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Abstract. The string equation and the Virasoro constraints for arbitrary hermitian
multimatrix models are derived using the Lie-Béacklund symmetries of the
generalised KdV equations. From this point of view the origin of the string equation
and the meaning of the Virasoro constraints are explained. Some speculation
about the appearance of extra constraints, which we suspect to be the
W-constraints, is also given.

1. Introduction

The mystery of integrable systems continually surprises us. Especially, the 2-d
integrable systems are well studied and provide us with rich structures in both
physics and mathematics. Also in many aspects of string Theory and conformal
field theory we have seen the relevance of certain integrable systems.

On the other hand, the quantum theory of gravity has been a long standing
unsolved problem. But, for the theories based on 2-d random surfaces like string
theory the situation is somewhat better. In particular there has been some recent
success in formulating a nonperturbative 2-d quantum gravity, using the
dynamically triangulated random lattice model based on the matrix models in the
double scaling limit, i.e. tuning the coupling constant to get higher topology
contributions, while taking the large-N and continuum limit [1-3].

In these models perturbation theory is used with respect to the multicritical
points determined by the so-called “string equation.” In the one-matrix model case
the general string equation even away from the critical points can be neatly
expressed in the Korteweg—de Vries (KdV) hierarchy formulation [3-5]. Thus
again we see the intricate appearance of 2-d integrable systems. In this paper we will
show how one can recover the full structure of the one-matrix model starting from
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the KdV equation, using some symmetry transformation properties. Some of the
preliminary results were presented before [6] and here we shall report the rest,
including the generalization to the multimatrix model cases.

In the two-matrix model case we start with the Boussinesq equation, which
generates the 3rd generalized KdV hierarchy again by the symmetry arguments.
Douglas conjectured that the M-matrix model approach to nonperturbative 2-d
gravity will be described by the (M + 1)™ generalized KdV hierarchy [7]. For
other multimatrix models we first generalize the KdV equation and then generate
the hierarchy by the symmetries; then we get the Virasoro constraints up to some
coefficients, which can be determined once we know the explicit form of the
recursion operator. Though the recursion operator is not known yet, we have the
generic structure of the Virasoro constraints. We believe this can be generalized
even to the ¢ =1 model [8] using the KP equation.

One of the lessons we have learned from the success of QFT’s based on the
Lagrangian formalism is that the investigation of symmetries leads to an
understanding of the various deep structures of the theories. In QFT a symmetry
is usually defined by a transformation which leaves the action invariant. But
sometimes we also use the invariance of the equation of motion under some
transformation, for example, the charge conjugation symmetry for the Dirac
equation. But still the action itself is also invariant.

For integrable systems based on differential equations we need to use a different
notion of symmetries. We define a symmetry of a differential equation as a group
of transformations which leave the differential equation invariant, therefore
mapping one solution to another solution!. Thus such symmetries can be under-
stood as symmetries in the space of solutions to a given differential equation. Such
a symmetry argument can be generalized to a set of differential equations.

In ref. [6] we used these symmetries in nonperturbative 2-d quantum gravity
with respect to the KdV hierarchy and showed that the Virasoro constraints
derived in refs. [10 and 11] (where they are derived from the loop equation
[12-14]) are due to non-isospectral symmetries, an example of Lie—Bicklund
symmetries for KdV equation. The isospectral symmetries, ie. a hierarchy of
symmetries generated from the Lie-point symmetry, are related to the integrability
in the sense that they are related to the Hamiltonian structure. Note that the
symmetries of the KdV equation can be interpreted as symmetries of 2-d quantum
gravity because certain solutions of the KdV equation provide the partition
function of 2-d gravity.

From this point of view the meaning of the Virasoro constraints is clear. The
string equation and the Virasoro constraints are nothing but the vanishing
Lie—Bicklund evolution equations, whose time variables can be interpreted as the
moduli of some auxiliary infinite genus Riemann surfaces in the (M + 1)™
Grassmannian, i.e. Gr™ Y. Thus the spectral space of all the multimatrix models
can be imbedded into the infinite Grassmannian [15-16]. Note that in fact points
of Gr™*1 correspond to solutions of the (M + 1) KdV hierarchy [17]; therefore
we can imbed the space of solutions of 2-d nonperturbative quantum gravity into
the Grassmannian. Naturally, the next question is whether there is any field

! Note that when we apply this to QFT, the action is not necessarily invariant under the
transformation which leaves the relevant equation invariant. For example, see [9]
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theoretical explanation of such vanishing evolution equations. We shall leave this
as a subject for future study.

This paper is organized as follows. In Sect. 2 we shall review the main aspects
of the Lie-Bécklund symmetries. In Sect. 3 the one-matrix model using the KdV
equation and in Sect. 4 the two-matrix model using the Boussinesq equation are
described. Then in Sect. 5 we have generalized everything for the multimatrix
models. Finally, in Sect. 6 some speculations concerning the W-constraints and
the loop operators for the multimatrix model are given. Further discussions are
also given.

