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Abstract. This article extends the authors’ previous results (Commun. Math. Phys.
124,169-215(1989) to inverse scattering in two space dimensions. The new problem
in two dimensions is the behavior of the backscattering amplitude near zero energy.
Generically, this has the form

a(¢/1€], = &/1€1,1¢1) = 2n(2np + ] &))" + b(E),

where b(0) = 0 and b(¢) is Holder continuous. In order to work in weighted Holder
spaces as before, the constant  and the function b(£) must now be interpreted as
“coordinates” on the space of backscattering data. In this setting the mapping to
backscattering data is again a local difffomorphism at a dense open set in the
real-valued potentials.

I. Introduction

This article extends the results of [ER] to problems in two space dimensions. As
in [ER] we define the scattering amplitude associated with the Hamiltonian
— A+ q(x), xeR", in the following way. Let h(¢, {, k), (¢, {,k)eRR" xR" xR ., be the
solution to the integral equation

—u ¢ A& —mh(n, k)

where ¢ denotes the Fourier transform
4(&) = | e”™¢gq(x)dx.
’Rn

dn=—4(& -0, (L1)

Then the scattering amplitude is the restriction of h to |¢|=|{| =k, and the
backscattering amplitude is h(, — &, [€]), £eIR"\0. We assume that ¢ belongs to
one of the weighted Holder spaces, H, y used in [ER]. The space H, y is defined
as the closure of C{(R") in the norm

1S ey = AV Nl
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where || ||, is the Holder a-norm and A(&) = (1 + |&]?)!/2. The function h(¢,{, k)
is understood to be the solution of (I.1) belonging to H, y in ¢ for each value of
the parameters (, k).

In [ER] we showed that in three dimensions on an open set of 4 the mapping
from § to backscattering is locally an analytic isomorphism of H,y. The
impossibility of obtaining this result in two dimensions is due to the singularity
in the fundamental solution for — A — (k + i0)? at k = 0. While in three dimensions
one has

E 2m)”3 ety
=00 | e iop
— (47'[)— 1 le— 1 eiklxl,
in two dimensions

— (-2 e LT
E(x)=(2m) .i(zmlz—(k+i0)2dn 4H0 (kIxl)

=£(J0(k|x|)+iYo(k|x|)),

and Yo(klx))~%lnk as k—0. This singularity produces the following generic

behavior for h(&, — &,|£|) as £ —0 (see Theorem 2.4): for geH, y,N >0,0<a< 1,

h(& — & 1€)=2n(In €] + 27f) ™1 + by (&), (1.2)
where b,(0) =0 and b, is Holder a-continuous. Note that
. (InfEN 2n
ﬂ—gm( o ) <ln|é| —h(§,~é,|€l))- 1.3)

Hence, fixing yeC3(R?) with y =1 on a neighborhood of ¢ =0, we can define
“coordinates” on the backscattering data (8,b,)eC x {feH, :f(0)=0} with
defined by (I.3) and

bo(&) = (1= x(EDh(E, — & 1) + x(OB(E, — & 1ED) — 2r(n &) + 2nf) 1), (14)

Then we show that for 0 <a <3 and N >0,
, 1 .
&qﬂﬁﬂ©+bdd

is a local analytic isomoprhism of H, y on an open subset of H, y. This subset has
dense intersection with H’, , ={4eH, y:4(—&)=4(£)}, the subspace of H, y over the
reals consisting of Fourier transforms of real-valued potentials. As in [ER] the
“restricted” mapping S":H}, y — H}, y, taking 4§ to the projection of S(4) onto H, 4,
‘has a Fredholm Frechet derivative of index zero on a dense open subset @ of H, y.
Thus, by the argument from real analyticity used in [ER], the restricted back-
scattering mapping S, is a local isomorphism on a dense open subset of each
connected component of ¢ which contains a §, such that dS"(g,) is invertible.
Many of the arguments needed to establish these results are identical to those
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in [ER]. We will omit these here and restrict attention to the new problems which
arise in two dimensions.

There is a very extensive literature on the problem of determining the set of
full scattering amplitudes in R", the functions h(kf, kw,k) on S" 1 x$" ! xR, in
our notation, see Faddeev [F], Newton [N], Beals—Coifman [BS], Nachman-
Ablowitz [NA], Novikov—-Khenkin [NK], Melin [M], and Weder [W]. These
works deal with n = 3. For n =2 results on the problem of characterizing the set
of scattering amplitudes have been obtained by Cheney [C]. Much less work has
been done on the problem of determining potentials from backscattering
amplitudes. Aside from the formal results of Prosser [P] and the numerical study
by Bayliss, Li and Morawetz, [BLM], we only know of [ER] and the recent work
of Melrose and Uhlmann, [MU]. These papers deal with n =3 in [P] and [ER],
general odd n=3 in [MU], and n> 1 in [BLM].

