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Abstract. For an arbitrary complex linear semisimple Lie group G, we consider
Hopf algebras of the deformations of the formal and algebraic functions on G.
The Hochschild and cyclic homology of these Hopf algebras are computed when
the value of the deformation parameter is generic.
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1. Introduction

According to Gelfand, the category of locally compact topological spaces is
equivalent to the category of commutative C*-algebras. Also, the category of affine
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schemes of finite type over a field is equivalent to the category of finitely generated
algebras over the field. Since the study of commutative algebras is the same as
that of spaces, it is reasonable to interpret the study of non-commutative algebras
as studying some "non-commutative spaces," and try to generalize the methods
for spaces to be applicable to algebras. Cyclic (co)homology [8,44,14,27] generalizes
the de Rham cohomology to the non-commutative case, and it is sometimes
referred to as non-commutative differential geometry.

In this paper we compute the Hochschild and cyclic homology of quantum
groups, i.e., the quantized rings of functions on semi-simple Lie groups. This is
interesting in several aspects. First it enriches the study of non-commutative
differential geometry. Even though cyclic homology had been invented as
generalized differential geometry and has found many applications, there is still a
lack of interesting examples. Previously the only quantum spaces (in the spirit of
Manin [31]) whose cyclic homologies were known were non-commutative tori
[8, 43], quantum affme spaces [32] and SUh(2) [33]. However quantum groups
[11,21] present some of the most interesting examples of non-commutative spaces.
Quantized universal enveloping algebras, which are more or less dual to what we
are studying in this paper, were discovered in the course of studying integrable
systems. They have been shown to have intimate relations with many other areas
of mathematics and physics, e.g., link invariants [23], conformal field theories
[1, 34, 30]. But most of what we know about quantized universal enveloping
algebras concerns their representations, and their relations with other fields are
simply observed without being explained. The knowledge of the structure of
quantum groups is likely necessary to understand all these. A study of
non-commutative differential geometry will provide much needed insight into the
geometrical and topological properties of quantum groups.

The main phenomenon concerning the Hochschild and cyclic homology of
quantum groups is the following. As is well-known, any deformation of the
multiplicative structure of the algebra of functions on a manifold gives rise to a
Poisson structure on the manifold; the symplectic leaves of this Poisson structure are
in many senses good analogues of the "points of the non-commutative spectrum"
of the deformed algebra. It has been established in several works that the
non-commutative algebraic geometry of quantum spaces is very close to the
geometry of "the space of symplectic leaves," i.e., the geometry of the quasi-
classical limit of the quantum spaces, if the value of the deformation parameter is
generic. We should mention the work of S. Levendorski, Y. Soibelman and L.
Vaksman [26, 41, 42] which asserts that the set of unitary representations of the
quantized ring of functions on a compact semisimple Lie group is naturally
isomorphic to the set of symplectic leaves of the Poisson structure. Also the
approach to non-commutative algebraic geometry suggested by A. Rosenberg
seems to give analogous results (in computed examples) [36]. Recall that the
Hochschild homology of the algebra of algebraic functions on a non-singular affme
variety is isomorphic to the space of differential forms on the variety. Thus the
Hochschild homology of quantum groups may be viewed as the space of quantized
differential forms. Our main result is that when the value of the deformation
parameter is generic this Hochschild homology is equal to the space of "forms"
on the "space of symplectic leaves" of the Poisson structure. The structure of
symplectic leaves is of course well-known. When G is a compact Lie group with
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maximal torus T, the Poisson structure on G descends to the one on G/Γ, and its
symplectic leaves are the Bruhat cells [39]. When G is complex semi-simple the
answer is similar.

Note that while the Hochschild homological dimension of C[G] is of course
the dimension of the group, the analogous dimension for the quantized C[G] is
the rank of the group. As has been mentioned by A. Connes, this phenomenon
might give a more appropriate version of his approach to the various models of
filed theory as "non-commutative Yang-Mills models" because when the
Hochschild homological dimension drops, we get rid of various divergences [9].

Note also that the Hochschild and cyclic homology of the rings which are
deformations of the commutative rings is a very interesting subject. In all reasonable
cases the same phenomenon takes place: the non-commutative geometry is
isomorphic to the geometry of the quasi-classical limit, for example, the
(ρseudo)differential operators on a manifold [2,4,46], universal enveloping algebra
[15, 22], and non-commutative tori [8, 43]. But the explicit form of this
isomorphism is highly non-trivial. For the ring of differential operators on a
manifold, this explicit isomorphism implies the Riemann-Roch theorem; for the
ring of symbols of pseudo-differential operators, the analogous statement is very
likely to imply the index theorem [16, 46]. We hope that these statements are the
partial cases of a conjectural generalized Riemann-Roch theorem which measures
the "non-triviality" of the isomorphism of Hochschild and cyclic homology of
the quasi-classical limit and that of the quantum limit. In this respect, the quantum
groups (or rather the quantum homogeneous spaces) may provide another
non-trivial partial case.

The paper is organized as follows. In Sect. 2 we recall the definition and basic
properties of Hochschild and cyclic homology. Here we give a new complex for
computing the Hochschild homology of Hopf algebras. Section 3 describes the
quantum groups we are going to study. The rest of the paper is mainly devoted
to the computation of the Hochschild homology of quantum groups. In Sect. 4
we introduce a spectral sequence, which converges to Hochschild homology
of quantum groups. Its E2 term is the Brylinski homology of the group regarded
as a Poisson manifold. It is then identified with Lie algebra homology of g*,
the dual of the Lie algebra g of the corresponding group G of the quantum group,
with coefficient in the functions on G. The geometrical meaning of the action is
given, and it is shown that it is related to the standard Lie algebra action on some
very simple induced representations. We compute this Lie algebra homology for
both formal and algebraic functions in Sect. 5. We then show in Sect. 6 that for
both formal and algebraic cases the spectral sequence of Sect. 4 is degenerate at
E2. This means the quantum limit is determined by the quasiclassical limit. Thus
the Lie algebra homology actually yields the Hochschild homology. After this the
cyclic homology is readily obtained. In Appendix A we give some of our conventions
about the calculus on Lie groups. Appendix B contains various explicit calculations
for G = SL(2,C).

We are grateful to J. L. Brylinski, A. Connes, V. G. Drinfeld, B. Enriquez,
E. Getzler, M. Goulian, N. Yu. Reshetikhin for helpful discussions. We are especially
indebted to W. Schmid for consultation on the n-homology of Harish-Chandra
modules. In our first draft there was a gap in the proof of the degeneracy of a
spectral sequence. We wish to express our deep gratitude to J. Block and E. Getzler
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for pointing that out to us. P. F. would like to thank A. Jaffe for his encouragement
and support.

2. Definitions of Hochschild and Cyclic Homology

Here we recall the definitions and basic properties of Hochschild and cyclic
homology [8, 44, 14, 27]. Let A be an associative algebra over a commutative unital
ring fe, fccA In this paper /c = C, or C((/ι)), the ring of Laurent series. The
Hochschild homology of A, denoted by HH^(A\ is defined to be the homology of
the following complex

-., (2.1)

where Cn(A) = A®n + l, and b\Cn(A)-+Cn-ι(A) such that
n-l

= Σ (-iy«
i = 0

4-(-l)Xα0®α1(x)...(x)αn_1. (2.2)

The cyclic homology of A, denoted by HC+(A)9 is defined to be the total
homology of the following double complex

(2.3)

where B\Cn(A)^Cn + 1(A) such that

n

~ $'-®an®aQ® '®ai_1

If k = C((h)) and A is h-adically complete, then by the tensor product we will
always mean fc-adically completed tensor product.

Let X be a non-singular affine variety, A = C[X], Ωn(X) the n-forms on X,
H^R(X) the nth de Rham cohomology of X. The following result is well-known.

Lemma (2.1).
1) (Hochschild-Kostant-Rosenberg) HHn(A) = Ωn(X\
2) HCn(A) = Ωn(X)/dΩn~ l(X)φ^DR2(X)® #n

DR4® -.

This shows that in the commutative case the cyclic homology measures the de
Rham cohomology of the space, thus the name "non-commutative differential
geometry."

We are especially interested in certain Hopf algebras. Let us recall
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Definition (2.2). A Hopf algebra A over k is a k-bimodule A together with morphisms
m, i, Δ, ε, S,

A® A—-+A
ε i

A — » k — + A,
s

(2.5)

such that they satisfy the following axioms:

1. Associativity:

w (m® 1) =

2. ί/mί:

A® A® A

A® A

k®A

A® A

A®k >A®A

(2.6)

(2.7)

3. Coassociativity:

A®A

\®Δ *
A® A >A®A®A

(2.8)

4. Counit:

A®A

A® A >k®A

(2.9)
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5. Connection Axiom:
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A® A

[Δ®Δ

\ m = (m®m)'σ2ι (Δ®Δ), A® A® A® A

<T23

(2.10)

A® A® A® A >A®A

where σ23 means the permutation between the second and the third variables;

6. Antipode:

= (S®S)-σ Δ, A® A

A® A

A® A

|S<8>S

• m σ (S®S), A®A

A®A -

A®A

m- -Δ = i-ε,

A®A

A® A

+ A

-> A
s®\

(2.11)

(2.12)

(2.13)

•A® A

We will call m, i, A, ε, S, respectively, the product, unit, coproduct, counit, antipode
of Hopf algebra A. We usually omit the symbol m,ί when there is no confusion.

Example (2.3). Let G be complex algebraic group, g its Lie algebra, (7(g) the
universal enveloping algebra, C[G] the algebraic functions on G.

