matrix representation of ¢ in Eq. (6.9) is (see Fig. 11b)
a=fAdj1j2i§i£(K(MiljiM!2 )= ﬁ tik, R““”‘ ZRfllkz (Rl2)2 (6.18)

i2j11% " Tkaja+
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ko [k‘]/L' io [i]

7 = S g (6Tl ) = %
N

a Jo [.7] lo [l]

—
o~

1 12 J1 )2

0= f (h:(-’\[.illlj[izlg)) = \K<

b ky R L s

2
Fig. 11a, b. The graphical representation of the o: a The SU(N) case given in Eq. (6.17). b The
SO,(N) case given in Eq. (6.18)

N

In this case the Rq matrix satisfies instead of (6.12)
((RAq—ql)('Rq+q_11)(Rq—q1_N1))ijkl=0, (619)
where 1Y;;=0;6{. Therefore we get the characteristic equation for o of SO (N)
(c—id)(c—q"id)(6—qNid)(c +¢*id)(c+q *id)(c +¢> Vid)(c + 4" ~?id)=0.
(6.20)

Definition of p-Forms. The 2-form for the SU,(N) case has been defined by
Woronowicz as

T{E =T ® 4T ag/[ker(c—id)]. (6.21)
This means that the basis of the 2-forms satisfies the following equation:
(6+q*id) (o +q~2id) (6" A 67U =0, (6.22)

On the other hand for SO (N) from the structure of the characteristic Eq. (6.20)
we can read off that the definition of the symmetric ® ,-product is not simply
given by ker(s—id). Since acting with the operators (¢ —qg*") on 0® ,0 also
reproduces a symmetric product in the limit g— 1. For the g-deformed antisym-
metric product we have to impose the additional conditions that ker(o —¢" id) and
ker(c —q~"id) vanish. Consequently we define the A product in SO(N):

TA2=T,,®,,[so/[ker(c—id), ker(c —q"id), ker(c—q Vid)].  (6.23)

To define the space of p-forms I'(\?, we generalize the action of ¢ on the i'® and
the (i+1)™ component of I'SF for i=1,...,p—1 as

051110 ® . @ 0" ® 0" @ .. ® 40'7)
= fad k(T )R ... R 7R R y... ® 0. (6.24)

Then we can define the space of p-forms by

-1
rip=rer / " [T Cker(oy; —id)], (6.25)
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for SU,(N) and by
p—1
rif= F?dp/ [1 [ker(o;,—1id), ker(oy;1, — gVid), ker (o4, — q~"Vid)] (6.26)
i=1

for SO(N).

6.2. Exterior Derivative of p-Forms

The action of the exterior derivative d on &/ can be generalized on p-forms as in the
usual differential calculus. Similar to the definition of the first order derivative in
Sect. 5 we define the exterior derivative acting on the p-form as the map

d: TP, (6.27)
which is defined by VQe I'(\?:

1 1
Q= [X,Ql. = - (XA Q— (=172 AX), (6.28)

where we introduced the graded commutator [ -,-],. Apparently the map d
defined above respects the bicovariance. It is also easy to show that the map d
satisfies for any elements Q, e I'{\ and Q, eI

d(Q, A Q) =(dQ) A Q, +(—1)7Q, A(dRQ,), (6.29)

which is the Leibniz rule of the exterior derivative acting on the (p+ p’)-form.
Furthermore as we shall prove in the next section, the map d satisfies the
nilpotency:

d2=0. (6.30)

This completes the definition of the exterior derivative of the p-forms, since we
can calculate the graded commutator on the right-hand side of Eq. (6.28) using the
definition of the A -product given in Eqs. (6.25) and (6.26). However, practically it
is not so easy to perform these computations. In the next section we present the
explicit expression using the graphical representation. Then the Maurer-Cartan
equation and the structure constants are derived.

7. Maurer-Cartan Equation
7.1. SU/N) Case

In order to analyze the structure of the A-product we_need the projector
expansion of g. Due to the Hecke relation (6.12) the matrix R, can be represented
by the projectors to the antisymmetric and symmetric representations.

R,=qPs—q '2,, (7.1)
with

o 1 2 e
7 Wam= <m> e (7 yi)erparm s (7.2)
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Pl = "

)] [

Fig. 12. The graphical representation of the projectors in Eq. (7.2)

where r=4, S. We also use the graphical representation of them (see Fig. 12).
Using the projector expansion of R, and R, we get

o=[(Zs @s) +(24 @A) —q Z(QSa '@A) - qz(gAa @s)]idi]kolk]jo[nlo[z] s (7.3)

where
e  S—1[ilj C s A1k
(2., g’r')m[lmmko[kuo[l]_ Rq [l]Jojb[i,]g:ojokolbg[l ][ﬂ[k']m RqO[ ][k]lo’ (7.4)

and R, is the one introduced in Eq. (6.16).

