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Abstract. We describe a family of differential operators parametrized by the
transversal vector potentials of a Riemannian foliation relative to the Clifford
algebra of the foliation. This family is non-elliptic but in certain ways behaves like
a standard Dirac family in the absolute case as a result of its elliptic-like regularity
properties. The analytic and topological indices of this family are defined as
elements of K-theory in the parameter space. We indicate how the cohomology
of the parameter space is described via suitable maps to Fredholm operators. We
outline the proof of a theorem of Vafa-Witten type on uniform bounds for the
eigenvalues of this family using a spectral flow argument. A determinant operator
is also defined with the appropriate zeta function regularization dependent on the
codimension of the foliation. With respect to a generalized coupled Dirac-
Yang-Mills system, we indicate how chiral anomalies are located relative to the
foliation.

1. Introduction

This paper provides a setting for the study of a coupled Dirac-Yang-Mills theory
in the presence of a Riemannian foliation ϊF. The latter may be regarded in essence
as a generalized dynamical system in which a one-dimensional foliation is simply
called a flow. Among a number of possible applications suggested in this paper,
we mention at this stage a particular example which is well known and which may
serve as a partial motivation for what follows: The pure Yang-Mills equations on R4

may be dimensionally reduced by requiring translation invariance in one direction,
thus arriving at a Higgs system in R3 yielding magnetic monopole equations
[A-H][J-T]. One may see the generalization of translation invariance in the
above example as invariance under the flows in the leaf direction of a foliation
2?. In the context of vector potentials this leads to the notion of a basic connection

* Work supported in part by a grant from the National Science Foundation



218 J. F. Glazebrook and F. W. Kamber

form with respect to ^. It is clear that the choice of vector potentials must in
some way reflect the invariance under these flows. On the other hand, the leaf
space of the foliation is in general highly singular, but still has some interesting
structure (Molino theory [Mo]). In the case where this happens to be an orbifold,
the study of anomalies relative to the heterotic string has been described by a
number of authors (see e.g. [F-V]). From an analytic stance, the resulting spectral
analysis on the singular leaf space is a deep topic which is now receiving much
attention and new index type theorems are expected (see e.g. the survey article by
Brύning [Br]). It would be reasonable then to suggest a fruitful interaction with
gauge and string theories within the context of foliation theory.

Modulo the technical details, the overall theme of the paper is to consider a
new class of anomalies relative to a non-elliptic family of geometric Dirac operators
defined by the transversal structure of the foliation and parametrized by an orbit
space of basic vector potentials. One interesting offshoot of our work is a
generalization of some results of Vafa-Witten [V-W ] on fermion inequalities,
although our approach is fundamentally topological. For the best part, the
anomalies we consider are chiral and our results may have a number of applications
to quantum chromodynamics besides the aforesaid Yang-Mills-Higgs system.
These may be seen as our motivating examples.

One commences with a principal G-bundle P-*M, where M is a (compact)
manifold carrying a Riemannian foliation 3F of codimension q which lifts to a
foliated structure of P. Basic connections on P have been studied by a number of
authors [Bo], [K-T1], [Mo] and they figure prominently in the theory of
characteristic classes of foliations as well as in equivariant cohomology theory
[A-B2]. The relevant spin structures are inherent to the transversal geometry of
the foliation and not necessarily to M itself. We introduce a basic Dirac operator
Jf>b operating on the holonomy invariant (fermionic) sections of a twisted foliated
spin bundle on M. Generalized Dirac operators, in the absolute case (i.e. q = dim M)
were considered in the work of Gromov-Lawson [G-L 1,2] and more recently
by J. Roe [Ro2,3]. These operators, in our case, are non-elliptic for general
codimension, but as a consequence of their restriction to holonomy invariant
sections, their spectral properties are fairly well tempered and remarkably, each
operator does exhibit elliptic-like regularity. Thus we can apply X-theoretic
methods to study their null-spaces (zero-frequency modes). For q even, we find
chiral anomalies with corresponding determinants regularized by the basic
zeta-function technique. Now the significant difference here with the absolute case
is that the zeta function regularity genuinely reflects the structure of the foliation.
In the absolute case, with M an even dimensional spin manifold, the situation
described by Atiyah-Singer [A-S4] and Singer [Si] is recovered (the basic Dirac
family now coincides with the standard elliptic one).

Our results in part are derived in an analogous fashion, but a number of
non-trivial modifications are required. On the cohomological level, our relative
anomalies have the analogous interpretation as in e.g. [B-C-R-S]. However, the
choice of taking basic connections on the principal bundle P will lead to further
characteristic classes determined by the foliation [K-T1]. We will report on this
aspect in a follow up to this paper [G1-K2].

Before outlining the content of the paper, we will establish the relevant
definitions in the context of foliation theory. We will assume that the reader has
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some acquaintance with the theory of Riemannian foliations; suitable references are
e.g. [K-T, 1, 4], [Mo], [Rel], [Re2]. The discussion immediately following is based
on recent work of the second named author and J. Brϋning [B-K1], [B-K2].

Let M be an oriented compact Riemannian manifold of dimension m and
(M,^,gM) an oriented Riemannian foliation on M of codimension q with
bundle-like metric gM.

We recall the exact sequence

0-»L(jη-»TMAρ-»0, (1.1)

determined by the tangent bundle and the normal bundle of 3F . Let £ be a complex
Hermitian foliated bundle over M which is a Clifford module over C1(Q), the
transversal Clifford algebra of & and let cl = :C00(β<g)E)-»C00(E) denote
multiplication. Taking π to denote the projection

π:C«>(T*M®E)-+C«>(Q*®E)^Cao(Q®E) (1.2)

we define the transversal Dirac operator Jj)'iτ as a generalized Dirac operator in the
sense of [G-L1,2], [Rol,2,3] by

ί>;r = cl°π°V£, (1.3)

where V = V£ denotes covariant differentiation with respect to the metric con-
nection on E. If {£α}α=ι,...,fl is taken to be a local orthonormal projectable frame
in β, then

J>ί, = Σ£. vv (i 4)
α

Taking χ^ to denote the characteristic volume form along the foliation, then
modulo J^-trivial forms, Rummler's formula [Ru] states that

dχ, + κΛχr = 0, (1.5)

where JceC°°(Q*) denotes the mean curvature of (M, ̂ ,gM). In [B-K2] it was
shown that the formal adjoint (φir)* is given by (ψ'^* = Jj)'iτ-κ and that therefore

ΛΓ = «,-£*• (1.6)

is a symmetric, transversally elliptic differential operator, with symbol σ satisfying
σ(x, ξ) = ξ- for ξeQ* and σ(x, ξ) = Q for £eL*. Perhaps we should remark that the
mean curvature term seems to appear already in Witten's paper [W]. We define
the subspace Γb(E) of basic or holonomy invariant sections of E by

(1.7)

observing that for the forms E = Λβ*® C on the normal bundle we have

(1.8)

where Ωb(^) are the usual (C-valued) basic forms of (M,^). From (1.6) we see
that Jj>it leaves Γb(E) invariant if and only if the foliation (M, &, gM) is isoparametric,
i.e. κeΩl(&\ in which case K is closed [K-T5]. Let

b(E)->Γb(E)ι (1.9)
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we refer to this operator J/)b as the basic Dirac operator on (smooth) basic sections
Γb(E).