U(g) is made into a Hopf algebra by

Vxeg, Δ(x)= l®x

ε(x) - 0,

S(χ)= -x. (2.14)
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C[G] is made into a Hopf algebra by

V/eC[G], 0,/zeG, (Δ(f))(g,h) = f(gh\

\ (2.15)

where e is the identity of G.
The formal functions on G in the vicinity of identity, C^G), can be viewed as

a Hopf algebra dual to the universal enveloping algebra (7(g).
We now give a new complex for Hochschild homology of Hopf algebras.1 Let

mr9ml denote respectively the natural right, left multiplications of A on A, i.e.,
mr(a)b = ba, m^cήb = ab. Define a right action of A on A by

p(a) = (mr ® m,)(l ® S)Δ(a). (2.16)

This obviously defines a right action since A is algebra homomorphism and S is
antihomomorphism. To be more specific,

p(a)x = £a;xaj9 (2.17)

where Δ(a) = £ a{ ® aί? and άs — S(ά).
ί

Consider the following complex (C.(A\d}\

c ^ c ^ . . . , (2.18)

where d:Cn(A)-*Cn-ι(A\ such that

n-l

-f X (-I) ία0®-(g)α ίfl ί + 1(

®α, J_1. (2.19)

It is straightforward to check that d2 = 0, thus it indeed defines a complex. Note
that in this paper we also use d to denote the exterior derivative on G. We hope
there is no confusion as to which d we are referring to.

ξ(x®a®b(S) ®c)= X cs

ί ls

ja
s

ίx®ai®bj® ~®ck9 (2.20)
i,j,...,k

where Δ(a) = £ α (x) δt , etc.

1 This complex might have been known to other people, but we are unable to locate it in the
literature other than [13]
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Proposition (2.4).
1) ξ:CH(A)^Ca(A)9

2) ξd = bξ, i.e., the following diagram is commutative,

Cΐ(A)

Proof. 1) We define £': Cn(Λ) -+ Cn(,4), by

We claim that £•£' = ξ' ξ = 1. Let us check it for rc = 1, the general case can be
shown similarly. Denote Δ(a) = YJAi®Bi9 Δ2(a) = (1 ® A)(a) = (4® l)(α) = £0,-®
fcyφcy, then, ' j

j j
where we have used m-(S® l) 4 = ε, and (ε® l) Λ= 1. Thus ξ-ξf = 1. Similarly,

2) Again we only check the n = 1 case.

/ \
ξ - d(x (x) α) = α Y J5*.χy4 — ε(α)x = Y JB* xA.. — ε(α)x,

\ j J j
and

/ s \ s ί \

Wegetξ-d = d'ξ.

Note that (2.16, 2.17) is the standard complex for the functor Tor,,.. We have

Corollary (2.5).

HH+(A) = H+(C.(A\ d) = Tor£μ, /c),

where A is considered as a right A-module via p defined in (2.15), and k is considered
as a left A-module via the counit ε.

It is this new complex that we are going to use for computing the Hochschild
homology of quantum groups. The new functorial interpretation will be helpful
later in Sect. 6.

3. Quantum Groups

By quantum group we mean the Hopf algebra (over C[[/z]]) of the formal
deformation of the functions on a group. We will start with a connected, complex,
semi-simple Lie group G and consider the formal deformation of formal functions
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Cf(G) and algebraic functions C[G], resulting in respectively quantum formal
group C{(G) and quantum algebraic group Cή[G]. The data we need for the formal
deformation is a Poisson Lie group structure on G, which we refer to as the
quasίclassical limit of quantum groups. Dually this is equivalent to specifying a
Lie bialgebra structure on g, the formal deformation of which results in the
quantized universal enveloping algebra Uh(g).

We start with a description of the quasiclassical limit of quantum groups. Much
of what we state here can be found in [12, 28].

Definition (3.1). A Lie group G is called a Poisson Lie Group if it is a Poisson manifold
such that the group multiplication G x G -> G is a Poisson map, where G x G is
equipped with the product Poisson structure. The Poisson structure is specified by
a bivect or field π, the Poisson tensor,

V/, 06C°°(M). (3.1)

A map φ:M-+N between two Poisson manifolds is a Poisson map if

{Φ*f,Φ*g}M = {f,g}N
Definition (3.2). Let g be a Lie algebra over C, g* iίs dual We say that (g) is a
Lie bialgebra if there is a Lie algebra structure on g* such the map <5:g-> Λ 2 g
dual to the Lie bracket [,]: Λ2g*->g* is a 1-cocycle with the adjoint action of g
on Λ2g.

The following theorem states the relations between Poisson Lie groups and Lie
bialgebras.

Theorem (3.3). [11]
1) Let G be connected and simply connected, then there is one to one correspondence
between Poisson Lie group structures on G and Lie bialgebra structures on g;
2. Let G be connected and semi-simple, then every Poisson Lie group structure on G
has the following form:

π(g) = lg*R-rg*R, (3.2)

where Re Λ 2 g^ /\2TG(e\ #eG, l^ and rg* are push-forward maps of left and right
translations, and R is such that

<#,#>:= [#12,#13] + [Λ12,Λ23] + [Λ13,K23]e Λ3#
is invariant under adjoint action o/g. (3.3)

The corresponding Lie bialgebra (g, δ) is given by

δ(x) = zdx(R\ Vxeg, (3.4)

where ad is adjoint action. Condition (3.3) ensures the dual map of (3.4) satisfies
Jacobi identify.

3. For the Lie bialgebra (g, g*) there is a unique Lie algebra structure on the vector
space g Θ g* such that

(a) g>S* are Lie subalgebras,
(b) The symmetric bilinear form < , ) on g 0 g* given by

<*ι + yι,X2 + ̂ 2) = <xί9y2> + <*2»3>ιX Vx 1,x 2eg, and yl9

is invariant.
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The Lie algebra structure on g φ g* is given by

[x,y] = -adJOO + ad*(x), Vxeg, yeg*, (3.5)

where ad* is the coadjoint action. This Lie algebra mil be denoted by g Ng* as in
[28]. (g,g*,g Ng*) is called Manin triple.

We now describe the Lie bialgebras we are going to study. First of all, a few
words about notations.

G is a connected, complex, semi-simple Lie group, g its Lie algebra, K is a
compact real form of G, with Lie algebra k, τ0 the complex conjugation of g with
respect to k, B(,) the Killing form of g, h a Cartan subalgebra of g, Φ the root

system of (g,h), Φ+ a choice of positive root system. Let g = h φ l ©gα I be the
V α e Φ /

root space decomposition of g. For each αeΦ we may choose £αegα, and //αeh,
such that [19]

(a)
(b)
(c) [£.,£,] = 0 if α
(d) [Ea,Eβ] = NΛtβEΛ+β if α + /?eΦ, where NΛtβ are non-zero real constants

such that N_ β f _0=-ΛΓ β t 0; also Natβ = Nβty = NγtΛ9 whenever α,β,yeΦ,
α + β + y^O;

(e) τ0(EΛ)=-E_a,τ0(Ha)=-Ha.

Consider the complexification of g,gc = C(χ)Rg = g©g as R vector space. We
choose the complex structure J on gΘg to be such that J(x,y) = (JQX,J0y\ where
J0 is the complex structure of g. We identify g as a real form of gc:g<=->g®g,
xh->(x,'τ0x). The complex conjugation of gc with respect to g is σ(x9y) = (τ0y,τ0x).
Obviously k φ k c=_> g © g is the compact real form of gc, the corresponding complex
conjugation is τ(x, y) = (τ0x, τ0y). The Cartan involution is θ = τσ = στ,
θ(x, y) = (y, x). The Iwasawa decomposition of gc is gc = kc φ ac © nc, where

ac={(x,-x)|xeh}, (3.6)

andn± = 0g±α.
α > 0

Let tc = {(x,x)|xeh). Then hc = tc©ac is a Cartan subalgebra of gc. For every
αeΦ(g,h), we have α1,α2eΦ(gc,hc), such that

α1^, -H) = <xl(H,H) = <x(H)9

α2(H, -H) = - α2(H,//) - α(#), VHeh. (3.7)

Actually gf = C(£α,0), and gf = C(0,£_J. This obviously exhausts all the roots
of (gc, hc). We say the root αf, i = 1, 2 is positive if and only if α is positive. Φ(gc, ac)
and Φ*(gc,ac) are those of (gc,hc) restricted to ac, they coincide with Φ, Φ+, but
with multiplicity 2. Note with this choice of Φ + (gc, ac), nc corresponds to negative
roots. Let

P= Σ *; ρl= Σ α''>' = U; pa- Σ α; (3.8)
αeΦ + (g,h) αeΦ + (g,h) αeΦ + (gc,ac)
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we have natural identification pa = p1 + p2, specifically,

pΛ(H, H) = 0, pΛ(H, -H) = 2p(H). (3.9)

Lemma (3.4). The bilinear form < , > on gc ̂  g 0 g defined by

<(*ι,yι),(*2,}>2)>= &B(xι,x2) -B(yl9y2)) (3.10)

identifies a c©n c with k*.

Proof. It is straightforward, we simply give the dual bases. Let α j? j = 1, 2, . . . , rk g,
be the simple roots, bjk = B(H^H^ b^1 the matrix element of (bjk)~l. HjyE±Λ,
where α > 0, is a basis for g. The following are the bases of kc and ac © nc, and
they are dual to each other:

kc:

(Hj9Hj) k9-
(2£_α,0) ' (* }

(E_ α ,E_ α ) (0,-2£α)

where α > 0.

