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Abstract. Using the isosystolic inequalities on Riemann surfaces, we prove that for
many random surface or matrix models the radius of convergence of the
perturbative series at fixed genus is independent of the genus. This result applies for
instance to the dynamically triangulated random surface model in any dimension
or to many matrix models with regular propagators in the superrenormalizable

domain, for instance A¢> in dimension d <6, (1¢* + ]/—(1)3) in dimension d <4, and
various other P(¢), models (in particular all those contammg an odd power of ¢).

We hope that this result is a first step towards a more rigorous understanding of
the genus dependence of surface models or of quantum gravity coupled with
matter fields.

I. Introduction

The topological expansion in field theory goes back to the proposal by 't Hooft to
study gauge theory with gauge group SU(N) by means of a 1/N expansion. This is
because the order g in this 1/N expansion is in perturbation theory the sum of all
Feynman graphs of genus g [1]. Topological expansions of this kind can be written
in general for quantum field theories in which the field is an N by N matrix field.

Each order in the 1/N expansion is a full perturbative series in its own right,
with Feynman graphs equipped with the regular propagator (p>+1)~'. The n'
order of this series is made of relatively few graphs: for instance in one of the
simplest models, namely the matrix model with Tr¢* interaction (which for
simplicity we call the ¢* model) there are at most K" graphs of order n and fixed
genus (in sharp contrast with the ordinary ¢* perturbative series, in which there
are about K"n! graphs at order n) [2]. In the series of papers [3-5] the matrix
models in 0 or 1 dimension of space time were beautifully analyzed The
asymptotic number of planar graphs with n vertices as n gets large was in particular
computed, hence the optimal value of the constant K for planar graphs was found.



184 V. Rivasseau

If we combine this result with the uniform bounds on convergent renormalized
Feynman graphs in the superrenormalizable case ([6, 7] and references therein) it
is clear that the planar series for superrenormalizable matrix models have a finite
radius of convergence, and this statement is also true for the series at any fixed
genus g, (although the fact that this is a rigorous theorem was perhaps never
explicitly stated in the literature up to now). This is no longer true for just
renormalizable situations like ¢§ in which renormalons are expected to prevent
the planar series from having a finite radius of convergence; however even in this
case the planar series can be resummed by Borel summation if the model is
asymptotically free (this is the case for the “wrong sign” ¢4 model) [7-9].

Interest in matrix models was revived more recently for several reasons. They
provide a clue to the discretization of random surface models [10-12]. A model of
particular interest in this context is the discretized version of Polyakov’s action for
a bosonic string embedded in d dimensions. If the string world-sheet is discretized
with triangles, the genus g series is made of the same graphs as the ¢* matrix
models, but computed with exponential propagators e " rather than the regular
propagators (p>+1)~! [10-12]. This model is obviously well defined order by
order in any dimension. We call it the dynamically triangulated random surface
model in dimension d or DTRS [13]. Similarly there are “dynamically quadran-
gulated” models corresponding to a ¢* interaction and so on.

At least in the superrenormalizable domain where there is only a finite number
of mass renormalizations these DTRS models may have the same infrared
behavior as the ordinary matrix models with the regular Feynman propagators
[13]. This remark has been exploited in dimension 1, where the regular model with
Feynman propagators can be solved to a large extent [3].

Since string “or superstring theory is nothing but two dimensional gravity
coupled to some particular set of conformal fields, any summation of the
topological expansion for matrix models should shed light on the non-
perturbative aspects of string theory.

Physically one is not so much interested in the radius of convergence of the fixed
genus series as in the strength of the corresponding singularity. More precisely it is
expected that the genus g series behave at large nlike K"n ™2 * s, where K is model
dependent, and the exponent y,,, called the string susceptibility, is a physically
important quantity which should be universal at least in some sense. In dimension
d out of the interval [1, 257 it is expected that 7, depends linearly on the genus,
with the formula

Vs =2+(1-2)(1/12) [d—25—)/(d—1)(d—-25)] (L1)

[14-16]. (The borderline cases d=1 or d=25 are special in many respects.)

Recently a non-perturbative summation over the genus was in some sense
achieved for matrix models in dimension 0 or 1 [17-19]. Indeed in this case not
only the leading behavior in K" with exact value of K but also the subleading
behaviorinn~3* 7 of the genus g series can be computed. The formula (I.1) can be
checked rigorously because the matrix model can be studied very precisely by
means of orthogonal polynomials [4-5]. What was shown is that if one sends
(according to a certain scaling relation) both N to infinity and A (the coupling
constant) to the critical value 1/K, where all the fixed genus series simultaneously
diverge, a certain resummation occurs. More precisely in this limit a certain global
differential equation can be written for the sum of the topological expansion
[17-19].
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This method is clearly limited to d<1. This is because if we decompose a
hermitian matrix into a unitary and a diagonal piece only in d <1 does the unitary
piece decouple; only the diagonal piece of the matrix remains in the action and the
model is therefore in a certain sense reduced to a vector rather than a matrix model.
This is why a single matrix model or a one dimensional finite chain of matrix
models can be solved in detail through orthogonal polynomials.