2. Lie-Bicklund Symmetries

Here we shall review some relevant structures of the Lie-point and theLie—Bécklund
symmetries; more details can be found in refs. [18—19]. Note that the Lie—Béacklund
transformation is not necessarily the same as the usual Backlund transformation.
Let us consider a system of partial differential equations
Poltyswe, 0,w,,0,0,W,,...1=0, 2.1

where p,v=12,...,N, a=1,2,...,Z, and w,=w,(t,),0, denotes the partial
differentiation with respect to t,. n=1,2,..., M, M is the number of equations. Let
Y'={t,, w, d,W,,0,0,w,,...}beageneralized coordinate of an infinite dimensional
space so that we can simply write Eq. (2.1) as Z,[Y']=0.
Then the Lie—Béicklund transformation is
Y =Y!(Y’;e), (2.2)
which is an extension to the derivatives of
fp, = fu(tvs Wps 6vwbs avalwb, e 8)5
Wo=W,(ty, Wy, O, Wy, 0,0,Wp, ... ;) (2.3)
where ¢ is some deformation parameter such that at ¢ =0, {, =1¢,, etc.. We can
introduce such an ¢ if the transformations form a one-parameter transformation
group.
Then the Lie-Backlund symmetry is defined by the statement:
If 2[Y']=0, then 2,[Y']=0.
This is equivalent to saying that the Lie-Bécklund transformation Yiisa symmetry
of 2 [Y']=0if and only if for 2,[Y']=0,
X2,[Y']=0, (24)

where the Lie—Bidcklund operator X is

0
X= npau + éa _av + (@uéa - (avwa)@unv) + (25)

o0,w,)
and

8
D=0+ 0, Wa—— + 0,0

T — 2.6
aw, M 50, 20
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The first differentiation d, in 9, acts with respect to t,, in the generalized coordinate
. . . .. d =
Y!. Equation (2.4) is equivalent to the condition d_%[Y] l;=o =0. From now on
&

we will call Eq. (2.4) symmetry condition. Sometimes to make sure the dependence
of n and ¢ for the Lie-Backlund operator we shall explicitly write as X, ..
Note that Eq. (2.3) implies that #, and ¢, are functions of all the variables,

11“ = ”u(tv, Wb’ 6vwb, avalwb, e ),
éa = ga(tw Wp) avwbs avawa’ e )9 (27)

and 7, =0 can be chosen without loss of generality if 2, does not depend on ¢,
explicitly. This will be the case for all the equations to be studied in this paper.

Thus Eq. (2.3) is a transformation between two solutions of £, =0 and that
we have an evolution equation for w, as

dw
2 =¢. 2.8
i | Ca (2.8)

In general, as ¢ changes (f,, w,) moves along the hyperspace of the solutions of
#, =0 in the space with a coordinate provided by the generic (t,, w,). It turns out
that the evolution equation, Eq. (2.8), has a very significant meaning. We shall
come back to this point again later for our specific examples.

Once we have a symmetry, we can sometimes generate an infinite hierarchy
of symmetries. Rewrite the symmetry condition Eq. (2.4) as an equation of operator
9, acting on ¢, such that

X, P = 2,6,=0, (2.9)

where we set n = 0 for convenience and 2, can be properly derived from X.2. If
there is any operator # that commutes with 2, i.e. [%, 2,1, =0, then #"¢, is also
a symmetry for any positive integer n. Such an operator Z is called a recursion
operator.

Now we shall define a special case of Lie—Backlund symmetry, which we call
the Lie-point symmetry. The Lie-point symmetry is generated by the Lie-point
transformation as

Y =Y(Y;e), (2.10)
which is an extension to the derivatives of
fu = fu(tw Wy E),
W, = W,(t,, wy; €). (2.11)

Note that Eq. (2.11) implies now that
?]“ = r’u(tv’ wb)a éa = fa(tv’ Wb)‘ (212)

In fact the Lie-Backlund symmetry has been discovered as a generalization of
the Lie-point symmetry because somehow the Lie-point transformation does not
generate any symmetry which involves ¢, for n,=0. This is due to the fact that
from the evolution equation, Eq. (2.8), &, will always contain d,w if f, depends on
¢ explicitly, but by definition &, cannot contain d,w for the Lie-point transformation
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so that , cannot depend on & explicitly if #,=0. In many physically interesting
cases 1, = 0 and we still have the space-time symmetries. Thus we need to generalize
to accommodate such cases.

Indeed such a symmetry exists and even in some cases the transformations
form a transformation group. This is the Lie-Bécklund symmetry discovered by
Ibragimov and Anderson [20]. For our purpose here we will restrict ourselves to
the case when they form a one-parameter group. For more general Lie—Béacklund
transformations, see refs. [18, 19]. When we wrote down the Lie—Béacklund operator
X, Eq. (2.5), we already used this group property.

In many cases even.though Eq. (2.3) is of the form of Eq. (2.11) up to the first
order of ¢, Eq. (2.4) leads to a Lie—Béacklund symmetry completely different from the
Lie-point symmetry due to Eq. (2.7).

3. KdV Equation: One-Matrix Model

3.1. Loop Operator. Let us start with the loop operator which connects the matrix
model and the KdV hierarchy in the following sense. Surprisingly, the Schrédinger
operator which defines the one dimensional quantum mechanical system,

H = —D?* +u(x), DE%, (3.1.1)

appears in many important cases related to Conformal Field Theories. Once again
we are led to use this operator to study some of the very important structures of
the nonperturbative 2-d quantum gravity, which recovers some results of the
Liouville quantum gravity at the planar limit [21-23].