We will use the notation of [ER]. In particular

AW S LK) = &0+ v, k) — f(E,{ k),
ALk =[G Lk+s)— f(E, (k) with s>0,

=10

and

1. Direct Estimates

We begin with the analogue of Theorem 2.1 of [ER]. Let y and x, be functions
in C¥(R?) and CP(R) respectively satisfying y(£)=1 for |&| < p, x(&)=0 for
[E] > 2p, xo(k) =1 for |k| < po and yo(k) =0 for |k| > 2p,. We define

4(€ —m(f () — fO)x(mxo(k)) in

(43,01 =022 |

R InP—(k+ 07
Theorem 1.1. The operator A, satisfies
1A7 AL @ AN AL, < CA+R) TG law S oo (LD

where A(8)=A(¢ (), O<a<l, N>0, 0Ze<oa, O0<6<min{l,N} and
y <min {1 —J,N —d}.

Remark. The statement given here is merely a way of combining what are really
two results. When ke[2p,, ), 4,(4, k) reduces to what was called A(4, k) in [ER]
and the proof of Theorem 1.1 is precisely the same as the proof of Theorem 2.1
in [ER].

To prove Theorem 1.1 we will need the following lemmas (cf. [ER], Lemmas 2.2
and 2.3).

Lemma 1.2. Let
27

1k, &)= | (1 +]€ ~ koo|?)~V240,

0
where w = (cos 0,sin 0), ¢eR? and kelR ..
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Then

Ck™! for N>1
Ik, )<< Ck 'In(1+k) for N=1,
Ck™V for 0<N<1
where C is independent of ¢ and k.
Proof. We have

T

I= [ (1+Kk*+|&|*—2k|&|cos B)"N2d6,

and for any 6 > 0,
[ (L + K>+ &> —2k|&|cos 0)"V2dO < Cy(1 + k) ~N2,
0<|0|sn
2
Furthermore, for § small enough that cosf < 1 —%— for |6] <4,

[ (14K +]&1> = 2K|¢[cos 6) " 2dO < | <1+<k—l<l)2+

loi<s 10i<3

Making the change of variables t = (k|£|)!/20,

k|¢|6?
2

(1.2)

-NJ2
) do.

[ (1 0e—12)2 +3KIE109) 72O S (kIEN T § (142 Ve

16] <6 lt] <(k|&N1/28

If |k — | €| | < 3k, this leads directly to (1.2). However, if |k —|&]| | > 3k,
j A+ k= [E])? +Lk|EI0P)M2d0 < C(1 +k*)"M2, B

IR
Lemma 1.3. Let
B AY QA ) dn
He&0= 5 AN AT (P — T

where 0 < & <min {1, N}. Then for 0 <y <min{N —4,1 — 3} we have
J(k,EH=CA+K)

Proof. We have

! L\ 2@
JkEDSC d
0 |l'l|~jkl>1<A?(71)+Aév(’1)>||7I|2-—k2l n

A H(y)
55 |nld|n]
[ n]=kl>1 | |’1|2—k2|

IIA

C

by Lemma 1.2, where f=1for N>1,and f=7 + d + (N —y — J) for N < 1. Since

60— B <0, for k<1 we have J < C. For k> 1, we set |n| =kt and have

t

JhEDSC | (1+k22)eP2_— gt
Je=11>1/k |t? — 1]

SC _f LSCka"’lnk

B |t—1|>1/k|t—1llkt|”“‘— .
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The proof of Theorem 1.1 will use the decompositions of integrals that were used
in the proof of [ER, Theorem 2.1] with the same labels, I,,1,, I; etc. One sees that
the only new features here are that dn = |n|d|n|d6 instead of dn = |5|®d|n|d2 and

that we can use |Pf(n)| =|f(n) — fO)x(n)| < Clnl*| f ||, in place of | f(m)| £ | f |l
In two dimensions formula 2.6 of [ER] becomes, for 0 <k <1,

: [nldln| 1 .
lim — . =_"In(|n|? = (k + ig)?
0 < P2~k igp 2 (M= ()
Since Lemma 1.2 implies
Zj" AT ()AL (k)q(E — ko) (f (ko) — f(O)x(kw)xo(K)) o
o AY (ko) AY (kw)

C Min {k* 1}
<z T\ )
= (1+ky*?

we again have |[I;| < C(1 + k)™ 7|l g~ f |- Since this estimate holds if we apply
| )~ *A(u) to the integral as well, we conclude that I, satisfies the required estimate.