Lemma (3.5)* The Lie bracket o/g*^a c ©n c , [,]:Λ2g*->g* induces a map
δ:g-+ Λ 2 g of the following form:

adx(R), Vxeg, (3.12)

and

R = * Σ E α Λ E _ α . (3.13)
^α>0

The proof is left to the reader. We write down the map δ here:

) = £ _ β Λ f ί β — - Σ Nβι1E_βΛE_Γ (3.14)
2 2/?,y>0,0 + y = α

where α > 0.

Lemma (3.6). For any xeg = kc c gc, yeg* ̂  a cφn c c gc,

[x,y]:=-(adj();)-ady*(x)), (3.15)

coincides with the Lie bracket ofgc = k c©a c©n c.

Proposition (3.7).
1) (kc, ac © nc, gc) is a Manin triple',
2) (G, π), π(g) = lg*R — rg*R,for geG, is a Poisson Lie group.

Definition (3.8). A Poisson Hopf algebra is a commutative Hopf algebra with a
compatible Poisson bracket, i.e., {a,bc} = b{a,c} + {a,b}c. We also have the dual
object, co-Poisson Hopf algebra.
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Theorem (3.9). [11]
1) The Lie bialgebra structure (g,(5) induces a unique co-Poisson Hopf algebra

structure on (7(g);
2) The Poisson Lie group structure (G, π) induces a unique Poisson Hopf algebra

structure on C[G], and on Cf(G); Cf(G) is dual to l/(g).

This gives the quasiclassical limit of our quantum groups.

Definition (3.10). A quantization of Poisson Hopf algebra A0 over C is a Hopf
algebra A over C [[/*]] such that

(a) A/hA = A0 as Hopf algebra over C,
(b) A is a free C[[/z]]-wodw/£,
(c) Vα, be A, (ab — ba)/hmod(h)= (αmod(/ι), ft mod (/z)}, where {,} is the

Poisson bracket of AQ.

The notion of quantization of co-Poisson Hopf algebra is similar.

Theorem (3.11). [11] The co-Poisson Hopf algebra (U(g),δ) has a unique
quantization UΛ(g).

This is the quantized universal enveloping algebra of Drinfeld and Jimbo
[11,21].

Corollary (3.12). The Poisson Hopf algebra (Cf(G), π) has a unique quantization

Theorem (3.13). The Poisson Hopf algebra (C[G],π) has a quantization Ah[G~\.

Definition (3.14). Let C{(G) be the h-adic completion of Af

h(G)®C[[h]]C((h)) and
Ch[G] the h-adic completion o/^[G]®C[[fj]]C((/0).

See [31, 29, 35] for more discussion of Cft[G]. It is called quantum coordinate
algebra there. For the purpose of this paper we do not need an explicit construction
ofCΛ[G].

Example (3.15). G = SL(2, C), g = s/(2, C).

t/h(g) is a Hopf algebra generated by H,E+, E~ via

em

=-H, S(£±)=-e±fΈ±. (3.16)

Ch[G] is a Hopf algebra generated by a,b,c,d via

ab = e~ hba, ac = e~Hca, db = ehbd, dc = ekcd,
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be = cb, ad-da = (e'h - eh)bc, ad - e'hbc = 1,

4a i)-( χ ί) <3 ">\c d/ \c d/ \c a)

where " indicates matrix multiplication,

| = α, S(ft)=-Λ, S(c)=-έΓ*c.

4. A Spectral Sequence

We start the computation of the Hochschild and cyclic homology of quantum
groups in this section. Our major technical tool is the spectral sequence.

First a remark about notation. Note we have natural identification Kc ^ G.
In this and the next section we will use Kc to denote the complex Lie group G
and reserve G for the real Lie group structure of G. All Lie algebras are complex
Lie algebras and we will use the identification g £ kc, g* = ac0nc without further
notice.

We will denote quantum group C{(XC), or CΛ[XC] by A and the corresponding
undeformed Hopf algebra by A0. The h (Planck constant) introduces a natural
filtration in the Hochschild complex. The associated spectral sequence has
£* = HH#(A). In this section we identify E2^ as Lie algebra homology

Note as vector space over C, A = C((h))®Cy40, therefore

C ( Λ\ — A (\(\ A (\?\ ... (\?\ A f>~> C*((Vι\\ (\ί\ (~* ( A \ (A 1 ̂
n\"^) — '^ ^^C((h))'^ ^^'Ciίh')) ^^C((h})'^ ~~~ ^^\\// ^ώ'C n\'/^0/ \ )

as C vector space. The Planck constant introduces the filtration

which obviously makes (C.(A),d) into a filtered complex. Intuitively we can
write d = d0 + hd1 -h h2d2 -f and the filtered complex as

C0(A0) dμ0) C2(A0)

hd.

do <*o <*o (4 31
hC (A \ < hC (A \ < V^C (A \4— .. ' V^ J/tl\^rΛ/~\.Q) ~ ftV_^ ι I /Λ.r\) ~ i ti_χ Λ \-'*0/

h2C0(A0) :

Actually dn is well-defined only when d0 + hdt H 1- Λ"~ 1dn_ ί = 0. That is exactly
the situation when we use dl,d2 as it is in general for spectral sequence.
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It is quite obvious that d0 reduces all the computation to that of A$9 thus
E* = H+(C.(A\do) is simply the Hochschild homology of A0. From Hochδchild-
Kostant-Rosenberg theorem we have

Lemma (4.1).
E>=HHn(A0) = Ωn(Kc),

where the differential forms take algebraic or formal coefficients.

The main result of this section is the following theorem.

Theorem (4.2).
E2

n=Hn(g\AQ\

i.e., the E2 term is the Lie algebra homology of g* = ac@nc with coefficient in A0.
For any ^feg*, the action of X on A0 is

where pa is the half sum of the positive restricted roots and σ0(X) coincides with the
infinitesimal left translation o/Xeg* c:gc on

Here C?(GC) denotes either Cf(Gc) ( formal functions) or Cα(Gc) (rational functions
on GC which are regular on KCACNC) depending on whether AQ is formal or algebraic
functions on Kc.

The rest of the section is for the proof of this theorem. We will identify the
complex (JE.1,^) as the complex for the Lie algebra homology /^(g*, AQ\ and
then give the geometrical meaning of the g* action on A0. Let us introduce a few
notations. Ia,a= l,2,...,dimg, is a basis for g; Ja the dual basis; Xl

a(Xr

a) the left
(right) invariant vector fields on Kc such that Xl

a(e) = Xr

a(e} = Ia\ω{(ωa

r) the left
(right) invariant 1-forms on Kc such that ωa

t(e) = ωa

r(e) = Ja. Δ,S,ε denote the
coproduct, antipode, and counit of A;40,50,ε0 those of A 0 ;x*y the product in A
and xy that of A0. We identify A ̂  C((/z))®cA0 as vector space over C.

Lemma (4.3). V/o^eAo^ Ej-^Ej has the form

dί(f0®fι)=-(XrJi)(e)(Ya-fa)f0, (4.4)

where

yfl/0 = <^co>rf/0>, (4.5)

/ = <MβO. (4.6)

Proof. Let Λ(f^ ) = ̂ Aj® Bp since ε(f1 ) = ΣAj®BSj we have

j i

d(fo ®Λ) = p(/!)/0 - ε(Λ)/0 =
j

= h Σ V? {/o, aj} - h Σ {aj, V? }/0 + o(h2),
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where Δ Q ( f l ) = Σ α,-®^. dl is the h linear term of this. Thus we get
j

Note on Lie group we have df = ω^(Xl

af) = ωa

r(Xr

af). Therefore

fcJ°K /o) = Σ <π> < Λ d

= ( y/0) Σ J|m K (e"°0) - ajgWjg-1)

= (y/0) lim -Me"-) - Λ(e)) = (A ;/ι

where we have used b*°(g) = bj(g~ *), and Σ aj(g}bj(h) = f ι ( g h ) . On the other hand,
j

where

-
tS

Thus

where [/β,/6] =fablc, and we have used [A^XJ] = - fc

abX'c,dωc

r=
l

Ίf<abω° Λ ωj.

•
Lemma (4.4).

w/iere σ(Jα) = 7α — /α, so σ defines a representation o/g* on A0.

Proo/. It is simple calculation. We remark that [7*, 7&] - Af Fc, where Λf is the
structure constant of g*, is equivalent to the requirement that the Poisson bracket
defined by {/ l9/2} = (π,dfι Λ d/2> satisfies Jacobi identity.

Consider the Lie algebra homology of g* with coefficients in A09H^(g*9A0)9

where g* acts on A0 via σ. It can be computed by the standard complex

. , (4.8)
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is such that

= Σ (-i)'~1

i = l

+ Σ (-1Γ''"1 Λ .. Λ Λ (4.9)

And we have seen that ££ = H+(Eϊ, dj, with E^ = HHn(A0)^Ωn(A0)^A0 ® Λ"g*.
Define a map j/:ff/fn(,40)->y40® Λ"g* by

's(n)

(df2)(e) Λ .- Λ (d/B)(e)), (4.10)

where Sn is the permutation group, /(s) is the length of the permutation, e is the
identity of the group Kc.

Lemma (4.5).

1) The following diagram is commutative

ί - X n ® Λ V ^ -

2) >/ introduces an isomorphism of complexes.