Based on the KdV hierarchy formulation of the one-matrix model approach,
one can identify the expectation value of the loop operator w, of length [ with the
partition function of Hamiltonian # using [/ as an inverse temperature [4], i.e.

(o =tr,e” ¥, (3.12)

where tr, denotes the trace taken only up to the Fermi level, which is related to
the renormalized cosmological constant x.
This can be expanded for small [ by the heat kernel method as
0 _ 1 kik—1/2 © 6H
o v EVTTL L= | d&x—*,

2/nl K12 /m2k— ) x

where H, = [ dXh,, (—1)!'=1, and ;s are polynomials of u and its derivatives.

(o~ (3.1.3)

For example, ho=ulo=1. With L= —1D?>+uD+ Du, the H,’s satisfy the
following recursion relation:
D @ =L OH, _,
ou ou
Note that {w,) now depends on the eigenvalues of s# as well as the renormalized
cosmological constant x. As | -0, {w,> — o0, i.e. in fact w, is a unnormalized loop

, k=1 (3.14)



574 H. La

operator. Thus, by regularizing the leading divergence term, we can define a
renormalized loop operator, which is used to derive the continuum loop equation
in ref. [23].

Under Laplace transform

{o())) = ]g dle % tre™ '
0

1
=tr
H+{
T ® R, [u(%)]
Rt

where R,’s are the Gelfand—Dickii polynomials [24] and R, = (— 2) " *6H,/déu. Then
the string equation for the general massive model interpolating between
multicritical points is given by [4]

0

—x= Y (=2FQk+ D)ty Re[ul, (3.1.6)

k=1

where the m™ multicritical point is determined by ¢,, ., =0 (k # m) and choosing
tym+1 Such that (—2)"(2m+ 1)t,,,, ,R,,= —u*™"2 + ---. We can notice that from
Eq. (3.1.4)

ou o0H,

= Vku = D
Otk 1 u

form the KdV hierarchy.

o o 0 . .
Now from Eq. (3.1.7) k = 0 implies (5 — a—)u =0, which can be interpreted
1 Ox
as a chirality condition in the (x, t,) plane. Thus from now on we can safely identify
t, = x, trading with this equation.

3.2. KdV Hierarchy and the Symmetries. The KdV hierarchy has a well known
set of isospectral symmetries which are related to the integrability of the system.
Let % = {u(x,7)} be the space of all real differentiable functions u deformed from
u(x) in Eq. (3.1.1) by extra variables 7 such that the eigenvalues of the Schrodinger
operator, Eq. (3.1.1), are the same, i.e. isospectral.

Let us see how this can happen [25]. Let #(0)= #[u(x)] and
H(ty, )= HLulx,t,y,, )], k=20, such that there exists a unitary transformation,
which leaves the eigenvalues of # unchanged,

Ut(tys )# (tar ) Ul 1 1) = #(0), (3.2.1)

where Uty , UMy, 1) = UMty )U(ty,)=1. Taking a derivative with
respect to t,, ., we get

OH(ty 1)

ot

=(=2**'DR,,,, k20, (3.1.7)

=[Pty ) H(rh41)], (3.2.2)

2k+1



Geometry of Virasoro Constraints in Quantum Gravity 575

where

a(](t2k+ 1)

a 2k+1

Pty )= Uty ).
If there is any solution of this equation, then % is nontrivial and we have isospectral
symmetries.

Indeed P(t,,,,) can be found and particularly for the KdV hierarchy it is
known as

Pty ) = [#(ty )12, (3.2.3)

where the subscript “ +” denotes to take only nonnegative powers of differentiation,
i.e. differential operator part, and P and J# are known as the Lax pairs of the
KdV hierarchy. Thus indeed % is not trivial.

The integrability can be shown by defining a Poisson structure on % such that
the H,’s in Eq. (3.1.3) commute each other under such a Poisson bracket. V,’s in
Eq. (3.1.7) form commuting vector fields on %, which generate Hamiltonian vector
flows and the parameters are denoted by t,, , ;.

Note that {w,) is a solution of the loop equation and is a function of u and
its derivatives, while u is a solution of the KdV hierarchy. Thus the symmetry of
the KdV hierarchy still survives as a symmetry of 2-d quantum gravity in the sense
that the solution of the KdV equation provides a solution of the loop equation.
In particular, for a given u we always have a partition function of 2-d quantum
gravity in terms of the t-function. In this sense we have the isospectral symmetries,

u—-id=u+ 8?—:—, where u and # are both solutions of the KdV equation.
k

We can also find other symmetries which change the eigenvalues but still solves
the same KdV hierarchy. Such symmetries are known as nonisospectral symmetries
and are first found in the context of the KdV equation [27]. Similar symmetries
are also found in the Kadomtsev—Petviashvili (KP) equation [28] and in KP
hierarchy [29].

