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Abstract. A method for finding the general form of the BRS cohomology space
H for the various gauge and supersymmetry theories is presented. The method
is adapted for use in the space of integrated local polynomials of the gauge fields
and ghosts with arbitrary numbers of fields and dervivatives. The technique uses
the Hodge decomposition in a Fock space with a Euclidean inner product, and
combines this with spectral sequences to generate simple and soluble equations
whose solutions span a simple space E^ isomorphic to the complicated space H.
The technique is illustrated for pedagogic purposes by the detailed calculation
of the ghost charge zero and one sectors of H for Yang-Mills theory with gauge
group SO (32) in ten dimensions. The method is appropriate for supersymmetric
theories, gravity, supergravity and superstrings where higher order terms with
many derivatives occur naturally in the effective action.
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Part I. Introduction

1. Discussion

The purpose of this paper is to introduce and explain in a simple way a powerful
general technique for calculating the local BRS cohomology of the complicated
nilpotent functional differential operators that arise in local field theories [6-8,
36-39, 43]. The technique uses the Hodge decomposition in a Fock space with
a Euclidean inner product, and combines this with spectral sequences to generate
simple and soluble equations whose solutions span a simple space E^ isomorphic
to the complicated space H.

To fully illustrate the details of the technique and the structure of the results
that are obtained with it, this article treats in detail the case of SO (32) Yang-
Mills theory in 10 space time dimensions. This relatively complicated and very
specific example is chosen partly because simpler theories in lower dimensions
do not illustrate the general form of the results quite so well. Also, the 10-D
SO (32) Yang-Mills action is part of the supersymmetric Yang-Mills action that
arises in the zero slope limit of the N= 1 superstring theory [24]. It is hoped that
the results here will be useful for the calculation of the BRS cohomology of that
super Yang-Mills theory. The technique will be used in [17] for the evaluation
of the local cohomology of the supersymmetric model of Wess and Zumino,
where the result is curious and complicated.

The operator of interest in this paper is a simple one to write down. It is the
"restricted" BRS operator:

[ J L I ^ ] (1)

where Dab is the gauge covariant derivative (defined below) and fabc are the
structure constants of the Lie Algebra of the group SO (32). It satisfies the usual
BRS nilpotency identity:

S2 = 0 . (2)

The operator δ is assumed to act in the linear vector space of all integrated
local polynomial functions of the Yang-Mills field A and of the Fadeev-Popov
ghost field ω and their derivatives of all orders. This space will be denoted 9^.
The operator is "restricted" in the sense that the actual BRS identity of the theory
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involves fermions and scalars and sources for the gauge transformations as well,
as reviewed briefly below. The general unrestricted problem is closely related to
the present one and an extension of the present results to that case is straight-
forward, although algebraic complexity becomes a problem.

The cohomology space H of δ is defined to be the factor space H
= KerJ/ImJ. A knowledge of//is useful for several reasons:

(1) The objects in H with ghost number 5̂  = 0 constitute the invariants of the
theory. In the case of ordinary Yang-Mills theory it is easy to obtain all invariants
by simple construction, but in other theories such as 10 dimensional supersym-
metric Yang-Mills this question is not so easy since auxiliary fields to close the
algebra and permit the development of a tensor calculus probably do not exist.
I believe that the present techniques can yield useful results also in such cases,
although work on this question is not yet complete. Even in ordinary Yang-Mills
theory, some exceptional invariants also occur in //with ^ = 0: these are best
thought of as generalized Chern-Simons terms and they will be described below.
A complete list of the objects in H with & = 0 is also essential for an under-
standing of the resolution of the ghost mixing problem in the renormalization of
gauge invariant operators.

(2) The objects in H with 3? — 1 constitute the anomalies that the theory may
possess. My original object in solving this problem was in fact to determine
whether such gauge theories as gravity, supersymmetriy and supergravity possess
anomalies other than the known ones, and as far as I know this is still an open
question. Obviously if heretofore undiscovered anomalies do exist it will be of
interest to examine them more closely in the hope of gaining more insight into
the questions of uniqueness and broken symmetry, and more generally into the
nature of the theories. In fact the cohomology of the simplest supersymmetric
theory is quite nontrivial [17] and it appears that there may well be previously
unnoticed anomalies in supersymmetric Yang-Mills theory [18]. The techniques
in this paper are used to derive the results in [17, 18].

(3) Objects also exist in H with 3/=2 and these correspond to anomalies of the
kind examined in [22].

As was stated above, the existence of an object in H with 3/ = 1 constitutes
a basic requirement for the existence of an anomaly in a theory. The existence
of such an object does not determine whether any anomaly does in fact exist -
that is a matter for calculation in perturbation theory (or by other methods).
However it does determine whether it is impossible for an anomaly to exist (we
are considering only "Lie algebra" anomalies here - not the "global" anomalies
considered for example by [42]. The test is whether the BRS cohomology space
of &=\ is empty or not. If it is empty, there can be no anomaly. If it contains
nonzero objects then anomalies may exist in the theory, and they must have the
same dimension, Lorentz properties and discrete symmetries as the corresponding
objects in H. The trick is then (usually, though not always) to make their coef-
ficients, as calculated in the theory, zero. This can sometimes be done by a
judicious choice of the representations of the fermions in the theory. Another
method is used in superstring theory [24], and this has been considered from a
cohomological point of view by [3, 4].

In general one might expect that there could be anomalies of all dimensions
in a given theory - not merely dimension zero in the natural units of the theory
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(see the definition of dimension in Sect. 3). Such objects would correspond to
anomalies in the insertion of higher dimension invariants into the theory and
would occur for example in the operator product expansion, or in the effective
non-renormalizable action in a superstring theory in the zero slope limit. This
phenomenon does occur in supersymmetric Yang-Mills theory [18]. It is presently
not known whether the coefficients in that case are zero or not.

The present technique is designed to test for the existence of objects of this
kind as well as for the usual objects with dimension zero in the natural units of
the theory, which is where all known anomalies are presently located, except
those in abelian theories [35].

The problem with this method of testing for the possible existence of anomalies
is that finding the BRS cohomology space for a given theory is a complicated
and tedious task, and it has been performed for only a very limited number of
very special cases. Most papers in the literature simply restrict themselves to the
dimension of the action and then consider the most general polynomials that can
be written down. Obviously this does not work for theories in ten dimensions,
or for supersymmetry or supergravity, since the number of terms becomes far
too large. Mathematicians have been dealing with rather different but also very
complicated cohomology problems for a long time. They have developed the very
powerful spectral sequence method for solving this kind of problem. The purpose
of the present article is to introduce the reader to this tool as adapted for the
purpose of evaluating BRS cohomology spaces in gauge field theory, and to
illustrate its use by calculating the cohomology space of a specific Yang-Mills
theory.

Some interesting general results have been obtained concerning the cohom-
ology of BRS operators using fibre bundle techniques in [3]. The difficulty in
using the usual mathematical techniques in the solution of the field theory prob-
lem is that the usual mathematical treatments do not concern themselves with
cohomology restricted to the space of local functionals of the puUback of the
connection, which is essential for field theory applications. In [3], it is explained
that locality is to be identified with universality as discussed therein. The con-
nection between that result and the present method requires further examination.

Recently, a useful series of papers [10-13] has appeared. These papers give a
general formula for the creation of all Lorentz invariant polynomials in the
cohomology space for all compact gauge groups for the restricted BRS operator
in Yang-Mills theories (and gravity).