In [B-K2] certain vanishing theorems and index formulae were established
for the operators f)tτ, f)b and their powers. Indeed these operators are essentially
self-adjoint with Jβb and ty\ each possessing a discrete spectrum. The special case
of the basic Laplace operator was studied in [K-T3] (compare also [Al], [Co],
[EK], [EK-H]).

We now outline the rest of the paper. In Sect. 2 we discuss some properties of
f>b with a view to the Bochner-Lichnerowicz technique. Then in Sect. 3 we
introduce the basic vector potentials relative to the notion of infinitesimal flow
(Lie derivative) in the leaf directions. We allow these to vary in a moduli space Y
which is a quotient by the gauge group of the foliation. Elaborating on our earlier
remark, we briefly describe a reduced YM system relative to a Killing vector field
flow on a 4-manifold. The topological and analytic indices are defined in the
K-theory of Y. Since our operators possess elliptic-like regularity, but are not
elliptic themselves, a certain amount of reworking drawn from [A-S2] is necessary.
This is dealt with in Sects. 4 and 5. Maps from Yto Fredholm operators (for both
parities of the codimension) are treated in Sect. 6 leading to the notion of J^-relative
anomalies. Here the foliated bundle appears as a functorial variable. Section 7 is
devoted to a generalization of the results of Vafa and Witten [V-W] by means
of a spectral flow approach. We state the analogous fermion inequalities in the
transversal direction. We exemplify matters by indicating that for codimension
q = 4, the analogue of the absence of a mass gap occurs under the appropriate
conditions. In Sect. 8 we introduce the basic zeta function which (for q even) allows
us to regularize determinants as in the absolute case. Anomalies can then be located
and are interpreted as an obstruction to a gauge-invariant determinant for the
basic Dirac family.

2. Properties of the Basic Dirac Operator

The following properties of the operators |)tr and J/)b were established in [B-K2]:
(i) On C°°(£), we have the Bochner-Weitzenbόck type formula

+ ̂ v + JΓv, (2.1)

where
v* = r.i(£.)vj;,

and

av(s) = ΣΛ<βEΛ Eβ Rv(EΛ9Eβ)(s), Jfv = H~διc + ϊM2K (2 2)

with ^v, JΓV pointwise symmetric.

(ii) On Γb(E\ we have

# = Δ|/;(£), (2.3)

where Zl = V*V + ̂ v-f JΓV is a strongly elliptic, symmetric operator of Laplace
type.
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The restriction property (2.3) may be used to prove vanishing theorems for
ker(^b), provided one is able to control the divergence term 6κ in the above
expression for Jf v. The easiest condition to impose is that 6κ = 0, i.e. that K, being
already closed, is a harmonic 1-form. We then have ^^ = ̂ \κ\2 and the resulting
local equation

gE(P2

bs,s) = ±A\S\
2 + \Vs\2 + gE(®v(S),s) + i\κ\2\S\

2 (2.4)

implies transversal vanishing theorems for ker(|)b) by the usual Bochner-
Lichnerowicz argument, provided ^v ̂  0 and &v is positive at least at one point
x0eM [G-L1,2], [Li]. From our point of veiw, however, the main consequence
of the restriction property (2.3) is given below.

(iii) The operators ^>tr, φb and their powers are essentially self-adjoint on L2 (£),
respectively L2(Γb(E)\ with 1J)b and φl having discrete spectrum (i.e.
Specess(^f>) = 0). The absolute growth of the eigenvalues of j)b is regulated by J/>2.
The eigenspace decompositions of A and ty\ are compatible under the following
inclusions and projections

πlS

where Π denotes orthogonal projection, and (2.5) is compatible with all Sobolev
space completions HS(E) (respectively Hs(Γb(E)).

From the above considerations we can deduce the elliptic-like regularity for Jf)b\

Lemma 2.1. Let f)bv = s with seΓb(E), veHs(Γb(E)), then veΓb(E).

In fact, ]f>b satisfies full elliptic regularity as a consequence of (iii) above and
therefore f)2

)v = f)bseΓb(E) implies veΓb(E).
In the case where q is even, the operator f)b splits as

and P2

b = \^^ ° 1, (2.6)^ L o φ^-\
Γb(E-),p;:Γb(E-)^Γb(E + ),^

The following Lemma is immediate from Lemma 2.1.

Lemma 2.2. Letj)b

ru = υ with veΓb(E~\ ueHs(Γb(E + )), then ueΓb(E + ).

Theorem 2.3. [B-K2].

(i) The basic heat-operator e~1^ is a smoothing operator of trace class and kernel
KbtteΓb(E**ίE9& x&\ for ί^O;

'(ii) (e"^2)M->/7(u) in the C™ -topology for ί|oo and ueL2(Γb(E)), where
Π:L2(Γb(E))-*kQΐ(]pb) is the orthogonal projection;

(iii) Trs(e~f^>) is independent o/£>0, where Trs denotes supertrace;
(iv) The index of ]j)b is given by the following formula:

Ind (ft ) = ker (^ ) - ker (J> - ) = lim Trs (e ~ ̂  ).
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Indeed, this follows as in [A-B-P], using the previous results. We have
ker(β+) = ker(^~|>b

+), ker(0~) = ker (#+#") and β* induce inverse isomor-
phisms of the eigenspaces Eλ(ty~ ψb ) and Eλ(Jj)b ψ~ ) for λ > 0.

Remarks 2.4.

(i) It follows from Lemma 2.2 that $+ has closed range in L2(Γb(E)) and that
therefore the operators of the t'ype ]/>b are Fredholm in the unbounded sense. But
then, these operators may be turned into bounded Fredholm operators by
appropriately altering norms in the Sobolev spaces.

(ii) Alternatively, the smoothness of the projection in (2.5) implies that the
resolvent R(f>2,ζ) = (f)2 -ζ)'1, C^Spec(^), C^O, is the restriction of the cor-
responding resolvent of the strongly elliptic operator Δ to L2(Γb(E)). Hence it is
compact, symmetric and Ψζ = I + ζR(pl,ζ) is a bounded symmetric Fredholm
operator having the same kernel and range as φb and whose spectrum is
given by

We tacitly assume that Γb(E) is infinite dimensional, hence L2(Γb(E)) is
isomorphic to a separable complex Hubert space.