First, let us recapture the case of the KdV equation {27]. From Eq. (3.1.7) we
get the usual KdV equation

U =3uu’ — su”, (3.2.4)

where "= 0/0t," = D. By introducing w' = u to get a nontrivial Lie-point symmetry
we can rewrite the above as

W—3w2 4 Ly =0, (3.2.5)

Whenever we get a solution of Eq. (3.2.5), by taking a derivative with respect to
x we always get a solution of Eq. (3.2.4). In this sense we can always find a symmetry
of Eq. (3.2.4) from a symmetry of Eq. (3.2.5).
The Lie—Bicklund tangent operator is now
0 0 0
Xe=f—+9f—+D.f—+ -, 3.2.6
1= G T A Gt B oy (326

% The integrability from the lattice model point of view has been studied in refs. [26]
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where f = f(x,t,w,w',...) and for the notational convenience we use f in place of
¢in Eq.(2.5). Then X ; acting on Eq. (3.2.5) gives a symmetry condition, Eq. (2.9),

2 =(2,— WD, +123)f =0. (3.2.7)

The solutions of this equation determined the symmetries of the KdV equation.
Note that a hierarchy of the isospectral symmetries can be generated by a
simple translation of w without any coordinate change as

WoWw=w+e¢ (3.2.8)
so that
P (329)
dB e=0

This is in fact a Lie-point symmetry. One may understand now why we use
Eq. (3.2.5) instead of Eq. (3.2.4) because the corresponding symmetry of Eq. (3.2.5)
is trivially u > i = u.

Following the general strategy discussed after Eq. (2.9) we now generate the
higher order symmetries

ataw =g s (3.2.10)

2k+1 t3

where #=D"'L is the recursion operator for the KdV equation such that

[2,2]f=0and D™ '= jdx. The symmetries of Eq. (3.2.4) can be derived using
ou = ow . Note that this is nothing but the KdV hierarchy. Thus we have
Olysr  Olysy

observed that the existence of the KdV hierarchy is due to the existence of an
infinite hierarchy of symmetries for the KdV equation, ie. the isospectral
symmetries. We want to direct the reader’s attention to the fact that, though
Eq. (3.2.9) is a Lie-point symmetry, the higher order symmetries Eq. (3.2.10) are
Lie-Bédcklund symmetries. Note that each higher order symmetry tells us

WoWw=w+eg and W is also a solution of the KdV equation.
2k+1
Equation (3.2.10) does not exhaust all possible symmetries of Eq. (3.2.5). We
can also solve Eq. (3.2.7) using a Galilean transformation for small &,

X —X =X+ ate,
woWw=w+ x¢ + 0(c?), (3.2.11)

where a is some constant. Then we can compute the change as an evolution
. . . . aw
equation for w with respect to “time” ¢ as in Eq. (2.8), f=—| , where
Ele=0

w(e) = w(0) + S%E . Claiming that f should satisfy Eq. (3.2.7) to be a symmetry
€le=0
of the KdV equation, we can determine a =3 so that we have a Lie—Bdcklund
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symmetry?
f=3tw +x=3tu+x. (3.2.12)

Then we can define the corresponding symmetry as an evolution equation for w
by introducing a time f_,

ow aw
‘_~.-:f=7 .
aﬁ—l d8 e=0

In general, we get for the KdV equation a family of evolution equations which
can be derived by applying the recursion operator from Eq. (3.2.13) [27],

a—W=(D"1L)"“f, n= -1 (3.2.14)
B
Note that, since these symmetries depend on x as well as t, there is no reason that
the eigenvalues of s# are preserved. In fact there is no unitary transformation of
Eq. (3.2.1) in this case. This explains why we call them nonisospectral symmetries.

We now have two hierarchies of symmetries of the KdV equation, those
parametrized by t,, ,, and f,. Now let us look for the Lie-Backlund symmetries
of the full KAV hierarchy. Here we shall identify such symmetries of the KdV
hierarchy and show that they are related to nothing but the Virasoro constraints
in refs. [10, 11]. Thus we can understand what is the symmetry principle underlying
the Virasoro constraints.

Our strategy i1s again to begin with a simplest symmetry, then applying the
recursion operator to get the whole symmetries. Since now in general all the ¢, , ,
will be nonzero, our initial Galilean type ansatz has to be more complicated. For
the KdV hierarchy, Eq. (3.2.10), our generalized Galilean transformation is

(3.2.13)

wow=w+te+ 0, t,=x, ty=t,
tzk+1—"f2k+1=t2k+1+ak+1t2(k+1)+18+@(82)a k=0. (3.2.15)

Now a set of symmetry conditions for all the k’s arises from the action of (3.2.6)
on the KdV hierarchy:

a /
<9x9 11929 —wag9 -2 g _wg -V @§>F=o.
[Py tok-1 tox-1 6l2k—1 Loe-1 atZk-—l
(3.2.16)
The simplest solution is a generalization of Eq. (3.2.12):
_dw 0w o 0y, OW
de £=0 de e=0 k=0 O af2k+1 £=0
=t + ), Gty (DL My, 3.2.17)
k=1

3 Note that f=0 does not produce the Painlevé equation, though there is a Backlund
transformation between the KdV equation and the Painlevé equation. But our Lie—Backlund
transformation here is not the Backlund transformation between the KdV equation and the
Painlevé equation, which one can find, for example, in ref. [30]. Later we shall get the Painlevé
equation from the evolution equation, but only after imposing the m = 2 multicritically condition,
which sets t =0
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where a; =2k + 1. Exactly as before we now get a new hierarchy of symmetries
as evolution equations

ow

- (D~ 'Ly 'F, (3.2.18a)
or "

0

% —(LD"Y'LF. (3.2.18b)

3.3. String Equation and Virasoro Constraints. We can make a remarkable
observation. Amazingly the string equation, Eq. (3.1.6), turns out to be just the
constraint

ow
op_,

Note that (LD~ ')"'=DL™'. Similarly, with u= —2D?Int, where 7 is the
t-function [16], requiring du/df8, =0, we get the Virasoro constraints

=0: Massive String Equation.

