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Abstract. The bi-Hamiltonian structure of integrable supersymmetric extensions of
the Korteweg-de Vries (KdV) equation related to the N=1 and the N=2
superconformal algebras is found. It turns out that some of these extensions admit
inverse Hamiltonian formulations in terms of presymplectic operators rather than
in terms of Poisson tensors. For one extension related to the N=2 case additional
symmetries are found with bosonic parts that cannot be reduced to symmetries of
the classical KdV. They can be explained by a factorization of the corresponding
Lax operator. All the bi-Hamiltonian formulations are derived in a systematic way
from the Lax operators.

1. Introduction

Recently there has been much interest in (super-)conformal field theories [1, 2] in
context of studying string theories and statistical models of critical phenomena.
Along with these studies one observes a growing interest in the supersymmetr-
ization of the Korteweg-de Vries (KdV) equation [3-5]. It turned out that the
Virasoro algebra and some of its extensions can be related to the second
Hamiltonian structure of the KdV and KdV-like equations. This Hamiltonian
structure is given by a set of Poisson brackets for the fundamental fields
representing the Virasoro algebra [6]. In fact, starting from supersymmetric
generalizations of the Virasoro algebra and the corresponding Hamiltonian
structure it was possible to construct integrable supersymmetric extensions of the
classical KdV equation [7, 8].

Related to the N=1 superconformal algebra two integrable cases of fermionic
extensions of the KdV equation were found [3, 9]. The first case [3] turns out
to admit a bi-Hamiltonian formulation, but it fails to be invariant relative to
space-supersymmetric transformations. The second case [10] admits such an
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invariance, but it was claimed not to admit a bi-Hamiltonian formulation. We will
be interested only in this latter case, it can be written as

O, = —@" + 3(PDDY (1.1)
1
= (—Dd* + 200 + 2®0 + D®D) %jicpmp dx,

where @ is an anticommuting superfunction of the (commuting) space parameter x
and one anticommuting Grassmannian variable @. The prime indicates differenti-
ation with respect to x, the symbol D is to denote the superderivative D= @0 + dg
satisfying D? = ¢ = 0,.. The operator

Py(®):= —Dd* + 20® + 200 + DD (1.2)

in (1.1) is the Hamiltonian operator stemming from the N=1 extension of the
Virasoro algebra. The (commuting) Hamiltonian function H:= j %th(DdX in
(1.1) is obtained by integrating its (anticommuting) density % @D ® over both space
and the Grassmannian @, i.e. dX = dxd®, where we assume the normalization
| ©@dO = 1. Its gradient is understood to be given by the functional derivatives

defined through
&, 5_H> _0
oD de

with arbitrary vector field @ and ¢, » representing the duality between vector- and
co-vector fields.

System (1.1) is integrable in the sense that it admits a Lax formulation with the
scattering operator

H(® +¢®), (1.3)

£=0

L=0*—®D (1.4)

(or the gauge equivalent L=0>—D®), ie. (1.1) is equivalent to d/dt
L=[—4(L**),, L]. Here the subscript + denotes the purely differential part of the
fractional power of L obtained by formal expansion into pseudo-differential
operators (see also Sect. 3).

Expanding the superfunction @ into powers of @ we may assume
D(x, O) = &(x) + Ou(x) with a bosonic field u and a fermionic field . Corre-
sponding to this chart we represent vector fields K and co-vector fields y as

K(®) = Ki(u, &) + OK,(u, &),
WP) = 7,1, &) +7u, £)O,
such that the duality between vector and co-vector fields becomes the usual
(K, ) =[Kydxd® = [(Ky, + K;;)dx. (1.6)

Regarding P,(®) as a linear map from the co-vector fields to the vector fields the
Hamiltonian system (1.1) now can be decomposed into

£<u> 3 (—u’” + 6uu’ — 3EE”
dr\ &)\ =& +3ué)y

_ (—83 +20u+2ud ; 0L+ 256) <5/5u

(1.5)

1 2 ’
20¢ + &0 . —u 5/55> ji(“ —&&')dx. (L7
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From this representation it is clear that (1.1)/(1.7) reduce to the “second
Hamiltonian formulation” of the KdV when passing to the bosonic sector, i.e.
putting £ = 0. No other supersymmetric Hamiltonian formulation of (1.1) had
been found having the property of reducing to the well known “first Hamiltonian
formulation” of the KdV in the bosonic sector. This will be explained later on: we
found that the proper supersymmetric “first Hamiltonian formulation” for
(1.1)/(1.7) is an ““inverse” Hamiltonian formulation using a suitable (pre-)symplec-
tic 2-form instead of a Hamiltonian operator (Poisson tensor). This reduces to the
“inverse first Hamiltonian formulation” of the KdV in the bosonic sector.

The case of the N=2 superconformal algebra also yields interesting integrable
extensions of the KdV. These extensions consist of two bosonic and two fermionic
fields interacting among themselves. In [10] three such integrable extensions are
given, one of them was found to be bi-Hamiltonian but it is not invariant with
respect to supersymmetric transformations. We will be interested only in the two
other cases, which are supersymmetric invariant. Both cases are contained in the
following one-parameter family of super-Hamiltonian evolution equations:

®,= —@" +3(®D,D,®) + (o — 1)(D,D,®*) + 300*® (18)

5
=(D,D,0+200+ 200D, ®D, ~D,#D;) = | %(@D1D2(D+ g d>3)dX,

where « is an arbitrary constant. Here @ = @(x, @,, ©,) is a commuting
superfunction of space and two Grassmannian variables @, and @,. Again the
prime indicates differentiation with respect to x, the symbols D, and D, are the
superderivatives D; = 0,0 + 0@l. The operator

P,(®):= D,D,d + 20® + 200 — D,®D, — D,dD, (1.9)

in (1.8) is the Hamiltonian operator stemming from the N=2 extension of the
Virasoro algebra. The Hamiltonian function in (1.8) is obtained by integrating its