The terms I, and |p|~*4(p)l,, are both bounded by

C;f(l 1P ] [l ]S o

k+1

=%ln(1+2k)—lnk-7-tzi.

0

” q “a,N ”f ”a,

where f=1for N>1and f=9+6+3N —y—9)<N for 0 <N < 1. Moreover,
(1 + (71> P2 |n|d|n|

tin=ki<1 (Il + Rl — k[t~

SAHIRD 21 M (1 1

There is no change in the estimate of |A(u)J, |, except that 6 — f + 1 becomes
0 — fB. This is also true of K, K4, L,, L,, L3, L, and M. The estimate of the integral
Pfor 0<k<1is now

,|=C Gl f Nl

[P < CK* ™1 G llayn Il f 1l s
and we have

Inldinl _ 1 din|
1o =k 200 112 =K 20 S 2 I+ K

1

+ —

2 s ki 20w 11— K

These integrals are bounded by Ink independently of u. Since k*In k is bounded

when 0 <k < 1, we conclude that M, satisfies the desired estimate. For M5 we
have for O<k <1,

din|.

Inl(pl*] Inl —kI* +ul*®)
M| < Ck*||q d
l 3|— ”q”a.NHf”a1>[|,,[jk[>2|u| Hnlz—kzl(ln'+iﬂf)a I l
Ll*l Il — k1" + | u*®
<Clg d
SCIalanl e | f

which also leads to the desired estimate. W
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The function 4,(4, k) f also has the regularity in k described in [ER, Theorem
2.2].

Theorem 1.4. For N,d,o in the set used in Theorem 1.1, s>0 and f satisfying
f(0,¢,0) =0, we have for k < p,,

sup A7 (£)
&L

1

[10¢, C)(A(s)W T
The proof of Theorem 1.4 follows the proof of [ER, Theorem 2.2] in the same
manner that the proof of Theorem 1.3 followed the proof of Theorem 2.1 of [ER],
and we omit it.

Much of the analysis of Sect. 3 of [ER] applies to A,(4, k) in two dimensions.
In particular, there is an open set 0, of 4 in H, y (which will be discussed in
Sect. 3) such that for §e @, the operator

I+ A A (g, kAN

is invertible on C*R?) for ({,k)eR2x[0,p,] and the norm of its inverse is
uniformly bounded for (¢, k)eR? x [0, p, 1. Thus for §e O, the solution, h,(&,{, k), of

hy + A(g,k)hy = — 4, (1.3)
exists for ({,k)eR? x [0, p,] and satisfies

1AL R GG R e < Clldllan

with C independent of (, k).

The function h,(&,{, k) is not uniformly a-Holder continuous in { and k near
k=0. In the following paragraphs, assuming k < p, < 1 we will derive estimates
for A(v)h, and A(s)h; as well as A(v)Ph, and A(s)Ph;, where

[Pf1(0) = 1) — f(O)x(d)-

These estimates will be a-Holder estimates with weights of |In k|. The methods we
use to derive them are those of Sect. 3 of [ER]. We will use the density of Cg in
H, y to write § =4, + §,, where || q, |,y <&, and §,eCZ(IR?). The constant &,
is chosen small enough that the Neumann series for (I + 4,(d,,k))”* converges.
Hence

)d". < s*sup [[AT°AYA f o
&l

h1 + Al(@u k)h1 + Al(qooa k)h1 = - Qg
and

hy=(I +A1(41ak))_l(gl “‘ﬂ)a
where g, is the solution to
g1+ A1, U + Al(qlak))_lgl =4, KU + A1(‘71’k))_1‘7§-

The general term in the Neumann series expansion of (I + A4,(4,,k))” '¢; has
the form (suppressing a factor of (— 1)*(2r)~2"):

(4141, k)4 1(0) = szn 4:(&— 1)

~:=

(. (cil(n,-—rl.--l)—éx(—n,--Jx(m)))(é(m—C)—é(—C)x(m))dm--~d'7,.

t

T (12 =k + o)

4
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for n= 1. Introducing

pln — &) — p(— Ox(n)
In|*> — (k + i0)?