Lt=0, n>—1, (3.3.1)
where
L‘1=k§1<k+%>t2"“63_1 étf,
L0=k§0<k+%> Zkﬂf(zﬂJrl_lﬁ’
© n 2
L-¥, (m%)tzkﬂ—mu:mﬂ e "Bl 63

In ref. [10] such a t-function is identified as the square root of the partition
function of 2-d quantum gravity. The relevance of t-function in 2-d gravity is
considered in ref. [31], too.

Thus we have found both a simple interpretation of the Virasoro constraints
and a connection to the massive string equation: they both amount to saying that
certain symmetry generating vector fields, i.e. the evolution equations, vanish.

Clearly from Eq. (3.2.18b) L_,7=0 implies L,t =0, n =0, because

M _pp-ryprr M (3.3.3)
B, ap_,
which recovers the recursion relation in ref. [10] derived from the loop equation,
which in turn is derived using the KdV hierarchy. Now the nonisospectral symmetry
clarifies the existence of such a recursion relation, which is due to the recursion
operator.

Note that the existence of Eq. (3.2.18a) implies the nonisospectral symmetries.
Moreover the eigenvalues are now parametrized in terms of f,’s so that, as w, or
equivalently u, changes along with f,, in general the eigenvalues also vary. Since
none of the nonisospectral symmetries leave the eigenvalues invariant, by observing
the change of the eigenvalues we can measure how u moves in % = {u}. In this
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sense we can regard f,’s as intrinsic coordinates of %. The Virasoro constraints,

ow . . .
or — =0, are conditions for some hyperspace independent of §, in % so that we
n
can interpret these constraints as saying that w does not depend on the change

of the eigenvalues of Schrodinger operator, Eq. (3.1.1). As a result, (w,;) does not
depend on the change of the eigenvalues, either.

In the Krichever’s algebraic geometrical construction of soliton solutions [17]
a set of eigenvalues determines branch cuts of surface and identifies a hyperelliptic
Riemann surface in Gr'®. The change of eigenvalues corresponds to the change
of the complex structures after imposing SL(2, C) invariance on a complex plane
where all the eigenvalues, which are real and positive definite, are imbedded. Since
L_,,Ly,L; form SL(2,C), we can interpret §,,n=2, as moduli of hyperelliptic
Riemann surfaces* which in this case are infinite genus and the corresponding
Virasoro constraints as the conditions for the independence of such moduli. Since
% can be imbedded into Gr'?, the interpretation of some intrinsic coordinates of
% as moduli of the hyperelliptic Riemann surfaces is perfectly legitimate.

It would be very important to have some field theoretical understanding of
this structure.

3.4. Symmetry Algebra. Note that V,’s in Eq. (3.1.7) form a commuting isospectral
symmetry algebra and that, together with L,’s, form the following algebra:

[LmLm] =(Yl - m)Ln+ma m,n % - 1’
[Vp3Ln]=(p+%)Vp+n’ pgo’ p+ngo,
[VO’L—l} = ”‘%to’
v, v,1=0, p,qg=0. (3.4.1)

p
These can be derived easily from the definitions Egs. (3.1.7) (3.3.2), assuming the
last commuting algebra. The proof for the last commuting algebra can be found
in ref. [32].

We would like to call the reader’s attention to the fact that the above algebra
is not closed. Either without V,, and L_, or just without L_, the above becomes
a closed algebra. Thus there are four different closed subalgebras of (3.4.1), which
include isospectral and/or nonisospectral symmetry algebra. While L,’s act on
the t-function and annihilate it, ¥,’s do not annihilate the t-function.

4. Boussinesq Equation: Two Matrix Model

Naturally, we should expect that a similar analysis can be applied to other
generalized KdV equations. Note that in fact we never need to start with the full
hierarchy because the hierarchy itself is just due to the existence of a family of
symmetries for the generalized KdV equation like as shown in the KdV equation
case. We shall follow this strategy here too.

4 Note that these Riemann surfaces are not the two-dimensional random surfaces for the 2-d
gravity. These are just some auxiliary spaces
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4.1. Loop Operators. To construct the loop operators for the multimatrix model
is not so simple as for the one-matrix model. We do not have any obvious eigenvalue
problems to define the expectation values of the loop operators. Fortunately, even
though we do not have a Hamiltonian operator which corresponds to any well
known physical system like in the one-matrix model case, we shall have a
well-defined formal eigenvalue problem. Let #,,,, = —D™*' +uD™ "' 4 ... be
a differentail operator such that

Ky ¥ =AY, (4.1.1)

where  is the Baker function. From the KP hierarchy’s point of view, this is
legitimate [16].

But the M-matrix model has M different loop operators so that naively
computing the partition function of J#,,,, does not count the expectation values
of all loop operators in an obvious way. We need more structures, but there is no
clear answer. Some speculation to construct the loop operators will be given in
the final discussion.