3. Indexing a Family of the Operators fyb

In what follows we shall assume that Q is endowed with a Spin(g) structure
%2^FsPin(Q)-+Fso(Q) and take

E = S®V, (3.1)

where S = FSpin(Q) x Spin(β)Λ denotes the spin bundle associated to Q, Δs the spin
representation and F is a complex coefficient bundle. Indeed, we view V as the
vector bundle associated to a foliated principal G-bundle P->M[K-T1]. For
instance, we could take the corresponding G-bundle of a Riemannian G-foliation,
where P is the G-reduction of the principal frame bundle FSO(Q).

Throughout this paper we assume that G denotes a compact, connected Lie
group. Let p:G -> SU(r) be a representation of G on <Cr and let V= P x p(Cr be the
resulting complex vector bundle endowed with a Hermitian structure. We call the
resulting bundle E in (3.1) a foliated twisted spin bundle.

Let si denote the convex space of connections in P. We consider the restricted
gauge group ^ = ̂ tto czker(C°°(Aut P)->Diff(M)) of gauge transformations
which fix a point uQeP and denote the (free) action of ̂  on stf by φΆ [A-J],
[A-S4], [Si]. We observe that φe<^ is determined by a smooth mapping ψ: P->G
via φ (u) = Rj(u} (u) = uψ (u), satisfying ψ (ug) = g~1^ (u)g, ueP,geG [ A-B 1 ] . Hence
the differential ^ ΓP-»g satisfies ψ*°Rg* = Adfe)"1-^. We have

, (3.2)

where ξ* is the vertical vectorfield determined by ξeg. It follpws immediately that
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the action of ̂  on si can be expressed by the formula

(φ A)u=(φ*(A))u

(3.3)

Now the foliated structure on P determines a canonical lift of vectorfields
XeL(^ to G-invariant projectable vectorfields XeL(&) (i.e. Rg*(X) = X for geG\
where §F denotes the G-invariant foliation on P [K-T1]. A connection Aestf is
called adapted to & if i$ A = 0 and basic if, in addition, L$A = iχdA = 0 for all
vectorfields of the form XeL(&) (these are the transversally projectable connections
of [Mo], cf. also [Bo]). We denote by j^c^, the convex .subset of basic
connections in P. As ^ induces the^identity on M and the lifts X are unique, it
follows from (3.2) thatjhe group 9(&) = ̂ n Aut(P,#) of gauge transformations
preserving §F (i.e. φ^ (X) = X) is given exactly by those φe^, for which ψ^ | L(^) = 0,
i.e. ψ is constant on the leaves of i7 . We call ^(#) the basic gauge group of (P, U*\
The G-invariance of the vectorfields X implies that the G-action R* and the Lie
derivatives Lx commute on sί\ (3.2) and (3.3) then imply that s/b is invariant

under φe<&(&\ We summarize this in the following proposition.

Proposition 3.1
(i) <&($?) consists of those gauge transformations in ̂  for which ψ^ \L(&) = 0 for

all XeLffi',
(ii) The convex subspace of basic connections jtfb c: stf is invariant under the

action of9(&) and <$(&) acts freely on <tfb.

Remark 3.2. For a basic connection A, the curvature from FA is a basic form, that
is iχFA = 0 and LχFA = 0.

Let φe^(^) and take φ to denote its extension via p, as a basic element
φeC°°(Aut(F)). Then the co variant derivative VV(A) associated to
transforms as

Now

V£(>4) = V S ®/ + / ® V K ( X ) (3.4)

and letting φ = I® φ, we see that V E ( A ) transforms as

(3.5)

since φ acts only on the second factor. For the same reason, the representation
φ^φis compatible with the decomposition E = E + φ E ~ for even q. For a choice
of connection Ae<ε#b, we have then a basic Dirac operator (Jj>b)A depending on A,
which for A^φΆ transforms as

(Pb)φ A — Φ~ l(Φb)A Φ- (3-6)

We refer to the property in (3.6) as the covariance of (tf>b)A. We also remark that
throughout, the basic connection Aεj/b is varied with all metrics in question
remaining fixed.
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The difference form δAt<p = φΆ — Aisa form on M with values in the adjoint
bundle Ad(P) and from (3.3) we deduce that it is determined by

*A.ΦPO = <M*)> (3.7)

where X is the horizontal lift of a vectorfϊeld X relative to the connection A. As
Clifford multiplication and φ act on different parts of E, namely S and V9 (lβb)A

and φ commute up to a multiplication operator, i.e. the difference of the cor-
responding Dirac operators may be written as

(V>b)φ A ~ (Pb)A = <Γ * [(ίU*,0] = ΞAtφ9 (3.8)

where ΞAjφ is a basic hermitian endomorphism of E9 locally given by the formula

We proceed by defining a principal bundle

(s/b x P, 9(&), ̂ b x *(ΛP = P), (3.10)

where 9(&) acts on j/b x P by (A,u)-+(φΆ,φ~l(u)). Now with our choice of
, P is itself a principal G-bundle

(3.11)

With regards to defining a connection ώ on P and a formula for the curvature
Ωώ pointwise at ([A], M), one may follow the details in [A-S4] practically verbatim;
their space of connections and gauge group are replaced by our jtfb and <8(JF}
respectively. Recalling the Atiyah sequence of vector bundles on M

0-»Ad(P)->TP/G->TM->0, (3.12)

it is a straightforward matter to deduce that pointwise

x P)sflί(^Ad(P))Θ TP (3.13)

Using the fact that <&(&) commutes with G and applying i$ to the components
of type (2,0), (1,1) and (0,2) relative to M x j/b9 one sees that i$Ω& = 0. This
together with (3.13) shows that ώ is itself basic (cf. [G1-K2]).