3
i.e. dX = dxd®,d®, normalized by [ ©, dO; = §,;.
Although for arbitrary values of « a Miura transformation for (1.8) had been

. o1 .
commuting density 5<¢D1D2<D+gd>3 over x and both Grassmannians,

given in [10], only for the two cases « = — 2 and « = 4 Lax formulations had been
found. They are given by
a=—-2:L=0*+D,®D, — D,®D,, (1.10)
x=4 = L=0*—(D,D,®)— ®*+ (D,d)D, — (D,P)D, — 20D, D,
= - (DlDZ + Q)Z’

ie. for these special choices of o equation (1.8) is equivalent to d/dt L =
[—4(L*?),, L)

Expanding the superfunction @ into powers of the Grassmannians we may
assume P(x, O, O,)=w(x)+ O, &,(x)+ O,¢,(x)+ O,0,u(x) with two bosonic
fields # and w and two fermionic fields ¢, and &, . Corresponding to this chart we
represent vector fields K and co-vector fields y as

K(®) =K, + O,K, + O,K, +0,0K,,

1.11
YD) = 7, + 7 Oy — 1,05 + 1,0,0,, (-1h
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such that the duality becomes the usual
(K, 7> =[Kydxd®,dO, = [ (K, + Ky, +K; v; + Ky )dx.  (1.12)

Regarding P,(®) as a linear map from the co-vector fields to the vector fields the
Hamiltonian system (1.8) now can be decomposed into

u O(—u" 4+ 3u =3¢, —3E,&;— (@—D)(W')2 — (o + 2)ww” + 3ouw? + 6awé &)
dfe, O(— & +3ué |+ 3aw? &, — (a+2)wéy —(a— )w'E,)
dr\ &, O(—&; +3ué, +3aw?é, + (a+2)wé | +(a—Dw'E))

w A(—w" +aw>+(a+2uw+(a—1)&,&,)

(1.13)

P 20ut2ud ;42860 ;5 0E,4+26,0 : 2wd\ [ 6H/Su
208, +¢&,0 ;0 0*—u o ow+wd ;=& || SHJSE,
20¢,+¢&,0 i —Ow—wd —u ;g SH[6¢,

20w ; & ; & 5 0 OH[ow

with the Hamiltonian function
1 o g
H=§j oD, D, D + 3 D° |dX (1.14)
1 2 " ’ ’ 2
=[P —ww" =& & — &8 +oauw? —2awé &, )dx .
2

From these representations it becomes obvious that we will recover the ‘“‘second
Hamiltonian formulation” of the KdV if we reduce (1.8)/(1.13) by claiming
&, =¢,=w=0. Again, just as in the N=1 case the question arises, whether there is
a further supersymmetric Hamiltonian formulation of (1.8)/(1.13), for the in-
tegrable cases a = —2, 4 yielding the well known ““first Hamiltonian formulation™
of the KdV in the above reduction.

In {10] it was claimed that no such “first Hamiltonian formulation” for
(1.8)/(1.13), a=—2,4 exists. It turns out that this claim is based on rather
restrictive assumptions on the explicit form of such a formulation, and we will
show that this formulation does indeed exist.

In Sect. 2 we will give the missing “first Hamiltonian formulation” for all the
integrable cases N=1 and N=2, a= —2, 4. In each case a fully supersymmetric
hereditary recursion operator [11] arises giving direct access to the symmetries and
conservation laws of these systems. Furthermore, starting from the conformal
invariance of these equations, a hierarchy of master symmetries [12—14] can be
obtained yielding a convenient recursive scheme to obtain the higher conservation
laws. In Sect. 3 we will briefly indicate how the bi-Hamiltonian formulations can
be derived in a systematic way from the Lax formulation. This also will show how
further-more complicated-supersymmetric bi-Hamiltonian extensions of the KdV
can be constructed in a straightforward way. This shall be demonstrated by
deriving a further integrable extension of the KdV which yields the N=1 extension
(1.1) by a simple restriction.
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2. Results
2.1. The Case N=1. For Eq. (1.1)/(1.7) we found the following “inverse”
Hamiltonian formulation

(D6™' =371 09~ 1)(— @' +30D®) = — D" — 20 +3(DP)*
5

1 ’ ’ 2
=50 j<§ D'DO'+ D(DD) >dX, (2.1
where the operator
J(@):=Do" 0" '@o! (2.2)
in (2.1) defines a closed (i.e. pre-symplectic) 2-form w,
w,(D)(a, b) =[a J(®) b dX = —w,(D)(b, a) (2.3)

over the space spanned by the anticommuting field @. In (2.3) a and b are arbitrary
even vector fields (i.e. with anticommuting values). For completeness we also state
the matrix version of the operator J. Using the chart @ = ¢+ @u introduced in the
last section the operator J (regarded as map from the vector fields to the co-vector
fields) translates to the matrix operator

0! ;0 —07 0!
I é)_< 070t —1+6‘1u6‘1>'
Inverse Hamiltonian formulations are familiar in the theory of bi-Hamiltonian

systems [15—17]. The ““closed” operator J (2.2)/(2.4) is compatible [15] with the
Hamiltonian operator P, in (1.2)/(1.7), i.e. the resulting recursion operator

R(®):= P,(®) J(D) 2.5)

turns out to be hereditary. As in the usual bi-Hamiltonian scheme [11] we can
construct a hierarchy K, := R"” 'K, of symmetry generators for (1.1)/(1.7) starting
with any simple symmetry generator K, for this equation. Choosing K| to be space
translation (which also leaves R invariant) we thus have found an infinite sequence
of commuting vector fields. The first three are given by

K\ (®) =00,
K,(®) = 0(— " +30DD),
Ky (@) = (9" —50'DD' — 50D ®" — S(DD)D" + 100(DD)?). (2.6)

