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Abstract. The short-distance assymptotics of the t-function associated to the
2-point function of the two-dimensional Ising model is computed as a function of
the integration constant defined from the long-distance behavior of the t-func-
tion. The result is expressible in terms of the Barnes double gamma function
(equivalently, the Barnes G-function).

1. Introduction and Summary of Results

If £=¢(T) is the correlation length, T is temperature, and {00,y y is the
spin—spin correlation function for the two-dimensional Ising model,! then in the
scaling limit, defined by

é-—POO, R=(M2+N2)1/2——>OO,
such that

t= 5 is fixed,
¢
it is known [3,6] (see also [4]) that

lim RV {aqoyn) = F 4 (1), (LY

where +(—) denotes the limit is taken above (below) the critical temperature T..
Furthermore, the scaling functions F . (¢) are given by [3,6]

1
F o (t)=2%8¢147, <t,A>, 1.2
T

* Supported in part by the National Science Foundation, Grant No. DMS-90-01794
! For simplicity of presentation we assume that the horizontal and vertical interactions are equal
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_ sinh(Gy(t, A)) lm . 2 d_ 2) >
‘ci(t,i)—{Cosh(%w(t,l))}exp<4fs((smhlp(s,l)) (ds) ds), (1.3)

and Y(t, A) satisfies the differential equation

where

¥ tlady 1 .
— + — — =—sinh(2y), 1.4
dt* tdt 2 @) a4
subject to the boundary condition
Y(t,A)~2AKy(t) as t— + oo. (1.5)

Here K,(t) is the Bessel function and we assume 0 <nA<1. It is known [3] that
for 0<ni<1,

Y(t,A)= —clogt—logB+o(l1) as t—07" (1.6)

with 5
o = a(1) = — arcsin(nl), (1.7)

T

()

r < 1+ a)’
2
and I'(z) the gamma function.
Using the short distance behavior (1.6) of Y/(t, A) in (1.3), it is easy to show that
T4 (t, )~ 1ot 1792912 a5 107, (1.9)

where 7, is independent of ¢ but will depend upon the parameter A. However, the
“constant” 7, will not be determined by this elementary analysis. It is shown in
[3, 6] that (1.9) is also valid (with o=1) for 74 = 1. It is the purpose of this paper
to give 7, as a function of 4, or equivalently in view of (1.7), 7, as a function of o.

To state our result for 7, we first recall both the definition and some properties
of the Barnes double gamma function [1], I',(s):

1 ‘= Qm)2 e s2 = 2+ Ds? ﬁ <1 +S>ke—s+sz/2k,
Iy(s+1) k=1 k
where y is Euler’s constant and I,(s) satisfies [1]
Iy(s+ 1) =Ty (s)/T(s),
I(1)=1,
I3 =exp(—3(—1)+1logn—2Llog2), (1.10)
where {'(—1) is the derivative of the Riemann zeta function evaluated at minus

one.2 Another common notation is G(s) = 1/I",(s) which is called the Barnes
G-function. In this paper we prove

B=2"3% (1.8)

2 {'(—=1)=—0.16542 11437 00450 92925.... Some authors use the Glaisher, or Kinkelin—
Glaisher, constant A instead of {'(—1) - the two are related by log A=+ — {'(—1). Note the
1/12 is missing in (6.109) of [6] which came about from a sign error in (6.107) of [6]. Thus (6.110)
must be corrected but (6.104) of [6] is correct — which is the equation checked numerically in [6]
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Theorem 1. Let s =(1—0)/2, then
1o =¥ (V-G HUO02 (1 4 I, (1 —5).

The proof of Theorem 1 uses techniques very similar to the proof of the connection
formulae in [3].

We now apply Theorem 1 to the Ising model. If one first sets T = T,, then Wu
[5] has shown that

23 (= D+(1/12)log2 1
<O'OOO'NN>|T=T¢=‘—1V1/—4“(1+O<F>) as N - oo. (1.11)

Now part of the scaling hypothesis is that the constant calculated at T = T, in the
leading asymptotic behavior of the spin—spin correlation function, i.e. (1.11), should
equal F,(0)-in the language of asymptotic expansions, the two asymptotic
expansions should match. Setting s =0 (zA=1) in Theorem 1 and using (1.9) for
nAd=1 in (1.2) we see that the two constants are indeed equal (note R =ﬁN).
This closes a gap in the proof of the scaling hypothesis of the spin—spin correlation
function in the analysis given in [3,4,6].