Proof. 1) Suffice it to check for n = 2. We will use —

h linear part of d. dh
d for dl since ̂  is the

- /o ® Λ */z + e(/2>/o ® /i

2*/l~fi(/l)/0®/2)

/0 ® (d {Λ , /2

This will equal dg, η(f0^>f1 (x>/2 — /o®/2®/ι)> provided

Actually,
(4.Π)
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The second term vanishes since n(e) = 0, and (ff l π)(e) = ad, (R) — δ(Ia\ thus
Λ Q

 f l

(df,)(e) Λ (df2)(e)y = J\I

2) Actually η = Γ-ξ, where ξ is the isomorphism between the new and the
standard complexes for the Hochschild homology of Hopf algebras as
defined in (2.18), and Γ is the Hochschild-Kostant-Rosenberg isomorphism

r\HHn(A0)^nn(A0) in Lemma (2.1), given explicitly by

lί-Wo®/,^ (4.12)
seSn /

Sn is the permutation group and l(s) is the length of the permutation.

We therefore have proven the first part of the main theorem.

Proposition (4.6).

E* = //π(g*, AQ\ where g* acts on A0 by σ as in Lemma (4.4).

Remark. In [3] Brylinsky defines a complex associated with any Poisson manifold.
We remark that the complex (E.,d^\ which we have identified with the standard
complex of the Lie algebra homology //^(g*, A0)9 is isomorphic to the Brylinsky
complex associated with the Poisson Lie group (Kc,π). This is most evident if we
use the standard complex for the Hochschild homology.

We will now give the geometrical meaning of the action σ of g* on A0. Recall
that our Lie bialgebra (g,g*,g ixg*) is (kc,ac@nc,gc), and the corresponding local
double Lie group [28] (G, G*, G ex G*) is (Kc, ACNC, Gc). We observe that Ya is the
right dressing action [28, 39] of the Poisson Lie group (G, π). By a result of Lu and
Weinstein, we have the following

Lemma (4.7) [28]. Ya coincides with the infinitesimal left translation of Jαeg* c gc

on the open Kc orbit of the Gc homogeneous space GC/ACNC. Therefore the Ya

action on A0 coincides with the left translation by g* c gc on

, (4.13)

where C?(GC) denotes either Cα(Gc) or Cf(Gc) depending on whether A0 is algebraic
or formal functions on Kc.

Lemma (4.8). The zeroth order term of σ can be written as

(4.14)

where Hl

p,H
r

p are respectively left, right invariant vector fields on Kc such that they
coincide at the identity with

(4.15)

Proof. Recall R = £ EΛ Λ £_α, therefore
α>0

α>0 α>0
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Use

<X Λ y,dω> = *<y,ω> - y<X,ω> - <[*, y],ω>, (4.16)

we have

Σ <^ΛA"_.,d<>= Σ <#>?>>
α>0 α>0

X <A> *'_„,*»<> = X <H;χ>.
α>0 α>0

Lemma (4.9).

y>=P a(y); ^ (4.17)

2) V X eg c= gc, and ωr(e) = yeg* c gc,
X) = p.̂ y*"), (4.18)

where pΛ is thought of as a linear form on gc = k c@a c©n c which only takes
non-zero value on ac.

Proof. 1) Since both sides are zero when Y is in nc, we only need to check for
ac. With g £ kc we have H p = (Hp, Hp\ Thus V (H, - H)eac, we get

2<(HP9HP)9(H9 - H)> = 2±(B(Hp, H) - B(Hp9 - H))

2)

Now observe that if we consider X9 Y as in g ixig* then the g* part of e~tXYetX

coincides with Ad*tx(y). Actually,

adx(y):= [X, y] = - ad*(y) + ad*(X),

with ad|(y)eg*, ad$(X)εg and g is a subalgebra, thus the g* part of adxadx(y)
is from adx( — ad*(y)) which in turn is ad*ad*(y). Continue this argument, we
see that the g* part of (ad*)" (y) is (- l)π(ad*)"(y). Therefore the g* part of

IS
00

Since pΛ is zero on g, we have

Let us write the action of g* as
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where

σQ(Ja)=Ya-2(Hl

p,ω
a

ry.

As a result of Lemma (4.7) and Lemma (4.9), we have the following

(4.20)

Proposition (4.10). The σ0 action on A0 coincides with the left translation by
g* = ac®ncegc on

A0 ̂  {fεCΊ(Gc)\f(gex) = e»™f(g\ Vg€Gc,Xeg*}, (4.21)

where C?(GC) denotes either Ca(Gc) or Cf(Gc).

Proof. Note the σ0 is a differential operator on G with holomorphic coefficients,
it is enough to consider its action on the formal power series at the identity.
Lemma (4.7) ensures the vector field part. For the zero order part, on the one hand,
Lemma (4.9) gives pa(— Ad e _ t x (Y)) for a point g = etx in the neighborhood of
identity. On the other hand, the left translation of Y acts as (— Y)g = g( — g~1 Ύg\
the g* part contributes a constant, which according to (4.21) is pa(— Ad e_ t x(Y)).
The two actions agree to all powers of t.

This is the geometrical interpretation of the action of g* on functions on G.
We thus have proven the second of the main theorems. We end this section with
the following simple observation.

Lemma (4.11). Let V be a representation of g* = ac 0 nc, then //*(g*, V) is the total
homology of the following double complex

0<— V® Λ2ac^- K®n c ® Λ2ac<— V® Λ 2 n c ® Λ 2 a c <

0<— K

K®n c ®a c +— V® Λ 2 n c ®a c

F®nc V® Λ 2 n c

(4.22)

where

d(g V) denotes the standard boundary operator for Lie algebra homology as defined
in (4.9), and ac acts on Λ*n c by ad.

This is due to the fact that g* is the semi-direct product of ac and nc. The proof
is straightforward.
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5. The Lie Algebra Homology

In the previous section we have identified the E2 of the spectral sequence leading
to the Hochschild homology of quantum groups with the Lie algebra homology
of g* with coefficients in A0. In this section we will compute this Lie algebra
homology. Here we will have to treat the formal and algebraic functions separately.

5.1. Formal Functions. Recall that we have the identification:

C^Kc)^{fEC^Gc)\f(gex) = e^f(g\\/geGc,Xeg^} (5.1)

on which g and g* act by infinitesimal left translation /. / extends naturally to a
left action of 17 (g) on C/(KC), and the pairing

<*,/> = (/(x)/)(4 Vxel/(g), feC'(Kc) (5.2)

identifies Cf(Kc) as the dual of ί/(g). The induced Hopf algebra structure on
Cf(Kc) is the usual one except the coproduct is Δ = σA0, where Δ0 is the usual
coproduct and σ is the permutation (had we chosen the infinitesimal right
translation in defining the pairing the induced coproduct of Cf(Kc) would have
been the usual one).

The universal enveloping algebra is naturally filtered

{1} = l/(g)o <= U(g)ι c U(g)2

 c - <= ^(g)oo = I/(g), (5.3)

where U(g)n consists of those which involve product of no more than n elements of
g. This induces a natural filtration on the dual space Cf(Kc),

C'(KC) = C'(Kc)o => Cf(Kc)ι ^ Cf(Kc)2 ID - ID C'ίKcL = φ, (5.4)

where Cf(Kc)n vanishes on U(g)n_ί.

Proposition (5.1.1). Vyeg*, feCf(Kc)n, we have σ(y)feCf(Kc)n. Therefore the
complex C.(g*,C/(Xc)) is a filtered complex.

Proof. Vxel/(g)Λ, we want to show that <x,σ()>)/> = 0. Note that σ = / + pa and
/ actually extends to a left action of U(gc) of V. Since x,yeU(gc) and
(l(y)f)(e) = (~ r(y)f)(e) = - pΛ(y)f(e), we have:

<χ,*(y)f> = <χ,(/ω + P,(y))/> = l(χy)f(e) + pΛ(y)i(χ)f(e) = l(χy)f(e),
where the second term is zero by assumption. Note that for formal functions the
constant term is unimportant while for algebraic functions that term is vital. Suffice
to show l(xy)f(e) = Qforx = xix2--xn, with x^eg. Recall [ x j 9 y ] = ad*(x; ) - adj (3;).
We use this to move yeg* to the left in /(x^ xjO Whenever /eg* appears
on the far left we can replace it by a number (— pa(/)). It is clear that we eventually
have l(xy)f(e) = l(Xy)f(e) and xyet/(g)n. Thus l(xy)f(e) = 0. Also it is easy to see
that the leading term of xy is ad*(x).

As a corollary of the above proof we have:

Corollary (5.1.2). For feCf(Kc)n/Cf(Kc)n+ί,xεU(g)n, we have

<x,σω/> = <adJ(x),/>. (5.5)

Note that Cf(Kc)JCf(Kc)n+1^(U(g)JU(g))f^(S^g)y^Sn(g^ where S"
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denotes the nth symmetric power. Therefore the E1 of the spectral sequence of
the filtered complex C.(g*, C/(XC)) is H(g*, Sn(g*)), where g* acts on S"(g) by ad.

Proposition (5.1.3).

Proof. We compute this Lie algebra homology by the double complex as in
Lemma (4.11). Note that ac acts on both Λ*n c and S"(g*) semisimply with
non-positive weight. Thus if we compute the ac-homology first we immediately
see that the spectral sequence is degenerate at the first term and yields the above
result.

Note that we have a natural morphism of the filtered complexes

φ :C.(Cf(Kc),g*)->C.(Cf(Tc\*c\ (5.6)

which induces a morphism of the associated spectral sequences

Φ*:£"(g*H£n(ac). (5-7)

The above proposition simply says that φ induces an isomorphism at E1, so it
also induces an isomorphism at £°°. Note that all the filiations considered in this
subsection are complete, thus we can apply the comparison theorem (see, for example,
[20] chapter 8) to conclude

Theorem (5.1.4).