In more than one dimension, plaquettes or Wilson loops begin to exist;
accordingly the unitary piece of the matrix becomes important and the model has
the intricacies of a true gauge field theory; it seems hopeless to expect a solution as
detailed analytically as in O or 1 dimension.

Curiously from the point of view of conformal field theory, the central charge
c¢=1is also a borderline case. It is only for ¢ <1 (or ¢=25 than there is a precise
conjecture for the exponent y,,, of quantum gravity coupled with matter of central
charge ¢ namely formula (I.1) (with d, the dimension, replaced by c).

The region 1 <c¢ <25 or 1 <d <25 (which is the physically most interesting one
at least for gauge or string theory) remains therefore totally mysterious both from
the conformal field or the matrix model point of view. In this paper we propose to
examine the objects which are clearly defined above dimension 1 in the matrix
models, namely the renormalized Feynman amplitudes themselves. As a first step
we prove that the leading behavior of all the fixed genus series is independent of the
genus, by a method which applies to many models, in particular the DTRS in any
dimension and many regular matrix models in the superrenormalizable domain.

Although we are still far from being able to resum the topological expansion in
these dimensions higher than one, we hope that refining the method of this paper
might lead to the study of the subleading behavior (presumably it might be
necessary to gather more semi-rigorous knowledge in a first stage; numerical
simulations might also be useful). The subleading behavior should be model
independent at least up to some degree and would give directly the critical
exponent of the corresponding discretized random surface models embedded in d
dimensions (the case d =3 is therefore of particular physical interest). Moreover if
the genus dependence of this critical index y,,, is given by a regular formula (such as
the linear formula (I.1) for ¢ <1 or ¢>25), then some kind of universal scaling
might also exist in these models and perhaps a non-perturbative resummation of
all the genera also happens when N — oo and A—1/K,, the critical value common to
all genera.

Let us conclude with some remarks. First our method also applies to non-
integer dimensions, for instance to the ¢> matrix model in dimension d with
Red<6, in which we use the ordinary analytic continuation in dimension of
Feynman amplitudes [20]. Ordinary functional integrals in constructive field
theory have up to now always resisted rigorous dimensional interpolation, in
contrast with individual amplitudes. Hopefully this may not be true for a future
non-perturbative formulation of surface models.

Our second remark concerns the borderline case of just renormalizable models.
Here the first quantity of interest is no longer the radius of convergence of the fixed
genus series, which is expected to be 0. However it is certainly possible to extend
the construction of the planar wrong sign ¢ to any fixed genus; the only technical
difficulty has to do with the fact that the renormalization group flow for the
coupling constant must remain the same as in the planar case. At fixed genus the
number of coupling constant counterterms of nontrivial genus remains indeed
bounded, hence these counterterms cannot generate a nontrivial flow. Therefore
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we expect in the asymptotically free case every fixed genus series to be Borel
summable and we expect that the Borel radius of convergence is universal,
corresponding to the position of the first planar renormalon. What would be the
analogue of a scaling behavior in this case is not clear to us.

Beyond the superrenormalizable domain, there is an infinite number of
divergent operators. Because of these ultraviolet divergences it is presumably no
longer reasonable to expect the matrix model to have anything in common with
the DTRS model of two dimensional gravity coupled to a d dimensional matter
field. This explains perhaps why nothing particular seems to happen in the matrix
model at dimension 25, in contrast with conformal field theory.

II. The Matrix Model and its Topological Expansion

A matrix model is a model in which the field ¢ is an N times N matrix valued field.
P
Let us consider a given polynomial P(x)= Y a,x*. We define a matrix model in
k=3

dimension d with interaction corresponding to this polynomial by the formal

functional integral
1 L k-2 k 2 2

dv=— exp— n{ Z G ez 11(9) —(1/2)[ [ Tr(¢)"+ 5 Tr(0,9) ]be

(IL1)

where D¢ is a product of independent formal Lebesgue measures for each

independent component of ¢. The constants a, can be taken arbitrary but they

play no role in what follows and we can therefore set them equal to 1 for simplicity.

The Feynman rules of this model are best understood by considering that since
propagators carry a matrix index they should be represented by double lines (one
for each matrix index) or ribbons. Remark that the vertices in this theory contain a
trace, hence have an important cyclic symmetry (see Fig.1). (Note that for
simplicity for the tadpole of Fig. 3 and for Figs. 7-8 we use simple lines instead of
double lines.)

There are various versions of this model: the field ¢ could be real symmetric, in
which case the index dependence of the two point function (@, ;, ¢; ;> is 6; »0;
+9; 70, » and one ends up with ribbons which cover an unoriented surface or,
most of the time, the field ¢ is chosen hermitian, so that {¢; ;, ¢ ;> is §; ;0; ;. This
rule can be pictured by drawing ribbons with oriented borders; the corresponding
arrows allow a consistent choice of a normal to the surface covered by the graph,
and one ends up with a theory of oriented surfaces (see Fig. 2).