2. Reduction to Integral Equations

In their generalization of the Ising field theory to holonomic quantum fields,
Sato, Miwa, and Jimbo [4] also discussed a neutral bosonic theory (the Ising
model, of course, is a fermionic theory) and associated to this bosonic theory a
t-function which in the case of the 2-point function and in the notation of Sect. 1
is given by (we set their parameter [=1;, — [, =0)

T5(t, A) = exp( ——% ? s((sinh Y(s, A))? — (%>2>ds>. 2.1

Just as in the Ising case (see (1.14b) in [3]), 15 has a representation as an infinite
series of integrals (see SMJ (4.5.31)):

0 Azk
t5(t, 4) = exp(E(L, /1))=exp< Y -k—ezk(t)>, 2.2)
k=1
where
© © k _1 . .—1
ek(t)= j. Xm'” j. dxk 1——[ exp( Zt(xj+xj )), (23)
0 0 j=1 X;+ X4

with x, ., = x, in the above integral. As in the Ising case, the integrals are of the
form of an iterated integral operator; and hence, both 7, and 7 can be expressed
as infinite product formulae in terms of the unknown eigenvalues of the cor-
responding integral operator. In the Appendix we show that the series (2.2)
converges for all 0 £ i< 1 and for all t>0.

We will show that

ek(t)=aklog(%>+ﬂk+o(l) as t—0%, 24)

E(t, ) = () log<%> +B(A)+o(l) as t—0%, 2.9
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where
© ,12k @ /12k
0‘(/1)=kz *k*“zm B(2) = Z — P (2.6)

=1 k=1 k
To begin, we take the Mellin transform of e,(t):

é(2)= ‘]3 t* e (t)dt, R(z)>1,
0

© © k -
_ . 1 1 |°¢
=2""1T(z) [ dxy - [ dx T (4 %5417 1I:xl—f—.-~+x,,+~+-~-+-j|
0 o

j=1 X1 Xk
1 1-61 1=8y~=6.-2 k
:22—1F(Z)Id51 _‘- do,--- 5 doy -y l—[ (5j+61'+1)—1
0 0 0 ji=1
[ dpp ™ [p? + A4,0)]17, @7)
0
where
1 1
A=+ +
8, O

and we made the change of variables
p=x1+ ...+xk’
x;= pd;, (2.8)

with 6, =1—6, — --- — §, _,, in going from the first multiple integral to the second
(note the Jacobian is p*~1). Using the integral

PO
o (A+Bp’y " 2 r@’
é,(z) becomes
1-6y 1-01——0dk-2

1 k
ék(2)=2"1F2(2/2)£d51 i doy:- ) d_y [T (0;+ 9,4 1)~ (A(9) ™
0 j=1

=221 12(2/2)4,(2), (2.9)

where ,(z) is defined by the last equation. This last expression for é,(z) provides
an analytic continuation to R(z)>0 and gives the boundary values on the
imaginary axis except at z =0 where we see that é,(z) has a pole of order 2. This
expression might give the analytic continuation for R(z) > — 2, but we have not
proved this. For k =2 (2.9) can be evaluated to give

6,(2)=2""1T*(z/2)T"*(z/2+ 1)/T (z +2).
We now proceed to calculate the principal part of é,(z) at z=0.
Proposition 2.1. For k=1,2,... we have

2 [tk k
f 0 =——-——B — = | == ,
KO =" <2 2) 4%



Correlation Asymptotics in the Two-Dimensional Ising Model 301

where B(x,y) = I'(x)I"(y)/I"(x + ) is the beta function, and o, is defined by the last
equality.

Putting z = 0 into the definition of .#,(z) and comparing with (4.30) of [3], the
result follows immediately from Lemma 4.2 in [3].
To find .#,(0) we consider the integral for k=2,3,...,