A particular motivation for introducing basic connections in gauge theory is
provided by the following and is closely connected to the notion of dimension
reduction of the pure Yang-Mills equations on R4 in the absolute case^(see e.g.
[A-H], [J-T]). We take m = 4 and q = 3 and select Aεjtf such that lχ A = 0, i.e.
A is invariant under the leaf flow. Let XeL(^\ be a unit Killing vector field,
\X\ = 1, so that the characteristic 1-form χ^ satisfies χ^(X) = 1. Setting φ = i$A,
we have

Now by definition we have φeEnd(K), and thus may regard φ as a basic Higgs
field. If we now write

A = A-φΛχ^, (3.14)
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we have LχA = —L%φ Λ χ^ — φL,χχ^ = 0. From ixχ^ = 1, we also have

hence showing that A is basic, i.e. Aεs#b. Thus associated to A is a basic vector
potential A together with a basic Higgs field φ related by (3.14). As for the curvature,
we may write

FA = FA+Ψ, (3.15)
where FAeΩ^(^,λd(P)) and fis an Ad(P)-valued 2-form. In keeping with the
analogous situation of [A-H] and noting that in this case the mean curvature
K = 0, one readily deduces from FA = dA + \ {A, A], (1.5) and (3.14) that

(3.16)

and

(3.17)

Assuming self-duality *FA = FA, we may proceed further. Let * denote the
transversal star operator, *:ί2£(J^)-»ί2^~r(^r), where * = * Λ χ^. Thus observing
that *FA = *FA Λ χjΓ, we deduce from (3.15), (3.17) and (1.5)

*FA = *FAΛχ^ + *(DAφ). (3.18)

Applying the self-duality condition, we now equate terms in (3.15) and (3.18) to
derive a generalized Bogomolny equation (cf. [A-H]):

FA = *DAφ. (3.19)

The other equations characterizing the YMH system obtained by the above
leaf-flow invariance of the self-dual YM equations on a 4-manifold, are easily
deduced to be

(i) DAFA = 0

(iii) ΌA*DAφ = Q. (3.20)

With regards to the sequence in (1.1), we see that if the second Stiefel- Whitney
class w2(M) = 0, then automatically w2(β) = 0, since L(^) is trivial in this case
and hence the above system may be equipped with a basic Dirac operator Jj)b. Since
q is odd, the analytic nature of the j>b family is directly related to the notion of
spectral flow (following [A-P-S]). This point will be taken up in Sect. 7.

As regards the heterotic string mentioned in the introduction, it is worthwhile
to note that when (M, ̂ ,gM) has compact leaves, the leaf space M/J* is endowed
with the structure of a ^-dimensional orbifold [Mo]. This means that M/^ is locally
identifiable with M/Γ9 where M denotes a g-dimensional oriented manifold and
Γis a finite group acting on M. As in [A-B2], one may pass to the equivariant
quotient

MΓ=EΓxΓM. (3.21)

With the assumption w2 (β) = 0, we have a basic Dirac family which extends
to M Γ when the latter is viewed as a simplicial manifold. In the case corresponding
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to q= 10 as described in [F- K] (with G = 50(32) or £8 x E8), the condition
w2(MΓ)=^0 partially accounts for anomaly cancellation relative to the space
Map(Z, MΓ), where Σ denotes a closed Riemann surface. Extending the ίj)b family
to the equivariant quotient in our setting, may be similarly interpreted.

4. The Basic Topological Families Index

In Sects. 4 and 5 we assume that the codimension q of ̂  is even. As we mentioned
previously, each (f>b

r)A for a choice of Aes/b is non-elliptic; however, we recall that
its extension (f)*)A is transversally elliptic. Moreover, the symbols of the operators
(fib)A and (PΐrΪA are equal and independent of A, namely given by Clifford
multiplication ξ- for ξeQx. The operator (f>*)A, being transversally elliptic, thus
possesses a well defined symbol class σtτeK(Q*) = K(B(Q*\ S(β*)) such that
σtrls«2*) is an isomorphism (here β* denotes the complexified dual normal bundle
of ,̂ i.e. Q* = Hom(<2,(C)). We will use complex K-theory as completion over
compact sets (as apparent in [A-S4]). The maps appearing below are the usual
maps in X-theory, as defined e.g. in [A-S1] [A-S2], although our notation is
slightly different.

We jiow establish some notation. We elect to denote j t f b / y ( & ) by Y and
jtfjj/Φ^) x M by Z. With regards to the representation p, we define an "auxiliary"
vector bundle

g° = Pxp<Cr (4.1)

over Z with projections

P

z —» Y
Ί (4.2)

M

Now taking the complex spin bundle S associated to Q as a vector bundle over
M, we define

<f = π*S®^° (4.3)

and extend the family {{f>b)A} to $ as a family of operators {(j>b)A} on Γb($}. For
q even, we similarly extend the family {(ίj>^)A} to ^ ± as a family of operators
{ΦϊΪA\ Γ^HnOf+)overZ.

It will also be useful later to view the family {φ^ )A} as an operator JJ>^, acting
along the fibers of the Hubert bundle

jr±=^x^ (^)L2(Γ,(£±))^r. (4.4)

Setting β* = π*g*, the element σtr may be lifted to an element σtr in K(β*),
and via the Thorn isomorphism

gι:K(Z)-^->K(Q*) (4.5)

defines an element g i ~ 1 ( σ t r ) in K(Z). The equality of the symbols of (βb)A and
(jp*)A motivates the following definition.
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Definition 4.1. The symbol class of the basic Dirac family {{f>^)A} is the element

ίσlb = g^(σίr)eK(Z). (4.6)

Now that we have a well-defined symbol class, the definition of the basic
topological families index is straightforward. We consider the homomorphism

iΐ.K(Z)->K(YxCN) (4.7)

along with the periodicity isomorphism

Definition 4.2. The basic topological families index of {(f>^)A} is the element

(4.8)

This provides a homomorphism K(Z) -> K(Y) and analogous to [A-S2], we deduce
the formula

ch(Indtop(|ί6

+ )) = ± p, (ch([σ]fc) Λ Td(β*) Λ χ^) (4.9)

where ch( ) denotes the Chern character, Td(β*) the Todd class of <2* and p^ is
integration along the fibers of p in (4.2). Noting that β* inherits a Spin(g)-structure,
we obtain from (4.3),

chfo,W) = 0*(chW Λ Td(β*)) = ̂ (ch(ί °) Λ A(Q*))9 (4.10)

where A denotes the (reduced) Atiyah-Hirzebruch class and

0,:H*(Z,<|»— /f*(β*,Q) (4.11)

is the Thorn isomorphism in rational cohomology. Together with (4.9), this yields
the following formula for the Chern character of the topological families index

ch(Indtop(^)) = ± /Uch(O Λ A(Q*) Λ χ^). (4.12)

5. The Basic Analytic Families Index

Let ^d(Z;<ί+,<ί~) denote the space of pseudodifferential operators of order d on
Z from C°°(<ί + ) to C00^') and let ^d(Z;^ + ,^~) denote its_Sobolev space
completion with respect to HS(CCX)(S>±))1^Then in a standard way ^d(Z;^+,^~) is
a_ fiber bundle over Z with fiber ^>

d(M;S>+

9S
>~). Regarding a section of

^d(Z;<f+,<T~) as a family (in the sense of [A-S2]), we see that the family {p + )A}>
is given locally in the neighborhood of A0e^b by a continuous map
j/j, -* ̂ d(M; E +, E ~). Passing to Sobolev spaces, this induces, locally, a continuous
map