This is a much more general result than the present paper attempts to treat,
and the reader could justifiably ask whether the present more formal and com-
plicated technique has any value. It is true that the present paper is more general
in one direction - it extends the analysis to Lorentz non-invariant polynomials.
But undoubtedly the analysis of Brandt et al. could be extended without a great
deal of effort.

I think that the value of the present formal methods shows up best in the
general analysis of the restricted BRS cohomology of a supersymmetric theory
in [17]. In that case, it was not easy to guess what the form of the answer might
be, but the combination of the Hodge decomposition and the spectral sequence
generates a number of equations that can be (at least partially) solved to generate
the answer without requiring any real insight into what is going to happen. The
formality and mechanical nature of the technique is a strength in that case,
whereas for the present problem it is also somewhat of a weakness.
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There is therefore some hope that these more formal methods may still be a
useful tool for the terrifically difficult problem of finding the general BRS co-
homology of super Yang-Mills theory, supergravity and the superstring.

A problem that is rather difficult from any known point of view is the problem
of dealing with the full unrestricted BRS operator (see discussion in Sect. 2). This
is a problem whose solution is needed especially in supersymmetric Yang-Mills
theory in ten dimensions, for example, since there is probably no restricted op-
erator which can be defined [16]. The following techniques are capable of dealing
with the unrestricted problem, but they seem to become rather arduous and
algebraically tedious, to the extent that a computer program capable of tensor
manipulations appears to be a desirable addition, particularly for the unrestricted
supergravity problem.

Some earlier work on the subject of this paper was included in [14 and 27].
The latter paper does not allow for the possibility of integration by parts inside
integrals and consequently leaves a large part of the problem unresolved. The
former papers were unpublished, and most of the material in them has been
updated and included in the present work. A brief summary of the main ideas
of the present paper was given in [15]. An analysis of the problem for all gauge
groups in a subspace of the space ^"of all integrated polynomials has been given
in [21]. Additional considerations on relating BRS symmetry to differential ge-
ometry is given in [29, 30, 2, 34, 40] and many other references that I will not
attempt to review here.

The spectral sequence enables one to find out the dimension of the cohomology
space of given ghost charge, for a given theory, in a given spacetime dimension,
for a given dimension of the relevant polynomials, and with given Lorentz and
discrete properties. It does this by specifying certain rather simple polynomials
in the fields with the given properties. These simple polynomials belong to a
space called E^. By the fundamental isomorphism theorem of spectral sequence
theory, E^^H, there must then exist corresponding non-zero polynomials in the
cohomology space H of the full theory.

The results obtained here for 50(32) Yang-Mills theory are summarized in
the conclusion, which also further discusses some of the advantages and short-
comings of the method.

2. The BRS Identity in Yang Mills Theory

To define the notation and make this paper reasonably self contained, we will
briefly review the Ward identity for Yang-Mills theory. One starts with the gauge-
fixed action including ghost terms and sources for the gauge variations of the
Yang-Mills field and the ghost:

^ \ \ (3)

which written in full using the definition of δ below becomes:
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. (4)

Greek letters are used for anticommuting fields or sources and latin letters are
used for commuting ones. D is the dimension of space-time, A is the gauge
potential, G is the curvature of the gauge field A, A: is a gauge parameter, Z is
an auxiliary field for the gauge fixing term, ωa is the ghost, ξa is the antighost
and Ξμ and K are sources to be used in the formulation of the Ward identity.
The variations δA, etc. are defined below. The term I[s,A] is meant to represent
some higher dimension gauge invariant operator coupled to a source s which
might have Lorentz but not group indices. For example this term might be:

The method to be presented deals with all possible terms I in a unified way since
it works to all orders in the number of derivatives on the fields and sources. For
D > 4, these terms arise naturally since the corresponding action is non-renor-
malizable-requiring one to add counterterms of all dimensions.

This action is invariant under the following nilpotent gauge transformations,
which define the operator δ:

δAa

μ=Dfωb , δωa= -\fabcωbωc , (6)

δξa = Za , δZa = 0 .

The sources Ξ and K do not transform under δ. The Yang-Mills curvature is:

Ga

μv=dμA
a

v-dvA
a

μ+fabcAbAc

v . (7)

Some fifteen years ago when the BRS transformation were discovered, a num-
ber of papers were written dealing with the questions that arise from the isertion
of gauge invariant local operators of high dimension [like I(s,A) above] into
Feynman diagrams. It was immediately evident that, in the case of non-Abelian
gauge theories, such insertions generate a need for counterterms that are ghost
dependent and not gauge invariant, and several papers were written dealing with
the proper treatment of these counterterms [31-33, 27, 25, 26, 20, 19]. The non-
gauge invariant counterterms and the usual Lagrangian counterterms form part
of the one-particle irreducible generating functional Γ and can be expected in
general to be the most general local polynomials in the fields and their derivatives
that can be written down consistently with the dimension, conserved symmetries
and BRS identities of the theory.

These BRS identities, leaving out inessential details, take (at one loop) the
form δΓ = Q, where δ is the functional dervivative operator:

— f Λ i o .δ=$ d10x
δωa

(8)
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The antighost field dependence of Γ can be derived from the dependence of Γ
on Ξ by the substitution:

£a_¥Ξa_β pa /g\
w μ wjU vμ S 5 \s)

so we have not mentioned it in the Ward identity. Note that the δ in Eq. 8
contains terms proportional to the equation of motion of the A field. This δ is
what we called the unrestricted operator in Sect. 1. The operator in Eq. 8 satisfies
the equation δ2 = 0, reflecting the nilpotence of BRS transformations. Γ is the
generating functional of one-particle irreducible vertices for the theory, and should
be considered a functional of the same fields and sources that occur in the action,
which is the classical (# = 0) approximation to Γ. The equation δΓ = 0 imposes
linear relations among the coefficients of terms in Γ which will be satisfied in
perturbation calculations provided that a regularization is used that respects the
local gauge symmetry of the theory.

However, as is well known, it is often not possible to find any such regular-
ization. This is the case in chiral Yang-Mills theory in particular. In the case
where the regularization does not respect the symmetry, all that one can expect
from perturbation theory is that, at one loop, the regularized Γ will satisfy the
equation

sr=γ , (io)

where γ is an integrated local polynomial functional of the fields and their
derivatives (even though Γ is of course not local), γ will be local and its coef-
ficients will be finite in perturbation theory as a result of the quantum action
principle. This is the basic result used in [6-8] and we will ignore any problems
that may relate to zero mass particles in the present, on the assumption that
renormalization can be done off mass shell with no serious difficulties for present
purposes. (See [5] for a relatively recent discussion of this point.) From the
equations δ2 = 0 and δΓ = 0 it follows that γ must satisfy the equation

δγ=0 . (11)

The unintegrated local polynomials in the fields, sources and their derivatives
form a vector space over the real numbers. We will call this vector space P. P is
also the (graded) ring of polynomials in variables like:

Alfll...μt = dμι..-δμtA"μ (12)
and

ωμι...μk = dμr..dμkω" . (13)

Similar considerations apply to all other fields or sources present. The inte-
grated local polynomials J d10 x P also form a vector space, which we shall denote
by 3r. Note that !T does not have the ring structure that P does, since the
product of two integrals is not an integral over the same space but over its product
with an identical space. For present purposes we assume that one can always
integrate by parts and discard surface terms in integrals, which is equivalent to
the statement that î ~ is isomorphic to the quotient space of P in which two
polynomials are in the same equivalence class if and only if they differ by a
polynomial which is a total derivative. We can write this relationship in the form
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The operator δ acts as a linear operator on J^or on P and these spaces are
both stable under the operation of δ, by which we mean that δ <9^a jTΊand
δPdP.