As in the usual bi-Hamiltonian scheme there exists a hierarchy of conserved
functionals H,, for the vector fields K|, these turn out to be bi-Hamiltonian again:

b b
Hy . K,=PysoH, 5 n=1,23 ... @7

(2.4)

JK, = —
n 5¢

The first of these Hamiltonian functions read
H-1(¢) = j% d)dXs
Hy(®) = [ ®DOdX, 28)
H(®) = [(; ' DO+ D(DD)?)dX,
Hy(®) = [(; @' D" +5O(D D)2 —30D' D"+ 5 O(DD)*)dX,
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they coincide with the conserved quantities found in [9]. As all objects considered
here are graded there is a conformal symmetry generated by the vector field

<xu’ + 2u
x4 3¢
Using the recursion operator we can define a sequence of master symmetries by
17,:= R",, satisfying the “standard scheme” of bi-Hamiltonian systems admitting
scaling invariance [13, 14]:
[Tm K;]=:(2WP—I)K;+m,[Tm rm]=:20n-—n)r
O0H,

[t Sgr dX = Qm+m) +3H,,,,. (2.10)

To(®@) = xP' + % @(Dd))+% D = ) =141, £). 2.9)

n+m>

The last relation may be considered as a convenient scheme for a direct recursive
construction of the conserved quantities using t, , say.

2.2. The Case N=2, a=—2. For Eq. (1.8)/(1.13) with a=—2 we found the
following ““inverse” Hamiltonian formulation

J(®)(~@"+30D,D,® — 3D,D,d* — 20°) @.11)
= %}I(_%(Dl @’)(Dz(pl)_2@(®1)2+@(DID2¢)2_¢3(D1D2(D) + %d)s)dX’

where the operator
J(®):= (D,D,0"'—0"'D,®D,0"* — 0" 'D,®D,0™ ") (2.12)

in (2.11) defines via (2.3) a (pre-)symplectic 2-form w, over the space spanned by
the commuting field @. Again the vector fields a and b in (2.3) have to be even,
i.e. now with commuting values. Using the chart ® = w+ ©,¢,+ 0,8, + 0,0 ,u
introduced in the last section the operator J (regarded as map from the vector fields
to the co-vector fields) translates to the matrix operator

0! ;0 —o0 ot ;=070 =207 'w
—07IE0T 140 e waT e 0!
T Cr Gz0w) = —a-lgia-l w3t L — 1+t | —5%1
—2wo~ ! —¢&,07 ! ; g0t ;0 —0
(2.13)

Again, the resulting recursion operator R(®):= P,(®)J(®) turns out to be
hereditary. As before we can construct the hierarchy K, := R"~ 'K, of commuting
symmetry generators for (1.8)/(1.13) starting with the generator of space transla-
tion K, (@) := @’'. The first of these symmetries read
K, (@) =00,
K,(®) = 8(—®" +3(®D,D,P) — 3 (D, D, D*)-2d%),
K3(®) = 0(@"" +5(D, D) (D, @")+5(D@")(D, @)+ 5(D, ') (D, D)
—10(D,D,®)(D,®)(D,®)+ 10D*®" + 10D (P')?
+300?(D, ®)(D, D)+ 6D%). (2.14)

As before we can grant the existence of a hierarchy of conserved functionals H,, for
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the vector fields K,; these turn out to be bi-Hamiltonian again:

JKn=5I;:1;‘,Kn=P2 51;'52, n=1,23,... (2.15)
The first of these Hamiltonian functions read
H_,(®)=[;0dX,
Ho(®) = (3 @D D,® — ; ®*)dX, (2.16)
H (@) = [(—3(D,@)(D, D) —20(®')* + D(D,D,P)*

—@3(D,D,®) + 2 d%)dX.
As all objects considered here are graded there again is a conformal symmetry
generated by the vector field
xu' + 2u
xE{ +3¢
Xt +36
xw' + w

1 1
10(D) = x(I)’+§ @1(D1<D)+5 O, D,D)+ @ = =15(u, &y, &5, ).

@2.17)

Again just as in the N=1 case the master symmetries generated from the
conformal symmetry by t,:= R't, satisfy the scheme (2.10) (with the same
coefficients). Hence all the higher conservation laws can be constructed directly
using this recursive formula with 1, , say.

2.3. The Case N=2, a=4. For Eq. (1.8)/(1.13) with a =4 the “first” Hamiltonian
formulation is given by

@, = 0(—@"+30D,D,® + 3D, D,0* + 40°)
0
=055 1G(@)+ 30D, D, 0 + %)X, (2.18)
where the operator

Py (®):=0 (2.19)

constitutes a Hamiltonian operator for this system. This Hamiltonian formulation
had been observed by B. Kupershmidt [18]. The operator (2.19) decomposes into

0 0 0 0
0 0 40

P& &w=| o _s 0 o (2.20)
& 0 0 0

when introducing @ =w+ @,¢,+ @,¢, + @,0,u. Clearly P, and P, given by
(1.9) are compatible, as the deformation & — @ + ¢1 maps P, into the
Hamiltonian operator P,+¢&2P,; . Hence the resulting recursion operator

R(®):= P,(®)P[ (@) = D, D,+2000™ " — (D, ®)D,0"! — (D,d)D,0~* (2.21)

is hereditary. As before we can construct the hierarchy K, := R"~ 'K, of commuting
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symmetry generators for (2.18) starting with the generator of space translation
K, (®):= @'. The first of these symmetries read