(^r^^FredίH^nίfi + ̂ H,.!^^-))), (5.1)

where Fred denotes bounded Fredholm operators with the norm topology. Let
W= Ker(^+)s. Then the map

^H^^Γ^E-)) (5.2)
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defined by cs(A)(u®v) = (f)b)
s(u) + v is surjective for A close to A0. Now from

the regularity property of the ft* and Lemma (2.2), we see that W^ Γb(E~) and
for A close to Aθ9 the map c(A):Γb(E + )@ W->Γb(E~) is surjective. The global
argument in [A-S2, p. 126] now applies over jtfb9 and we can define a surjective map

Γb(g-)Λ (5.3)

given by

4

+ )>; v, , . . . , vk) = (ft )A (u) + Σ v^μ) (5.4)
t = l

for a finite number of sections (s1? . . . ,sk) of Γb(£~\ The vector spaces Keτ(f>b)A

then comprise a vector bundle kerjp^ over jtfb and we note that the element

[Ker^6

+] — \db x Ck] is a well defined element in K(jtfb) and depends
only on J/>b and not on the choice of sections v f. As in [A-S4], the co variance
property (3.6) implies Keτ(f>b)φ.A = φ~i(KQτ(]/)b)A) and permits us to define the
above element as an element in K(Y):

Proposition 5.1. The element

[Ker^f]-[7x<C fc] (5.5)

is a well defined element of K(Y).
As Yis connected, we obtain by evaluation at [>l]eY:

Corollary 5.2. The index of the operators (I/>b)A is independent of Ae^b:

(5.6)

We refer to (5.5) as the basic analytic families index of the family {(Jj>b)A} and
denote this by Inda(j)b). It remains to investigate the difference between (5.5) and
(4.8), a measure of how the family {(J/>b)A} deviates from ellipticity for q < m.

Remark 5. 3. As stated before, the transversal Bochner-Weitzenbock formulas (2.2)
and (2.4) for (1j>b)

2

A> provide examples of operators with kQτ(j>b)A = 0 under suitable
curvature conditions. In the present context (E = S® V\ we find as in
[G-L1, 2], that $V(A) = ̂ σ ® idF + ids ® $A, where σ denotes the transversal scalar
curvature of the Levi-Civita connection in β and <%A depends only on the curvature
in the coefficient bundle V associated to the foliated bundle P. If we assume now that

^v(A) = έ σ (x) idκ + ids ® @A ̂  0, (5.7)

and strictly positive at a point xeM, we find that Kerφ^)^ = 0 and therefore by
(3.6)

IndW + )φ.A = 0 (5.8)

along the orbit of Ae^b. It follows from (5.6) that Ind(I/)b)A = 0 for all Aεstfb.
This result is essentially due to Lichnerowicz [Li] in the absolute case.

6. Maps from Y to Fredholm Operators

The analytic families index parametrized by jfb/&(&) = Y in the last section,
essentially relates to the Hubert bundles tf * over Y in (4.4). Intuitively, the
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covariance condition in (3.6) implies that the family {φ^)^}, for A fixed, gives
an operator (fib^w A on an orbit class mapping the fiber ̂ ^(^}.A to 3f&(&).A.

We first recall a few well-known facts from functional analysis and homotopy
theory (see [F-l] [P]). Given a separable complex Hubert space H, let GL= (#£)*
be the group of units in the Banach algebra ^ = ̂ (H) of bounded
linear operators on H and / c pf the ideal of compact operators. The inclusion
U = l/(oo) c GLcpt = (/ + *)* of the weak limit I7(oo) of the unitary groups 17 (ΛΓ),

is a homotopy equivalence and GL/GLcpt ^(^///)*. The projection #t—*#tl&

to the Calkin algebra induces a homotopy equivalence between the space
F = Fred(H) = π~l(#£/£)* of Fredholm operators and the group of units (^///)*.
Using the fact that GL is contractible (Kuiper's theorem), one obtains canonical
homotopy equivalences BU = GL/U ~ BGLcpi = GL/GLcpt ~ F0, where F0 is the
connected component of index 0 of F.

For q even, the construction of the analytic families index in Proposition 5.1
yields now a unique homotopy class of maps Ψ*Pi£) = [^+]?

ψ+ . y_ Q0 l(£(&\_+ ΏTT y Ίi ^ ΓLΪ /(IT v ^ ^ F ί6 ]}
i . I — ύft b /y v5^ / -*-̂  *̂  ^ *̂  — \J LJI \J J_/ct»< A ΛLJ — J- , \^ -*• /

mapping 7 to the fixed component of index c = Ind(($)fo

+ )A) in (5.6) (cf. [A-J] [A-S4]
[Si]).

A mapping in the class Ψ*p ^ may be realized as follows. As GL is contractible,
the Hubert bundle JΓ ± over Y has a trivialization (unique up to homotopy), given
by an equivariant mapping s±:s/b-+GL± = GL(L2(Γb(E±))) satisfying

The covariance condition (3.6) and formula (6.2) imply that the mapping

is constant on ^(^)-orbits and thus defines

which evidently realizes the class Ψ*p ̂ γ

We have a diagram of principal bundles with total spaces contractible:

GL

I . (6.5)

>GL/GLcpt

Passing to loop spaces [P-S], we observe that j/b/y(&)~B<g(&) and
G~ΩBG for any topological group. Thus we obtain a homotopy class

+] of maps

(&)~ΩBy(βr) = ΩY->ΩFc~ΩBGLcpt~GLcpt, (6.6)

which, as in [Si], may be realized along a fixed orbit for which (D£)A is invertible
by the mapping

(6.7)
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where the bundle map Ξ^φ is determined by (3.8), (3.9) in an obvious sense. We
summarize these constructions in the following theorems.

Theorem 6.1. There exist well-defined homotopy classes of maps Ψ*p ^} from
to BU ~ Fc andΩΨ+p£} from <#(&) to U ~ GLcpt, realized by (6.3), (6.7) such that
the induced homomorphisms

) (6.8)

and

) (6.9)

are related by transgression in the respective universal bundles. We have moreover,

Ψfeβj} = <:j<lad.φϊ)), (6.10)

where Cj denotes the universal Chern class.

Theorem 6.2. In the category of foliated G-bundles (P,&) over (M9^) of fixed even
codimension q, the homomorphisms (6.8) are compatible with pullbacks along
C™ -mappings f: M'-»M transversal to &\ i.e. the pullback diagram

(6.11)

induces a canonical homomorphismf:(^(β:)-^^(f*^) satisfying

Remarks 63.