[Ai(p, k)g1(&) = (2m)~? E!Z g(n)( dn,

we have
[(A(d1, k)4 1) = [AL(G, k) (A1 (@1, R £1Q),
where f(&,1) = §,(¢& —n). We will show that for 0 <k < p, <1,
a) | A5(p,k)gllen S ClPlanlgllen
and
b) 141(p.K)gllan S Clplanllglla nlInk]
for 0 <o’ <a. Then it will follow that

IAZ)AM (A1, k)G C' VI lan 1 lz v In K] (1.4)

uniformly in £ Moreover, using Theorem 1.4 and Liebnitz’s expansion, a) and b)
also imply that

AT (A L(A1(d1,0)" 1) £ nC"s* 1411w 1l g1 113 w110 k| (1.5)
uniformly in £&.
The estimate a) is an immediate consequence of Theorem 1.1. Let
A — O —p(—
Fin, &,y = AWl Ié;)zl“'p( Oxtn)
Then || f(, & ) AY lu- 2 [P llan- Since f(0,&, 1) =0,

Clul ™ Aw(AL(p, k)g9)1(E) = [A1(4, k).SI(0)

where q(n) = g(— n). Thus a) follows from Theorem 1.1 with {=¢.
To prove b) we need to review the proof of Theorem 1.1. Using the
decomposition

AV AP RA Mg =1+ 1, + 1,
as in the proof of Theorem 2.1 of [ER], we have for 0 <k <p,<1,

1 ] AN
I,= <— Ink + Eln(l +2k) + %)Sj‘ Ag’g(l(fci) g(kw)(p(kw — &) — p(— &) y(kw))dw.

Since |plkaw — &) — p(— &)| < ck*A™N(&), this implies
31 = Cliglolipllans

as before. However, when we apply A(u) to I, there are no useful cancellations
between A(u)pkw — &) and A(p)p(— &) as k—0. Thus we only have

A1 = Cligllollpllanlul*(Ink] +1).

As in the proof of Theorem 1.1, all other estimates from the proof of Theorem 2.1
[ER] go through mutatis mutandis until one reaches M,. In M, we no longer have
the factor of k* so that now

IM2]| < Clul* [ pllan g lla(1In k] + 1).
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For M; we now have

4 AT 2a
M3l < Cliplexlgl. Il (“‘"'”' il )dlnl-

2iui<tini-ki<1 Hn1? —K2| (Inl+ lul)®
.. (1.6)
For 2|u| < k <] this gives

1+k 1-~a ——k“+| a
lM3|éCHPH,,,NHgIIalMI“[Hgl |"" (||17"||2__klz i)
I3
=20l |17 Il = KI* + | u]®)
+ (5) K — 0P din|

din|

R (g IV
=cupu,,Nngn,|u|“[ jros s I o
1+2|pl/k =
1-2|pl/k 1~a — 1 /L
] s (|Sl_|j|'u|/ )ds:|
0 S
1, ul
gcnpna,nugnaw<1+|1nk|+'il ln%>
SCIplanllgllalp* (1 + |Ink]).
For k< 2|u| <1, (1.6) gives
! [l —kI*+pl®
M, | <Clpl. dul® 7 d
IM3| S Clipllanllgllalul k+£|mllnl—klllﬂl+lull 1l
1 din|
<Clprl. Ll ,
S Clplanliglalul k+£|ul”’7|—kl

since |n| + |u| >3] |n| — k|. Thus

IM3| = Clipllanligllalpal*(n|ul|+1)
SClplnligllul(link| + 1),

and we have established b) in the case «’ == «. However, this suffices for the general
case just as in the proof of Theorem 1.1 (see [ER, p. 175]). This completes the
proof of (1.4) and (1.5).

To estimate P(I + A,(4,,k)) ™4, we note that

[P(A1(d1, k)" a:1(8) = [41(d, K)(A(31, k)" 1)
with f(¢, 1) = §1(E —n) — §(— mx(&). Thus
IAZ f Nl = CIEF 1 Gy lons
and a) and b) imply that for 2 1,0<k<py<land O<o' <a,
[AF(E)AMP(A1(d1, RGO S C' VI o 141 15N 1E1 ™ Ink] (17)
and
|ATA(S)[PA (@1, 041 ()] < nCs™ || 4 lon 14y 141 E1*~ [In k. (1.8)

Finally, taking | 4, || sufficiently small, i.e. ¢, sufficiently small, (1.4), (1.5), (1.7) and
(1.8) imply
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[AF A + A1(41,K) ™ 4l S CIvI* 114 llanlIn k],
|AF AT + A1(41,5) ™ g < Cs* (14 Lo, 1In K],
|AY AW P(I + A1(q1, k)™ g < CIvI* G llaw(1 + In k] [E]*7),
[AFA(S)P(I + A1(q1, k)™ 4l  Cs* (| llay I k| [E]*7%,
where the constants depend on ¢, and o, but not on (&, {, k).
To get the estimates in (1.9) for (I + 4,(4,,k)) " 'g, and P(I + 4,(4;,k)) " *g,,

and thus for h, and Ph,, we need to repeat the arguments in [ER] deriving the
“extra” smoothness of g, in &. In this case the extra smoothness takes the form