The reader might ask whether at this stage one should not restrict oneself to
semibounded polynomials in order that a regularized version of the model makes

N

_—’———
——
Propagators
a) orthogonal b) hermitian vertex (phi3)

Fig. 1
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sense at finite N. This would rule out the ¢ interaction since it is unbounded
below. However the usual stability requirements do not apply to planar or fixed
genus series (this is why planar ¢} with “wrong sign” can in fact be constructed).
The planar or fixed genus ¢> model not only makes sense, it corresponds to the
study of surfaces by triangulations, so it is in fact a very natural model in this
context. Therefore we do not want to impose semi-boundedness of P.
However if one is really interested in applying the 1/N expansion scheme to a
model at finite N, stability becomes important; one can consider the particular

model (A¢4+]/I¢3) in which the measure is:

1 A /2
dv=—exp— [ Tr(¢)*— N [ Tr(¢)’ —(1/2) [ Tr(¢)* + | Tr(9,4)°] Dzi.z)

This model is well defined at finite N and all the results of this paper apply to it.
However we warn the reader that at the moment the method of this paper does not
apply to models with purely even powers of the field such as the pure ¢* model,
because their graphs have some additional topological invariants that do not
appear in theories with at least one odd interaction (see below). In these theories for
the moment our method applies only to the topologically trivial piece of the
perturbative expansion.

Let us return to the general Feynman rules of model (I11.1). To each closed loop
(of single lines) or each closed border of the ribbons there corresponds a sum over
possible values of the index flowing through this loop, hence there is a factor N per
such loop. There is also a factor (A/N)* 2’2 per vertex of type k. If the graph has E
external legs and v, vertices of type k, with ¥ v, =v its number of internal lines is

k

I=Y (k/2)v,—E/2, and its order in 1 is n= Y v,(k—2)/2, which is an integer for E
k k

even. The simplest case is for connected vacuum graphs in which E=0. Let us fill
every closed index loop by a flat “face” and call f the number of such faces. We
generate in this way a compact surface of genus g with Euler’s relation f—I+v
=2—2g which here takes the form f — ¥ (k—2)v,/2=2—2g. The dependencein N

. S Zk=2)0i/2 . k 4
being N * , we obtain that the overall factor for a connected vacuum ¢

graph of genus g is N>~ 2%, Hence the 1/N expansion is a topological expansion.
We consider the quantity

N~21ogZ=Y N~ %Y 1"ag) (IL3)
g n

in which
alg)=T I (114
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is the sum over all connected vacuum graphs at genus g and order n of the
corresponding amplitude I;. This amplitude is given by the ordinary formula for
Feynman integrals. It is interesting to remark that in the definition of the
amplitudes I ; we can forget that the graph G is made of double lines: the formula is
the same as for a one component ordinary P(¢) model. However the symmetry
factor, or in other words the exact set of graphs entering in (I1.4), is not the same as
in the ordinary theory and must be computed using the cyclic rule for the vertex
and the double lines for the propagators, with or without arrows (hermitian or real
symmetric case).

In a superrenormalizable theory at dimension 2 or above, some of the
amplitudes I; are divergent and must be replaced in the ususal way by
renormalized amplitudes I§. The renormalization is defined by subtraction at 0
external momentum of the divergent diagrams which in the superrenormalizable
domain are just a finite number of one particle irreducible mass diagrams.

Let us consider the radius of convergence of the series a,(g) defined by the usual
formula

e(g)= lim sup |a,(g)|"". (IL5)

Our main result is

Theorem 1. The radius of convergence o(g) of the perturbative series at genus g is in
fact independent of g for the following models:

— The P(¢), model where P contains at least one odd power.

— The ¢2 model with d < 6 and the (A¢p* + 1/;1¢3) model defined by (11.2) in dimension
d<4.

— The discretized string model in any dimension defined by the same graphs as the
P(¢) model but with exponential propagators, where P contains at least one odd
power. The DTRS model corresponding to P(¢)=¢> is an interesting particular
case.

In the course of proving Theorem 1 we obtain a more precise estimate (see
below). However since this estimate is presumably still far from optimal, we prefer
to present our result in the form of Theorem 1.

We will give a complete proof of the theorem in the case of ¢3 which is the
simplest case to which our method applies, and give rather complete indications

for the (A¢* +1/4¢°),, 5. The case of exponential propagators is clearly easier and
will be treated briefly. Other models are left to the reader.

Our method requires three ingredients: isosystolic inequalities, bounds to
relate amplitudes of graphs which are roughly similar, and some surgery rules to
raise or lower the genus. The first ingredient is completely general, the second is
completely general in superrenormalizable situations, but may require a so-
phisticated phase space analysis as in [26]. Unfortunately the third ingredient, our
surgery rules, is not completely general up to now, and this is why we have
restrictions to interactions with at least one odd power. For purely even
interactions there may be some topological obstructions to “local surgery” to
lower or raise the genus. This is why in this case we can treat only the topologically
trivial piece of these theories, in which these obstructions disappear.