(i) In Sect. 8 we will see how to interpret the characteristic class corresponding
to Ψ^}(cl)eH2(B9(y)97^9 respectively its suspension in Hl($(i?\TL\ via the

determinant map on &(&), i.e. as an obstruction to defining a gauge invariant
determinant for the family {(f>b)A} In analogy with the absolute case, one might
therefore call these classes ^-relative aural anomalies.

(ii) We remark that for the absolute case (q = m) the transversality condition
implies that / must be a submersion. In this case L(/*^)= T(f), the tangent
bundle along the fibers of/, and f*^ is given by the (connected components) of
the fibers of /.

For odd codimension q, the spin representation Δs is irreducible, but the family
{(1/>b)A} may be used to construct a map from Y to bounded self-adjoint Fredholm
operators. We trivialize the Hubert bundle

Y (6.13)

by an equivariant map s: <$/b-+GL= GL(L2(Γb(E))) and then set

Ψ(A) = s(AΓl*(l>b)A<>s(A). (6.14)

This defines as before a canonical map

(6.15)
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which, at least under some mild restrictions on J% takes values in the non-trivial
component F^ ~ Ω¥ ~ ΩBU ~ U of self-adjoint Fredholm operators [A-S3]; we
denote its homotopy class by Ψ(P ̂ γ This is in accordance with the index class
of a self-adjoint family being an element of ̂ (y^A-P-SJII], [A-S3].

Passing again to loop spaces, one obtains a homotopy class Ω Ψ(P ^} of maps

Ω Ψ:<$(&] ~ ΩB^(^) ~ .Qy-^F* ~Ω2¥ ~ F - BU x TL (6.16)

by Bott periodicity. Thus in the odd case, the situation is exactly reversed and one
obtains cohomology homomorphisms (cf. [Si])

\ (6.17)

and

). (6.18)

In the next section, we give an explicit realization of a map in the class Ω Ψ(P ̂ )

by suspending a gauge transformation to obtain a periodic family of self-adjoint
basic Dirac operators. The homomorphism

Z (6.19)

may then be interpreted as the spectral flow of the periodic family [A-P-S,III].

Remark 6.4. The homotopy class ΨfP^} corresponding to the family (Ipb)
2

A may
be realized by the map

Ψ2(A) = s(AΓl0 fζ(A)°s(A), (6.20)

where Ψζ(A) = I + ζR((pb)
2

A,ζ), ζ = - l , is the bounded self-adjoint Fredholm
operator defined by the resolvent in remark 2.4 (ϋ). As these operators are
non-negative, Ψ2 takes values in the contractible component F+ of essentially
positive operators.

7. Spectral Flow of the Basic Dirac Family

In this section we generalize part of the results of Vafa and Witten in [V-W]
concerning uniform bounds on the eigenvalues μ7 of Dirac operators coupled to
vector potentials, to the foliation context. The description by Atiyah )n [A2,
Theorem 1 *] and the essential geometric framework suit our basic Dirac operators
quite appropriately.

Let E = S® Kbe a foliated twisted Spin bundle as in (3.1). We recall that (]/)b)A

has a discrete spectrum and assume that the eigenvalues μ^A) are ordered by
increasing values, counting multiplicities, i.e. Spec ((1^X4) = {μ^eR,^^ ̂  μ, +ι,

Given a gauge transformation φe^(^\ we suspend the automorphism φ by
considering the mapping torus

E = J&xφE-+S1 xM, (7.1)

i.e. by identifying (ί-f n,s)~(ί, φn(s))> seE, felR, neZζ. Sections of E are given by
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those sections o f R x £ - > R x M which satisfy the identities

s(t + n,x) = £-"s(t,x). (7.2)

It is clear _that E-^S1 x M is a foliated twisted Spin bundle with respect to the
foliation & on S1 x M of codimension (g+ 1), given by L(JΓ) = 0 x L(^\ We
define a 1-parameter family {Dr }teR of basic Dirac operators for a given Ae^b by

Vt = Wi,)At, (7 3)

where

At = (l-(t-n))φ» A + (t-n)φn + ίΆ = φn At-n (7.4)

for fe[tt,7i-h 1], neZ. The covariance condition (3.6) is now expressed by the
following periodicity condition for the family {A}teR :

Όt+1 = φ-l°Όt°$ for ίeR. (7.5)

This defines therefore an operator D, acting along the fibers of the Hubert bundle

Sί. (7.6)

In fact, Jf^, D and E are exactly the pull back of the "universal" quantities Jf,
|>b and δ in (4.3), (6.13) via the mapping ΛiS 1 x M-> Yx M defined by
A(t,x) = ([A,],*) (notice that [Λf], fe[0, 1] defines a loop in 7= */,,

Using (3.8), (3.9), we may rewrite the periodic family {DjteR as

tΞAfφ9 for fe[0,l], (7.7)

or via (7.5),

Όt = φ-n°((pb)A + (t-n)ΞA,φ)°φn (7.8)

for ίe[n,n + 1],
Further, as the representation φ-+φoϊ &(&) in GL = GL(L2(Γb(E))) is unitary

[A-B1], [M-R], it follows from the periodicity condition (7.5) that Dί + 1 and D,,
are unitarily equivalent for teR and so

Spec (D f + 1) = Spec (£>,), for ίeR. (7.9)

This construction, assigning to a gauge transformation φ a loop in Y and a
periodic family in F#, realizes a map in the homotopy class Ω Ψ(PJ) in (6.16). The
induced homomorphism

πl(S^^Έ^πί(Y)^πίφ^^π0(¥)^Z (7.10)

determines an integer, which we define as the basic spectral flow sffe(Z)) of the
periodic family D — (DJteiR This notion of spectral flow, as introduced in
[A-P-S, III], can be developed in the present context just as in the absolute case.
Intuitively, it may be thought of as a monodromy invariant in the Hubert bundle
(7.6), as the solutions of the eigenvalue equations move around S1, thereby inducing
a shift on Spec((^b)^). The operator @b = Όt + d/dt, with adjoint @* = Dt- d/dt,
is well defined on the (basic) sections of E by (7.2) and (7.5). The fundamental
relationship of the spectral flow of D with the index of Ώb remains valid. If the
codimension of & is odd, then one has the following formula for the basic spectral
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flow of the family D (cf. [A-P-SJII]):

sfb(Db) = ItLda(®b). (7.11)

We use this construction, as in [A2], to prove the following theorem (cf.
[V-W]).