Here r, v are either S or A. One can understand the structure of this operator
(2., 2, better through the graphical representation given in Fig. 13a. Especially it
is easy to see that each operator is a projector and they are orthogonal to each
other, i.e.

P _ = ioliliolJ] )

TS N Ll AW ATROE LI C Y R WOTR)
(7.5

Then the conditions given in Eq. (6.25) are equivalent to set the following

N2(N?+1 .
(———i_——l relations to zero:

2
(P, PV, gt 01 01 =0, (7.6)
i [1] Jo (4]
%)
(Pr,ﬁr')i°[i]j°[j]ko(k1to[11 - r »
~V
) ko (k] o [
o i o2
N
(pr.'Prl)iuzjszklkglllz - r o
" Low” hoh

Fig. 13a, b. The graphical representation of the projectors of the tensor representation: a SU (N)
case corresponding to Eq. (7.4). b SO,(N) case corresponding to Eq. (7.23)
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and
(QA, @A)io[i]jolj]ko[k]lom(eko[kl®dglo[l]) =0. (7.7)

To evaluate the exterior derivative using the definition (5.8) and (6.28) we
rewrite these relations in terms of the irreducible components.
For this purpose we introduce the following projectors

_\W-1
1) 810[118

P o= [[ NT! Joli12

(7.8)

and

P =1 =Py, o, (7.9)
where 1701

o7 18 the identity matrix. o

With these projectors we can decompose the right invariant basis 67 into the
irreducible components corresponding to a singlet
( -1 )N -1

[N]!

Oy =0, ol = gl | (7.10)

and the adjoint representation
O3 = 23 67U (7.11)
Then the relations (7.6) and (7.7) can be rewritten for these irreducible components
as
(P P YoV, o058 + 05 A (03357 + 0% =0, (7.12)

where r is either S or A. The relations which contain the element X among the

N*(N%+1)
2

1) Applying 24 to the indices iy[i] and j,[j] on the left-hand side of Eq. (7.12) we

get

relations can be written in a convenient form:

XAX=0. (7.13)

2) Applying #5 on the indices iy[i] and 2,4 on j,[j] on the left-hand side of
Eq. (7.12) we get after some tedious calculation:

XA 4 9ol A X =(q—q~ 1) F;g[L‘}]ko[k]QJOU] Gkolil (7.14)
where
1 N—1
H = % (7.15)
qN (g—q ")
N
and
F; lo[ﬂko{kl =7 lo[l ]g’ Ad ;omg’ A?i[i,]ko[k]g[i’]ko (7.16)

The rest of the conditions gives the relation among the 6% A 017 such as
ExomErano 04 A 03557 =0. (7.17)
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By using the above results we prove the nilpotency of the exterior derivative

defined in Eq. (6.28):
The first Eq. (7.13) means that
dX=0, (7.18)

and consequently

ddQ= 71V-d(xAQ—(—1)mAX)

_%((—W’XAQ/\X—(—D"X/\Q/\X)

=0. (7.19)
The Maurer-Cartan equation can be formulated by using Eq. (7.14):
0= 7 pioa.  iotn A ghoti (7.20)

N

Therefore the quantities Fioll,  are the g-analogues of the structure constants.

The graphical representation of these structure constants is given in Fig. 14.

Py = )i
a
Cioli] = /q%']
b (]
Frellow = @

¢ ko [k

Fig. 14. a The graphical representation of the projection operator to the adjoint representation
given in Eq. (7.9). b The graphical representation of ¢;, _;,,_, using the wavy line for N —1 lines
corresponding to the indices [i]={i;...iy_,}. ¢ We give the graphical representation of the

structure constants of SU(N) using the graphical representations in a, b
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Applying the exterior derivative on both sides of Eq.(7.20) we get the
g-deformed Jacobi identity of the structure constants:

ioli] ol kO[] ) piolil A okl n glolll —
(FikoaF Bt hom — F oot F botitor) 05087 A 058 A 011 =0. (7.21)

7.2. SO,(N) Case
For the case of SO (N) we use the projection operators introduced in Eq. (3.46).
Then we get the projector expansion of the ¢ matrix in Eq. (6.18):
0=(P5, P5) +(P 4 20 +(P1, P)+q NP5, P)+ 4" (P, Ps)
—4 AP, P) =P PaP)—a" PPN —a> NP P)  (122)
with
(2,2 )mzmzk kzlllz_R Llizja mgmnkl lg)tz} Rq ol s (7.23)

wherer,r'=S, 4 or 1, respectively. Note that as in the SU (N) case, all the terms of
Eq. (7.22) are projectors orthogonal to each other:

kal>

iyi2j1j 11157145 __ i1i2j1Jj
(grx’ g"'l) e 2i’;i'2j’1j'z('@r2, '@r'z) n kakzlllz_5"1,'25"'17’2(?"1’9"'1) ' ZJuzklkzhlz :
(7.24)

This can be proven easily using the graphical representation of these operators
given in Fig. 13b.

