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Abstract. For Yang-Mills theory in the Minkowski space it is proved that the
constraint set is a smooth submanifold of the phase space consisting of square
integrable Cauchy data.

1. Introduction

Yang- Mills equations can be rewritten as the evolution equations for the Cauchy
data supplemented by the constraint condition. In the temporal gauge the
evolution equations are

A = E, (1)

], (2)

where
F = dA + [A,A] (3)

is the field strength of A, and
d (4)

is the Lie bracket in the Lie algebra g of the structure group G of the theory,
followed by the contraction in the spatial indices. The constraint equation is

divE + [A;E] = 0. (5)

In order to have an understanding of the theory sufficient for a subsequent
quantization, we need to know the spaces which admit existence and uniqueness
theorems for the system (1), (2), and (5), and the structure of the solution set of the
constraint equation [since Eq.(5) is non-linear its solution set may have
singularities].
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For Yang-Mills theory in Minkowski space the existence and uniqueness
theorems were obtained by Segal [1], Ginibre and Velo [2], and Eardley and
Moncrief [3, 4]. They have shown that, for Cauchy data (A(0), E(0)) in the Sobolev
space #fc(R3) x Hk ~ 1(R3), k ̂  2, which satisfy the constraint equation, there exists
a global solution (A(ί), E(ί)) of Eqs. (1), (2), and (5). The regularity of constraints in
weighted Sobolev spaces Mf δ with p > 3, ί^δ<2— 3/p, and s ̂  2, was proved by
Moncrief [5].

Since the regularity theorems hold in different spaces than the existence and
uniqueness theorems we do not have a complete classical theory. The aim of this
paper is to prove the regularity of the constraint set in the space #2(R3) x /^(R3)
for which we already have the existence and uniqueness theorem. The proof
presented here, based on the standard techniques of perturbations of linear
operators, is somewhat simpler than in [5].

The Second Noether Theorem implies that the invariance of a field theory
under a localizable group ^ of transformations leads to constraints, given by the
vanishing of the equi variant momentum map J of the action of ̂  in the phase space
of the theory, cf. [6]. In Yang-Mills theory the group ^ consists of the gauge
transformations which can be identified with sections of the group bundle P[G]
associated to the principal fibre bundle P over R3 with structure group G of the
theory. Infinitesimal gauge transformations are sections of the adjoint bundle
P[g]. The action of a section u of P[g] on Cauchy data (A,E) is

(A, E)-+(A + du + [A, ιι], E + [E, W]) . (6)

The value of the momentum map J on an infinitesimal gauge transformation u is
given by

<J(A,E)|w> = f (E|du + [A,u])d3x, (7)

where the pointwise evaluation ( | ) uses the scalar products in R3 and in g. Hence,
the zero level of J coincides with the solution set of the constraint equation (5).

A study of the structure of the constraint set in Yang-Mills theory, in terms of
the corresponding equivariant momentum map J, has been performed by Arms [7],
and Arms, Marsden, and Moncrief [8]. Under technical assumptions, depending
on the structure of the space of Cauchy data, it has been shown that J~ 1(0) has at
most quadratic singularities, with a regular stratum consisting of the Cauchy data
(A,E) with no infinitesimal symmetry in ,̂ [8].

Equation (6) shows that u is an infinitesimal symmetry of (A, E) if and only if

,w] = 0 and [E,w] = 0, (8)

which implies that the square of the norm of u is constant,

d(u\u) = 0. (9)

In the Minkowski space Yang-Mills theory an infinitesimal symmetry u is
localizable if and only if u vanishes at infinity, [6]. Hence, Eq. (9) implies that u = 0.
Thus, no square integrable Cauchy data (A,E) admit a non-zero infinitesimal
localizable gauge symmetry. If the Arms, Moncrief, Marsden Theorem is
applicable to this case, we can infer that the constraint set J~ 1(0) is regular, that is
every point of J"1^) is a regular point. This guaranties that J'^O) is a
submanifold of the space of Cauchy data, and that the Marsden- Weinstein
reduced phase space J~ΐ(0)/(^ is a symplectic manifold, [9].
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Thus, it would suffice to verify the assumptions of the Arms, Marsden, Moncrief
Theorem in order to conclude that in the Minkowski space Yang-Mills theory the
constraint set is regular. However, it is simpler to prove the regularity of J"1^)
directly.

2. Regularity of J-1(0)

For each pair (fc, m) of non-negative integers, we denote by Qk

m the space of g-valued
m-forms with coefficients in the Sobolev space #fc(R3). The product structure in the
principal fibre bundle P enables us to interpret #fc(R3) sections of the adjoint
bundle P[g] as elements of ΩQ. Similarly, connections in P can be identified with
g-valued 1 -forms.

It follows from the results of Eardley and Moncrief, [3, 4], that, for every set of
Cauchy data (A,E) in Ω\ x Ω{ satisfying the constraint equation, there exists a
global solution of Yang-Mills equations. For (A,E) in Ω\ x Ω{

J(A,E) = divE + [A;E] (10)

is contained in Ω°. Hence, in order to show that (A, E) 6 Ω\ x Ω{ is a regular point
of J, one needs to show that

dJ(A, E) : Ω\ x Ω\ ->Ω% : (w, v) κ> div v + [A; v] + [w; E]

is surjective and has splitting kernel. Actually, it suffices to show that, for each
A e ΩI, the map

DivA:Ωί^Ω°:v^DivA(v) = divv + [A;v] (11)

is surjective and has splitting kernel. Since DivA is continuous map between
Hubert spaces it follows that its kernel is closed subspace and it has a closed
orthogonal complement. Hence it remains to show that DivA is surjective.