Theorem 1 applies also to the radius of convergence of every fixed genus series
with a fixed number of external legs E; if we call a£(g) the corresponding n'® order
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and define o%(g)= hm 1 sup |aZ(g)|*" we have o%(g) = 0F(0) = 0°(0) for any g and E.

This can be verified by the same method as for vacuum series and is left to the
reader.

HI. Proof of the Main Theorem

We shall prove that the convergence radius o(g + 1) is equal to g(g) for any g. Hence
for all g it will be equal to the planar radius ¢(0). Our strategy is to construct two
mappings p and y which associate respectively to a graph of genus g a graph of
genus g+ 1 and to a graph of genus g+ 1 a graph of genus g, in such a way that two
associated graphs have about the same order (i.e. number of vertices) and are
similar except for a percentage of their lines which gets smaller and smaller as this
order increases. We must also check that not too many graphs project themselves
on the same graph in the mappings y and y, and finally we need theorems which
tell us that the amplitudes of two graphs roughly similar are roughly equal. With
all these ingredients we can conclude that the convergence radius of the two series
(at genus g and g+ 1) is the same.

We specialize for simplicity to the case of ¢3. Since amplitudes of graphs with
tadpoles vanish after renormalization in two dimensions, we can limit the
definition of the mappings v and y to graphs without tadpoles (Fig. 3) but we must
be careful that the image of y and y is also made of graphs without tadpoles (such
graphs are called Wick-ordered graphs or W- graphs for short)

The easy part of the correspondence is the mapping v (to raise the genus by one
unit). Indeed to any connected vacuum ¢? graph G of genus g and order n without
tadpoles we can associate a connected vacuum ¢> graph G’ of genus g+1 and
order n+4, again without tadpoles, by simply inserting the two-point graph G, of
Fig. 3 on any of the lines of G. In this way a correspondence G—G'=y(G) is
defined. The inverse image of a graph G’ of genus g + 1 is made of at most p graphs
of genus g, where p is the total number of subgraphs in G’ isomorphic to G,,. It is
casy to check that p<g+ 1. With a theorem relating the amplitude of G’ to the
amplitude of G the inequality o(g)<g(g+1) follows.

The difficult part of the problem is to find a correspondence which lowers the
genus by one unit. Let us consider a connected vacuum ¢> graph G of genus g+ 1
with n vertices (n even), hence 3n/2 lines and (n/2) — 2g faces, which has no tadpoles
(otherwise recall that I§ =0). The dual graph G* defines a Riemannian metric on
the compact orientable surface of genus g+ 1 in the usual way [10]: the dual graph
defines a realization of the surface as a simplex whose faces are triangles since G is a
¢* graph. If we take each face to be a regular flat equilateral triangle of area 1 and
side length 2/3'/4, the corresponding metric y is singular with curvature concen-

tadpole The graphGg
Fig. 3
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trated at the vertices where strictly more or strictly less than six triangles meet. (The
fact that the metric is singular might seem uncomfortable for the application of the
results below, but in fact it is not; we can always smooth out the singularities, then
pass to the limit.)

The total area of the surface for this metric y is the number of faces of G*, hence
is n. We want to associate to G a graph x(G) of genus g by cutting one of the
“handles” of G. But in order not to change too much the amplitude of G, we want to
do this by cutting the smallest possible number of lines of G. This is the same as
finding the shortest noncontractible path on the dual graph G*, since cutting a line
of G is the same as making an elementary step on G*. Since G* defines the metricy
on the surface of genus g+ 1 and each edge of G* has the same length (namely
2/31/4) for this metric, we are lead to the problem of finding the shortest nontrivial
closed loop for this metric. This problem is known in mathematics under the name
of the isosystolic problem. Let S(y) be such a shortest nontrivial loop and s(y) be its
length. The loop S(y) is not necessarily made of lines of G*, hence cannot be directly
interpreted as a path on G*. However in each triangle which is a face of G* it
reduces to a straight line joining two points 4 and B on the border of the triangle,
since on each elementary triangle the metric y is the flat ordinary metric. We can
join A4 to B by a path staying on the border of the triangle which is at worst twice as
long. Therefore we can find a nontrivial closed path on G* of length at most 2s(y).

The maximal value of s(y) when y (hence G) varies is controlled in terms of A =n,
the total area of the surface with metric g by the so-called isosystolic inequality:

Theorem IIL1. For every genus there exists a constant K(g) such that
s())SK(g) 4. (ITL1)

The optimal value of K(g) for general g is not known. Theorem I11.1 was proved
first in [21, 22]. Loewner proved that

K()=12/)/3. (I11.2)

There is a uniform bound on K(g), namely [25]

K(g)<2/)/3. (IIL3)

Furthermore K(g) decreases at large g. In [25] it is proved that for every 8 < 1 there
exists a constant ¢, such that:

K(g)<cog™’. (I1L4)