Theorem 7.1. Assume that (M,^) is of odd codimension q = 2l+l and admits a
foliated C^-mapping (constant on the leaves of ϊF)f\ M-+Sq inducing an oriented
isomorphism

f*:Hq(S\ΊK)-^Hq(Ωb(^)), (7.12)

i.e. /* (μ) = cv, c> 0, where μ denotes the orientation class ofSq and v the cohomology
class defined by the transversal Riemannian volume form in Hq(Ωb(^)). Then there
exists a constant Cl > 0, independent of A and K such that any interval
[a — Cγ,a -f CΊ], αelR, contains at least one eigenvalue of (ίj)b)Afor all Ae^b, i.e.

+ CJ^β. (7.13)

Proof. It is clearly sufficient to prove the theorem for K®CN ^NV,N> 1, and
connections of the form N A on NV, as the eigenvalues of (fib)NA are evidently
those of (Jβb)A with N times their multiplicity.

The following argument is based on the outline in [A2], adapted to our present
context. Choose ψ: Sq-^ U(N), representing a generator of πq(U) (N in the stable
range). Then φ = ψ°f:M-+U(N) defines a gauge transformation in M x <CN and
hence in V® (CN ^ N V. We denote by φ = I ® φ the resulting gauge transformation
in N E = E ® C* = S ® (V® <CN) (observing that we may as well take G - U(r) and
for p the representation of U(r) by diagonal blocks in U(rN)). We have that
φey(&) by Proposition 3.1 (i) and (7.12). Setting A0 = A®I = NA, we obtain
therefore by the previous construction (7.3), (7.4) a 1 -parameter family D = {Dt}teR

of basic Dirac operators satisfying the periodicity condition (7.5). From (3.8), (3.9)
and (7.7), we find now that

L(t>*)Λ0,Φl = φΞφ9 (7.14)

where the hermitian multiplication operator ,Ξ'φ:TM->u(N) is given by

-l(Exψ)(v), (7.15)
α

and
Df = (0,)Xo + ίSφ, for fe[0,l]. (7.16)

In contrast to the general situation in (7.7), the endomorphism Ξφ is now
independent of A and V. This important fact is the source for the uniformity in the
estimate (7.13).

If ker(($)bX4 — al) ^0, then the assertion of the theorem is trivially true and
thus we may assume that aφSpec((f)b)A).

Using the explicit construction of the gauge transformation φ and the family
D, one checks directly that it has spectral flow 5/fc(D)^0. Thus an eigenvalue
must cross the gap at a as t:0->l and there exists £0

eOλ 1) such that fleSpec(Dίo),
i.e. ker(Dίo — al) ^0. We claim that the desired constant Cγ > 0 is now given by
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Ci = || Ξφ \\. In fact, using the variational characterization of the eigenvalue μ(A0)
of DO = (pb)Ao closest to a by

(μ(AQ)-a)2= inf <(D0-α/)2s,s> = inf ||(D0 - α/)5 | |
2, (7.17)

we find for seker (Dfo - al\ \\s\\ = 1 by (7.16):

\μ(A0)-a\ £ ||p0-fl/)S|| = ||(D0 - Dίo)s|| ̂  \\Ξφ\\. (7.18)

The result follows. Π

Theorem 7.2. Assume that (M,^) satisfies condition (7.12). Then there exists a
constant C0 > 0, independent of A and V, such that the absolutely smallest eigenvalue
μ^A) of(f>b)A satisfies

Proof. For q even and Ind(]/)b)A ^0, the theorem is immediate as noted before.
In fact, we must then have kQΐ((f>b)A) /O and OeSpec((|)fc)^).

For q odd, the assertion of the theorem is a direct consequence of Theorem 7.1.
For q even, the foliation 2F on S1 x M , given by L(^) = 0 x L(^} satisfies condition
(7.12) and the assertion of the theorem follows from Theorem 7.1 applied to the
basic Dirac operators (f)b)A — id/dt on S1 x E-+S1 x M, whose eigenvalues are

Remarks 7.3.

(i) We observe that condition (7.12) above implies that
and hence that (M,^,gM) is minimalizable or taut, i.e. κ~0(cf. [K-T2,3,4]).

(ii) A condition like (7.12) in Theorem 7.1 is clearly required. It excludes cases
like Lie G-foliations with dense leaves [Mo], where Ωb(^)^Λ$* is finite
dimensional and therefore Theorem 7.1 cannot hold. It is not clear whether such
a condition is required for the statement in Theorem 7.2 to be valid.

Let gQ denote the holonomy invariant metric on β, recalling that gM is
bundle-like [Re2]. Rescaling gQ as gQ-*t2gQ, the transversal volume ||v|| rescales
as ||v|| ->J9 | |v| | with the eigenvalues of Jj)b in turn rescaling as

Then from the above inequality in Theorem 7.2 we deduce that

Iμ i l^ColMΓ 1 " . (7.20)

As an application, let us take q = 4 analogous to [V-W]. Recalling the
representation p: G-^SU(r). Consider (configuration) variables x l 5 . . . ,x k , fe even,
/crgr . Let \l/ί9...,\l/r be local sections of E = S®V, i.e. transversal fermions with
coefficients in V transforming with respect to p. We now define the integral, for

= ||v|Γ1Tr((Lp6Γ
k), (7.21)
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where E A ( x h X j ) are propagators for f>b. Consider the eigenvalue problem

(if>b)ψ = μψ9 (7.22)

where we use the ordering \μi\<^\μ2\^ .... Then (7.21) is expressible as

whence we obtain

/^/c^lMΓHM^IΓ1'4. (7.23)

Now applying (7.20) with q = 4, we have

/Λfc)£C-*||v||(*-4)/4 (7.24)

which for /c>4, diverges as ||v||-»oo. When the coefficient bundle Kis trivial
(corresponding to the massless case), we obtain on averaging

/(fc)£C0/o(fc). (7.25)

In [V-W ], the analogue of (7.25) has the QCD interpretation of absence of mass
gap implying that under appropriate conditions I(k) has the same infrared
divergence as I0(k).

8. Defining the Determinant and the Zeta Function Regularity

Let

Nb(t) = #{λ ̂  ί:λespec(^2)} (8.1)

be the counting function of spec (p*) and N(t) the corresponding counting function
for spec (A). By using (2.5), the a priori elliptic estimates and the Sobolev lemma (cf.
e.g. [Gi]) we have that N(t) and Nb(t) are polynomially bounded and that in fact
[B-H1,2]

Nb(t)^N(t)^crl2

9 for tlao. (8.2)

More precisely, there exists q\ 0 g q' ^ q, determined by the structure of the
foliation, such that [B-K2]:

Nb(t}~cbt«'12, for ί| oo. (8.3)

Let hbj = Tr(^~r^) < αo, for t > 0, where

tV>ϊ) = Σe~λjt (8.4)

Observe that hb t is finite by (8.2). It follows from (8.3) by an abelian argument
(cf. [B-H 1,2]), that

hb(t)~abΓ«'12, for ίjO, (8.5)

i.e.