4.2. Boussinesq Hierarchy and the Symmetries. Let us start with the Boussinesq
equation

i+ 3w —3u?) =0, 4.2.1)
which is a generalization of the KdV equation in the sense that
Mu+DM(Eu" —3u?)=0 4.2.2)

leads to the KdV equation for M =1 and to the Boussinesq equation for M =2.
As before we prefer to use w such that u = w' to get a nontrivial Lie-point symmetry.
Then for w Eq. (4.2.1) becomes

E[W] = + 1w —3w'w’ =0, 4.2.3)

Somehow we could not find the recursion operator for Eq. (4.2.3) directly due to
the second order time derivative. So we need a first order form. Indeed we can
equivalently write Eq. (4.2.3) by introducing v as

Ql[w,v]EW——v’=O
Py[w,v] =0+ iw"” —3w?=0. (4.2.4)

We now need symmetry conditions. Using the L1e—Béick1und operator
0 0 d 6
5—51 +9€1 +951 Wik +€z +9€2 +952 o

we get
X2 =98 — 2.8, =0, (4.2.52)
X2y =9,¢,+322¢8, —3w2,.L, =0, (4.2.5b)

which can be rewritten in a matrix form

,@<€’>E< 2 _9"><§‘>=o. (4.2.6)
& 39-3wW9, 9, J\&
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Note that 2,E(Y") = 0,&(t, x),. ... etc. so that in the (£, x) coordinate

,@=<1 , o 'D>. (4.2.7)
ED *3W/D 6,

For the practical computations we in fact use this representation.
The simplest solutions to Eq. (4.2.6) are three Lie-point symmetries

00

which can be used as seeds for the hierarchy of symmetries. The first two constant
solutions are the seeds for the Boussinesq hierarchy and the last one is the simplest
solution for the other Lie-Bécklund symmetries.

Now we need a recursion operator. After some work we get

A=D"12, (4.2.9)
where
Q?E(%U’D'FDU’ L(l) )5 4.2.10)
L, v'D + 3DV
L= —3D? 4+ 3(uD + Du),
Ly, =3D° —3uD? + D*u) + 3(u’D + Du?) + 3(u"D + Du"), 4.2.11)

and [2,#]¢ =0 so that we have a hierarchy of symmetries defined by #"¢ for
any nonnegative integer n. Due to the existence of two constant &’s we have two
sets of hierarchies, which all together consist of the Boussinesq hierarchy. Thus
we can introduce two sets of time parameters, or flow coordinates, for example,
tane1stans 2> 20, for the evolution equations.

Let W= <W> and
v

ow
W _ | Fanes =2972"“<0>, n20, 4.2.12)
Oty 41 ov 1
at3n+1
ow
s
W _ | Otsnez =w+1( ) n20. (4.2.13)
Ay, | O 0
at3n+2

Note that the n = 0 cases lead to the identification ¢, = x,t, = t. Equation (4.2.13)
for n =0 is nothing but the original Boussinesq equation.
Now we have the Boussinesq hierarchy

Ju ou
wr at%ﬁl =2(,@D—1)"Q<0>=(,@D—1)" at} , n20, (42.14)
O34 1 oW 1 w

Ot s s ot,
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ou Ou
ow_ at3"_+2 =(§D—1)n,@<1>=(@1)-1)ﬂ at? , n=0. (42.15)
Oty s ow 0 ow

03,15 oty

Like in the KdV equation case, the Boussinesq hierarchy is also recovered as a
result of the Lie—Backlund symmetries of the Boussinesq equation.

For such Boussinesq hierarchy with the following generalized Galilean
transformation we can generate the Lie-Bécklund symmetries:

vob=v+te+0(), t,=x,
woW=w+te+0E?), t,=t,
Lye1 2 Eake 1 = bajrr F Qi bagr &+ 0@?), k=0,
P P L STUDE A S 0(?), k=0. (4.2.16)
Similar equations like Eq. (2.8) lead to the solutions of the symmetry conditions,
which are Eq. (4.2.6) and its higher order generalizations arising from the action

of the Lie—-Backlund operator on the Boussinesq hierarchy, Egs. (4.2.14), (4.2.15).
Thus we have

_dw it ow had ow

E =— =t,+ a, ., .t —_—t b, ..t —, (4.2.173)
1 de im0 2 kgo k+1 3(k+1)+16t3k+1 kgo k+1 3(k+1)+2at3k+2
dp b ov ® ov
Ey=— =t,+ Y a, .t — 4 b, t —, (4.2.17b)
2 d8 im0 1 kZ:o k+1 3<k+1)“0t3k+1 k;o k+1%3(k+1)+2 6t3k+2
where
3k+1 3k+2
a = 5 b, = S (4.2.18)

4.3. String Equation and Virasoro Constraints. If we set £, =0, we derive the
massive string equation for the two-matrix model. ¢, =0 is equivalent to this
because of Eq. (4.2.6). Thus the massive string equation for the two-matrix model is

ow
(o)
op_, \¢
Now we can recover the Ising model coupled to 2-d gravity easily as m =3
multicritical point, i.e. t, = — 155, others =0, so that the string equation reduces

4 0 4 (1 3
to x=— 2= —<—u”" —3uy” —~u'? + 2 + w2>. At t, =0, w=0 so that by
270t, 27 2

3
rescaling u — 3u we recover the results in ref. [33]. Other multicritical points can
be also easily derived in a similar way from Eq. (4.2.17b), since we know the explicit
form of the recursion operator.