When acting on P, δ is also an antiderivation on the ring of polynomials in
the variables Aa

μμx...βk, etc. defined above, y must have ghost number & = 1
since δ increases &\yy one and Γ itself has & = 0. y and the counterterms in
Γ are vectors in the space ^defined above. Here we define ghost number 3/ to
be:

and note the relation:
[&,δ] = δ . (15)

If there exists some Σ e ^ such that y has the form y = δΣ, one can always
redefine the renormalization procedure in such a way that one gets the equation
δΓf = 0, where Γ' —Γ — Σ. However if there exists no local Σ which gives rise
to y by a relation of this form it is not possible to maintain the BRS identity
upon renormalization. Then the theory is said to possess an anomaly. No matter
how one regularizes and renormalizes one will always get δΓ= γ for some non-
zero y. The precise form of y can be changed by a redefinition of the renor-
malization of Γ, but y cannot be entirely eliminated.

The cohomology space HP(H^) of J in the vector space P(^) is defined to
be the factor space of solutions of δP = 0 (A i ^ = 0) modulo polynomials of the
form δP(δ i^"). From the above discussion we see that anomalies in the theory
correspond to elements of H&. with ghost charge one. Evaluation of H^ turns
out to be much more difficult than the evaluation of HP.

If the relevant part of the cohomology space with 3? = 1 is empty or if the
coefficient of the cohomology class calculated in perturbation theory is zero, one
can redefine Γ so that δΓ = 0. Then one must confront the issues arising from
the presence of gauge non-invarant counterterms in Γ. The first problem that
arises is the fact that typically a large number of non-gauge invariant and ghost
dependent counterterms are needed for the renormalization of operators like /
above in Eq. 5. This raises a concern that the anomalous dimensions of higher
dimension gauge invariant operators might be gauge dependent since the gauge
invariant operators mix upon renormalization with gauge non-invariant opera-
tors.

The natural conjecture to make in order to allay this concern is that the ghost
charge zero sector of H^ is spanned by the integrals of local gauge-invariant
ghost-independent polynomials. If this is true then one can expect that the anom-
alous dimensions of gauge invariant operators will be gauge invariant. If it is not
true then there could be serious ghost-mixing problems in the theory which might
cause problems with unitarity. This is an issue whose resolution in the case of
theories like supergravity could conceivably have interesting problems.

Gravity and supergravity give rise to very similar problems and questions. In
these cases it is not necessary to consider the insertion of large dimension gauge
invariant operators to generate the general problem however. The dimensional
coupling constant in these non-renormalizable theories make the consideration
of polynomials of all dimensions inevitable. This is of course also the case for
Yang-Mills theory in ten space-time dimensions.
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Examination of any specific gauge theory reveals that δ is a complicated
operator and that generally the analysis of its local cohomology is a forbidding
task. When performed even with a limitation of operators to those with dimension
less than five, it is algebraically very tedious. It has sometimes been suggested
that use of the "background field" method can avoid the problems of non-gauge-
invariant conterterms, but this is not true since these counterterms still occur in
background field calculations whenever vertices containing only quantized fields
appear.

The spectral sequence technique for finding the cohomology space resembles
perturbation theory since it can be construed as a set of successive approximations
in powers of the coupling constant. However in the present case, unlike in per-
turbation theory, the approximation converges after a few steps to an exact
answer.

3. Exterior Derivatives, Dimensions and the BRS Operator

The rest of this paper is devoted to the analysis of the cohomology of the restricted
operator δ in Eq. (1) in the space IT of integrated local polynomials in A, ω
and their derivatives.

It is easy to see that δ satisfies the relation:

[δ,dμ] = 0 , (16)

where the operator dμ is to be understood as the operator that can be represented
by:

It follows from the above that if we define the operator δε by:

δ8 = δ+ε"dμ , (18)

where εμ is a constant (i.e. spacetime independent) anticommuting Lorentz vec-
tor, then:

S2

ε=0 . (19)

Note that the term dμ gives zero on any integrated functional, since it is just the
derivative operator on the functions being integrated. In Sect. 7, we show that
the cohomology of δε acting on the space Pε (the space P augmented with a
dependence on εμ), is isomorphic to the cohomology of δ acting on the space
J7~. Moreover, we will use this in our calculations because the cohomology of δε

is more amenable to calculation using the present methods. Let us assign the
following dimensions S$ to the fields: 2f{A)=\, &(ω) = 0, 2f{ε)=-\9

21 (d) = 1, 2J (X) = — 1. Let us assume that all coupling constants are absorbed
into the definitions of the fields. Then the action (Eq. 3) has 21 (S) = 4 — Z>, and
the operator δε has 2ί = 0 which can be expressed in the form:

[&,δe] = 0 . (20)
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Now we can assert:

Theorem 1. The space of all polynomials of a given dimension in the space Pε

(defined to be the space P augmented with a dependence on the ε variable) is a
finite dimensional vector space and δε has no matrix elements between subspaces
of different dimension.

Proof Pε can contain a maximum of D powers of ε and a maximum of 16 x 31
powers of underived ω (for the present example), since both of these are anti-
commuting parameters, the spacetime has D dimensions and the group SO (32)
has 16x31 parameters. The remaining variables are Aμ and dμ both of which
have positive dimension, so that only a finite number of combinations with a
given dimension are available using these variables. Finally, since δε commutes
with the dimension, it clearly has zero matrix elements between subspaces of
different dimensions. QED

A similar theorem and proof hold for the space ΣΓ. The use of this theorem
lies in the fact that it means that all our problems are effectively finite-dimensional
problems, with no difficult issues arising from infinite dimensional vector spaces.

Part II. Techniques

4. Fock Space and Hodge Decomposition

As already mentioned we will work in the space P of unintegrated polynomials
in d and the fields A and ω and their derivatives. The operator dμ mentioned in
Sect. 3 is zero when acting in ΣΓ but it is not zero when acting in P. A typical
independent tensor variable in the space P is Aμμx...μk defined by Eq. 12. This
expression is symmetric under all permutations of 1, 2 -k because derivatives
commute. Note that this tensor has no symmetriy between its first spacetime
index and the rest. This fact plays a crucial role. More generally, the present
technique amounts to little more than a systematic way of keeping track of this
kind of symmetry, and all the difficulties that arise in more complicated δ 's for
supergravity, etc. only arise from more complicated symmetries of this type, plus
some extra difficulties arising from making these kinds of tensors traceless when
equation of motion terms are present in the unrestricted operators, δ can be

written in terms of the variables defined above (and analogous ones for all the
other fields and sources) by defining an adjoint "destruction operator" to satisfy:

\(Λb ϊ f Λa 1
L v ^ v , v i - Vk' ' ^ \ u , μ i βki

permutations

= K Σ {δv

μlδ
v

μl δ?k + δZδ% δ?k + etc.} , (22)
permutations

where the notation δμ indicates a tensor which is one when μ = v and is zero
otherwise, and where the k! permutations make the sum totally symmetric in 1,
2 -k. Let us now consider the first part of the operator in Eq. (1) whose
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cohomology we want to compute. In the space P we have the equivalence:

ω"^=Σjj^K^...μM
a

μι.μ, --^ • (23)

The space of polynomials in these variables and their adjoints is a Fock space
of the kind familiar in quantum field theory. It has a positive definite inner
product and we can write its vectors as kets (bras) which result from creation
(destruction) operators acting on the vacuum state. For example we have:

\Aa

μω
b>=A«μω

b\0> , (24)

and the inner product of a bra and a ket is given for example by:

b d b U ω d \ 0 > = δ c

a δ t δ » . (25)

Note that the destruction operators are the ones that have a f contrary to the
usual convention. The adjoint operator (δo)

f is given by:

V^ = £ ( jfc3ϊ)jK..«-«)K,«.. ί«t)
t (26)

A concern that might arise is whether one is constrained to maintain Lorentz
invariance by using the indefinite Lorentz metric instead of Kronecker deltas in
these definitions. In fact no such problem arises since we can define any inner
product we want - we are not trying to compute ^-matrix elements here. We are
solving a purely algebraic problem.