)-*ab, for ί|0.
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In the following, we assume that kerφ^) = 0 (e.g. by adding a positive multiple
of the identity). We define the basic ζ-function by

j

It follows from (8.2), respectively (8.3), that (8.6) is finite and that ζb(s) is holomorphic
for Re(s) > q'/2. We recall e.g. from [A-B-P], [Gi] that hbtt and ζb(s) are related by
the Mellin transform

ζb(s)Γ(s)=]fhbttdlogt. (8.7)
o

In general one would have to take into account the possibility of multiple poles
arising from logarithmic terms in an asymptotic expansion of ζb(s) for ί |0, as in
the case of orbit spaces for compact group actions [B-H2]. However, in certain
instances these terms do not arise (see [B-Sc]). Whether or not they actually do
arise in other cases, remains an open question. Assuming that hbίt has an asymptotic
expansion without logarithmic terms for t J,0 it follows from (8.3), (8.5) that the
expansion must be of the form

Λ*,r~ Σ *Mί*/2> as ίUO, (8.8)
k^-q

i.e. the singular exponent is — q'/2. From (8.6), (8.7) one obtains then by a standard
estimate for Re (s) > q'/2,

00 00

ζb(s)Γ(s) = f tshb td log f = lim f tshb td log ί
0 ε|0 ε '

N ε oo

= Σ $akt
k/2tsd\ogt+ Jί s/2Mdlogί + o(εs + α+]V/2)

k^-q'O ε

N s + k/2 oo

= Σ β» — --+lt\,tdlogt + o(ε°+* + N<2), α>0.
kZ-q' S + k/2 t

(8.9)

Hence ζb(s)Γ(s) is meromorphic with simple poles at sk = — fc/2, fc ̂  — q' and
residues ak. In particular, ζb(s) is then holomorphic at s2n = —n, with a2n = ζb( — n\

(8 10)

For q odd, we may now consider, formally

d_
'ds

d_

'7s s = 0

which may be computed, assuming (8.8), as in [Si] by

C;(0) = [ζb(s)Γ(s) - ζb(0)/s] l,=0 - U<%(0), (8.11)

where g(s) = Γ(s) — l/s. Thus

ίίΛO)) (8.12)

is a gauge-invariant definition of a determinant for (pb)^, Aestfb, since
Cfc,x(s) = ζb,φ A(s) by covariance (3.6).
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In the case where q is even, we deduce from Theorem 2.3(iv) and (8.8) that

= < - a~ = f +ΛO) - ζ-A(0), (8.13)

where ζbtA(s) is the C-function oϊψb)A

0(V>b)A [A-B-P], [Se]. In general, it is not
possible to define a gauge-invariant determinant for the basic Dirac operators
($b)A, except when G is abelian. To proceed, we choose an operator (Db)Ati>

satisfying ker (0^)^ = 0, and then identity Γb(E~) as a subspace of Γb(E+) of finite
codimension via the fixed operator (J)b)Ao.

We intend defining the determinant DET:̂ (^)-»<C* along the fixed orbit
{(Ψb)φ A<άφe9(p) as an obstruction to a gauge-invariant determinant for (E>b)φ.Ao.
Setting AQ = A, we define the operator

Tφ = (K)A W + )φ.A = (K)A^ (8.14)

as a function on <$(&}. As in [A-S4], [Si], we require log DET to be a local function
of φ A. Again, there is the question of definability of log det Tφ which leads to
det Tώ giving rise to a non-trivial element in Hl(&(&),Z).

By (3.8), Tφ = (p-)AΞAtφ + ( p - ) A ( f > ϊ ) A and hence Tφ is a (non-symmetric)
trans versally elliptic operator on Γb(E + ) having the same symbol as (Jj)^ )^OP&

+ )A
Outside a positive cone in <C, there are only finitely many non-zero eigenvalues
λl9...9λk. Let I-P denote the orthogonal projection onto the finite dimensional
vector space spanned by eigenfunctions corresponding to the eigenvalues λl9...,λk,
plus those in ker((^")^) (in the case where Ind((p£)A) /O). Observing that

)φ A))> one may then define

-xx- -φΠ)> (8.15)
as S=Q

by using a cut along the negative real axis in C. In the general case, the definition

"U (8.16)

gives a non-vanishing determinant. The assignment φ -> det Tφ determines a
smooth, complex valued function on &(&) and we define DET: ^(^)^C* by

An element of H^(^(\Έ] is now obtained by pulling back the generator
(2πi)~ 1 dz/z of H 1 (C*, Z) by the DET map. The image of the latter in H 1 (<&(!F\
R) can be represented by the differential form

ω - (2πΐ)~ 1 rf^DET/DET. (8.18)

Let fe Lie (^(^)), i.e. /is an infinitesimal gauge transformation. Then the closed
form ωA can be expressed, for (p* )A invertible, by

(8-19)

On the other hand, for any Aejtfb and φfc~)x non-singular, we define

+)el//4}|(=0. (8.20)
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The above form in (8.20) isjiot closed, but is invariant and the restriction of ώA to
an orbit and hence to ^(^), agrees with ω A ( f ) (closed), at the identity and gives
a 1-form ίt on $(&). It can be shown that

t, = (2πίΓ 1 d(det Tφ)/det Tφ + df = ω + df, (8.21)

i.e.

[ί! ] = [ω]eH1 (»(#), R).

We summarize this in the following theorem, using Theorem 6.1.

Theorem 8.1.

(i) The cohomology class DET*((2πί)~1(dz/z) in Hl(&(&\I) transgresses to
the class c1(Inda(fc))= ^)(cJeH2(B3(.nZ).

(ii) In Jf^C^R), the cohomology class [DET*((2πi)~1dz/z)] = [ω]
coincides with the class [^J defined above.

The study of the cohomology classes in Hev(B$(&),Z\ in Theorem 6.1 and
their suspensions in Hoάά(^(^\Έ) together with certain characteristic classes
associated to 2F , will be discussed in a separate paper (cf. e.g. [G1-K2]). In
concluding, we remark that for the basic analytic families index we have

Cl (Ind fit ) = Cl (det Ind fa } = c, (X), (8.22)

where J5f = det(ker^+)*(χ)det(ker J)~) is the determinant line bundle defined by
j>£ I*1 the case where M is Hermitian, a generalized Quillen metric can be
constructed on JSP [G1-K1] following along the lines of [B-G-S], [F-2], [Q].
Again, does the difference ch(lndflj)b

+) — ch(Indtop|)b

+) have any interpretation?
In the absolute case, this is zero as a result of the families index theorem.
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