K, (®) =00,
K,(®) = 0(D,D,®+2d?),
Ky (@) = 0(—@"+30D,D,® +3D,D,d* + 40%). (2.22)
These vector fields are again bi-Hamiltonian
O0H,_, 0H,_,
= - i = o 2.23
IR, = =g Ki=Pr—55=, n 1,2,3, (2.23)

where the first of the Hamiltonian functions read
H_ (@)= [}®dX = [judx,
Ho(®) =[5 @*dX = [ (uw — £, &,)dx,
H\(®) = [(3 DD, ® + 5 D*)dX
= [Gu? = pww” = 38,8 — 3880+ 2uw? — 4w &) dx,
Hy(9) = [(;(®')* + 30D, D, &+ @*)dX
= [(u'w'—=&[E+3ww')? =3we &) —3we,¢;
+ 3w —3ué, &, + duw—12w3E &) )dx . (2.24)
A conformal symmetry for all objects is again generated by the vector field 7,

defined in (2.17). Following [13, 14] we now find a recursive scheme for the master
symmetries t,:= R"1, given by

[Tn’ Km] = mKn+ma [Tn’ rm] = (m_n)rn+m’ (225)
OH,
(kA Td;” dX =(m+n+2)H,,,,.
We remark that in this case there is an additional master symmetry
0
1 0

1_1(D):= 3=l o =1_,(u, &, &, w) (2.26)

12

fitting into the algebraic scheme (2.25). The flow generated by 7_, corresponds to
the Galilean boost admitted by the KdV; it provides the deformation between the
Hamiltonian operators P, and P,.

Considering the explicit forms of the first Hamiltonian operator P, and the
Hamiltonian functions H, it now becomes clear why these structures had not been
found before in [10]. The Hamiltonian formulations considered in [10] were
assumed to admit o(2)-invariance in the fermionic sector; all objects should be
graded and the reduction w=¢, =0 should yield the Hamiltonian formulation of
the N=1 case. Although this last assumption seems reasonable (note that (1.13)
reduces to (1.7) when putting w=¢£, =0) it now turns out that this last hypothesis
had been too restrictive. For all even indices the Hamiltonian functions H, defined
above vanish identically in this reduction; the Hamiltonian operator P; cannot be
reduced to the subspace of vanishing w and &, . Also the recursion operator (2.21)
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is not reducible, but its square is (reducing to the recursion operator defined with
(2.5) by (1.2) and (2.2). From this we can conclude that in the hierarchy of
symmetries K, only each second member (those with odd indices) can be reduced
to the N=1 case, whereas the symmetries with even indices are additional
structures peculiar to the case N=2, a=4. Indeed, observe that now Eq. (2.18)
given by the vector field K5 is not the first nonlinear equation in the hierarchy
(2.22), but there is a ‘“‘simpler” nonlinear symmetry K, with components

O(—w"+4uw—4¢ &)
0(—¢&,+4wg,)

0(&] +4w¢,)
O(u+2w?)

with no corresponding symmetry in the cases N=1and N=2, a= —2. Also among
the master symmetries 7, only each second (with even index) is reducible to the
corresponding master symmetries of the N=1 case. The first “additional” master
symmetry reads

Ky(u, &y, &5, w) = (2.27)

Buw — 3w” —9¢ &, —3E[07 1, — 2,071,
— 38 OWE, W 0TI+ w0, — 8,07
%él’+6w§2+%w’a—1§2 - %u/a_151+51a_1“

2ut2w? — €07, — 1¢,071¢,

Note that all higher symmetries and Hamiltonian functions can be obtained from
this simple vector field using the recursive scheme (2.25).

There is a simple “‘explanation” why in the N=2, a =4 case there are additional
invariants with no analogues in the other cases. Note that in terms of the Lax
operators (1.4), (1.1) the integrable equation (1.1) and the two integrable cases of
(1.8) are represented by d/dt L = [—4(L*?), , L]. The dynamical systems

1, =xK, + (2.28)

d

E(D =K (®)=R(®) '@ (2.29)
associated to the symmetries of such equations usually can be obtained by Lax
equations to the form

dit L = const (n) [(L*™), , L] (2.30)
with suitable fractional powers k(n) of L (see e.g. [19, 20]) and suitable coefficients
const(n). The subscript + again indicates the pure differential part of the
operators. Here the fractional powers of L can obtained from the square roots of
the Lax operators defined by the following expansion into (inverse) powers of the
differential operator

n

L =0+ Z (b + Dy + 7D, + @D D)0, (2.31)
k=1

Having fixed the “highest” term (i.e. the coefficient of the highest power of 0) all
the coefficients in the above expansion are determined uniquely by a recursive
scheme obtained from the condition L'2L"? = L. We note that in the presence of
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superderivatives D, satisfying D? = d we need not necessarily assume the square
root of an operator L = 9%+ --- to be given by L'?=0+ --- . Indeed, as observed in
[10] for the case « =4 the Lax operator can be factorized (see (1.10.ii)) and there is
an alternative “square root” (of —L):

L(®):= D,D, + ® = (—L)". (2.32)

Now also Lax equations of the type

% L = const (n) [(L*"L), , L] (2.33)
can be considered in addition to (2.30). Note that I commutes with the operator
L' introducing A := [L, L'?] it is easy to deduce from L?= — (L"?)? that A anti-
commutes with L2 i.e. L'?A+ AL"?=0. Considering the terms with the highest
power of 0 in A and using the explicit form of the highest terms in (2.31) one
immediately concludes that the highest term of A has to vanish. Hence A has no
highest term and must vanish identically. As L commutes with L'? the equations
(2.33) seem to represent the only candidates for additional interesting Lax
equations. It turns out that the symmetries (2.22) with odd indices (reducible to the

=1 case) correspond to the Lax equations (2.30), whereas the additional
(non-reducible) symmetries (2.22) correspond to (2.33). E.g., for the first symmet-
ries it is simple to verify that

(?,, =9,
(L”L),, L]1=3(D,D,® +20%), (2.34)
(L), ,L]1= - 3(—@"+3®0D,D,®+ 2D, D, 0%+ 43,

where for convenience we now have chosen L as the Lax operator instead of L.
Indeed, from the derivation of the two Hamiltonian formulations from the Lax-
operators (briefly indicated in the next section) it is easy to conclude that the Lax
equatigns for (2.29) are given by

d

d . . .
T O=K@ = L= P Y, L, (2.35)

n

such that from L2 = — L we find for the odd and even cases of 7 :

d L=[(—4 "™, L], k=12, ...,
dtgi-y (2.36)
4 L=[2(-4'*"L),, L], k=1,2,....
dtyy,
The Lax formulations of (2.29) in terms of the Lax operator L follow from
(2.35)/(2.36) trivially.