5. Cohomology Subspaces in a Euclidean Vector Space

The cohomology space H of a nilpotent operator δ in a finite dimensional inner
product space can be characterized in a simple way. Essentially one uses the
Hodge decomposition, which notes the following isomorphisms which are easily
demonstrated for finite dimensional vector subspaces:

= E , (27)

where we define the "Laplacian" operator A for a given δ by:

(28)

and we define E as its kernel. For example the identity (Imί)-1- =Ker <5f can be
proved as follows (the notation A&B means A implies B and vice versa):

}=0 for all y

<=*(δy\x}=0 forall y^xe(lmδ)± . (29)

The operator A has some very useful properties. It is hermitian and positive semi-
definite, and frequently it can be written as the sum of hermitian positive semi-
definite terms, which therefore must individually be zero if A is zero, thus yielding
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a large set of equations which turn out to be easily solved when things work out
nicely. Things do work out very nicely in the present case. In general it can be
difficult to see exactly how to express A as a sum of useful positive semi-defmite
forms - but with some work it usually becomes clear. In the case of δ0 defined
in Eq. (23) and its adjoint Eq. (26), computation reveals that:

oo I

^ 0 = ΔJ IT) \ωμ\μ2- μk(ωμ\μ2 μJ
k=\ K '

~^~kAμuμ2...βk\Aμxμ2...μk) } , (30)

where

1 k

K i
μι, μ iμi -fit μk

Note that Δo is the sum of terms of the form Q^β,)1" so that Eι = KeτΔ0 must
satisfy the equations Qj Eι=0 for each /. Specifically

(ωa

μιμ2...μkVEι=0 , (32)

(%t.M>-M*)fEi=° (33)

for all k=l, 2,.... It follows that Ex is spanned by the set of all monomials
consisting of products of ωa (with no spacetime indices) and of:

At a — A a — Λa Π4Λ
'rLμ\,μ2 • -μ/c ^μ \, μi μk ^ μ \, μi μk ' \^^/

Now recall the isomorphism H0&E{, which follows from Eq. (27) and the def-
initions :

H0 = Kerδ0/Imδ0 , (35)

(36)

It has been shown that the space Ho is isomorphic to the subspace Ex generated
by all polynomials which depend only on underived ω (i.e. no spacetime indices)
and on the fields A' defined above.

Two problems must be solved to deal with the problem of interest:

1. Integration over x must be included in the problem so that we can work in
F rather than in P.

2. When the nonlinear terms in δ are included, Δ computed from δ is not simple
and it is not possible to characterize its kernel in a straightforward way.

To deal with problem 1 in our context we use the result proved in Sect. 7.
Problem 2 is solved with spectral sequences, which are introduced in Sect. 6.
They are also used to demonstrate the result in Sect. 7.
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6. Spectral Sequences Defined on a Euclidean Vector Space

Note that the operator δε defined by

\ b b ^ \ ε μ K (37)

can be written in the form δε — δo

Jι-δι, where

[N,δi] = iδι (38)

with
(39)

Here we define the N(f) operators to count the number of fields of the indicated
kind:

\dDxfjj , (40)

except of course that N(ε) = εμ (εμy has no integration. Specifically we have:

(42)

We can decompose any polynomial in the form (direct sum):

where
NPI = iPi . (44)

N is said to provide a grading of the space P. It just counts the number of fields
plus the number of powers of ε. The cohomology of δ0 was analyzed above.

Once a grading is chosen with properties like those above one can compute
the spectral sequence corresponding to that grading. The spectral sequence con-
sists of a sequence (r = 0, 1, 2 •) of nilpotent operators denoted dr and their
corresponding cohomology subspaces denoted Er+ι. The original space P is the
first space Eo. The operators dr and the spaces Er are determined by the grading
N and the original operator δ. Each successive cohomology space Er+ι is a
subspace of the previous one Er. Each successive nilpotent operator dr acts stably
in the subspace Er. In all the cases of interest for us at present it turns out that
df is identically equal to zero for all r^q for some finite positive integer q. In
the case examined in this paper, q = 6. As a result all the spaces Er for r^>q are
identical to Eq. This final space Eq is also called E^ since it is the limit of the
sequence. The sequence is said to collapse to E^.

This ultimate cohomology space E^ can be proved to be isomorphic to the
cohomology space H of the original operator δ. The isomorphism preserves
properties like dimension, Lorentz character, discrete symmetries, ghost number,
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etc., so long as these are preserved by N. Hence it is easy to describe the main
features of the original cohomology space in terms of the simple one. Now we
give the form of these spaces explicitly.

First we define filtered subspaces Fi and Fι of P by:

Σ ^ +Pi+2+ - , (45)

Pi==ΣPj = Pi + p^i + Pi-2+'" (46)

It is easy to verify that Ft is stable under δ:

δFι<zFi , (47)

and that Fi is stable under δf. Normally spectral sequences are defined as factor
spaces [23] but in the present case where the space has an inner product we can
use the standard isomorphism between a factor space and the corresponding
subspace (M and TV stand for any subspaces such that NaM):

(48)

to vary the usual definition to the following:

P + r - 1 n P ) 1 (49)

The spaces Er are the subspaces of the spectral sequence. However it takes some
effort to extract information from the definition. It can be shown using standard
arguments for spectral sequences [23] that δ induces a series of coboundary
operators dr acting on Er satisfying the relations :

[N9dr] = rdr9 (51)

[&,dr] = dr , (52)

[dr? = 0 , (53)

where &~ is defined to be the generalization of the ghost charge & appropriate
to the operator δε rather than δ:

(54)

(55)

and it satisfies the relation:

(56)

The most important feature of the sequence of subspaces Er is that each one is
the cohomology space of the previous one:

(57)
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where
Ar = (dr + dJ)2 . (58)

Moreover the sequence of subspaces Er converges to a subspace Ex after a finite
number (which we will call q) of steps, and the cohomology space of δ is iso-
morphic to Eq:

HκKerΔκEx = Eq . (59)

The operators dr can be written explicitly in terms of the Fock space expressions
for δ0 and δx as follows:

do = δo , (60)

(62)

δl . δ] δl δl
Δ~ ι Δ~ ιΔ~ ι~ ' ~Δ
Zl0 ZΛγ Z J 0 Z J 0

In the above formulae we have envisaged the possibility that δ has more than
two terms in Eq. (38), since this will be useful in future work. These formulae
evidently become increasingly complicated as r increases.

In the above Πr are orthogonal projection operators onto the spaces Er, which
means that they satisfy the relations:

and — are generalized inverses which satisfy the equations:

(65)

(66)

Fortunately and contrary to appearances from the above, dr becomes very simple
in practice as r gets larger, and indeed vanishes indentically for all r greater than
or equal to some value q which depends on the Yang-Mills group and the di-
mension of spacetime. In fact in Yang-Mills and gravity, it is clear that most of
the hard work is done once one has analyzed Ex and E2.