From (II1.4) it is tempting to speculate that the true asymptotic behavior of K(g)
might be something like g~ * log g, but up to now this true behavior is not known.
For a review on isosystolic inequalities and related topics we refer to [23-25].
Here to illustrate the problem with an example let us simply give the proof of
(IIL.2), which is elementary.
By reparametrization, a conformal transformation and modular invariance, we
know that we can write any metric on the torus R?/Z? as

y=e®|dx+1dy|?, (I1L5)

where ¢ is a conformal factor and 7, the modulus, can be chosen in the fundamental
modular region: Imt>0, |7]=1, —1/2<Ret=<1/2. Each closed loop at a fixed
height 0<y <1 is longer or equal to the systolic length s(y). Therefore, using the
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=) O

Fig. 4

Schwarz inequality:
11 11 1/2
s()S [ [ dxdye?* < (j jdxdye‘*) . (IIL6)
00 00

11
The area of the torus is nothing but A= | | dxdye® Imt, hence s(y) < |/ A/Imt and
00

the worst case is for Im t minimal, hence for the “hexagonal torus” in which Im1t

= 1/3/2. This concludes the proof of (II1.2). Remark that the worst torus
corresponds to the closest packing of disks in the plane; this fact has interesting
higher dimensional analogues [24].

We want in fact to break an even number of lines and to contract them again in
order to compare a vacuum graph of genus g + 1 to a vacuum graph of genus g. For
¢ graphs we can require that Lis even. Indeed either Lis even or it is odd, in which
case we choose one particular vertex hooked to a line /, among the Llines. If the cut
is changed so as to pass through the other side of the vertex (as shown in Fig. 4) the
parity of L changes (but not the homotopy class of the cut). L is changed in L+1.
This trick is only possible for vertices with an odd number of lines and this is why
our proof at the moment does not cover purely even theories such as ¢*. We hope
that this restriction is only technical and can be overcome in the future.

Remark that by cutting one non-contractible cycle on a genus g+ 1 graph we
obtain a graph which is still connected. Using the simple bound (IIL.3) together
with these remarks we obtain that to any vacuum connected ¢> graph G of genus
g+ 1 and order n we can associate a connected ¢ graph G’ of genus g with E=2L
external legs by cutting an even number L=2k of internal lines of G, which is at

most (31/4/2)2s(y)+ 1 1. By (I11.3) this proves that L< 2[/1; (atleast if n >4 which we
can assume from now on).

Now we can form from the graph G’ a connected vacuum ¢> graph G" of genus
g, which furthermore has no tadpoles, in the following way. There is a cyclic
ordering of the L= 2k half lines on one side of the cut as I, ..., 15, I+, =1;. We
want to pair these half lines together and repeat the operation on the other side of
the cut to obtain a vacuum graph of genus g (see Fig. 5). We could simply contract
I, with I,, I; with I, and so on, but this process could create tadpoles. This is
because some pair of consecutive lines can be hooked to the same vertex; such lines
are called doublets, the other ones are called singlets. To avoid tadpoles we call
I={i, <i,<i,} the set of indices in [1,2k] such that [, and /;, , are hooked to the
same vertex, hence form a doublet. When i;, ; —i;is odd there is an even number of

J
singlets between the two consecutive doublets of indices j and j+ 1. We contract

! Tt could be less, in particular because when the path of length at most 2s(y) contains consecutive
pieces of edges of a triangle in reverse direction we can contract these pieces
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Fig. 5
Fig. 6
———
The “blob" casecC
Fig. 7

them together in their natural consecutive order. Similarly when there is an odd
number of singlets between two consecutive doublets, we contract them in the
natural order except one, the last one. In this way we are reduced to the situation of
doublets separated only by one singlet or nothing. We can contract together the
ends of two consecutive doublets separated by nothing and consider the two
remaining ends as new singlets and continue in this way until we arrived at a
remaining set of doublets all separated by singlets. They must be therefore in even
number and are then contracted according to Fig. 6.

The crucial point is that this rule of contractions is “planar” (i.e. the lines
created in this way can be drawn on the disk filling the circle of the cut without any
crossing). Therefore the graph G” =y(G) obtained at the end of this construction is
of genus exactly g, as required, and has no tadpoles since G had no tadpoles and no
one was created.

In the case of (/1¢4+‘/I¢3)3 it is not sufficient that our surgery rules do not
create any tadpole; we want also that they do not create any divergent subgraph,
hence any “blobs” B (see Fig. 7). This can be ensured because the only case where a
blob could form are pictured in Fig. 7. In the two first cases a and b the cut is not
optimal, as shown. Hence only case ¢ can occur. But the two half lines not to be
contracted are then exactly similar to a doublet of the preceding type, and we have
just shown that we can avoid the contraction of the two lines of such a doublet.

For more complicated models such as ¢* models in non-integer dimension d
close to 4 there are more and more subgraphs to avoid but they are all two point
subgraphs; hence the argument of Fig. 7 generalizes: the only case where the cut
cannot be improved gives a doublet, whose contraction can be avoided. Hence our
surgery rules can be adapted to all superrenormalizable situations.