Furthermore we notice that from the Lax operator L additional conserved
quantities for (2.35) are given by the residues of the pseudo-differential operators
L¥*12 [ These seem to correspond to the additional Hamiltonian functions H,,
which reduce to 0 when passing to the N=1 case.

We finally remark that all structures found for the case N=2, «=4 admit a
reduction to the bosonic sector, i.e. every object considered here survives when
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putting &, =&, =0. The remarkable fact about this reduction is that in contrast to
most examples of integrable hierarchies with conformal invariance the first
non-trivial master symmetry 7, given by (2.28) reduces to a local vector field
containing no integrational terms. Now it is interesting to consider a third
Hamiltonian operator P, := RP,, which can also be obtained by the Lie derivative
of P, into the direction of 7, [13, 14]. As now both P, and t, are local objects, P, is
again local, i.e. a purely differential operator. No further local Hamiltonian
operator can be derived that way, as the Lie derivative of P, into the direction of 1,
vanishes. To sum up: the bosonic parts of all equations (2.29) admit three local
Hamiltonian formulations with the differential operators P, P, and P5.

3. The Method

3.1. General Background. The results of the last section, i.e. essentially the
revelation of the proper bi-Hamiltonian structure, had not been found accidentally
but were derived in a systematic way from the Lax operators. Indeed, it turns out
that there is a natural way of associating several Hamiltonian structures to a given
Lax operator yielding multi-Hamiltonian formulations for the isospectral flows
connected to the scattering problem given by that Lax operator. Following [20-23]
we consider an abstract integrable system to be defined on some associative algebra
g=g,®g_, that can be decomposed into 2 subalgebras g, . Let us assume that
there exists a “traceform” tr:g—IR, such that (a, b)>:= tr(ab) defines a non-
degenerate symmetric metric on g. If {g,, g,>=0=<g_, g_) (i.e. g can be
regarded as the dual space g¥ relative to this trace pairing) then there exist two
natural compatible Hamiltonian operators P, and P, on g, given by the linear
maps

P(L): VHeg — (L(VH).), — (VH)_L), €g.,

PyL) : VHeg. - L(VH)_L), — ((VH)_),Leg,, (3.1

where the subscripts + are to denote the projections onto the subalgebras g, . The
first bracket in (3.1) is the Lie Poisson structure associated to the (Lie) algebra of
Lax operators, leading to a “first” Hamiltonian formulation of the iso-spectral
equations in the celebrated Adler—Kostant—Symes scheme [20]. Indeed, we will
find that this abstract bracket will reduce to the “first” Hamiltonian formulation of
the examples investigated here. The algebraic foundation of the bracket engen-
dered by P, in (3.1) was revealed in [21], this abstract bracket will be shown to lead
to the “second” Hamiltonian structure for our examples.

The essential observation is that invarient functions on g (i.e. functions
C:g— R with gradients VC satisfying VC(L)L=LVC(L), L € g) are in involution
with respect to both Poisson brackets engendered by these tensors. For the
invariant functions C,:= tr(L*)/k given by the traceform one has VC,=C,_,,
such that the “integrable” Hamiltonian equations associated to this hierarchy of
function in involution obtain the simple (bi-Hamiltonian) Lax-form

d

S L=IL (U9 =[0Y), , L= PVC, =3 PVG,. (3:2)

For a more general discussion of the multi-Hamiltonian background we refer to
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[21-23] and the references therein. We claim that all the integrable hierarchies
discussed here are just different realizations of the abstract bi-Hamiltonian
hierarchy (3.2) by choosing the proper algebra g for the corresponding Lax-
operators. Hence the derivation of the Hamiltonian operators for these examples
just boils down to evaluation of the abstract maps (3.1) after having embedded the
Lax-operators (1.4), (1.10) into a suitable algebra of operators bearing a suitable
traceform.

For the integrable extensions of the KdV discussed in the last sections the
known Lax operators may be regarded as elements of the algebra of super
pseudo-differential operators

g:-—-{ T (g + @kp)ak} (33)
k<oo
for the case N=1 and
g.= { Z (by + BkDy + yiDy + aleDz)ak} (3.4
k< oo

for the case N=2. Here a, and b, are multiplication operators with commuting
super functions of space and Grassmannian variables, whereas @,, y,, f§, represent
anticommuting super functions. The D;’s are the super derivatives arising from the
Grassmannians. The action of the powers d* of the differential operator is to be
understood by Leibniz’ rule, i.e.

Fa=Y ( ’;’ ) ADF (3.5)
j=0

where A4, AY) are the multiplication operators with the function 4 and its
x-derivatives, respectively.