These formulae can be derived by analyzing the definition of Ep

r given above.
See Appendix A for details.
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7. Using ε to Incorporate Integration over Space-time

We want to calculate the cohomology of δ on the space ZΓ of integrated poly-
nomials. Note that the equation:

δ\dDxP = 0 (67)

implies that δP = dμP
μ for some Pμ contained in the space P.

Now that we have introduced the Fock space and the spectral sequence, we
can prove the following theorem, also discussed in [2, 21], which is essential for
further progress:

Theorem 2. The cohomology space of the operator δ acting in the space I of
integrated local polynomials is isomorphic to the cohomology space of δε acting in
the space Pε of unintegrated local polynomials augmented by a dependence on
the variable ε. Here SFis defined by the property that the integral of a total deriva-
tive \dDχdμP» is ta]cen t0 fe zero> s o t n a t y

Proof Consider the spectral sequence for δε generated by the grading operator
N= 3?, where & is the ghost number in Eq. (54). Then

δε = δ0 + δ{ , (68)

where
δo = ε - d (69)

and
δγ=δ . (70)

We now compute the Laplacian:

A0 = (δ0 + δt)2 = ε^εv[δϊ,dv] + dμ(dμy = εlεμN+dμ(dμy , (71)

where the result is obtained by writing out the operators in Fock space form and
doing a straightforward computation. The operator N is defined by:

(72)

The computation uses the following identity:

[δ;,S v] = < ? ? # , (73)

which is easily derived from the following representation for the operator d:

ex) 1
f\ _ Y1 \ja ί Λa Λt_Lry)tf (ma \f] (1A\

β Z J K I f- v,μιμ2 • βkμ \ v,μ\μτ. • βk' ' μ \μi μkμ ^^ μ iμi μk> J * V7 V
A: = 0 K

Now consider the space Eι = KerΔ0, where Δo is given in Eq. (71). It consists
of local polynomial functions P = P(A,ω9d) of the fields A and ω multiplied
(in ten spacetime dimensions) by the term ε 1 0 defined by:

e l o = ε o ε 1 . . . ε 9 (75)

and satisfying the identity:

(76)
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In other words we have the following form for Ex:

Eί = P(A,ω)ε10 , (77)

where P is subject to (dμyp = 0. It is actually possible to find a simple form for
the projection operator Πι for this case, but it does not appear to be very useful
in practice, so we will not discuss it here. Consider now the operator dι defined
by Eq. (61). Note that the cohomology of dx is the cohomology of the operator
δ restricted to the subspace of local polynomials which are orthogonal to the
local polynomials that can be expressed in the form:

P = dμP» (78)

for some other local polynomial Pμ. It is clear that dr is zero in this case for
r ^ 2, since the equations:

[N,dr] = [&,dr] = rdr , (79)

[&ldr] = dr (80)

imply that

r] = (l-r)dr , (81)

which means that dr changes the eigenvalue of N(ε) by 1 — r, but since all of Eγ

(and so Er for r^> 1, since Er+ι c:Er) is restricted to the subspace with N(e) = D,
this can only hold if r = 1 or if dr = 0, which establishes the result.

It follows that the cohomology of δε on the space Pε is isomorphic to the
cohomology of dγ on the space Eι. Now note that there is an isomorphism Π[
[from Eq. (48)] which maps cί^into Ex\

Πί' -^i*^Ei = [dMPμ]± (82)

Next consider the operator δ ^ induced by δ under the projection P&-: P-> i ^ = Pj
dP. It is uniquely defined because the subspace dP is stable under δ [from Eq.
(16)]. The following identities evidently hold:

Therefore the isomorphism 3r-^Έι is an isomorphism of differential spaces and
consequently the homology spaces are also isomorphic [23]:

which is what the theorem states. QED

Part III. Results

Now we can proceed to calculate the cohomology space for the restricted BRS
operator for SO (32) Yang-Mills theory in ten dimensions.
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8. The Space Ex and the Operators Π19 d19 and Δx

At first glance, it would appear that a good spectral sequence would be that used
in Sect. 7, but in fact that one turns out to be hard to use in practice. The most
useful spectral sequence for the present case appears to be that generated by the
grading operator N in Eq. (39). With this choice N, δ splits up as indicated in
Eq. 41 and 42.

The computation of Δo is easy and was completed above. One deduces Eq.
(32) and (33).

When we evaluate dί, we will need to know some more detailed properties of
the operator Πί which projects onto the subspace E1 = KQTΔ0. This operator
can be constructed explicitly as an infinite series in the normal ordered Fock
space operators. The operator Πλ takes the form:

Π^ΣN,, (86)
k = 0

where Nk is defined by:

N^^N.N.-kN, , (87)

and this iterative definition is started with:

No=\ , (88)

00 1
(89)

This operator 771 satisfies the relations 64. Another way of looking at the space
Ex is by considering the basis of variables out of which it is constructed. The
space Ex consists of all polynomials constructed from the physical fields A', the
underived ghost field ω and the anticommuting vector ε. We can write this
succinctly in the form:

E = E (coa A'a ε) (90)

Now we proceed to the operator dι and the space E2. It follows from Eq. (42)
and (61) that the operator dx takes the form:

71 . (91)

This formula for d{ can be written more succinctly as:

dι=Πι{ωa[T° + \Ya] + ε»dμ}Πι , (92)

where we define:

Ta = ldwxJ^Ab

μ-^a, (93)

Y"=fabeωb(ΰ>eΫ . (94)
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In the above the following should be noted. Firstly the rotation operators T
and 7 commute with Πι. Secondly we can take ε outside the Πι operators because
Δo commutes with ε. Before we evaluate Zll5 the following identities must be
noted. They can be proved by simply writing out the relevant operators in detail
and evaluating the expressions:

[dμ9T
a] = 0 , (95)

[dμ,Y
a] = 0 , (96)

NkdμΠγ = 0 for fc^l , (97)

Ta= -(Tay . (99)

Using these and other obvious properties of the various operators it is quite
simple to evaluate Δl9 because Δι splits into several parts which are easy to
understand by themselves. The first division which it is natural to make is:

TtY) . (100)

Making use of identities like A^ 1 ^77 1 =0 and TaΠι=ΠιT
a, we have:

Δι(T9Y)=Πι{-c

-(Tajr\Ya)ωa*ωb(Tb + \Yb)}Πι . (102)

At this point it is necessary to evaluate the above expression for A γ (d) using the
full Fock representation of the various operators. The results of this are:

4 l ( δ ) = I \ ? 1 I
,1-1/*

where the operators P and M are defined by:

Paβμχ - μ k ~ \ £ a ) ^βμ i • μk + ( £ ) ^aμχ --μk •>

β μ μ ί μ μ t l (105)

The evaluation of Δx (T, Y) uses only obvious properties of the operators Γand
Y and the result is:

}πι . (ioβ)
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9. The Space E2

All of these terms are manifestly positive semidefmite of the form QiQj. Hence

we can deduce the following equations for E2:

= 0 for k^2 , (107)

^ ;γ]E2 = 0 , (108)

YaE2 = 0 , (109)

TaE2 = 0 , (110)

[l-Nι](βμyE2 = 0 , (111)

where we use the notation of Eq. (34) and use the abbreviation:

A'aβ
= — Aβa= Aaβ= — A'βQi . (112)

Most of these equations are easily recognized and solved. Thus it is evident that
the Y and T equations are simply the requirement that E2 be invariant under
rigid rotations in the Lie algebra; performed separately on ω and on A. These
equations bring in the classical theory of the cohomology of Lie algebras: [23,
6-8, 21]. Equation (107) indicates that any term in E2 that is not multiplied by
ε 1 0 defined in Eq. (75) must be independent of the fields Aa