1A(s) A gy |, < Cs*|Ink| and  [AW)ALg, [l < Clv[*/Ink], (1.10)

where | |, denotes the norm in ¢ and C is uniform for (£ {)eR? xR? and
0 <k <py. The estimates (1.10) are derived in the same manner as the extra
smoothness estimates in [ER], see [ER, (3.21) and (3.23)]. Moreover, given (1.10),
one proceeds to derive (1.9) for h, and Ph, as in the final portion of the proof of
Theorem 3.2 in [ER]. Thus we have:

Theorem 1.5. For Ge0, the solution hy(¢,{,k) of hy + A;(4,k)h, = — §, satisfies
|AF A()hy | < Clv[*|Ink],
|AY A(s)h, | £ Cs*Ink]|,
| Ay AW)Phy | < CPv|*(1 + | &[* " [Ink]),
| Ay A(s)Phy | < Cs*|&|*~* |Ink|

(1.9)

Jor 0<k<py,<1,0<0o' <a. The constants here depend on the choice of p, and o
but are independent of (&,{, k).

2. The Generic Form of the Backscattering Amplitude near Zero Energy

As in [ER] we define

a&—mn)fm)

(4@ R1O=0n"" | o Tor

Then (I.1) can be written
—4(€ =0 =h(& k) + [4:(d, k)hIE) + xo(K)[AG, k) I(ERO, LK), (2.1)
and, applying (I + A,)™ ! to (2.1), it follows from (1.3) that for k < p,,
(&, &, k) — [A(hy, K)x1()h(O, L, k) = hy (£, L, k), 2.2

where

2 hy (S, n, k)x(m)
w2 11> — (k +i0)?
Setting £ =0 in (2.2) and assuming [A(h,, k)x](0) # 1 for k < p,, we have
hy(0,8,k)
1 —[A(hy, k)x1(0)

LA(hy, k)x1(8) = (2m)

h(0,¢, k) = (2:3)
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and from (2.2)

[A(hy, K)x1(D)h,(0,, k)
1 —[A(h;,k)x](0)

hy(0,{, k)x(&) hy(0,¢, k)[PA(hy, k)x1(£)
1 —[A(hy,k)x1(0) 1 —[A(hy,k)x](0)
Formula (2.4) will be used to analyze the singularities of h(§, —¢,|¢|) for
|€] < po. Note that the third and fourth estimates from Theorem 1.5 show that

Ph (& — & |€|)eH, y. The next step in the analysis is the study of [A(h,, k)x](0).
Defining

h(&, 8, k) = hy(S, L k) +

= Ph,(&, (k) + (24)

(hy(0,1,k) — h4(0,0,k))x(n)

@) =) [ S e, @5)
we have
_ h4(0,0,k) x(n)
[ 00 = @R+ =5 [ e g dn
Lemma 2.1. For 4e®, we have for 0 <k < p, <1,
la,(k)|=C (2.6
and
|A(s)ay (k)| < Cs*|Ink]. 2.7

Proof. The estimate (2.6) is immediate from (2.5) and the estimate || h,(0,, k)|, < C,
O<oa <a.

The proof (2.7) follows the proof of Theorem 1.5. In particular, if one substitutes
the Neumann series for (I + A,(4,,k)) "4, for h; in (2.5) the general term is

(1 (L4101 0F 9600~ (4,4, K O,
Qn) g 12— (k + i0)? 1
(1P P A @R ) T
= 2n? g Il — (k + i0)?

where P, (&) = g(¢) — g(0)x,(£) with x;€CF, x, = 1 on support x, and f(r) = 4(— 7).
Thus, using Theorems 1.1 and 1.4, one estimates A(s)I,,(k) as in (1.5), and completes
the proof as in the proof of Theorem 1.5. W

L(k) =

dn,

The estimate (2.7) does not imply that a,(|£]) is C* at £=0. However,
(@, (1&) —a (0))(In|&[)~* is C° as the following lemma shows.

Lemma 2.2. Assume that a(&) is a continuous function on |&| £ 6 < 1, satisfying
[A(wa(@)| < Clul* (I |€ + pl |+ [In[E] ).

Then (a(&)—a(0))(In|&|)"'eC*(|¢&| £6). In particular if a(E)eC? then (a(&)—
a(0))(In|&])~teC

Proof. We have for |£(<d,and n=0,1,2,...,
[a27"E) — a7 1Y S C27 VL2 In|&] |+ (2n 4+ 1)In 2)
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and, since |£] < 9, summing on n and changing the constant, this implies
la(§) — a(0)] = CIE1*In |&] |.