In both cases N=1 and N=2 the algebra g can be decomposed into 2
subalgebras g, and g_ given by the “purely differential parts” and the “purely
integrational parts”

N=1: g,:= {Zogk<w(ak + d)kD)ak}a
g_ = {2k<0(ak+ ¢kD)ak},
N=2: g,:= {205k<w(bk +BDy + D, + a.DD,)0*},
g- = {Zicoby+ BDy + Dy + @D, D;)d*},
of the operators. We remark that for N=2 the subspace g_ does not define a
proper subalgebra g (with respect to multiplication of the operators) but rather a
Lie subalgebra (with respect to the natural commutator). This suffices for the
general results of [21]—i.e. the construction of the 2 compatible abstract brackets

(3.1)—to hold for this example, too. These algebras are endowed with non-
degenerate symmetric “trace-forms” given by the residues

tr(L):= Res( Y (g + q),p)@k) =[{@_dx (3.7)

k<o

for N=1 (with dX=dxd®) and

3.6)

tr(L):= Res( Y (b + BDy+ 7Dy + aleDz)a") =[a_,dX (3.8)

k<o

for N=2 (with dX=dxd®,d®,), respectively.
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As the Lax operators for the equations discussed before are known, one merely
has to evaluate the abstract Poisson structures (3.1) at those points in g given by
these Lax operators. In a straightforward way this leads to the results presented
before. The fact that in some cases these abstract Poisson structures need to be
converted to an “inverse” Poisson structure, i.e. a symplectic 2-form, turns up in a
natural way from the reduction properties of these tensors. The decisive steps in
the calculations for the various cases shall now be presented.

3.2. The Case N =1. The elements L= ) (4, + ®D)o* in g, are to be para-
metrized by superfunctions k20

a(x, ©) = by(x) + OL(x) , Py(x, BO) = {i(x) + Oulx), (3.9)

with commuting fields b,, ¥, and anticommuting field {, and ¢&,. Given a
Hamiltonian function H(L)=H(..., a,, Dy,..)=H(..., by, (., &, up...) a
convenient parametrization of the dual space g_ is given by representing the
gradient VH as the operator

SH oH
VH=TY ¢! D-+—), 310
kgo ( da, 0D, ( )
where
SH OH SH _ 6H 6H SH
off._o Mg = .
PR TR TA AN T S M T (1)

with commuting 6H/6®, and anticommuting 6H/6ak. Now the trace duality
assumes the usual euclidean form

oH 0
(L, VH) = tr(LVH) = 3 f(ak + @, H)dX
k=0 5 k 6®k

H oH
=L ( “ob, 64 thggt auk)dx‘ 12
The functional derivatives 6/da,, 6/0@,,..., 6/6¢, are defined by directional
derivatives as in (1.3).

Now, trying to evaluate the first Poisson structure P, in (3.1) at the point
L=0*~®Deg, one 1mmed1ately encounters a technical dlfﬁculty it turns out
that the affine subspace {3~ @D} of Lax operators (1.4) is not a Poisson
submanifold of P,, i.e. the corresponding Poisson bracket cannot be properly
restricted to the points (1.4). Therefore we first embed these operators into the
larger affine subspace of operators of the form

L=0*+a—®D. (3.13)

The affine subspace spanned by the 2 superfunctions a and @ defines a proper
Poisson submanifold. According to the dual parametrization (3.10) we put

o0H 5H>

VH=a-‘( Do (3.14)

da 0@
and insert this into (3.1). The Hamiltonian equation L = P,VH thus translates to

SH OH SH OH Y\
L=a—®D=-2 o o
a <5¢) 2<D 5 >+2<p 5 2(5a)D’ (3.15)
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such that the Hamiltonian equation associated to the abstract operator P, obtains

the form
Q _( 0 —20 OH[6D (3.16)
a —-20 ; —20D+20 O0H/ba
in the chart given by the coordinates a and @. This operator, providing a
Hamiltonian formulation for the isospectral hierarchy of (3.13), had already been
found in [24]. Now it is clearly seen that this Hamiltonian matrix cannot be
properly restricted to the operators L = 6> — @D. In order to pass from (3.13) to
(1.4) we have to invoke Dirac reduction of the Poisson structure P, when imposing

the constraint a = 0. A discussion of such a reduction in suitable notation may be
found in [22, 23], the procedure can be summarized as follows: Given a Poisson

tensor
_( Pu(u,v) P, (u,v)
P(u, v)= ( P.wv) P.(u v)> 3.17)

on the space spanned by the coordinates u and v, then its Dirac reduction to the
subspace spanned by u (i.e. imposing the constraint v = 0) is given by the reduced
Hamiltonians operator

PUw) = Pt 0) = Put, 0)(Pofuts 0) ™ Puylt, 0), (3.18)

provided the above inverse of the matrix element P,, exists. Formally inverting the
corresponding element in (3.16) we thus find a formal reduction

PUY (@) =20(0D — @)™ 10, (3.19)

providing a Hamiltonian operator for the hierarchy of integrable equations
associated to the Lax operator (1.4). In order to avoid the formal inverse in (3.19)
we consider the symplectic operator J:= 2(P(1"”d))'1 leading to (2.2).

Also the second Hamiltonian operator (1.2) associated to the N=1 supercon-
formal algebra can be derived in the same way. The calculations now become much
more troublesome, as the abstract map P, in (3.1) can neither be restricted to the
operator subspace (1.4) spanned by @ nor to the space (3.13) spanned by a and @.
We thus first evaluate P, in (3.1) at the point (3.13), which should be regarded as
the more general operator

L=+ (b—¥YD)o+a— ®D (3.20)

evaluated with =0 and ¥'=0. According to the dual parametrization (3.10) we
now have to put

0H oH 0H OH
9 1 — _ -2 _ -
VH=0 < D 52 6(p>+0 ( D 55 5q]>. (3.21)

After some lengthy but straightforward calculation the Hamiltonian equation
L=b0—¥D0+a— ®D = P,VH evaluated with =0, ¥ =0 reads

@ Poo Py, ; —*—D® ;0 SH[o®
al Po ; P, ; —D&*+ Da—aD+ @3 ; —*+ @D dH/da
b | | &*+®D;DP*+Da—aD—o®; —2D0+20 ;=20 OH/[3b
P, 0 *—-Do ; -2 ;0 SHISW,

(322
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with
Poo Poa\ 0D+ Do ; 0*+0a+ad—Dod
P,y P,,) \&+08a+ad—®Dd ; D3 +aDd+Doa—P*—0*®—2ad+dDD)
(3.23)