μμx...βk for k^>2 but
may depend on ω (without derivatives). Equation (108) has non-trivial solutions
which are discussed in Appendix C and described below. Evidently any poly-
nomial of degree higher than ten in ε must be zero in ten spacetime dimensions.
Putting these observations together means that E2 must be the sum of two kinds
of terms which we can call normal (n) and exceptional (e). It has the form:

E2 = ΣniMA^μι...μk)TJ(ω)ειo + ΣeiJΓi(A^β9ε)TJ(ω) , (113)
ιj ij

where n and e are numerical coefficients and /, /' and T are polynomials which
are invariant under the gauge rotations of the variables indicated as their argu-
ments. These objects must satisfy the following equations:

0 , (114)

TaIl(A') = 0 , (115)

ai;(AZβ,ε) = 0 , (116)

(118)

The solution of Eq. (118) is straightforward and is discussed in Appendix C. The
basic solution of (118) is the term:

Fa = A"εμεv (120)
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and all other solutions are formed by taking products of this with itself and with
free ε's:

l \Aμ v, ε) = = r r '' ' r t ε v i ε v 2 * * * ε v . ^izij

in this formula, t is a symmetric tensor which is invariant under the Lie algebra
and the terms

δ v l ε V 2 £V r (122)

introduce free Lorentz indices into the problem. The total number of variables
ε in the expression is restricted to be less than or equal to the dimension D of
space time which for our present purposes is 10. E2 can now be written in the
form:

I? V M T ί Λ' \ Ύ* ί ,.Λ\ olO

+ Σ eKr^Fa2 . F - r - -ε v l ε V 2 -eVrTf(ω) , (123)
k,r,j

where the number of ekrj type terms is restricted by the fact that a product of
eleven or more ε's is zero in ten dimensions. These expressions are meant to
include the degenerate case when one of the indicated expressions is just 1. There
is some overlap when the number of ε's is ten between the n and the e terms.
This overlap should be resolved by placing all the duplicated terms in the excep-
tional part, so that they can be eliminated in the higher orders of Er as discussed
below.

10. The Operators d r and the Spaces E r for r̂ >

There are still nonzero operators dr with r ^ 2 that are non-zero, but they act in
a very simple way to eliminate some very specific parts of E2 from E^. All of
the eliminated vectors are of the exceptional (e) type. The normal (n) part of E2

is not affected by dr for r Ξ> 2, because Eq. 52 cannot be satisfied given the fact
that all primitive T(ω) have an odd number of ω in them, as discussed below.
The effect of these dr on the exceptional vectors is most easily seen from the
following "Spectral Sequence Diagram:"

Γ 3 ε 6 - ^ F 4 ε 6

T3F4ε2 - ^ F4F4ε2 T3 TΊε1 - ^ F4T7eι

T7ε2 - ^ F8ε2

ηπ3 ηnΊ 1 ^ τoΛ ηπΊ

Γ 3 ε 7 Γ 3 ε 8 (124)

Γ 7 ε 3 T7ε4

F4T3ε3 F4T3ε4
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where we use the notation

T3 = fabcωaωbωc . (125)

Similarly T7 and Tn are defined to be contractions with the indicated number
of ω fields. The objects F are defined by:

FA = Aa

μvε
μεvAa

λσε
λεσ , (126)

F% = Aa

μvε
μεv Ab

λσε
λεσAc

κηε
κεr1Ad

ζξε
ζεξtabcd , (127)

where tabcd is the totally symmetric invariant tensor with four indices that exists
in £0(32) according to the results below. The notation ει is shorthand for the
expressions of the form:

εi = εμιεμ2.. εμi , (128)

where the Lorentz indices are free (i.e. uncontracted).
A brief discussion of the Lie algebra cohomology of SO (32) is in order at

this point. The set of all Γ(ω) satisfying Eq. 114 is generated by a set of primitive
T(ω) by multiplication. The primitive T(ω) can be constructed using the prim-
itive invariant totally antisymmetric tensors of the Lie algebra and the classical
result [23], (Vol. 3, p. 259) is that the Poincare polynomial is given by the fol-
lowing for m= 16:

P2m(t) = ll + t2m-1] Ύiv + t4'-1] , (129)

and the Poincare series is given by:

s2Λ0 = [i-t2m] Π [i-t4pΓι • (130)

The coefficient of tj in the Poincare polynomial is the number of linearly inde-
pendent invariant antisymmetric tensors with j indices, and the coefficient of t2j

in the Poincare series is the number of linearly independent invariant symmetric
tensors with j indices. Hence we see that in SO (32) there is one primitive totally
antisymmetric tensor with 3, 7, 11 -59 indices and also an extra one with 31
indices. And there are primitive totally symmetric invariant tensors with 2, 4,
6 -30 indices and also an extra one with 16 indices. We can also deduce from
these expressions that the totally antisymmetrized product of any number of non-
identical primitive tensors does not vanish, so that for example we know that
T3 T7 does not vanish. There is a relation of the following form between these
two sets of tensors:

SvTTΊTΎΊ ί Taχai' ' 'a2p-2bp rb\a\ai rbiazciA # # m fbp- ιa2p-3a2p-2Ί

= const{tbιb2' bp} , (131)

where "Symm" means "Symmetrize over bλ -bp" and the constant on the right
is not zero. Here Γis the primitive totally antisymmetric tensor with 2p — 1 indices
and / is the primitive totally symmetric tensor with p indices. There are two
antisymmetric tensors with 31 indices that correspond with the two symmetric
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tensors with 16 indices in this formula. Conversely one also has the formula:
a2'''ap~lb2p~l fa^b^b2 faifob*^ m . raP-\bip-%bip-iΛ

^ ^ - 1 . (132)

These identities play an important role in the diagram. A proof of them can
actually be obtained from the present formalism by noting that there can be no
invariants in H^ with negative ghost charge & [defined in Eq. (54) above], so
that the vectors in E2 with 3r< D must be eliminated using these identities, given
the form (see below) of the operators dr. This also requires the knowledge that
the isomorphism E^-^Hcr converts an expression in E^ with c ^ = g into an
expression in H^ with 3? = g — D, which is explained in Appendix B.

The upper index on the abbreviated forms Γ 3, F4 and ε2, etc. corresponds to
the eigenvalue of the operator ^ o f Eq. (55) for the corresponding object. Hence
one can see that in the diagram every object under a given value of ^ h a s indices
which sum to that Sr.

The diagram contains all the objects that can be constructed in the exceptional
sector with the given values of &"m the theory. The lines joining various pairs
of objects represent the action of the operators d3 and d5. If two objects are
joined by a line, then they do not survive to E^ and if they are not joined by a
line, then they do survive to E^. We have cut off the diagram at values of SF
less than 9 and greater than 12, and the polynomials with ^ = 9 , 12 are only
shown insofar as they affect the terms with J^"= 10, 11. Of course, the diagram
could be extended to include them.

The operator d3 is given by:

d3 = Π2ε
μεvAa

μvε
λεσAb

λσω
aifbcdωb^ωc^ Π2 , (133)

as can be seen using Eq. (63) and using the properties of Π3 = Π2 [it is first
necessary to note that d2 = 0, using Eq. (62) and the properties of Π2]. The
operator d3 takes T3 into F 4 , and its adjoint takes F4 into Γ 3, using relations of
the form in Eq. (131) and (132). Similarly d5 takes T7 into F8 and its adjoint
takes Fs into Γ 7 .