Then the conditions given in Eq.(6.25) are equivalent to the following
N3(N?+1)

5 relations:
(P, PY1i2I02 11, (0492 ® ,0117) =0, (7.25)
with r=3§, 4, 1 and
(Ps, Py )2 (0992 @ 4011 =0, (7.26)
(P, P02 (099 ® ,017)=0. (1.27)

We also decompose the right invariant basis into the irreducible components
using the projection operator &, with r=A4, S, 1 as

Giriz = Qigiz 4 Qiz 4 gisiz (7.28)
where

Oijiz = Pipiz, . Givi2, (7.29)

Qi = iz, . giriz, (7.30)
and

Oz =iz, . i

_g;1Cix, (7.31)

where Qy= - qN)(ltqz N)

1—q
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To write down the Maurer-Cartan equation we again substitute the decompo-
sition (7.28) into Egs. (7.25)(7.27). We list here some of the essential relations in
these bases.

1) Applying &, on the indices i,i, and j,j, on the left-hand side of Eq. (7.25) we get

XAX=0, (7.32)
Crei1,Crat, (0% A 041 =0, (7.33)
Ckxlzckzl;(gglkz A 0.191[2) =0. (7.34)

2) Applying the antisymmetrizer 2, on the indices i,i, and £, onj,j, of Eq. (7.25)
we get
042 AX+X A0 =(g—q~ A Fiti2, (0072 A 0514, (7.35)

where & is a q dependent constant

1+ Mg+q™ 1)

A== = — - 7.36
1 (qN 3+q3+q 3+q3 N) ( )

The structure constants F#42, , are given by
o =245 24" 1,28 i C - (7.37)

3) Applying the symmetrizer % on the indices i,i, and £, on j,j, of Eq. (7.25) we
get

L2 AX+X A OY2=(q—q~ YA, <G[ S] (64492 A GF1k2)
SA j1i2k1k2

S iz .

e [AS]. (ot ) (7.38)
J1J2K1K2

where the constant J¢), is

(+¢* "a+q™")?
Hy= : 7.39
22 P+ tg g2 Y (7.39)

iyiz

The tensors G[ " ] are given by
ral's

J1jz2kik2
r itiz
— gpiiz, | gpitil K'1i%
G ror _‘@H iliz'@"z jljz‘@rs klkzcj'zk'l’ (740)
2" 3 4j1j2k1ka

. r
where r,, r,, and r5 stand for the representations A or S. The tensors G l:" ; :I are
23
the g-analogue of the Clebsch-Gordon coefficient of the fusion of two represen-
tations: r,®r;—r;. The structure constants F in Eq.(7.37) are equivalent to

A .
G|: 4 A]' [See also Fig. 15.]
We also get the following relations
ala—q Hg+q ') G[ N ]i”’

04 AX+X A O = (647 A 05", (7.41)

(qN—2_1)2 AA Prizkika
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11 I
-
Gl ] S
rar3djyjakiks
r2 r3
J1J2 ky ko

Fig. 15. The graphical representation of the constants G[ " :I in Eq. (7.40), where ry, r,, and r5
r

2l'3

A
are either A4 or S. The structure constants of SO,(N) are given by G[AA:'

and
2

_ 41 -1
0is‘i2AX+X/\0§1i2= - Q(q q )(q+q )
q—(qz—q'z)(l+qz‘”)+1—q””>
N

x G [ SSS] (0472 & G2) (7.42)
j1ijz2kik2

The first relation (7.32) proves the nilpotency of the exterior derivative defined
in Eq. (6.28) analogously to (7.19). The Maurer-Cartan equation can be read off
from Eq. (7.35). Using the definition (6.28) we get

Q05 = T Fi O3 A 05%). (743

From Eq. (7.38) we also get the exterior derivative of the bases 6,

.. A S T . S Jui2 .
dgira = zri (G[ g A] (0472 A 052 + G[ ) s] (097 A Bk2) > .

j1jzkika j1izkika
(7.44)

Knowing the explicit form of the Maurer-Cartan equations we can also
investigate the structure of the algebra of the differential operators y; defined in
Egs. (5.13) and (5.14). Then we get the definitions of the g-analogue of Lie brackets
for SU,(N) and SO,(N). Due to the result of Sect. 3.3, these algebras of y; give
different formulations of the g-analogue of the universal enveloping algebras
which is now under investigation.
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