Isosytolic Inequalities and Topological Expansion 193

Finally we want to check, in the correspondence defined above, that not too
many different G’s of genus g+ 1 can be associated to the same given G” of genus g
and order n. The maximal number of such different G’s associated to a given G” of
order n, called F(n, g), is certainly bounded by the number of sets of L lines of G
(with L ZW) times the total number of possibilities to contract the 2L half lines
together. Hence this number can be bounded, for n = 50 (where m+ 1= 1/5— 1)
in the following way:

2yn

Fno= Y Tii=D

where I=3n/2 and 2L!'=(2L—1) (2L—3)...3.1. Remark that the bound is in fact
uniform in the genus g, and that it is of the form (1 +¢&(n))" with lim &(n)=0, hence

QLI Z{F @D <(3n)2Vitt, (IIL7)
L=0

it will have no effect on the radius of convergence.
Altogether we have proved:

Theorem IIL.2. To any vacuum connected ¢> W-graph G of genus g+ 1 and order n
we can associate a connected vacuum ¢> W-graph G” of genus g and order n by
cutting Linternal lines of G and contracting them again differently, where L satisfies
the inequality

LZ2)/n. (I11.8)

Furthermore the corresponding mapping G- y(G)=G" is such that for any G”,
%~ YG") has at most (3n)*V"* 1 elements.

We need now theorems which tell us that breaking a line or branching a new
line or inserting a G, subgraph in a graph is something which does not change too
much the associated amplitude. Remark that the amplitudes being the same as for
ordinary one component ¢> graphs, we can forget the double lines and all the
topological subtleties for this particular problem. The machinery for this kind of
result was developed in [26] and it extends clearly to any bosonic superre-
normalizable theory. We are going to adapt the results of [26] to our purpose, and
from now on a certain familiarity with [26] is therefore assumed. We give a precise
theorem for ¢$, which is a “difficult” superrenormalizable case and is precisely the
model treated in [26]; but the same method really applies to any bosonic
superrenormalizable theory; in particular it applies much more easily to ¢3.

In ¢$%, apart from the vacuum graphs with 1, 2 or 3 vertices and the tadpole, the
only divergent graph is the blob of Fig. 7. A graph without tadpoles and blobs is
called a CC graph (connected, convergent). (This notion extends to ¢5 but the list
of two point divergent graphs increases as one approaches d =4.) We start with a
rather easy bound which does not require any multiscale analysis in the style of

[26].

Theorem IIL3. Let G be a CC ¢* graph with n vertices and E 22 external lines. We
consider a graph G obtained from G by contracting together two external lines of G.
There exists a strictly positive constant C, such that if G is also CC, the
corresponding amplitudes at zero external momenta satisfy:

I4<C,-n- 1. (ITL9)

Furthermore we have a similar inequality in the DTRS model; for any connected
graphs G and G such as above (but no longer necessarily CC graphs ), if we define J 5
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Fig. 8
and J g as the amplitudes computed with exponential propagators instead of regular
Feynman propagators we have

JgSC,-n%? . Jg. (I11.10)

Proof. We start with the more difficult case of Feynman propagators. Using the
o-parametric representation we have (with a mass equal to unity for simplicity):

®© —Ea, 1
I;= ! I11.11
G f‘)‘ Hdoc,e U((X)dlz’ ( )
01 oy 2T [ TR
=[5 2+1 I¢(p*)= Ip2+1 { I:[doc,e Uglo)™?’
(IIL.12)

where I4(p?) is the amplitude of G with all external momenta put to 0 except for a
momentum p entering through one and exiting through the other of the two
external lines I, and I, contracted to form G (see Fig. 8).

The polynomials U; and V; are the usual Symanzik polynomials whose
definition can be found, e.g. in [7]. Let us put r=p?. We have (where CC'... stand
for unessential constants which depend only on d):

1 © -
I2C [ Ig(r)r¢2Pdr2C | []doye Fu__1 (IIL.13)
0 0

V(o)
The right-hand side of (II1.12) is similar to I; but with V substituted to U. Recall
that U is a sum over the spanning trees T of G of the product of the « parameters of
the lines not in T and V is a sum of similar products but performed over the two-
trees T’ (i.e. spanning trees minus one line) which cut G into two pieces, one
containing /, and the other containing I,. Since every two tree is obtained from a
spanning tree by cutting a line (possibly in a non-unique way) we have

V@S Y Uglo), (ITL.14)

and therefore, using the homogeneity property of U:

© —Za 1 1
gdlj ]_[da,e (};a,—l)W
_ lell‘tz_d"'F%E‘d‘l -5 do & 1 1
= ! e (_‘; 1:1 0 (? o — )Uo(d)d/z
4—d d— ® 1
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Similarly by (II1.13-14):

4—d d—2 ® 1
o> J—— — F —4— — JU—
Ig___['< 5 nt - E—d 1)(;)11‘ da,a(;a, 1)UG(<x)“/2’ (111.16)

hence (since E <4n) we obtain the theorem, namely
Ic£C, -n-Ig (I1L.17)

for some d-dependent constant C, simply because I'(an)/I'(an—1)=an.
We turn now to the easier case of graphs with exponential propagators. Their
amplitude J is then explicitly given by the formula

Jo=T(G)™ %2, (IIL.18)

where T(G) is the number of spanning trees in G. But consider a graph G with [(G)
lines and let G=GuU{l,}, hence the line |, is added to G by contracting two half
lines [, and I, in G. Any spanning tree of G containing /, is obtained from a two tree
of G separating I, from [,, and such a two tree is it self obtained from a spanning
tree of G by cutting a line. Therefore T(G)<I(G)T(G), and for d=>0 this gives
J¢SI(G)¥? J¢. Since the number of lines is linear in the number of vertices for any
polynomial model we obtain (I11.10).