Note that the following objects are not connected by a line to anything else:

<9Γ=l0:T3ε\T7ε\F4T3ε3 , (134)

(9r=\\:T3ε\T7ε4,F4T3ε4,F8T3,F4F4T3,Tn . (135)

It is easy to see by considering 51 and 52 that these objects must survive to
E^. For example, there is nothing left in the ^ " = 9 , 11 sectors that has the right
value of N to connect with the objects in the <^= 10 by a dr for r > 5. For this
purpose we note that:

NF4 = 6F4 , (136)

NFS=\2F* , (137)

NΓ = iTι , (138)

Nε^iε1 . (139)

Consequently, when we have written down all the objects with a given value
of J^and have used all the dr that do not require too large a value of N for that
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value of SF, we know that those terms can not be eliminated by any higher dr.
The diagram shows that d5 is all that is necessary to get all the information about

to 11 in this case.

11. The Spaces E^ and H

Now let us examine E^. It consists of a large set of normal objects with &~= 10
plus the & of the Tj object plus a small set of exceptional objects with 3r= 10,
plus a small set of exceptional objects with ^ = 1 1 , plus objects with higher
values of J^that we have not bothered to deal with. The correspondence between
H and E^ is easy to see. For the first kinds of terms one simply uses I (A') as
the lowest term in a series in A for the relevant object in //, and substitutes:

εlo->JΛ . (140)

For the exceptional terms a little more work is needed. See Appendix B for a
short discussion of this isomorphism. For example the object

T7ε4eE^μ{Ox[ε^λσ^ '••^Aa

μιμ2A
b

μ3β4A
c

μ5μ6ω
dtabcd+...]eH. (141)

The form of the higher order terms indicated by can be worked out by
analogy with the well known methods for constructing the full expression of the
usual anomalies [34]. It could also be constructed with the Noether method (see
Appendix B).

This expression is like the well known expressions for Lorentz invariant anom-
alies except that it has dimension — 4 in the units where the action has dimension
— 6 and the usual anomaly has dimension 0, and it also has four free Lorentz
indices.

Part IV. Conclusion

12. Polynomials in E^

First of all let us summarize the results obtained for the specific example that
we have worked out in the foregoing.

Theorem 3. The ghost charge zero sector of H^ for pure Yang-Mills theory in ten
dimensions with gauge group 50(32) is isomorphic to the <9r= 10 sector of E^,
which has the form:

£ Γ l o = Σ « ί / 1 « ; . . . M ) ε 1 0 + ί i r
3 ε 7 + e 2 r 7

£

3 + e 3 f 4 r 3 ε 3 . (142)

where nι and et are numerical coefficients and the rest of the notation is defined
above.

Theorem 4. The ghost charge one sector of H^r for pure Yang-Mills theory in ten
dimensions with gauge group 5(9(32) is isomorphic to the ^— 11 sector of' E^,
which has the form:
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+ e5F
4F4T3 + e6T

n , (143)

where again ex are numerical coefficients and the rest of the notation is defined
above.

Let us now make a general statement valid for all groups and dimensions of
spacetime.

Theorem 5. To compute the BRS cohomology of a pure Yang-Mills theory, one
must first specify the dimension of spacetime D, the gauge group, and the ghost
charge g, where ̂ = S? + D = g + D. Then one uses the isomorphism E^ « H. There
are two kinds of solutions in E^. The normal solutions in E^ take the form

Eζ-^D = Zn,Iι{Λ^μι...μk)T^εD . (144)

i

The exceptional solutions are found by writing down all the terms of the form

F^Fo2m . . p r - * f i v l β V 2 -εVrT
J(ω) (145)

(from (123)J which have <9r=g-\-D. Next one picks out the terms of the same
form with ^= g + D — l and <^~= g + D + 1 that can be connected with the terms
with <9r=g + D by operators dr and that are not eliminated earlier by lower dr.
One does this until inspection of the N eigenvalues shows that no further dr can be
relevant, using relation 51. The normal and the remaining exceptional vectors are
the relevant polynomials in E^ and one proceeds from them to H in the method
explained in Appendix B.

The demonstrations of all these results are contained in the foregoing sections.
Now let us make the isomorphism E^-^H^ explicit using the methods de-

scribed in Appendix B.

12.1. Ghost Charge Zero

The cohomology space for G = 0 for SO (32) Yang-Mills theory in ten dimensions
is spanned by polynomials lying in two sectors which we call normal and excep-
tional :

1. Normal Sector: This is independent of the group and dimension of space-time
except in obvious ways. To any non-zero polynomials constructed from the fields
Ar defined in Eq. (34) and (31) and fully contracted in the group indices with
invariant tensors of the Lie algebra, there exists a corresponding polynomial in
the normal sector, and it can be constructed by adding terms of higher order in
the coupling constant to the starting polynomial in the well known Noether way.

2. Exceptional Sector: For the case of SO(32) Yang-Mills in ten dimensions,
this consists of the following three objects:

$ d10 xεaβγδeζημιμ2μ3{dμιAμ

I

ιAμ

ι

3} , (146)

J^χ β -^> ^{3 / l i^2a / I 3^43 / l s^6^7ί^+ •} , (147)

μ ι o x e ' ^ ^{dμιA^dμ3A^dμ5A
b

μ6Aίl7+ • •} , (148)
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where the notation indicates that terms with more A's need to be added using
the Noether procedure. The dimensions and number of free Lorentz indices of
these objects are (dim, lor) = (— 7, 7), (— 3, 3), and (— 3, 3) respectively.

12.2. Ghost Charge One

The cohomology space for G = 1 for SO (32) Yang-Mills theory in ten dimensions
consists of the following six polynomials (which are all in the exceptional sector)
[fromEq. (135)]:

fdιoxεaβμι'-μ*{dΛA
a

βω
a+ •} , (149)

i{dMlAM2dM3AMAS

AM6i°dtabCd+ ' ' '} > ( 1 5 0 )

'μ6{dμι

Aμ2dμ3Λμ4dμ5A*6ω
bA } , (151)

f ^ ^ - ^ - { a ^ ^ a ^ ^ a ^ ^ a ^ ^ a ^ ^ ^ ω Λ ^ ^ . • •}, (152)

J^xε^ ^ ^ a ^ ^ ^ ^ ^ ^ ^ ^ a ^ ^ ^ ω ^ •} , (154)

The dimensions and number of free Lorentz indices of these objects are
(dim, lor) = ( - 8 , 8), ( - 4 , 4), ( - 4 , 4), (0, 0), (0, 0), and (0, 0) respectively.

Clearly it would be straightforward to generalize these results to other groups
and numbers of dimensions of spacetime. A natural question that arises is whether
all or only some of these objects have any interpretation in terms of anomalies
of the corresponding theories.

13. Discussion

Using the general results of Brandt et al. [10-13], it should be possible to generate
general formulae for the case of the BRS operator in Yang-Mills theory which
would include all dimensions and compact groups and would also generate non-
Lorentz invariant polynomials in the cohomology space. Alternatively, one could
simply draw a diagram like 124 and eliminate the forms that do not survive to
E^ using the various dr that could be formed for the given group and spacetime
dimensions. In many ways the use of the general formula and the use of the
diagram must be quite similar if both yield the same rather complicated result.

Since the argument here is complicated and the arguments of Brandt et al.
are also not simple, it is encouraging that, for the specific case examined here,
the general formula of Brandt et al. gives the same result as that obtained here
for the Lorentz-invariant part of the ghost charge one sector. Their analysis (see
Formula (27) of [10]) gives the same number of terms (three) for the Lorentz-
invariant part of 143 as that obtained here.