For every integer k ̂  1, each 1-form v e Ω\~ i can be uniquely decomposed into
the longitudinal and the transverse parts

(12)

where
\L = du (13)

for some u e Ω^ and

divvτ = 0. (14)

We denote by Ω\~ 1T and Ω\~iL the spaces of transverse and longitudinal forms in
Ω*"1, respectively. They are closed subspaces of Ωj"1, and

Ω\-l=Ω\~lT®Ω\-^. (15)

We denote by DA the operator of co variant differentiation of sections of P[g],

], (16)

and consider it as an unbounded linear operator from ΩQ to Ω? with domain Ωj.
For every wedomainDA and every veΩ},

(DA(u)|v)=-(M|DivA(v)). (17)
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Hence, the negative of the adjoint D% of DA is an extension of DivA,

DivAS-D*. (18)

Since, for we £2°, div(dw)eΩo implies that ueΩl, so that dweΩ}, it follows that

domain^) = Ω(j)TΘΩjI\ (19)

A closed operator T between Banach spaces is said to be semi-Fredholm if
range T is closed, and at least one of dim(kerT) and codim (range T) is finite. An
operator S is said to be T-compact if domain T £ domain S, and, for each sequence
{un} C domain Twith {un} and {Tun} bounded, the sequence {Sun} has a convergent
subsequence. If Γ is a semi-Fredholm operator and S is Γ-compact, then T+S is
semi-Fredholm, for details see [10].

Since Ω^ = ranged is closed in Ω?, and kerd = 0, it follows that d is semi-
Fredholm operator from Ω% to Ωj. We want to show that, for a given A e Ω2, DA is
semi-Fredholm. Let S:Ωo~>Ω? be the mapping defined by Sw = [A,w]. Then
DA = d + S is semi-Fredholm provided S is ^-compact.

Consider a bounded sequence un in ΩQ such that dun is bounded in Ω?, which
implies that un e Ω J. Since un and A are square integrable with their first derivatives,
it follows that they are in ίί(R3), and their squares are in L2(R3). Let M denote the
ίί(R3) bound for the sequence {un}. Then,

Moreover, for any a bounded domain U in R3 with complement 17' =R3 — 17,

\\S(un-um)\\2=

= f |[A(x),Wn(x)-Ww(x)]|2d3x+ ί
U U'

ϊ ί |A(x)|2 k(x)-Mm(x)|2d3*+ ί
17 17'

Since ||A2||L2(]R3) is the limit of ||A2||L2(17) as U tends to R3, for every ε>0, there
exists an open bounded set [7£R3 such that

4M||A2||L2([Γ)<ε/2.

For a bounded domain U in R3, the Rellich-Kondrachov Theorem implies that
the embedding /^(R3)-*!? (U) is compact, see [1 1]. Hence the sequence un \ U has
a subsequence convergent in L4(C7) and, without loss of generality, we can assume
that un\ U is convergent in L4(C7). Therefore, there exists N>0 such that

!|A2||L2(]R3) ||(wπ-Mw)||ί4(ί7)<ε/2

for all n,m>N. Hence, \\S(un — wm)|(2<ε for all n,m>AΓ, which implies that the
sequence Sun = [A, M J converges in Ωj . This implies that S is d-compact so that DA

is semi-Fredholm for all A e Ωf. Hence, DA has closed range.
A vector v e Ω? is orthogonal to range Ϊ)A if and only if

(v I D Au) = 0V w e domain D A . (20)
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This implies that v 6 domain D^ and

(D*v|u) = OV UG domain DA. (21)

Hence, Z)^v = 0, and we have an orthogonal decomposition

β? = (range DA)Θ(ker D%) . (22)

Since the adjoint of a semi-Fredholm operator is semi-Fredholm, it follows that
D% is semi-Fredholm. In particular D^v has closed range. If u e Ω® is orthogonal to
D%\ for all v e domain D ,̂ then DAu = 0, and u = 0. Thus, range D% is dense in Ω®,
which implies that D% is surjective.

It follows from the decomposition (22) that the restriction of D% to (range DA)
n(domain D^) is surjective. Since D\ = d + S has domain ί2j, and S maps ΩQ to Ω\,
it follows that range D^gΩ\τ®Ω^. Equation (19) yields

(range DA)n(domain D%) g Q\T®Ω\L = Ω\ = domain DivA .

Since the negative of D^ extends DivA, Eq. (18), it follows that DivA is surjective
which proves regularity of J~x(0).

3. Concluding Remarks

In most papers on the physical content of Yang-Mills theory the singularities of the
constraint set were ignored. The results presented here justify this approach as far
as Yang-Mills fields in Minkowski space with square integrable Cauchy data are
concerned. It should be noted that the assumption of square integrability is
violated in the presence of symmetry breaking. Thus, the singularities of the
constraint set in a symmetry breaking Yang-Mills-Higgs theory have to be studied
separately.
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