We want now theorems which tell us that when we add lines to a graph or when
we insert a G, subgraph (see Fig. 3) we do not increase too much its amplitude.
Such theorems are more delicate because there is a potential ultraviolet problem:
the integral over d’p in (IIL9) does not converge for d=2 unless some internal
convergence is extracted out of G. It is this kind of problem which were solved in
[26] using a phase space analysis.

We introduce an exponential cutoff on each propagator, i.e.; we define

1 < da 2 4a
CK(x,y)EW ;[ P @ lx=yPida) (I11.19)

The amplitude I; , with cutoff « is similar to the amplitude without cutoff, but
where every propa ator——1~——1——is replaced by C,( )——1*—1—

yp pg (2n)dp2+1 p y Kp_(2n)dp2+1
Theorem ITL4. Let ¢ be a small constant. For any CC graph G of order n of a

superrenormalizable theory (such as ¢%) there exists some (model-dependent)
constant C such that if we define the cutoff x,=n’, we have

—x~Y(p2+1)

I < eCritlogm™ 1 (I11.20)

This theorem is a simple consequence of the more detailed bounds (3.3) and
(3.34-35)in [26]. In particular it was proved in [ 26, Theorem II1.1, p. 66] that if for
any subgraph F C G we define I; f ., as the amplitude with cutoff k, on the lines of
G —F and-no cutoff on the lines of F, there exists a constant K with

Ig p e, sK'PIg .. (ITL.21)

sKn*

This bound is quite non-trivial and requires a phase space analysis. With easier
methods such as the ones of [6, 7] some simpler bounds (also proved in [26]) state
that the amplitude Ig"; defined with propagators C, for the lines of G— F and
C—-C,, for the lines of F is bounded by:

IE':F < K —I(F)elogn IG, - (11122)
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We can then write I;= Z I r and distinguish two contributions, when [(F)
Fc
=<n/}/logn, and when l(F)>n/ [/logn. In the first case we use (II1.21) and obtain

1_
IG_ Z G,F
FcG,l(F)<n/YTogn

IG,F,K"
FCG,U(F)=n/yTogn
n/VTogn -
P e @n)-.@n—k+1)

= %o k! IG’K"

< (eK )V g27ogn R (I11.23)

In the second case we use (I11.22) (and /(G)=2n) to obtain:
Ig= )Y 1§
FCG,1(F)>n/yTogn
YA QLT P (I11.24)

Combining (I111.23) and (I11.24) yields (II1.20).

Using these bounds we can compare the amplitudes for a graph G of genus g+ 1
and its image y(G)= G", using the intermediate graph G’ in which L lines of G have
been cut. We have

I;< gCnlllogm)t/4 IG,x,. < oCrltlogm1/4 (CZHE)LIG: , (I11.25)

where C, is some constant. This is because C, (x, y) < C,x,= C,n’ in dimension 3
. dp . . . . . e .
since | o _f 1 is linearly divergent in dimension 3; similar inequalities of course

also exist in other dimensions and lead to similar conclusions in the superre-

normalizable case). Finally using Theorem IIL.3 we have
Io S(Cin)tig.. (I11.26)

Gathering (II1.25-26) with Theorem I11.2 which bounds L and the number of
elements in the inverse image ¥ ~!(G”) we obtain finally for some constant C':

an(g + 1) § eC’n/(logn)‘M a"(g) , (III. 27)

hence ¢(g+1)=<¢(g)-

To obtain the bound in the other direction, we use the correspondence v and
again Theorem IIL.4 to show that the insertion of a subgraph G, does not reduce
too much the amplitude of a graph G. More precisely if G’ =1(G) is obtained from
G by such an insertion on a line [, the amplitude for G’ is equal to the amplitude of
G in which the line l0 has a propagator

1 1 1 1

31,431/
C(p)_(p )? J&kdk (p+k?+1 (k*+1)? (k+k)*+1 kK*+1 (ITL.28)
instead of the regular propagator C(p)—
that for some constant K:
o)z 1 (IT1.29)
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Now if p2=n!*2¢ we have for some constant K’,

1

C.(psKe ™™ )
wP)=K'e 71

(II1.30)

Therefore for n large enough the corresponding region of integration contributes
almost nothing to I , . More precisely if we define I, ;10w @8 the same integral
as I ., but with the restriction that the momentum p of the line [, satisfies
p?<n'*2(i.e. we have now an additional sharp momentum cutoff on the line [, we
have for some constant K, using the general method for uniform bounds on
Feynman amplitudes [6, 7]:

Lo k=G, nm 1010w < K'Kje™™ ", (I1L.31)

Furthermore we have ([26], Lemma II1.2 or [27]), for some constant K,:
Ig .. 2K5. (IIL.32)
Therefore we have for n large enough (combining (II1.31) and (II1.32)):

IG, Xn é ZIG,K,,, lolow é 2K * nz +2e IG', Kn é 2Kn2 +2e IG' Py (III.33)

and using (I11.20) we obtain
IG<2K -n?t2e gCrlllogm™iy (I11.34)

This together with the bound on the number of elements in ™~ !(G’) (which we
recall is g+ 1) completes the proof that for some constant C':

an(g) < eC'n/(logn)1/4an+ 2(g+ 1) , (IH.35)

hence we obtain the converse inequality o(g) < ¢(g + 1). This achieves the proof that
o(g)=0(g+1).

In the case of exponential propagators we do not need any ultraviolet
machinery such as Theorem II1.4. The exponential propagator is directly bounded
by 1, so adding a line always decreases the amplitude. The converse, deleting a line
is controlled by the last part of Theorem III.3. This is enough for the treatment of
the DTRS models in any dimension.

We want now to discuss the case of purely even theories such as ¢*. In such a
theory since the dual graph has faces with even number of sides, the parity of the
length of any non-contractible loop in the dual graph is conserved under
homotopy. In more pedantic terms for each graph we have a representation of the
homology group of the surface into Z/2Z. If a loop such as the systolic loop that we
want to break has odd parity, there is nothing to do to change this by local
modifications. A graph of genus 1 such as the one of Fig. 9 has no genus 0

14\

W U

Fig. 9
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Fig. 10

counterpart which looks like him up to a small number of local modifications.
Hence in this case our method fails because our surgery rule requires an even
number of lines to be broken. Let us define the “trivial sector” of the theory as made
of the graphs for which the representation above is trivial (hence such that each
dual graph has even number of lines along any non-contractible loop. Then for this
trivial “sector” our surgery rules apply and we can still conclude that the radius of
convergence is independent of the genus.

There is a way to obtain Feynman rules which automatically restrict us to this

sector. For instance we can consider a model with two hermitian matrix fields y!
and y?, such that the propagators are

L'y ={p?p?)=0;

[P dyCpl 0, pF0)> =

(I11.36)
b

P OO
These rules correspond to a gaussian measure which is not positive, hence the
associated functional integration is purely formal. But if we add an even

14
interactionsuchas ¥ a, Tr(y'y?) the vertices have lines with alternating indices
k=2

1 and 2 and the lines must connect a field of type 1 to a field of type 2. Hence it is
easy to check that the set of graphs obtained in this way is such that every non-
contractible loop crosses an even number of lines (on the dual graph every such
loop has an even number of lines). Hence for this model, our surgery rules apply
and the radius of convergence is again independent of the genus (in the
superrenormalizable domain).

One could perhaps speculate that the distinction made in this paper between
purely even models and other models may have something in common with the
recent discussions over the “doubling of solutions” for even models (see [29-31]).

We end up with a few remarks on the role of isosystolic inequalities and some
open questions.

Isosystolic inequalities hold on a continuous Riemann surface, and the natural
framework for them seems to be therefore the continuum. It may be possible to use
them to prove direct bounds between string amplitudes at various genera.
However remark that if we cut a continuum Riemann surface along an isosystolic
loop and glue each side of the cut together to lower the genus we have to “fold” at
some point (see Fig. 10). We think that there might be an associated regularization
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problem. The interest of the matrix models is that they provide precisely a well
defined regularization of such problems. We hope that it is the interplay between
the ideas from the mathematically well developed continuum theory of Riemann
surfaces and the simple and physically attractive discretization provided by the
matrix models which may be most fruitful.

Another remark is that at genus one the isosystolic inequality is saturated in the
case of the most symmetric torus (the one with the largest discrete symmetry
group), which corresponds to an orbifold point in moduli space. It is reasonable to
expect this phenomenon to generalize to higher genus: presumably the worst
isosystolic inequalities are obtained for the most symmetric Riemann surfaces with
g handles, hence for orbifold points in moduli space, but the description of these
surfaces is impaired by our poor understanding of moduli space at high genus.
Nevertheless it is a reasonable speculation that the contribution of such symmetric
points may dominate the string functional integral at large genus [28].

Let us conclude with a brief remark concerning membrane models (models of
manifolds with dimension greater than two). For Riemannian manifolds of more
than two dimensions there is a well developed theory of isosystolic inequalities; in
particular for d-dimensional torus the saturated inequalities also occur for very
symmetric cases, corresponding to closest periodic packing of spheres in d
dimensions. Membrane models might be discretized by using variables with d
indices (d =2 corresponds to matrices), and the corresponding isosystolic inequal-
ities might also be useful in that context.

Acknowledgements. We thank J. P. Bourguignon, G. Courtois, J. Lannes, J. Lascoux, and S. Gallot
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