In the previous section we have listed the various objects that are found in
the cohomology space H of the restricted BRS operator of SO (32) Yang Mills
theory in 10 dimensions for ghost charge zero and one. The polynomials with
free Lorentz indices are closely related to objects in other dimensions of spacetime
without free Lorentz indices, just as the polynomials with nonzero ghost charge
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are related to polynomials in H with zero ghost charge in other dimensions. The
present rather laborious method using the higher operators d3 and d5 has the
advantage (and the disadvantage) that it does not require insight into the various
known methods of constructing polynomials in H by reducing or increasing
dimension.

In a sense, the present method is a "stupid" and mechanical method. It does
not naturally give general results. It is better adapted to analysis of one specifc
problem at a time, although of course the analysis of a number of such problems
would lead to suitable general formulae.

This rather mechanical feature does however render the method useful for the
supersymmetric theories where dimensional reduction techniques are likely to be
much harder to find, since typically supersymmetric theories, unlike purely bo-
sonic theories, undergo severe transformations (or disappear altogether) when
the dimension of spacetime is changed. This feature of supersymmetric theories
might render techniques that are based on dimensional reduction difficult to
apply.

On the other hand, the unrestricted problem for all theories (i.e. including
sources for the gauge variation, etc.) including pure Yang-Mills is still outstand-
ing. The present method is arduous for this case. This problem appears to be a
particularly important one for supersymmetric Yang Mills theory in ten dimen-
sions since there is probably no restricted operator in that case.

Finally some remarks on the examination of non-Lorentz invariant elements
of H are in order. It might be thought at first that these are of little interest,
because they will not eliminate theories, since the action is Lorentz invariant.
These elements of the cohomology space are relevant only if one wants to analyze
the renormalization of non-Lorentz invariant composite operators. But surely
this is a reasonable thing to do in theories where these operators are the inter-
polating local fields for bound states with the appropriate quantum numbers.
For example the proton is believed to be a gauge invariant spinor bound state
in a Yang-Mills theory of quarks and gluons. As mentioned above, in supersym-
metric theories [18], it appears that there can be anomalies in the renormalization
of gauge-invariant spinor composite fields. It is possible that such anomalies may
have important physical consequences.

Part V. Appendices

A. Construction of dr

The spaces Ef are easily analyzed for low r. For r = 0 we see from the definition
in Eq. (49) that:

p p

 1y=Pp , (155)

where we use the relations:

δFp+ιcFp+ι<zFp, (156)

StF'-^F'-^F" , (157)

and the relation:
(158)
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valid for any subspaces M and N, along with the evident relations such as:

(Fp+ιy=F" . (159)

It follows that:

P

so that Eo is simply the whole space. Next consider E{:

p p (161)

Clearly, if x is a vector in Ef, it satisfies the relations:

o (162)

and a similar set of equations involving the adjoints, and so x satisfies the re-
lations :

δo

tx = δox = 0 , (163)

and so clearly we can write

Eζ = Ppn Kerδon KertfJ , (164)

where do = δo has been used. For r = 2, we have:

^ = £ f n ( ί F / , " 1 n F p ) ± π ( i t F / ' + 1 n F / ' ) 1 (165)

To proceed further we first note the following identity:

. (166)

To prove this, suppose that x is a vector of the form on the left side of this
equation. Then it can be written:

x = [SoyP + Sιyp^] + [όoyp+1+δ1yp + δ2y^ι]+ • • • , (167)

where the vectors yp are in the subspaces Pp and the vector yp_ γ is subject to the
constraint:

^ i = 0 (168)

But this constraint implies that:

j ̂ ^JoV-i+^-i (169)

for some vector z/?_1 e Pp-\ and some vector ep_x e Eξ~ι defined in Eq. (164).z/?_1 e Pp-\ and some vector ep

Hence we see that x can be written in the form:

(170)

which proves the relation, since it is evident that all vectors on the right in Eq.
(166) are also included on the left. A similar relation can of course be demon-
strated for the adjoints. Using these and keeping track of the eigenvalues of TV
quickly yields the relation:
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ι l + ι ) ± , (171)

which can be written in the form:

^ ^ ί f π K e r ^ n K e r ^ , (172)

where
dι=ΠιδιΠι (173)

with Πx the orthogonal projection operator onto Ex. The derivation of the higher
operators dr is a straightforward exercise along the same lines as these. It rapidly
becomes quite involved in the general case. In practice the operators are easy to
guess in most cases, which is also what happens in the applications that are
documented in the mathematical literature.

B. The Noether Procedure and the Isomorphism E^-^H

The isomorphism E^-^His closely related to the procedure widely known as the
Noether method for building up invariants [41]. The correspondence works as
follows: If e e E^, and δ = δ0 + δλ as usual, with [N, δt] = iδ^ where Ngenerates
the spectral sequences, then it follows that:

^ (174)

and the last equation can be written in the form:

, (175)

where e' is defined by:

e'=[δo + δS]^-[δι+δne , (176)

and hence we have:

[δ + δt][e-e']=-[δx+δι

f]e' . (177)

Now we can find an e" to cancel the term on the right using the relation:

d2e = 0^Πxδx-~^δxe = 0 (178)

and also its adjoint. In this way, it is, no doubt, possible to build up an element
v = e — e' + --' which is in the cohomology space of the operator Δ = (δ + δt)2.
Then one would keep only the terms with εD in them and use the substitution
140 to generate an element J* dDxv' eH^ that corresponds to the original ele-
ment eeE^. Note that it follows that the isomorphism E^-^H^ converts an
expression in E^ with <9r=g into an expression in H^- with & = g — D.
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In practice it seems simpler to just work directly from a general expression
with the right dimension and other quantum numbers that are preserved by the
isomorphism and find the element v' directly.

C. Solution of the Exceptional Equations

This appendix is devoted to a demonstration of the very important and simple
theorem, which is used in Sect. 9.

Theorem 6. All solutions of the equations:

l>α (A'aΫ4-Fβ(A'aΛ^λ P = 0 Π79"!

are of the form:

P=T'(A' pΛ — Faι F a 2 . . . Fat faιa2 at σ c . . . p 4- p D V (]%()}

where
Fa = Aa

μvε
μεv . (181)

Ψi? have included a term Y which is unconstrained since it is multiplied by the
tensor εD defined in Eq. (128), where D is the dimension of spacetime, which means
that εD+ι=0 , which in turn implies that Eq. (179) is trivially satisfied for this
case.

In this formula, t is a symmetric tensor. In order to satisfy the equation Ta P = 0,
it should be an invariant under the Lie algebra. The terms:

fiv,<W £Vr ( 1 8 2 )

introduce free Lorentz indices into the problem. The total number of variables ε in
the expression is restricted to be less than or equal to the dimension D of spacetime.

Proof Denote (Af

β

a

μYP = Paβμ. Then we have the equation:

and the equation

It follows that εaPβγ is totally antisymmetric in the indices oc,β, and γ. Fur-
thermore this antisymmetriy must be an identity in the form of the variables -
not merely an equation that can be satisfied for some particular "values" (a
dubious term when speaking of anticommuting quantities like ε) of the variables
εa and P%γ. The only expression containing at least εa that has three indices and
is identically antisymmetric is εaε βεγX, where X is any quantity that does not
have any of the relevant indices.

It follows that

PΛ

a

β = εaεβX
a , (185)

where Xa is an arbitrary quantity except that the indices α and β have been
extracted. Now using the definition of P"β we see that this means that the entire
dependence of P on the fields A ^ must occur by virtue of P being a function of
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the combination Fa as defined above. However the dependence of P on ε is not

restricted, so that extra εf s can occur as stated above in Eq. (180). Q E D .
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