We remark that the operator in (3.22) is not a Hamiltonian operator, as it does not
contain the proper dependence on the superfields » and . Again we can invoke Dirac
reduction to reduce (3.22) to the subspace spanned by @ and a imposing the constraints
b=0and ¥ =0. Inverting the lower right 2 x 2-block in (3.22) and using (3.17)/(3.18)
one obtains the reduced Hamiltonian equation

@ P PN [SHIS®
) _! s ‘,’;;‘) / (3.24)
a) 2\P,y 0H/da

with

P =200 4200,
P"“" 83 + 20a + 2a0— DO® — DPO + DODO™' @,
P("’d’ 03 + 20a + 2ad — 0®D — ®DJ + ®DO "' dD,
P® = D33 4 aDd + Dda + Dad + daD — ®3* — 0*P — 6PJ

—2a® — DaDd~ '@ — ®DO " 'aD + ®DD + 0PDG '@ + ®DI "' D
— @D 'PDI 1. (3.25)

We observe that for a =0 the operator entry P"” can formally be factorized:
Py = PSd(Do? — DOD) ' PG (3.26)
Hence, performing the additional reduction imposing the constraint a=0 leads to
PG = P4y — PEO(PED) 1PRY = —D3* + 200 + 200 + DOD, (3.27)

i.e. to the second Hamiltonian operator (1.2) of (1.1). We remark that (3.16) and
(3.24)/(3.25) constitute the two Hamiltonian formulations of the integrable
hierarchy of isospectral equations associated to the scattering operator
L =07+ a—®D. Hence, as a side product of these considerations we have derived
a bi-Hamiltonian hierarchy of integrable equations involving two superfunctions a
and @, reducing to the hierarchy of (1.1) when putting a=0. The first non-trivial
equation in this hierarchy reads

d (@\ ((®"+6ad—30DP)\ (0; 0 1
E<a>_< (@” +3a* —3®Da)’ >_<6 : Da_q)>Vf<a<D—§ (DD(D>dX,

(3.28)
decomposing into
u (u” — 3u* + 3EE" + 6bu + 6(&)
df e[ (& —3us+6bey
dir\ ¢ )7\ (@ = 3ub’+ 6bC + 36°¢) (3:29)
b (b" +3b%)

when inserting a=b+ @ and @ =& + OQu.
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3.3. The Case N=2. The elements L= %, (b, + D, + y.D, + D, D,)* ing,
are parametrized by commuting superfunctions a,, b, and anticommuting super-
functions y,, f§, . Given a Hamiltonian function H(L) = H(..., by, Py, Vx> @,---) 2
convenient parametrization of the dual space g_ is given by representing the
gradient VH as the operator

VH=26""1< SH _6H _ 0H 5H> (330)

D.,D +D —-D
k20 ! 2517 zéﬁk 157k oay

with commuting 0H/da,, §H/ob, and anticommuting dH/dy,, dH/IB,. In this
parametrization the trace duality again assumes the usual euclidean form

SH ., 6H _OH . SH
(L, VH>_tr(LVH)—Zj< V3 +B"63 g +as )dX (3.31)

The functional derivatives §/0b,, ..., §/da, are defined by directional derivatives
acting from the right as in (1.3).

To derive the “first” Hamiltonian formulations for the two integrable cases of
(1.8) we again have to evaluate the first Poisson structure P, in (3.1) at the special
points L given by (1.10). As a first step we evaluate P, on the affine subspace given
by operators of the form

L=0d+b+pD,+yD,+aD,D, (3.32)
parametrized by four superfunctions a, b, y and f. It will turn out that this space
defines a proper Poisson submanifold of P,. According to (3.30) we insert

oH p. oH oH +6H
2 5B ! 5y oa
into (3.1). The Hamiltonian equation L =b + D, + 7D, + aD,D, = P,VH de-
composes into

H
VH=8“(D,D2%E+D (3.33)

a 0 ; 20 ; 0 ; 0 0H/da
bl (20, P, ; —2D,0—=2f+aD, ; 2D,0+2y+aD, \| 0H/db
y] 1 0 ; 2D0+28+D,a ; ~2a ; ~20 O0H/[dy
B 0 ; —2D,0—2y+Da ; 20 ; —2a SH/SP
(3.34)
with
Py, =2DD,0 —ad—0da+pD,~D,f—yD, +Dy. (3.35)

We now have to impose constraints on the coefficients a, b, y and f in (3.32) to
obtain the operators (1.10) from the more general (3.32). Starting with the matrix
in (3.34) the corresponding Dirac reduction will yield the wanted “first” Hamil-
tonian structure.

The Case = —2. For the reduction from the general operator (3.32) to (1.10) the
constraints
a=20,b=0,y=(D,D), f=—-(D,D), (3.36)

have to be imposed. We first perform the coordinate transformation (a, b, y, f) >
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(D, b, 3, ﬂ) defined by a=2®, y=%+(D,?), f= /} (D,®), such that the
constraint assume the simpler form »=0, =0 and [3 0. The Hamiltonian
equation (3.34) now translates to

@ 0; 0 ; 0 ; 0 OH/6D
b\ [8;2D,D,d—2D,®D, —2D,®D, ; —D,d+2D,® ; D,d+2D,® | 3H/5b
51 \0; D,0+20D, ; —40 ; —20 SH/|57
B 0; —D,0+2®D, ; 20 . —40 SH/Sp
(3.37)

where we already have put =75 = = 0. For convenience the reduction of this
operator is performed in two steps. We first take into account the constraints
7= B =0. Using (3.17)/(3.18) the Hamiltonian equation (3.37) reduces to

®\_(0; G SH/5® (3.38)
b)~\o; 2D,D,0—2D,®D,~2D,®D,—~A )\ $H/3b ) '