Thus, letting b(&) = (a(£) — a(0))(In |£]) ™1, we have [b(&)] £ C|&|* Since

a(¢ + @) —a(0) a(é)—a(0)

|A(wb(8)| = e+ 4l E
if [u] <3lZ|, then
a(¢ + w) — a(é) _ In|{+pul—In¢|
[A(Wb(E)] = ——1n|—€—|——‘+la(é+u) a(0)| ECEYE
e, ST ullul .
< Cly| +C|1n|§|| |(ﬂéCl.uL

If | u| > 3(&1, then [& + u] < 3|ul, so that
[AWbE)I =16+ W+ b= CIE+ul*+ CIEI* < Clul~ =
The next lemma describes the remaining term in [A(h,, k)x](0).
Lemma 2.3. The function y,, defined by
2 M otk 4k
0m | o o dn =~ @0 Ink 4 1K)
belongs to C*[0, o).
Proof. We let f(k)=(2n)™' | y(kw)dw. Then
St
s x(mdn
Cn L= G+ 07

0

=(@n)"! [ f(s)d(In(s* — (k +i0)?)

0

= —(21r)"1lnk+i~—(47t)‘1 cj'of’(s)ln(s2 — (k + i0)%)ds
0
- —(2n)“lnk+%—(4n)‘1 T £6)In(k + 9)ds
0
— (4m)~! Off'(s)lnlk—sms+43ff'(s)ds
0 0

=—Q2n)! lnk+;—;f(k)—(47r)'1 Tf’(s)lnls2 —kds. m (28
0

We are now ready to prove (1.2). Let (; be the subset of @, such that
h1(0,0,0) #0 for ge®,. Note that Lemmas 2.1 and 2.3 imply [A(h,,k)x](0) ~
—(2m)~'h;(0,0,0)In k as k— 0 so that [A(h,, k)y](0) # 1 for k < ¢ if ¢ is sufficiently
small when ge®,. We will discuss 0, and @, further in Sect. 3.

Theorem 2.4. For 4e®, and |&| sufficiently small, the scattering amplitude b(¢) =
h(&, — &, 1&) satisfies
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2

In|¢|+27p !

where f = (1 — a,(0) — h,(0,0,0)%,(0))(h,(0,0,0))"*,b,(0) = 0 and b,eC"

Proof. Putting { = — ¢ and k=|¢&] in (2.4), we obtain

h(0,0,0)x(¢)

1 —[A(hy,1EDx(0)

(h4(0, —&,1¢1)—hy(0,0,0))x(S) 4 hy(0, =&, 1SN [PA(h, 1€1)x1(E)
1—[A(hy,1£1)21(0) 1—[A(hy,1£1)21(0) '

As noted earlier, the estimates of Theorem 1.5 imply Ph (¢, —¢&,]¢|)eC? and
Ph,(0,0,0) =0 by the definition of P.

The singularity in b(£) comes from the second term in the expansion (2.9). From
(2.5) and the definition of y, one has

b(é) = ©),

b(&) = Phy(&, — &, 181) +

(2.9)

_ 2n
h,(0,0,0)(1 — [A(hy,1¢]x1(0) " =m“ B1(8),
2 27h,(0,0,0)

ﬁl(f)_—‘

In|&|+2mf  hy(0,0,1€))In[&] + 2m(1 — a, (|€]) — 1y (0,0, [€)x, (1))

Note that the functions satisfying the hypotheses of Lemma 2.2 form an algebra
which is closed under quotients as well when the denominators do not vanish.
Since Theorem 1.5 and Lemma 2.1 show that h,(0,0,|¢|) and a,(|£]) satisfy the
hypotheses of Lemma 2.1, it follows that

B, = g1 +9g21n|¢|
VSt LIl +(nfg)n?

where the f’s and g’s satisfy the hypotheses of Lemma 2.2. Moreover, ¢,(0) =
g,(0)=0. Hence

(2.10)

91—92/2 K]
Infé|=g,+ + ,
N T A e AT P YT
where g5 has the properties of g; and g,. By Lemma 2.2 it will follow that §,eC?,
if we can show that (f, + f,In|¢|+ (In]|¢|)?)"'g, satisfies the hypotheses of
Lemma 2.2. We have

g3
A
“%ﬂ+hmM+mmw)
195()] s | e LA
igin|e + AW+ 218+ nlED*)] + ClA(n)gs .