Jom ] dxy o [ dsge= = [T (6,4 xy10)"" log((xl T x")A“(")> (2.10)
0 0 i=1 Xy + Xy
and make the change of variables (2.8) to find
J=95(0) —2.£,(0). (2.11)
Thus it suffices to look at J,. We break J, into the two pieces
Jo=JP+JP (2.12)
with
o © k—1
JP = [dxy - [ dxe™ 7 T (xj+ xj41) " log Ay (x) (2.13)
0 0 j=1
and

o © k-1
JLZ) — j‘ Xm f dxke—xx—:ck l_[ (xj+xj+1)_110g<u>- (214)
0 0 j=1 Xy + X

e[} )= Fero e

we break each J{ into two pieces

Using the identity

SO =1lim (J,0@) - 1), i=1,2, (2.15)
where for i =1,
O oodé _coo © . k-1 L
J () = f?e jdxl-u[dxke CTT G4 X0 0) " te T, (2.16)
& ji=1

k—1

CDd o0
)= | ?ﬁ Jax, - Idxke"“ [T (x4 x;0) ™' e ™™ exp(—¢4()

j=1

I (=& _yexp(—¢&/x)
= [dé [ du, - yd ST o+ x;40) 1—3—1—", (2.17)
e 0 1 j=1 Xk
and we made the change of variables x; — {/x; in obtaining that last integral and
have written du; = e”*/dx;. Similarly for i =2 we have

<o) k-1
J P e) = jdé j dx, - fdxke““‘:)"‘ [T G+ xj00) te”0F9% (2.18)

& ji=1
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and
wdﬁm @ k—1
J/Pe) = j'€ g dx, - j dx; U e+ x5, )" e T exp (= &0y + -0+ X))
1/e © k-1
= [ dC [ dp, - jduke—én H(x +x,,,) e, (2.19)
4] 0

where we made the change of variables £x;— x; and then { = 1/¢ in obtaining the
last integral.
Again referring to the proof of Lemma 4.2 in [3] we obtain

k 1
I (e) = —ak<log——v)+0(1), e—0",

1
T2 e) = —aklog +o(l), e—0%. (2.20)

We now define the integral operator K on the Hilbert space L0, 0; e *dx) =
L0, 00; dp),

1
(Kf)x):= I —f y)au(y). 221
The (generalized) eigenvalues and eigenfunctions of the operator K can be

determined from the Mehler-Fock transform (see, .g., Lemmas 4.3 and 4.4 in [ 3]):

Ky,=4xp P20, (2.22)
where

A,=mnsechnp, 0<p<oo, (2.23)
and

psinhzp\'2% _ ., .
x,,(x)=<—> fe @ Dx2p | AE)dE

2n 1

: 1/2
- 1<t2p sinh p ) ex/ZKi,,<f>, (2.24)
(4 X 2

where P_,,,.;,(¢) is the Legendre function, K;,(x) is the K-Bessel function of
imaginary order, and we used GR 7.1415 [2] to evaluate the integral. The
normalization is chosen so that if

g(x) = f %(X)d(p)dp,
then

9(p) = (I) 2p(X)g(x)dp(x).

Thus we have for any f, ge L0, oo; dp),

(f, Kig) ff(p pdp, j=12,.... (2.25)



Correlation Asymptotics in the Two-Dimensional Ising Model 303

Defining
—&/x

f X,,(X) dp(x),

ﬂmo=1th&wux (2.26)
(2.17) and (2.19) become

Ji(e) Idéfdplh(p,é)lzl" Y

1/e ©

Jie) I d¢ f dpl (. 1P 25" (2.27)

The integrals (2.26) can be evaluated:

. : h 1/2
f«n@=2<@351?> K25,

g
Fp o= A,,(@YZ P_ a2+ 1), (2.28)
We record here the integral
% ij Mdp = gak. (2.29)

3. Functions «(A) and §(4) in Terms of a Single Integral

Comparing (2.26) with (4.67) of [3], we see that
k
T =, B,

where the right-hand side is in the notation of [3]. Thus using (4.84) of [3] we
obtain

T e) = ga log<1>+ H"[210g2+‘ﬁt//(tp) l//( +lp>]dp

7Tk
—Z+0(1) as ¢—0%, (3.1

where Y(z) = dlog I'(z)/dz.
We will now show that

k

k 1 27
T = —aklog( )—%+~H’;m(2ip)dp+o(1) as £-0%, (32
& T o

and hence combining the four J’s (and using 2y/(2x) = ¥(x) + ¥(1/2 + x) + 2log 2)
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we will get
1 1 k 2 * k o
Jy=——kyo, —klog2a, + " — = | 2* Ry (ip)dp. (3.3)
4 2 T o P

To begin, we recall (2.27, 2.28) and interchange the order of integration, to see
that we must examine