As before the Lie-Bicklund symmetries will generate other Virasoro
constraints, but the string equation is good enough to determine the 2-d gravity
partition function at given multicritical points modulo the boundary conditions.
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We can get the other Virasoro constraints applying the recursion operator to the

massive string equation to have a hierarchy of evolution equations such that

-1

W _ s OV

, n=z—1 4.3.1)
B, B,
. . . . ow .
Since =0 is the string equation so that — =0 follows from this due to the
N "ow
above recursion relation. With w= —2DInt,— =0 lead to the Virasoro

n
constraints such that

Lt=0, nz—1, 4.3.2)
where
i 4 0 X 5 1, 1
L_. = k+~)t + <k+~>t — — —1yt5,
1 k;)( 3 3k+4at3k+1 k;) 3 3k+5at3k+2 3 1312
d 1 0 b 2 0 1
L,= k+~>t + <k+—)t —+ -,
0 k;)( 3) 3 ot ,;0 3 3k+26t3k+2 9
i 1 0 it 2 0
L- k+~)t 2, (k+_)t 9
kgo( 3 s at3(k+n)+l kgo 3 3“23 3k+nm)+2
1"t 0?
_ : , n=1. (4.3.3)
6k=oat3k+lat3(n—k—1)+2

As before we can identify 3, as the moduli of some auxiliary infinite genus Riemann
surfaces in Gr® so that the Virasoro constraints are due to the independence of
such moduli for w, or equivalently the t-function.

4.4. Symmetry Algebra. It is straightforward to derive the symmetry algebra as
following:
[Ln’ Lm] = (n - m)L

n+m> m,n; _13

[V3k+i’ Ln] = <k + %) V3(k+n)+i> k 20, k+n =0,

[VnL—l]_ —3 3—i i=1a2,
Varsos Varr =0, k120, i j=12. (4.4.1)

Again the algebra is not closed. Once we find out the W-constraints as a result
of symmetries, if there are any, we can add them here. But it is not quite clear
from our investigation that the W-constraints are related as Lie-Bécklund
symmetries. Rather, we suspect that they may appear as some Biacklund symmetries
between differential equations as speculated in the final discussion.
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5. (M + 1) Generalized KdV Equation: M-Matrix Model

Since in principle the explicit computation can be done for each case, we shall
describe the generic features only.

For the M-matrix model we may be tempted to take Eq. (4.2.2) as a (M + 1)'!
generalized KdV equation and construct a system of partial differential equations
with first order time derivative as following:

Wy =W,
M.)2 = W’3
Wy = — 2wy + 3w, (5.1)
Then applying the Lie—Béacklund operator we get 0¢ =0, where 2 is simply
0, -D 0
0 6, —-D - -
e 0 0 a4 - |, (5.2)
IDP—3wiD 0 0 - §

But it is not clear how one can get such an equation from the Lax pair
representation of the generalized KdV hierarchy, even though it is most likely to
be true. Therefore, instead of using Egs. (5.1), (5.2), we shall use the generalized
KdV equation arising from the Lax pair representation.

Anyhow, even for the Lax pair representation we always have the (M + 1)®
generalized KdV equation as a system of M equations which involve only the first
order time derivatives. For example, in the M = 3 case for &, in Eq. (4.1.1) we have

Uy == 20,
l‘)z = U’3,
vy = — v — Vv, — 20,0, (5.3)

Thus the generic feature is not much different from Eq. (5.1). Unfortunately, now
9 is not so simple that the recursion operator will be also complicated.

Again we shall have M Lie-point symmetries as M trivial constant solutions
for the corresponding 2 =0 so that we can generate a hierarchy of symmetries
for the (M + 1)** generalized KdV equation as

0
ow 0 Y1

= D=t G=11, (54)
at(M+1)n+i at(M+l)n+i .
Wy .

0
where # = D~ ! & is the recursion operator, {w;} are generic solutions with w), = u,
and M sets of time parameters are chosen as ¢, , ;,,,;,n 2 0,M 2 i 2 0. Equation

(5.4) can be regarded as (M + 1)™ generalized KdV hierarchy. At this moment we
do not know any good systematic way to derive such a recursion operator, but
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we can always derive in a tedious way because we can guess the generic form for
the given generalized KdV equation. ~

Now we can get the Lie—Bédcklund symmetries as solutions of 2¢ =0 with the
following generalized Galilean transformation,

wi =W =w + e+ 0E), =t
wy =Wy =w, + e+ 0@E?), t=x,

i 2 .
t Pl ipri = Lrs i+ i T Qilrs s n+i€ T OE°), k20, M2iz1,

M+1k+i
(5.5)
then the Lie—Backlund evolution equations are
dWl k= o0, i=M awl
T =t+ Y o pes Dtig (4.2.17a)
e |e=0 k=0,i=1 b+ 1k +i
dw, k=ooi=M ow,
52=7 =+ ) ak,it(M+1)(k+1)+ia , (4.2.17b)
€ |g=0 k=0,i=1 Lo+ i+
ow pn+1 ; 7
and ﬁ =R#"""¢, nz — 1. To determine a, ; from the corresponding symmetry
n

conditions we need to know the explicit form of Z, but at least we can expect
a,;0c(M+ 1)k +i. Again we should get the string equation by claiming the