The initial portion of the proof of Lemma 2.2 shows that |g;(¢)] < C|&|%|In|¢] |.
Since |A(p)In|&} | S Clul €)™ when |u| <3$|&], one sees that

AWy + f2In ]+ (n]€))*) ™ g3)l < Clpl*(IIn &} |+ In & + pl )

=C
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when |u| < 3|&|. When |u| > 3|£|, we simply use

A1+ LI+ 0 ED) S CUM T +In g+ pl 12),

and |g;(&)] < Clul*In|E] | to get the same estimate. Thus ,eC*
Next we observe that

(hy(0, =&, 1E1) = hi(0,0,00)x() _ ¢ gln|¢|

1 — [A(hy,1EDx1(0) ~f+InfEl fInl€l+ gD
where g and f are as in (2.10). Thus the argument just given for f§, shows this term
is C* as well.
Finally we have
hy(0, = & 1EN)[PA(hy, [EDxI()
1—[A(hy,1EDx10)

hy (0, —élél)(fﬁ(é,lfl) a,(0,1EDx(O)+ Phy (£, 0, lél)(—lnlélﬂ(l(lél)))

1 —[A(hy,1&1)x](0) ’
@.11)

where

2l hy(&, 8 k) — hy(£,0,k)
R 12— (k+i0)
Note that a,(0, k) = a,(k), the function introduced in (2.5).

Theorem 1.5 implies that Ph,(¢,0,|&|)eC? and, since Ph,(0,0,0) = 0, one checks
easily that Ph,(&,0,[¢])In || satisfies the hypotheses of Lemma 2.2. Hence the
right-hand side of (2.11) has exactly the form of the right-hand side of (2.10) (with
f1 and g, identically zero), provided that we can show a,(& |&]) satisfies the
hypotheses of Lemma 2.2.

We claim that a, (&, k) satisfies the usual weighted estimates,

a) |A(wa, (&, k)| = Clpl*|Ink|, and

b) |A(s)a, (&, k)| = Cs*|Ink],
which imply |A(p)a, (£, 1€])] < Clul*(IIn|¢] |+ [In|& + p |). To get b) we must again
use the decomposition of h; into a Neumann series plus a term with extra
smoothness. This argument is essentially the same as the proof of Lemma 2.1. In

particular when one substitutes the Neumann series for (I + A,(4,,k)) ™ "4, for h,
in the definition of a, (¢, k), the general term is

(=1 [ ([(A1(41, k)" 1(8) — [(Al(ql,k))”é](é))x(i)

a,(&, k) = (2m)

x(§)d¢.

@2n)?* g2 I£1? = (k + i0)?
_ (=1 ¢ [P AYG (A G k)Y f 1z
(2m)* R |n1* — (k + i0)* ’

where f(n, &) = 4(& —n) and P,g(&) = g(&) — g(0)x, (&) as the proof of Lemma 2.1.
To prove a) we note that by the definition of hy,a, (& k) = [(I + 4,(4, k) *¢1(¢),
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where

=2 ¢ W =8 = 1, (Dgm)x©)dl

Thus, by the reasoning used to prove that

I 45(P, k) fllan S ClIPlan | f lla v Inkl,
we have | g, y < Cllnk|. Since (I + A,(4,k)) ™! is bounded on H, y by the definition

of 0,, we conclude a,(& k) satisfies a). Thus a,(&,|&]) satisfies the hypotheses of
Theorem 2.2, and we may use the argument given for §, for the final term in (2.9)

aswell. W

3. Analysis of the Hypotheses of Theorem 2.4

The sets O and (', defined by

0 ={GeH, y:I + A,(4,k) is invertible on H, y for 0=k < p, and
I + A(4, k) is invertible on H, y for k = p, for some p; < po} 3.1)

and
O = {4e0:h,(0,0,0) = — [(I + A,(4,0))"'4](0) # 0} (3:2)

will be studied here. Note that in Sect. 1 we defined @, as the set of § such that
I+ AYA,(4,k)A;"N was invertible on C* with the norm of its inverse uniformly
bounded for (¢, k)eR? x [0, p,]. The set @ is a subset of ¢, and for §e® we also
have I + A} A(4,k)A; " invertible with inverse uniformly bounded for ({,k)eRR? x
[p1, 0] (cf. [ER], Lemma 3.3). Hence (' is a subset of the set 0, introduced in Sect. 2.

The set O is open in H, y by the arguments used to prove the corresponding
result in Sect. 3 of [ER]. Since whether or not 4 belongs to @ depends on y and
po, we are really interested in the set of § which belong to O for some choice of x
and p,. As a union of open sets, this set, 0, is open. The following proposition
shows that @ contains a dense subset of the Fourier transforms of real-valued
potentials.