Fe):= [ £ 1K, (2/8) 12 dE (3.4)
for small . Hence we introduce the Mellin transform

F(z)= }Oaz- 'F(e)de
0

1 [e 0]
= E Y K 5,20/ E) 12 déE
0

_ Tz - 2ip)I'(z + 2ip)

42 (22) .
_Jmn T(@I(z+2ip)I'(z — 2ip) (3.6)
_22z+lz F(Z'l‘%) ’ ’

where to obtain (3.5) we used GR 6.5764 [2] and (3.6) follows from applying the
gamma function duplication formula. Equation (3.6) provides the analytic
continuation of F(z) into the left-half plane where we see it has on the imaginary
axis a double pole at z=0 and simple poles at z= +2ip. In the inverse Mellin
transform, we now deform the contour into the left-half plane picking up the
residues at the poles on the imaginary axis. The integral along the vertical direction
in the left-half plane is o(1) as e—0*. This result when used in (2.27) gives an
asymptotic expansion for J;"(¢). The integrals which result from the residues of
the poles at z= +2ip can be evaluated in the limit ¢—>0" by appealing to the
Riemann-Lebesgue lemma to see that the nonzero contribution to the integrals
is in the neighborhood of p ~ 0. The double pole requires expanding the I -functions
about z =0, hence the appearance of the ¥ function. The result of this calculation
is (3.2).

We can now calculate the principal part of &,(z) at z = 0. Proposition 2.1, (2.11),
and (3.3) shows that (2.9) has the Laurent expansion

1 1
élz)=e_sp—S+e 14—+, (3.7)
z z
where
k
€_2k =Eo-ka
k
e_l,k=Z(—y+210g2)ak—Jk. (3.8)

Using the inverse Mellin transform and deforming the contoéur to the imaginary
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z-plane

Fig. 1. Contour used in inverse Mellin transform

axis as shown in Fig. 1, we see that in the limit e— 0" (note the O(1/g) term from
the small semi-circle is cancelled by the O(1/¢) term from the integrals on the
imaginary axis):

100 A g3 e_
elt) = —e_p logt+e_y,+ - J cos(ylog t)l:m(ek(l)’)) + y;"‘]dy
(]

+ i Of sin(ylog?) [S(ék(iy)) + e—yl’k:ldy. 3.9)

We now let t—0" in (3.9), use the Riemann-Lebesgue lemma to conclude that
the integrals are o(1), and hence (2.4) holds with (using (3.3) and (3.8))

o "EO'
k_2 ko
3 1, 2% o
B =-klog2a, — -~ n* + = [ X Ry(ip)dp. (3.10)
2 2 To r

We now define the functions «(d) and B(4) by (2.6). Then an elementary
calculation shows

0((/1)== Z O'Zk}.z’c, (3.11)
k=1

292

B(A) =3log2a(l) + log (1 —(nl)z)—g | log<1 _
o cosh?np

)‘.Rl//(ip)dp. (3.12)
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Result (2.5) will now follow once we show the error estimate o(1) in (2.4) remains
o(1) when summed over k. We postpone the error estimate analysis to Sect. 6
where we show that indeed (2.5) is true. It can be shown that

a(A) = 1a2(2), (3.13)
where
dA)= Y oy AP = garcsin i, (3.14)
k=0 n

and o, are defined in Proposition 2.1.

4. Evaluation of an Integral
In this section we evaluate

LT
sin?= ¢

1 e}
I(o)= - [log [1— j‘Rl[/(ip)dp 4.1)
0

cosh? mp

which appears in the expression for f(A). Differentiating I(c) with respect to o
results in

© -1
a__ sin~ g cos - ¢ [} (cosh2 np — sin? Ea) Ry (ip)dp. 4.2
do 2 2 % 2
To evaluate dI/do we define
z .
@)= Y (iz),

. T
cosh? 7z — sin? EG

and evaluate | f(z)dz where the contour % is shown in Fig. 2 (the ¢ is chosen
%

small enough so that the two poles of f lying on the imaginary axis between 0

-R+i —€+1 e+i R+i

_/
R

-R —€ € R

Fig. 2. Contour ¢



Correlation Asymptotics in the Two-Dimensional Ising Model 307

and i are inside %). An elementary calculation shows that

. n o \r n of (l+a l-o
ZResxdues(f)—<2ncosiasm§a> I:Etanio—§<l/1< 2 >+l//( 5 ))]