Hn(g\ C'(KC)) * C'(TC) ® Λ«ac ̂  β» (Tc). (5.8)

Note that we have completeness of filtration in (5.4) because we are dealing
with formal functions. The analogous statement is false for algebraic functions.
This is the reason for us to treat formal and algebraic functions separately.

5.2. Algebraic Functions. Now we do not have a nice filtration for C[XC] as we
have for Cf(Kc), so we have to look for other ways to compute the Lie algebra
homology for algebraic functions. First of all we notice the following

Lemma (5.2.1). σ and σ0 commute with the right translation by the Carton subalgebra

o/g

Proof. Right translation corresponds to the action of left invariant vector field.
V/ίeh, notice that [Hl

9ωr]=Q and adH(R) = Q, it is obvious that we have
[H*,σ(Jfl)] = 0. This should also be obvious from the geometric interpretation of
the actions σ and σ0.

For algebraic functions on Kc, the infinitesimal right action of the Cartan
subalgebra acts semi-simply, with the eigenvalues ranging over the weight lattice
Λ of (g, h). We have the decomposition

©Kλ, (5.9)
λeΛ

and because of the previous lemma we have

®Hn<s*,Vλ). (5.10)
λeΛ



502 P. Feng and B. Tsygan

We can identify Vλ as

Kλ^{/6CΛ(Gc)|/(^)-e-(Λ-^w/(^),V^6Gc,X6hc0nc}, (5.11)

where hc = tc 0 ac, tc is the Cartan subalgebra of kc ̂  g, λ is a linear functional on
tc extending trivially to that on hc0nc,pa is a linear functional on a c ©n c ^g*
extending to that on hc 0 nc; g* acts on Vλ by σ = σ0 + pa and σ0 has been identified
with the infinitesimal left translation.

We notice the close relationship between our Vλ and induced representation
[25] for real Lie group G. Let Uλ be a (T,ac)-module such that T acts by eλ and
ac acts trivially. The induced representation for G is defined as

(5.12)

where λ is real linear on t and complex linear on tc, extends naturally to hc® nc;pa

is real linear on a and complex linear on ac, extends naturally to h c©n c; and G
acts by left translation

(gf)(h) = f(g-1h\ V0,ΛeG. (5.13)

The Lie algebra of G acts by infinitesimal left translation, which extends naturally
to an action of the complexified Lie algebra gc. Note in (5.12) the minus sign in
front of pa is due to the fact that our nc corresponds to the negative restricted roots.

Here we use TAN to denote the minimal parabolic subgroup instead of the
standard MAN since we want to emphasize the fact that M:= Zx(ac) = T (because
G is also complex). Since G,X are real forms of GC,KC we have natural
homomorphism from Vλ to lndγAN(Uλ). Actually Vλ is identified with the
Harish-Chandra module [18,25] of Ind°AN(Uλ).

We thus have reduced the computation of the E2 of the spectral sequence
converging to the Hochschild homology of the quantum algebraic groups to the
computation of Lie algebra homology of ac © nc with coefficient in Harish-Chandra
modules Vλ for λeλ the weight lattice of (kc, tc). We will also think of λ as a linear
functional on hc = tc©ac with λ\Λc = 0. As for the formal functions we will use the
double complex (4.22) to compute the Lie algebra homology, but this time we
compute the nc-homology first. The nc-homology of Harish-Chandra modules
has been extensively studied for its importance in representation theory [6,18].
But unfortunately the nc-homologies of Harish-Chandra modules are not explicitly
known in general. What makes life much easier for us is the following. First of all
G has a complex structure G ̂  Kc and TAN is a minimal parabolic subgroup.
Secondly we only consider those induced representations lndγAN(Uλ) such that ac

acts on Uλ trivially. As we will see this simplifies the computation a great deal.
Thirdly even in our special cases we do not need a full knowledge of nc-homology
of Harish-Chandra modules. #*(nc, Vλ) is only the E1 term of the spectral sequence
associated with the double complex (4.22), its E2 term is //π(ac,//.(nc, Vλ}\ so we
may forget about those of nc-homology on which ac acts with non-zero (generalized)
eigenvalues.

Let us first recall some facts about Harish-Chandra modules.

Lemma (5.2.2) [5]. Any Harish-Chandra module is finitely generated over U(nc).
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Lemma (5.2.3) [18]. The nc-homology of any Harish-Chandra module is a
Harish-Chandra module for MA (which in our case is TA).

So nc-homology of Harish-Chandra module is finite dimensional, and
decomposes into Jordan cells under the action of tcφac. We define the generalized
eίgenspace with generalized eigenvalue μea* to be the largest subspace on which
x — μ(x) acts nilpotently for all xeac. Note T acts semisimply on C[XC] and Fλ,
thus also acts semisimply on H ̂ (n^ Vλ). But in general ac does not act semisimply
on Vλ so we expect some non-trivial Jordan cells in H^(nc, Vλ) with respect to the
action of ac.

Definition (5.2.4) [18]. Let V be a Harish-Chandra module for G, then vea* is a
homology exponent of H^(nC9 V) if HH^.(nc, V)v ^0, where

#*(nc> JOv = generalized (v — pa) eίgenspace of #*(nc, V). (5.14)

A leading homology exponent is one that cannot be expressed as the sum of another
homology exponents and a non-zero sum of negative restricted roots, i.e., leading
homology exponents are the largest ones with respect to the obvious partial order
induced by the positive restricted roots.

The shift by pa is to make the notation compatible with Harish-Chandra's
labelling of the infinitesimal characters of Z(gc), the minus sign in front of pa is
determined by the fact that our nc corresponds to the negative restricted roots.

Note that we are only interested in those of H^(nc, V) on which ac acts
nilpotently via σ = σ0 + pa, i.e., ac acts by generalized eigenvalue (— pa) via σ0.
Recall that σ0 is the natural geometrical action, thus we are only interested in the
homology exponent zero.

Lemma (5.2.5) (Schmid's Vanishing Theorem [18, 38]). Let vbea leading homology
exponents, then Hn(nc, V}v = 0, unless n = 0.

The best we can hope now is that zero is the leading homology exponent. Then
only //0(nc, Vλ) contributes to the ac-homology, therefore the spectral sequence of
the double complex (4.22) is degenerate at E2, i.e.,

HΛ(acθnc, Vλ) = E* ̂  E2

n = Hn(*c,H0(nc, Vλ)) * C/ ( Λ )® Λ"ac, (5.15)

where l(λ) is the number of irreducible Jordan cells in #0(nc, Kλ)0. Actually zero
is a leading exponent (thus the unique one) as a consequence of the following
lemma, which also gives the dimension of H0(ac, Vλ)0.

Lemma (5.2.6) (Osborne's Conjecture [18]). Let V be a Harish-Chandra module
of G, ΘG(V] the global character, then

(5.16)

where. G' is the set of the regular semisimple elements of G. (TA) is specified as
follows:
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(TA)~ = interior, in TA, of the set

(5.17)
p j

where A ~ is the negative Weyl chamber cut out by the positive restricted root system,
A' = {aeA\e«(a) < 0, VαeΦ+(gc,ac)}.

The restriction to G' is to avoid certain singularities in the global character,
and the restriction to (TA)~ is to avoid complicated sign conventions. Actually
every T^l-character is completely determined by its restriction to (TA)~ nG'. We
remind the reader that the above formulation is for our case in which G has a
complex structure. In general one should write MA in the place of TA.

The global character of induced representations is known. See, for example,
[25,45]. It is especially simple in our case.

where tae(TA)~ nG', W the Weyl group of (kc,tc).
One immediately sees that zero is the leading homology exponent. Indeed,

according to Schmid's vanishing theorem there is no cancellation in the alternating
sum on the right-hand side of (5.16) for the leading homology exponents, so they will
show up on the right-hand side. But zero is the only exponent one can count on the
left-hand side of (5.16). Another immediate consequence is

dim (#0(nc, KΛ)0) = \W\ = the order of the Weyl group. (5.19)

Therefore when λ is regular, i.e., w^λ = w2λ, if and only if w x = w2, there are
no non- trivial Jordan cells and we get l(λ) = \W\. When λ is singular there might
be non-trivial Jordan cells and we will see there are. The last lemma we are going
to quote from representation theory is the Frobenius reciprocity theorem which
will help us pin down H0(nc, Vλ)0.

Lemma (5.2.7) (Frobenius Reciprocity Theorem [5]). Let V be a Harish-Chandra
module for G, Uff v be a (T,ac)-module such that T acts by character σ and ac acts
by vea*. Then we have

Hom^ίFJnd^^)) ̂  Hom(r>tcθac)(tf0(nc, K), I7σ§v). (5.20)

The isomorphism in the reciprocity theorem is given as follows. For
ΦeHom(X>gc)(K, Ind?^(l/,iV)), define

φ:V-^υσ^ φ(υ)=Φ(υ}(e\ V t eK (5.21)

It is easy to see that φeHom(T tcθflc)(#0(nc, V\ Uσ t V ) and Φis uniquely determined

by Φ
Note the right-hand side of (5.20) only counts the irreducible Jordan cells of

tc0ac, but tc acts semisimply so it only counts those of ac. This is exactly what
we are interested in for ac-homology. Now we need to know the dimension of the
space of the intertwining operators between our Vλ and lnd^AN(Ue^ 1>0), weW. It
is known that this is one ([25] Theorem (14. 13), (14.43)). So the number of the
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irreducible Jordan cells in #0(nc, KA)0 is the number of the elements in the orbit
generated by W through λ in the weight lattice A. This number l(λ) is smaller than
I W\ when / is singular and there are indeed non-trivial Jordan cells. We thus have
the following

Proposition (5.2.8).

where l(λ) is the number of elements on the orbit generated by Weyl group W(g, h)
through λ in the weight lattice yl(g, h).