40 ; —20 >"< D,0+20D, )

where

A=(—D,d+2D,® ; D,d+2D, <1>)<

20 ; —40 —D,0+2@D,
(3.39)
Observing
D0+2&D —4® ; —20\(—-3D
! 2= 72, (3.40)
—D,0+2@0D, 20 5 —4@ /\—;D,
one concludes
—ip
A=(—D,0+2D,® ; D0+ 2D1<D)< fDZ) =D,D,0—D,®D, — D,®D,,
2%
(3.41)
such that (3.38) reads
o\ (0; G SH[O®
L )= / . (3.42)
b ¢; DD,0—-D,®D, —D,dD, J\ H/db
Now the final reduction to b =0 leads to the “first” Hamiltonian formulation
. oH
®=0(—DD,0+D,®D, +D,®dD,)" ‘65—(1) (3.43)
of the integrable equations associated to (1.10), « = — 2. Again, to avoid the formal

inverse in (3.43) we consider the inverse of this operator leading to the properly
defined symplectic form (2.12).

The Case a=4. For the reduction from the general operator (3.32) to (1.10) now
the constraints
a=-2@,b=—(D,D,®)— ®> y=— (D, D), f=(D,D) (3.44)

have to be imposed. We first perform the coordinate transformation (a, b, v, B)—
(®,b,7, B) defined by a=—2®, b=b—(D,D,d)— D, y=7—(D,d),
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B =B+ (D,®), such that the constraints assume the simpler form b =0, 7 =0 and
f=0. The Hamiltonian equation (3.34) now translates to

@ 0 ; -0 ; 0 ; 0 SH|6®

b —0 ; 2D,®D, +2D,®D, 200 —2®3 ; —D,0—2D,& ; D,0-2D,® || 6H/db

51 Vo0 D,0-20D, ; 40 Y SH|5

B 0 : —D,0—20D, ; 20 ;40 SH/5B
(3.45)

where we already have put b=%=p=0. The reduction of this operator is
performed in two steps as before. Taking into account the constraints § = f =0 the
Hamiltonian equation (3.45) reduces via (3.17)/(3.18) to

®\ (0 ; —0 5H/6(D> (3.46)
b) \ =0 ;2D,®D, +2D,0D,— 200 — 200 — A )\ 6H/6b )

where
40 ; —2@)“( D,0—2®D,

A=(—D,0—2D,®; D,0—2D,®
(=D, o ! )<2a ; 4D —D,0—2@D,

D,0— 20D 4@ . —20\(—1iD '
' 2 )= R (3.48)
—D,0—20D, 20 ; 40 J\-1p,

). (3.47)

Observing

one concludes

1

iD
A=(—D16—2D2(D;D26—2D1(D)< : 2>=D1D28+D1(DD1+D2<DDZ,

2

Dl
(3.49)
such that (3.46) reads

@ _( 0 -0 SH[SD\ .+ o)
b -8 ; —D,D,d—20® —2®0 + D,dD, + D,®D, )\ 6H/sb )
Now the final reduction to b = 0 leads to the “first” Hamiltonian formulation

oH

oD’
of the integrable equations associated to (1.10), «=4. We observe that the formal
inverse of the Hamiltonian operator P, defined by (1.9) turns up in this “first”
Hamiltonian formulation. The Hamiltonian operator in (3.51) multiplied with the
formal inverse of P, yields a formal recursion operator 0P, 0P, ! factorizing into
the square of the simpler recursion operator R™!:= 0P, ' Applying this recursion
operator to P, leads to P, = 0 as the simplest choice for the “first” Hamiltonian
operator for the integrable hierarchy. From this derivation it is obvious that the
recursive structure of the case « = 4 is richer than the corresponding structure for
o= — 2, as the recursion operator coming from the abstract Poisson brackets (3.1)

&= 0(D, D3+ 200 + 203 — D, ®D,.— D,®D,) 0 (3.51)
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can be factorized in the latter case. This accounts for the “additional” symmetries
in this case and reflects the fact that the Lax operator (1.10) could also be
factorized for a = 4.

We remark that in this case the derivation of the bi-Hamiltonian structure
associated to the Lax operator can be simplified by evaluating the abstract
structures (3.1) with the simpler Lax operator L = (—L)"?=D,D, + ®. We have
checked that by a similar calculation (including suitable Dirac reductions) the
first abstract Hamiltonian structure in (3.1) with L instead of L directly reduces to
P, =0, whereas the abstract P, in (3.1) reduces to the Poisson tensor (1.9).

4. Conclusions

We have exhibited the bi-Hamiltonian nature of the supersymmetric invariant
cases of integrable KdV-extensions related the the N=1 and N =2 conformal
super algebras. For two cases inverse Hamiltonian formulations in terms of (pre-)
symplectic operators had to be taken into account. The third case shows the
peculiar phenomenon of admitting ‘“additional” invariants originating from a
factorization of the corresponding Lax operator. In any case we obtain a
hereditary recursion operator, a set of master symmetries and hence a recursive
scheme for a simple construction of the higher symmetries and conservation laws
for these systems.

All structures can be calculated in a straightforward way from a general scheme
on pseudo-differential operators. We have demonstrated that this scheme yields a
straightforward way to calculate the Poisson brackets for the integrable equations
from the associated scattering problem. The fact that some of the examples admit
inverse Hamiltonian structures involving symplectic forms instead of Poisson
operators is “explained” by the reduction properties of the abstract brackets (3.1).
The scheme suggests a systematic way of looking for further bi-Hamiltonian
super-extensions of KdV-like equations by evaluating the abstract equations (3.2)
with their abstract Hamiltonian operators (3.1) for a larger class of Lax operators
and/or other choices for the abstract algebra g in Sect. 3. E.g., the bi-Hamiltonian
structure (3.16) and (3.24)/(3.25) of the isospectral equations associated to the
scattering operator L =0%+a— ®D was easily derived leading to further in-
tegrable extensions of the KdV such as (3.28).
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