In evaluating the integral over various portions of the contour %, one makes use
of the fact that for peR, Ry (ip) (SY(ip)) is an even (odd) function of p, and one
relates the values of  on the upper horizontal contour to those on the lower
horizontal contour by the functional equation for . Doing this results in (after
letting R — oo and ¢—0)

dl < . -1
& —sinocoste [} <cosh2 np — sin? L dp — T anZo
2 2 o 2 4

do
g 140 l—o
- . 43
4[‘”( 2 >+¢( 2 )] @
-1
The integral appearing in (4.3) has the value <2 sing-cr cos ga> o so that (4.3)

becomes
dl o = A o 1+o0 1—0
— =———tan—-¢ — — . 4.4
do 2 4°13° 4[¢< 2 >+¢< 2 )] 4

Since I1(0) = 0, we obtain upon integrating (4.4),

o 1 T 19 1+x 1—x
I(0)="—+-1 o +xy{ —— | )d
(0) g +logcosza 4(j)<x|//( 5 ) xtp( 5 )) X

F<1+a

o 1 T 0 2
=—+—-logcos~o ——log———=
4 2 2 2 (1——0)
rf—2

2

oIz 1 1

+ § <logf(~+x>~log1"(——x>>dx, 4.5)
0 2 2

where we integrated by parts and made an obvious change of variables to obtain
the last equality. Now Alexeiewsky’s integral [1] is

jlogl"(x+a)dx=glog2n—g(z+2a—1)+(z+a-1)log1"(z+a)

0

I',(z+a)
I'5(a)

where I',(z) is the Barnes double gamma function. Using this we obtain our final
expression

I(o)=logcosga+log(1"2<%€>1"2<1_70>>—210g F2<%). 4.7

+lo

—(a—1)log I'(a), (4.6)
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5. Final Result

Referring to (1.3), (1.6), (2.1), (2.5), and (3.13), we obtain for 0 <o < 1,
1
logt_(t,A)= — %1og (coshixll(t, ,l)) — % log t4(t, A)

1 1
= —%(1 —%>1ogt—1og2~§1og3-5ﬁ(/1)+o(1), as t—0*. (5.1)
Calling the constant term in the above expansion logt,, using (1.8), (3.12), (4.1)
and (4.7), log 7, becomes

1
logt, = —log2——510gn+310g2 %(1 —%)+10g1"<1+76>

7 140 l1—0o 1
+1 —0+1 r,\ —\I —2log I, = . 52
0gcos o Og( 2( 3 ) z< 5 )) og 2<2> (5.2)

Using (1.10) and standard identities for the I"-function, Theorem 1 now follows.

There is one subtle point in applying Theorem 1 to the Ising case ¢ = 1; namely,
that in the expansion (1.6) of ¥(t, ) there is a term of order ¢>~2“ (there are no
terms of order t" ", n =3 in 5(t/2, 1) = e ¥“* see [3] for discussion of this point).
Now both log B and f§ are divergent as ¢ — 1, but the sum (which is what appears
in (5.2)) is not. However it is possible that the t272° term in the expansion (5.1)
could contribute to the constant as ¢ — 1. This can be settled by a local analysis
by computing, for 0 <o <1, dlogt,(t,A)/dt as t >0 using expression (1.3) and
the asymptotic expansion of Y(t, A) to higher order (see (1.10) in [3] with v=0).
A computation shows the term of order t!~27 in dlogr.(t, A)/dt makes no
contribution as ¢ — 1. Thus we are allowed to simply set ¢ = 1 (s = 0) in Theorem 1.

6. Error Estimates

As discussed in Sect. 3, we must show that the integrals appearing in (3.9) remain
o(1) as t>0* when summed over k in (2.2). Referring to (2.9) for z =iy, yeR, a
straightforward estimate that eliminates the term [A4,(5)] ?/*> shows that the
resulting k-dimensional integral is bounded by

i 3)
8 2

[s o) 1 . .
Z Eezk(l,\’)ﬁk
k=1

2
O'ku

This shows that the series

converges uniformly in 1 in compact subsets of (0,1/n) and uniformly in y in
compact subsets of (0, 0). Thus in (3.9) the summation over k may be brought
inside the integral. Standard estimates of I"(iy) for large y shows that the integral
is uniformly convergent near the upper endpoint. For small y the integral is
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term-by-term improper so we put in a small ¢ at the lower endpoint. Again since
the convergence of the series is uniform in y and A, we may examine the small y
behavior of the summed integral by taking the limit of small y inside the integral
and inside the series. But these terms are constructed termwise in k to cancel any
singularity at y = 0. Thus we may remove the small ¢ cutoff at the lower endpoint
to obtain a uniformly convergent integral at the lower endpoint. Thus we may
apply the Riemann-Lebesgue lemma to the summed integrals to conclude that
they are o(1) as t—>0".