Remark. When we identify the (E.1,^) with the Lie algebra homology in Sect. 4,
we find that g* acts on C[G] by σ(Ja)= Ύa-f\ where Ya is the usual dressing
transformation and fa is a multiplication operator. This /α plays an unimportant
role in computation of homology for formal functions. Actually one can replace
σ with σ(y](Ja) = Ya - y/α,yeC, and get the same Lie algebra homology. But it is
absolutely crucial for the algebraic functions. Different values of γ would change
the homology drastically. Incidentally the computation is the easiest for y = 1
since fa provides first of all the right modification for the normalization of
induced representations, and secondly the right shift to be compatible with
Harish-Chandra's labelling of infinitesimal characters. The first is responsible for
our representations being induced from Uσ ?v with v = 0. The second enables us to
concentrate on the homology exponent zero.

Let H = TA be the complex Cartan subgroup of Kc, NG be the normalizer of
H in Kc ^ G. For its close resemblance to the functions on the normalizer, we
denote

C[NG] = 0 C«A), flB[NG] = C[JVG] (x) Λ"ac. (5.22)
λeA

As a corollary of the previous proposition we get the main result of this subsection.

Theorem (5.2.9).

# π(g*, C[XC]) = C[JVG] <g> Λ«ac s A,[ΛΓG]. (5.23)

We thus obtain the Lie algebra homology for the algebraic case by applying
a series of results from representation theory. Note the answer is different from
that of the formal case. There we get differential forms on the unquantized maximal
torus (with formal coefficients of course), here we have those differential forms (with
algebraic coefficients) which are closely related to the normalizer of Tc in Kc.

The Lie algebra homology is the E2 of the spectral sequence of Sect. 4 which
converges to the Hochschild homology of quantum groups. The convergence
problem will be addressed in the next section.

6. Hochschild and Cyclic Homology of Quantum Groups

In this section we show that the spectral sequence leading to the Hochschild
homology of quantum groups is degenerate at E2. We take this as evidence that
the properties of quantum groups are determined by the quasiclassical limit since
E2 is the homology of the Brylinski complex associated with the Poisson Lie group
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(G,π). We also compute the cyclic homology in this section, which is relatively
easy after we obtain the Hochschild homology. Note Kc = G.

6.L Quantum Formal Groups. It is well known that in the quantized universal
enveloping algebra Uh(g) the Cartan subalgebra is not quantized, i.e., there is a
natural Hopf algebra homomorphism

l/Λ(g). (6.1)

This induces a homomorphism of Hopf algebras

and morphism between the complexes (2.16) for their Hochschild homologies, thus
also induces morphisms between the associated spectral sequences. For
Cf(H)®cC((h)) the spectral sequence is trivial and we have El^E2^ ^
JE°° ̂  Ωf(H)9 where Ωf denotes the differential forms with formal coefficients.
Proposition (5.1.4) shows the *F induces an isomorphism for the second term in
the spectral sequence. Note the filtration induced by the Planck constant is
complete because we are considering formal deformation (i.e., the value of
parameter in quantum group is generic). By comparison theorem we have the
following

Theorem (6.1.1). Ψ induces an isomorphism for the Hochschild homology, i.e.,

HHn(C{(G)) s Ω}(H) ® C((Λ)), (6.3)

where H is the Cartan subgroup of G.

The Hochschild homology may be considered as the E1 term of the spectral
sequence associated with the double complex for the cyclic homology. The above
theorem shows that Ψ induces an isomorphism for the El term. Again by
comparison theorem we have

Theorem (6.1.2). Ψ induces an isomorphism for the cyclic homology between C{(G)

HCn(Cf

h(G)) * (Ωn

f(H)/dΩn

f~
 1 (H) ® HCn(Q) ® C((A)), n = 0, 1, 2, . . . , (6.4)

where H is the Cartan subgroup of G.

This concludes our computation for the Hochschild and cyclic homology of
quantum formal groups and we find that they are the same as those of the ring
of the formal functions on the complex Cartan subgroups.

6.2. Quantum Algebraic Groups. This subsection is mainly devoted to the proof2

that the spectral sequence leading to the Hochschild homology is also degenerate
at E2 for the algebraic case.

In the formal case the E2 term turns out to be that of the Cartan subgroup.
Since the Cartan subgroup is unquantized, the comparison theorem immediately
yields the Hochschild and cyclic homology in the formal case. But now the E2

2 The proof in our first draft was incomplete, as was pointed to us independently by J. Block
and E. Getzler
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term is related to the normalizer of the Cartan subgroup. Since there is no
unquantized normalizer in quantum algebraic groups, it is not obvious that we
have degeneracy at E2 as in the formal case. However one does expect the spectral
sequence associated with the Planck constant to be degenerate at E2. As the
philosophy of quantization goes, everything should be determined by its
quasiclassical limit, in other words, nothing new happens beyond the first term in
the deformation. In terms of spectral sequence the quasiclassical limit is taken care
of by (E^,dι). If nothing is new beyond that, one expects that the spectral sequence
is degenerate at E2.

We first reduce the proof of E2 ^ E™ to that of E2 ^ £*. The following lemma
is a special case of a Grothendieck theorem about the superposition of functors.

Lemma (6.2.1). Let A, B be associative algebras, M' left A-module, M right A-module;
φ:A^>B algebra homomorphism. Then there is a spectral sequence with

( ' j

Proof. Consider the following double complex

Γ Γ Γ"φ d' φ d' ^
(M®A2®B)®M'< - (M®A2®B)®B®M'< - (M®A2®B)®B2®M'

(M®A®B)®Mf < (M®A®B)®B®M' < ( M ® A ® B ) ® B 2 ® M 1 '

\d" \d" \d"Φ ψ ψ

(M®B)®Mf ^— (M®B)®B®Mr ^— (M®B)®B2®M'

(6.6)

where

d' = (- l)ndB(M ®An®B9 M'), d" = dA(M, B) ® 1

and dA(M,M') denotes the boundary operator of the standard complex for
Tor^(M,M') It is easy to check that this really is a double complex. We can
compute the associated spectral sequences. If we compute the vertical complex
first, we get

Alternatively we can compute the horizontal complex first. Note M ® An ® B is a
free β-module. Therefore

and

Tor£(M (x) An ® B, M') = (M ® A" ® B) ®BM' = M ® An ® Mr,

We see the spectral sequence is degenerate and

(M9M').
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From now on, A = Ch[G], B = CΛ[/ί], φ :A -> B is induced by the Hopf algebra
imbedding C/(hc) -> Uh(g). M' = C((h)) = k as a left A-module via the counit ε,
M = CΛ[G] as a right A-module via p, i.e.,

where Δ(a) = ̂ aj®aj and 5 indicates the antipode. Note as Hopf algebra
j

CΛ[H] = C[H]®C((Λ)). Recall that Tor^(M,/c) is the Hochschild homology of
the quantum group CΛ[G] as proved in Proposition (2.4).

Lemma (6.2.2). Denote the double complex (6.6) by 3~orB^(3~or^(M,B\k) and the
standard complex for Tor^ by 3~or^. There is a quasί-isomorphίsm of complexes

3Γorl(3~or*(M, B\ k) -> Γoι*(M ®AB, k).

Proof. Obviously there is a natural complex map. Note the quasi-classical limit
of the double complex (6.6) is exactly the double complex (4.22) that computes the
Lie algebra homology #*(g*,C[G]). The lemma simply follows from the fact
that the second term of the spectral sequence of the double complex (4.22)
E2j = //ί(ac, /f/(nc, C[G])) is non-vanishing only when j = 0.

Proposition (6.2.3). The spectral sequence leading to the Hochschild homology of
Cή[G] is degenerate at E2, i.e.,

HHflCJίG] ) * tf/g*, C[G] ) <g> C((Λ)X

if and only if

Proof. By the previous lemma we have two complexes quasi-isomorphic For each
complex we can consider the spectral sequence induced by the Planck constant.
Obviously their E2 terms are isomorphic. So one is degenerate at E2 if and only
if the other one is. For the complex &~oτ^(M®AB,k), it is easy to see that the
spectral sequence is degenerate at E2 if and only if

Thus the lemma.

The main result of this subsection is the following

Theorem (6.2.4).
c, (6.7)

where M = A = C/,[G], and A acts on M by p.

The proof will be divided into a series of lemmas. Proposition (6.2.3) and
Theorem (6.2.4) together assert that the spectral sequence induced by the Planck
constant for the Hochschild homology is indeed degenerate at E2.

In computing the Lie algebra homology HM(g*,C[G]) we use the fact that
the g* action on C[G] commutes with the infinitesimal right translation by the
Cartan subalgebra hc. We decomposes C[G] according to this right translation

C[G] = © Vλ,



Hochschild and Cyclic Homology of Quantum Groups 509

where A is the weight lattice, and we get

λeΛ

We observe that this decomposition also holds at the quantum level. Recall the
Cartan subalgebra is not quantized. We define an action of U(hc) on M in the
following way:

xel/(hc), (6.8)
j

where Δ(f) = Σfj®fj> and <»> is the natural paring between C[G] and I7Λ(g).
j

Apparently the classical limit of this action is the infinitesimal right translation.
Since CΛ[G] is the deformation of C[G], we have

λeΛ

The following Lemma asserts that Mλ is also a right A-module via p.

Lemma (6.2.5). The actions of £/(hc) and CΛ[G] on M commute.