_ L . ow . .
vanishing Lie-Bédcklund equation —— =0 and the Virasoro constraints from
-1

%=O, n= —1, with w; = —2DIn 7 such that L,7=0. It is not so difficult to

ap,

show that L,’s actually form a Virasoro algebra because we do not need to know
the explicit form of 2 to do this. We would not bother writing them here. As
before the full algebra with the generalized KdV flows is not closed, but now it
becomes closed at M — oo limit because the coefficient of ¢,t, term in L_, is

. 1 .. . .
proportional to va Thus now we understand the origin of Virasoro constraints

in all the multimatrix models.

6. Discussions and Conclusions

We have shown so far that the derivation based on Lie-Bécklund symmetries is
a very powerful way to obtain the string equation and to understand the geo-
metrical origin of the Virasoro constraints. The Lie-Bicklund framework easily
produces the KdV flows, which are the Hamiltonian vector flows, and hence
essentially shows integrability. But we have also found in the same way another
intrinsic geometrical structure based on the coordinates {f,} on the space
U = {u(x,T)}, which is responsible for the existence of the Virasoro structure. It
would be interesting to see any relation between such a structure and the one
given in ref. [31].

The geometrical interpretation of our results is therefore the following. Now
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we can interpret the Virasoro constraints, i.e. the vanishing of certain evolution
generators, as independence of the moduli in the infinite Grassmannian viewed as
a Universal Moduli Space [34, 16]. Note that the recursion operator £ interpolates
different multicritical points of a given matrix model, which can be seen by
comparing the string equations at each multicritical point. For example, see

ow
Eqg. (3.2.17) for the one-matrix model. For the other multimatrix models, — =0

n

leads to a similar observation. Thus in this sense it acts on Gr™ * V) for the M-matrix
model, using Krichever’s construction [17,16].

From this point of view we expect that there should be some action which
changes the moduli of a given generic Riemann surface, interpolating Gr™ to
Gr™, We expect that such an action is responsible for the possible extra constraints,
which have been conjectured to be W-constraints [10,11]. For example, from
Eq. (4.2.2) one may suspect that there may be some relation between one-matrix
models and two-matrix models. One can imagine a Biacklund transformation which
maps a solution of the KdV equation to a solution of the Boussinesq equation.
Using such a Bicklund transformation, in principle we can rewrite the Virasoro
constraints of the one-matrix model in terms of the t-function of the Boussinesq
hierarchy. These may become new constraints for the two-matrix model. These
new constraints would not look like Virasoro constraints. Thus we can suspect
them to be W-constraints. There is some circumstantial evidence for this
expectation. Some preliminary results say that, compared to the W-constraints
proposed in ref. [11], some terms are indeed the same. The details will be discussed
in a separate paper [35].

If we accept this circumstantial evidence, we can suspect that the W-constraints
of multimatrix models may be related to the Virasoro constraints of lower
multimatrix models so that for the M-matrix model we can have (M — 1) sets of
extra constraints and no other constraints for the one-matrix model. This precisely
accounts for the correct number of sets of constraints for a given multimatrix model.

Presumably in this way we can also construct the M loop operators for the
M-matrix model. The expectation values of loop operators for the M-matrix model
are the expectation values of loop operators including those in the lower matrix
model written in terms of the t-function of (M + 1) KdV hierarchy.

Perhaps the investigation of such a structure may be an important clue even
for the study of nonperturbative aspects of critical string theory based on the
(compactified) Universal Moduli Space of Friedan and Shenker [34].

Some evidence that the infinite Grassmannian may be a nice place to study
the true nonperturbative structure is that for the subspace Gr™®* ! the symmetry
algebra is not closed, but becomes closed at M — co limit. Note that Gr™®* 1) can
be imbedded into the infinite Grassmannian for any M. This suggests that there
may be a larger closed symmetry algebra like the Virasoro—-Kac-Moody algebra
[36], which will count the true symmetry structure of the nonperturbative 2-d
Quantum Gravity.

Another attempt to enlarge the symmetry is given in ref. [9], but the final
answer is still elusive.

Note that our construction clearly shows why the (M + 1)'" generalized KdV
hierarchy is obtained from the KP hierarchy by setting certain ’s to zero, namely
the restricting condition f,,,,, =0 so that the remaining coordinates are
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tor+ ki = 1,2,..., M [15]. Thus this may be more evidence that the KP equation
is an important place to further investigate, and may even provide the structure
of the ¢ =1 cases.

The appearance of a KdV hierarchy from the point of view of topological
gravity [37-40] is still elusive, though Eq. (3.1.2) suggests that there may be an
explanation why all such structures are related to topological gravity. Somehow
the existence of the scaling operators should explain the existence of the KdV
flows. We also need to understand what kind of topological property is responsible
for the other Lie-Bidcklund symmetry generators related to the Virasoro
constraints.

There are still many questions which need further study, but we believe that
the Lie-Bécklund symmetries for integrable models will lead to some clues to
reveal the deep nonperturbative structures of critical string theory.
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