Appendix

We define the integral operator K on the Hilbert space L*(0, oo;de,) by

(KN = | x%y FO)de(), >0,

where
de,(x) =exp(— 3t(x+x~1))dx.

We denote by d) J and 4; the normalized eigenvectors and eigenvalues, respectively.
We take 1, Hllbert s inequality states that if f€I?(0, ), then

j I ) (x)f »

dxdy<mn I f2(x)dx.
Now
Aolt) = (®os K¢,)
- f dxe— (LG +1/%) f dye~(/200+ 1/y>¢°(x)¢’0(y)
x+y
Letting f(x) = exp (— 3t(x + 1/x)) $o(x), we have feL*(0, oo) since ¢,€L*(0, c0; de,).
Thus applying Hilbert’s inequality we have

Jo(t)<m | €1 §2(x)dx
0

©
<7 j‘ e—(1/2)r(x+1/x)¢(2)(x)dx =,
0

since @o(x) is normalized in L*(0, co; de,). Since this holds for all ¢t >0 we have

sup Ao(t) = 7.
t>0

The largest eigenvalue A4(t) satisfies for all ¢peL?(0, 0o, de,),
(¢, Kd) _
(4.¢) ~

By(t):= < Ao(®)-

We now choose

1
o(x) = -\/_;
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Using
(e4y)7 = [ e ed,
0
we find
o [~ 1 2
_ W2+ Ox—(1/2)tx
(¢,K¢)—£[(j) x”ze t dx:| dé.
Using
1/z\*T 1 _, .
KP‘Z)=5<5> [ e P70,
we find

(@ K@) =4[ (Ky2()*du,

where we made the change of variables u® = t(t + 2£). Using the fact that the Bessel

function
T
Kip(x)= [—e™%
1/2( ) 2X

we can conclude upon integration by parts
(¢, K@) =2me™*'log(1/t) + n | logxe™ **dx.
t

A similar calculation gives

(¢, ¢) = 2K, (0).

Putting these two expressions together gives the final result for B,. Elementary
arguements show that

sup By(t) =,

t>0
so we have
T é sup )’O(t)a
t>0
and hence
sup Aq(t) = 7.

t>0

Referring to (2.2) and (2.3) we see that if the series converges (which it clearly
does for large enough t)

E(t,})=— ) log(1—4*1}).
jz0
The above series can be expanded in a power series in A provided that [154] < 1.
But for 0 <l <1 we have

140(8)A] < sup Ao(t)4 = 1A < 1.

t>0

Acknowledgements. The author wishes to thank John Fay, John Palmer and Ilan Vardi for helpful
comments and suggestions.



Correlation Asymptotics in the Two-Dimensional Ising Model 311

References

1. Barnes, E. W.: The theory of the G-function. Quart. J. Pure Appl. Math. 31, 264-314 (1990)

2. Gradshteyn, I. S., Ryzhik, I. M.: Table of Integrals, Series, and Products (Corrected and
Enlarged edition prepared by A. Jaffrey). New York: Academic Press 1980

3. McCoy, B. M., Tracy, C. A, Wu, T. T.: Painlevé functions of the third kind. J. Math. Phys.
18, 1058-1092 (1977)

4. Sato, M., Miwa, T., Jimbo, M.: Holonomic quantum fields IIL, IV. Publ. Res. Inst. Math. Sci.,
Kyoto Univ. 15, 577-629 (1979; 15, 871-972 (1979)

5. Wu, T.-T.: Theory of Toeplitz determinants and the spin correlations of the two-dimensional
Ising model. 1. Phys. Rev. 149, 380—401 (1966)

6. Wu, T.-T., McCoy, B. M., Tracy, C. A., Barouch, E.: Spin—spin correlation functions for the

two-dimensional Ising model: Exact theory in the scaling region. Phys. Rev. B13, 316-374
(1976)

Communicated by M. E. Fisher