Proof. Consider arbitrary #ehc, αeCh[G],/6M. It follows from the definition that

r(H)(fJ2) = r(H)(/ι)/2 + MH)(f2).

Therefore

r(H)p(a)(f) - p(a)r(H)(f) = Σ \_r(H}(άs

j)faj + a]
j

where Δ(a) = Σ aj®&j Denote
3

(A® l)Δ(a) = (l®Δ)Δ(a) = Σ bk®ck®dk.
k

Note for CΛ[G] we have Δ(s(a)) = (s®s)Pl2Δ(a\ where P12 is the permutation
operator. It then follows that

Σ <H, c{ + ck)fjbk = 0.
k

As a consequence of the lemma, (6.7) is equivalent to

#o(g*> KJ®cfc = MA®^/c. (6.9)

Recall that (E$)λ = H0(g*, KA) has dimension | Oλ\. We denote the orbit in A through
λ generated by the Weyl group W by (9λ and the number of distinct weights on
the orbit by \(9λ\. This provides an upper bound for the dimension of
(E™)λ = Mλ®Ak. Since M®Ak~ A /[A, A], we can get a lower bound on that
dimension by constructing traces over A. The main theorem is proved if we can
show that the lower bound is also \Θλ\. The following several lemmas are about
constructing and counting the traces over A.

Lemma (6.2.6). Let a,b,c,d be the generators of Ch[SL2] as in Example (3.14).
There are two families of traces for Cfc[SL2], denoted by τ*,τ*, where n is an integer
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and n 7^ 0 for τs

n. The following are the only non-zero values of the traces:

(1) n>0

~ + " ^O; (6.10)
l-q2k+n

(2) n < 0

*cfc) = v 3fc—, fc^O; (6.11)

(3) n = 0

τ«(Λί*)=l, fc^O; (6.12)

where q = eh.

We use the elements of the Weyl group W = {e, s} to label the families of traces.
The naturalness of this notation will become clear later. The proof of this lemma
is straightforward and is given in Appendix B. Note the lemma proves the main
theorem for CΛ[SL2]

In general, the family of traces associated with the identity of the Weyl group
is simply constructed as follows. Recall that the Cartan subalgebra is not quantized.
The natural imbedding

induces the Hopf algebra homomorphism

π:CA[G]->CΛ[/ί] = C[//](8)cC(W). (6.13)
Note

AeΛ

and C[#]λ is one-dimensional. Choose a basis { f λ } for C[#] such that fλeC[H~\λ.
Let {/*} be the dual basis. Define

τ; = /* π:Cfc[G]->fc. (6.14)

This is the family of traces associated with the identity of the Weyl group. We see
that the unquantized Cartan subgroup contributes to E™.

In quantizing the universal enveloping algebra [11,21], one chooses a Cartan
subalgebra and a set of simple roots a 1 ?a 2,...,a r. For every simple root a j? there
is a Hopf algebra imbedding

which induces a Hopf algebra homomorphism

, (6.15)

Consider an arbitrary element w of the Weyl group. Let w = stί si2 - - stl be a minimal
representation for w. Here / = /(w) is the length of w. s7 is the simple reflection
associated with the simple root α,-. Define, for arbitrary Ae/l, nίn2 n{ φ 0, a linear
functional
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(6.16)

Lemma (6.2.7). τ™(n1,n2, ..,nl) is a trace. It vanishes identically unless

(6.17)

When n1,n2,...,nl are thus fixed, τj> = τj>(«1,n2,...,n j) takes non-zero values only
on Mλ. Different elements of Weyl group give linearly independent traces.

Proof. Since A, π^ are algebra homomorphisms and τe

λ, τ* are traces, (6.16) definitely
defines a trace for CA[G]. Note

VHεhc,

we have

Thus τ* vanishes on Mλ,Φλ.
To get the constraints (6.17), we notice that l/(hc) also acts from the left on

CΛ[G]. Explicitly, for any Hel/(hJ, /eCA[G],

(6.18)

where 4(/) = Σ//®7/ ^ f°U°ws from the definition that

The constraints on n ( l , . . . ,n ( | follow from the observation

and

τs

n πj(l(H)(f}) = τs

n πj(r(Sj(H))(f)).

(6.19)

(6.20)

(6.21)

Recall that CΛ[G] is spanned by the matrix elements of the finite dimensional
representations of l/Λ(g). We always assume that ί/(hc) is diagonalized in these
representations. Since τ\ is non-zero only on the diagonal matrix elements for
which the left and right actions of t/(hc) are the same, we get (6.20). To get (6.21),
we observe that there is the g-analogue of the Weyl group as defined in [24].
Denote the ^-analogue of Sj by w,-, which generates the g-Weyl group. These w/s
act on the representations of £/Λ(g). One can easily check that for Ch[SL2] the
matrix elements with non-zero trace τ*, i.e., bmcn, are on the diagonal when
multiplied by the w. This gives us

τs

n π//(fi)(/)) = τ>/r(
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But the g-Weyl group action on hc coincides with that of the ordinary Weyl group,
i.e.

Thus follows (6.21).
It is obvious that τj is not identically zero when λ satisfies the constraint (6.17)

with n1 -nl^Q. From the above argument, it is also clear that τ£ is non-zero
only on the subspace of Mλ corresponding to the weight w(λ) under the left action
of hc. The linear independence of the traces thus follows immediately.

We have constructed families of traces labeled by the elements of the Weyl
group. We remark that they are intrinsically related to the Levendorski-Soibelman-
Vaksman modules [41,42,26] labeled by the Weyl group and Cartan subgroup.
Informally, the relation is as follows. One can take the formal traces from these
modules when \q\ < 1. Unfortunately they do not all vanish on the commutant
[,4, ,4]. The reason is that certain elements of A = Ch[G] are represented by
operators which are not of the trace class. What saves the day is that we can use
weight space decomposition to pin down the bad components of the formal traces.
The good ones are exactly τ\ with constraints on λ as stated in the previous lemma.
More on this in Appendix B.

Our next job is to count how many wety provide traces to an arbitrary fixed
λe A The previous lemma tells us what Mλ will be provided a trace by a particular
weW. Let us first reformulate this in a more geometrical way.

Fix a λeΛ9 and a minimal representation w = s^s^ s^. Let Pw(λ) denote the
ordered set of weights {λl9λl_19...9λl9λ0}9 where

AI = A, λk_ j = Sik(/fc), /C = / , . . . , 2, 1.

We call this the path associated with the pair (A,w) (with a chosen minimal
representation for w). We say the path has stationary points if λk = λk _ ί for some k.

Lemma (6.2.8). Let Pw(/l) and P'w(λ) be two paths corresponding to two choices of
minimal representations for w. Then P^(λ) has stationary points if and only if P'J(λ)
has.

Proof. Let us look at the different parts of the two paths. They come from the
non-trivial Coxeter relations

where

(6.22)

and (a.j) is the Cartan matrix. For any λ, the sequence st(λ)9 SjS^λ), . . . , (st-s7-)miJW
form a closed path. Assume λ is fixed by si9 then it is easy to see that its opposite
point on the closed path is fixed by Sj. If 1 is a stationary point on Pw(λ) then
either 1 or the opposite point of 1 is on P'w(λ). Thus P'w(λ) also has stationary
points.

We say w is maximal relative to λ if Pw(λ) does not have stationary points. Of
course this property is independent of the choice of minimal representation for w.
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Corollary (6.2.9). wePF provides a trace τ" for Mλ if and only if w is maximal
relative to λ.

Proof. From the Lemma (6.2.7), w provides traces to all integral weights except
those on the union of the following set of hyperplanes:

(6.23)

This is equivalent to

ί o = <λ,αίl>,

where <,> denotes the inner product in the weight space. The above equations
mean λk is fixed by s f k. The claim is proved.

Lemma (6.2.10). For any λeΛ, the number ofWeyl group elements that are maximal
relative to λ equals to \Θλ\, the number of points on the orbit (9λ generated by the
Weyl group W through λ.

Proof. We first construct a cell complex &λ whose vertices are the points on &λ.
Two distinct vertices are connected by an edge if they are transformed into each
other by a simple reflection Sj. We attach a face to every closed path corresponding
to a non-trivial Coxeter relation (6.22) such that the boundary of the face is the
closed path. We also choose a base point λ0 which is either in the fundamental
domain (when λ is regular) or on the boundary of the fundamental domain (when
λ is singular). The base point is of course unique for every orbit. We claim that
Θλ is connected and simply connected.

Let us construct another cell complex W. The vertices are the elements of the
Weyl group. There is an edge between vv^ and w2 if wx = Sj\v2 for some j. For every
closed path corresponding to a non-trivial Coxeter relation, a face is assigned
whose boundary is the closed path. We choose the identity e to be the base point.
By definition W is connected and simply connected. Note the stabilizer subgroup
Wλo of AO is of the Weyl group type and the associated cell complex Wλo is connected
and simply connected. The homotopy fibration

W^W-*&^ (6.24)

induces the homotopy exact sequence

From this we immediately get

πι(0J = 0 = π0(0J. (6.25)

Thus Sλ is connected and simply connected.
For any Λe/1, the Weyl group can be viewed as a union of cosets Wλλ, labeled
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by the points λΈ(9λ. The elements in Wλλ, transform λ to λ'. Since (9λ is simply
connected, there is only one element in each coset that is maximal relative to λ.
Thus the total number of maximal elements relative to λ is \&λ\. The lemma is
proved.

Proof of Theorem (6.2.4). We have reduced the proof to that of

Since #0(g*, Vλ) has dimension \Θλ\9 this provides an upper bound for the
dimension of Mλ®Ak. The above lemma provides a lower bound which is also
\Φλ\. This means elements of E% all survive to E%. The theorem is proved.

In summarizing, we have

Theorem (6.2.11). The Hochschίld homology of the quantum algebraic group is

where Ωn\_No] is defined in (5.22).

The last thing we are going to compute in this paper is the cyclic homology
of the quantum algebraic groups. This is now fairly easy when we know the
Hochschild homology. Recall HC^(A) is computed by the double complex

where b and B are defined at the beginning of Sect. 2.
The Hochschild homology is only the E1 term of the spectral sequence

associated with the double complex. The complex for E2 is
0 0 0

— HH i <

B

o

B

^--. (6.26)

0

HH0<

As is well-known from [10,17], the derivation of r(H), Hehc on A induces the
operation of Lie derivative

&a:HHβ(A)-+HH,,(A)

and
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such that
B'ίH + iH B=<?H. (6.27)

From this one sees immediately that B is exact on all weight components of &H

except zero. Hence the only contributions to E2 (except for the top row in (6.26))
is from λ = 0. Recall

HHn(A) * Hπ(g*, C[G] ) = 0 tf n(g*, Vλ).
λ

Note that Hn(g*, V0) is one dimensional and is represented by / = constant. So
except for the contributions from the top row in (6.26) we can identify the total
homology of the double complex (6.26) with the invariant differential forms on
the Cartan subgroup H. The contribution from the top row is simply
Ωn[NG]/dΩn_ί[NG']. It is also easy to see the spectral sequence is degenerate at
E2. The following theorem is now obvious.

Theorem (6.2.12). The cyclic homology for the quantum algebraic group is

tfC»(C,IG])^(4[^G]/^
(6.28)

where ΏΠ[JVG] is defined in (5.22).

This concludes our computation for the Hochschild and cyclic homology of
quantum algebraic groups. We found that they are determined by the quasiclassical
limit.

Appendix A.

We explain some of our conventions for the calculus on Lie groups.
Let /α, a = 1, 2, . . . , dim g be the basis for the Lie algebra g, which is identified

with the tangent space at the identity e\ fc

ab the structure constant, Ja the dual
basis, Xl

a, X
r

a the left, right invariant vector field on G such that Xl

a(e) = Xr

a(e) = /fl;
<ϋp ωa

r the left, right invariant 1-form with ωa

t(e) = ωa

r(e) = Ja. Repeated index always
means summation.

First of all,

Both X'a(g) and X'a(g) span the tangent space at g, they can be transformed into
each other as

faX
l

b(g); (A.2)

and similarly,

ω« = (Ad*_,)X, < = (Ad*)X. (A.3)

Let yχ denote the Lie derivative corresponding to the vector field X, then

χ*?*=rΛ ^*;=o,
' e r ^ ' '
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and from <J^,ωJ> = <A^,ω*> = δb

a, we have

a a

The adjoint action is defined to be

<c) = fc

abJ
b (A.6)

The exterior derivative d acts as

dωa

r=fa

bcω
b

rΛωc

r. (A.I)

The (infinitesimal) left translation of g on C°°(G) is

1(1) f(g) = - &χrf(g) = lim -(/(*~"0) - /to))- (A.8)
f-K> ί

Appendix B. Example G = SL2

The quantum algebraic group structure is as discussed in Sect. 3, specifically in
Example (3.14). So we will not repeat those definitions.

B.I. The Quasiclassical Limit. We start with the computation of #n(g*,C[G]).
i / i o \ i /o ι\ i / o o\ . , . fH = - , E+ = - , JE_ =- is a basis for g,L ,L ,L the
4\o -i/ 2\o o; 2\ι oy

dual basis for g*. The action of g* on C[G] as defined in Proposition (4.4) is as
follows:

\-b—, (B.I)
dd l '

a
da

u ,r 3

 L

 d d j d

where N = a \-b \-c \-d —.
da db dc dd

We choose a basis for C[G] as follows

Xp^n:=apbq(bc)n, p,qeZ, n^O, (B.2)

where ap\= d~p, bq:= c~q if p,q < 0. On this basis we get

-f XP»<3>H J P,Q>n p,g,π+l '
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p + l,q'/P,

/
Y^

p,q,π p + 1,9

fp,q,n^p+ί,q

/PΛΛ+1.,

fπ.a.nXpΊ,a

-2σ(L_)A MiI1 =
p- l,q- l

X
p,q,n p

P^O,

P<0,

P>0,

p>0,

P^O,

P^O,

where fpΛJΛ = |p| + |9| + 2n + 2,0 ,̂, = - |p| + \q\ + 2n + 2.
Note

(B.3)

(B.4)

and Vλ is invariant under the action of g* as expected.
#n(g*, Vλ) is computed by the double complex given in Lemma (4.11), and we

choose to compute the nc-homology first. Note [L+,L~] =0, this again can be
computed by a double complex. The calculation is straightforward and we simply
write down the result here.

Case 1. λ = 0

ac acts on HQ(nc, K0) non-semisimply,

σ(L°)l = -2c,

σ(L°)6c - - 2bc - 4(bc)2 = - 2σ(L+ )dc * 0.

Therefore

Case 2. A = p — f̂ > 0

H1(nc,KJ =

H0(nc, Vλ) =

(B.5)

(B.6)

(B.7)

(B.8)

Of course terms involving - are there only when - makes sense, i.e., is an integer.

Even when they exist, ac acts with non-zero eigenvalue. So they do not survive to
be in the g*-homology. On the other hand

(B.9)

σ(L°)aλ= -(λ + 2)aλ(bc)= -

σ(L°)cλ = - λcλ - (λ + 2)cλ(bc) = 2σ(L_)acλ~l ^ 0.
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Thus

Case 3. λ < 0 is similar to case 2.

B.2. The Traces for the Quantum Algebra. We want to check that the linear
functionals defined in Lemma (6.2.6) are indeed traces, i.e., they vanish on the
commutators [CΛ[SL2], CΛ[SL2]]. By Proposition (2.4), the commutator of a Hopf
algebra A is the same as the image of A under the right action of A via p. So we
only need to check that the linear functionals in Lemma (6.2.6) vanish on

ρ(tij)(Ch[_SL2~\\ where (ίy) = ί a j are the generators of CΛ[SL2]. Recall

and

'a b
S[ ,

c dJJ \—q~1c a

where we denote q = eh. We have

p(b)(akbmcn) = q~k(l - qk+m+n + 2)(ab)(akbmc")

f}( f*\( fj*h^f*^\ ί 1 ft "* " \ft h™f^ ~^~ —I— n Γ1 π "* " ^/7 r>"* ~^" f^ ~^~

p(c)(d*&wc") = 4*(l-ι

p(d)(dkbmcn) = q'm-ndkbmcn -q~k+ΐ(l - q~k~m-n'2)dkbm+icn+1. (B.I 1)

From this it is easy to see the tracial properties of the linear functionals in
Lemma (6.2.6).

The family of traces τe

n is easy to understand. They correspond to the
unquantized Cartan subgroup. How to understand the τ*, n Φ 0? The answer is
that while τe

n corresponds to the point-like symplectic leaves, τ^ corresponds to
the extended symplectic leaves in the Poisson Lie group (SL2, π). In [42] Soibelman
and Vaksman construct irreducible modules for Ch[Sl/(2)] corresponding to the
symplectic leaves of the Poisson Lie group SU(2). They work with the compact
quantum group and we work with the complex quantum group. The difference is
not important in the discussion here. For the trivial symplectic leaves corresponding
to the Cartan subgroup, they get one-dimensional representations. This provides
the family of traces τ*. For the non-trivial symplectic leaves, the corresponding
Levendorski-Soibelman-Vaksman modules are infinite dimensional. Specifically,
they are
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with the module structure given by

d-e0 = Q9 a en = en + 1, b-en = aqnen, c en = βq"en, (B.12)

where αβ = — q. From this module we can get formally the following "trace," with
the only non-zero value given by

m,n^0. (B.I 3)

But this is not really a trace on Ch[SL2], since

τa(ad -da) = (q-1- q)τ.(bc) = -q~2^Q.

This is due to the fact that α, d are not of "trace class." The way out of this difficulty
is to look at the weight decomposition of τα,

We find that τ*, n Φ 0 are traces and τs

0 is not a trace. As we have seen in
Subsect. 6.2, this weight space decomposition proves to be very effective in the
general case.

B3. The Results. As we remarked in Subsect. 6.2, the construction of the traces
in the previous subsection actually shows that the spectral sequence is degenerate
at E2 for CΛ[SL2]. Thus

HHn(Ch[G}) s HB(g*, C[G])® C((Λ)). (B.14)

As for the cyclic homology, the direct computation is actually not hard to
carry out for quantum SL2. Corresponding to the new complex for the Hochschild
homology (2.16), there is a new double complex (C^(A\d,D) for the cyclic
homology, where D = ξ'Bξ just as d = ξ'bξ. We consider the spectral sequence
associated with this new double complex whose E1 term is the Hochschild
homology. Since only HH0 and HHl is non-zero, the double complex for the E2

becomes

where D2(f) = η ( Σ f j ® f j + f® 1) = Σ / / ® ( d f j ) ( e ) with Δ(f) = Σfj®?J
It is easy to calculate

D2(aλ) = λ(aλ®L° + 2aλ~ lc® L+\
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Therefore we get

H0(g*,C[G])(χ)C((/ι)) n = 0

n = 1,3,5,... (B.17)

H°ΌR(Tc)®C((h)) n = 2,4,6,...

as expected.
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