Proposition 3.1. Let q be a real-valued function in C(R?), and assume that there
is no nontrivial solution g,e C¥(R?) to

X
009+ 2§ Infx— ylgo(1)dy =0 63)
T g2
satisfying | go(x)dx = 0. Then there are y and p, such that §e0.
RZ

Proof. If I + A(4, k) fails to be invertible for some k > 0, then there is a nontrivial
solution to — Au + qu — k*u = 0 satisfying the radiation condition. It is a classical
result that such solutions do not exist for the g considered here. Thus we only
need to show there exist p, and y such that I + 4,(4, k) is invertible for 0 < k < p,,.

We begin by deriving some simple consequences of the hypothesis on g. The
operator qE,, where

Eof =@m)~" | Inlx—ylf(y)dy, (34
R
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is compact on L*(|x| < R) for each R, and for R greater than the support radius
of g the nullspace of I + qE, consists of C§ functions with support contained in
the support of g. Thus, if there is no solution to (3.3) with mean zero, there are
two possibilities:

a) I+ qE, is injective on CP(IR?), or

b) the nullspace of I + gE, on C¥(IR?) is spanned by g, and -‘2 godx #0. In
both cases the Fredholm alternative applies to I + gE, on L?(|x| 2 R). Hence, in
case a) given geCZ(R?), there is he L*(]x| < R) for R sufficiently large such that
h+ qEqh = g. It follows that h belongs to CF(R?). Thus I + gE, maps CZ(R?) onto
CZ(R?) in case a).

We can use (3.4) to define E, on the Schwartz space #(IR?). Since

§ Inlx—y[f)dy = | In|z| f(x = 2)dz,
R R

we see that gE, maps & into C¥(R?). In case a) we extend (I +qE,)"! to & by
defining
(+49Eo)" ' f=f—(I+qEo) 'qEof .

Since I + gE, maps & into & and one may check easily that it is a two-sided
inverse to (I + qE,)~! as defined above, it follows that in case a) (I + qE,) is a
linear isomorphism of &.

We will now show that we can choose x so that I + A4,(4,0) is invertible. If
I+ A,(4,0) is not invertible, then by the compactness of 4,(4,0) on H, y there is
hoeH, 5 in the nullspace of I + A,(4,0). Taking the inverse Fourier transform
(denoted by “*”, we have

h() + qE0<h0 - jz hodXi) = 0 (35)
R

which implies h, is in CZ(R?). In case a) (3.5) implies
[ hodx = [ (I+qE,) " 'qEojdx | hodx.
R? R? R’

Since [ hodx # 0, by hypothesis, we have
R
1= j; (I + qEo) " 'qEyydx. (3.6)
R

If (3.6) holds for all admissible y, then, since any function in CF(IR\0) can be written
as the difference of two admissible y’s,

0= { (1 +4Eo) 'qEo fdx (3.7)
R
for all feCP(R? —{0}). Thus
0= L (I +qEy) ! fdx (3.8)
R
for all feCy(R*— {0}). However, taking limits, one checks that (3.7) must hold

forall fe¥ o ={fe¥:f(0)=0},ifit holds for all feC§(R? — {0}). Thus (3.8) holds
for all feZ,. Since &, is codimension 1 in &, if (I + qE,)” ! mapped f ¢, into
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&, it would necessarily map & into &, contradicting the conclusion that
(I + qE,) ™! is an isomorphism of &. Thus if (3.6) holds for all admissible y, 1 + gE,
maps &, onto ¥, and, taking Fourier transforms we conclude

4(—=mf(n)
|
R2 [n|
for all fe¥,. Thus §=0, and I + A4,(4,0) is trivially invertible.

In case b), since the nullspace of the adjoint of I + gE, in L*(|x| < R), when
suppg <= {|x| = R}, is spanned by E,g, restricted to |x|<R, the Fredholm
alternative applied to (3.5) implies

0= L (Eogo)gEoydx. (3.10)
R

0= [ =—5—dn (3.9)

As in case a), if (3.10) holds for all admissible y, we have
0= f (Eogo)qufdx = j Eogofdx
R? R?

for all fe¥,. Thus Eyg, must be constant. Since 4(Eyg,) = go, and g, ¢0, this is
a contradiction.
As we pointed out in the Introduction,
eix~v,

E(x)=Q2m)~? |

i .
Rzmdﬂ =7 okl x]) +¥o(klx]).

—1
By standard results on Bessel functions, Ek(x)=<—2;+a(k|xl)k|x| Ink|x| +

b(k|x|), where a(z) and b(z) are entire functions and | E,(x)| < Ck~ /2| x|~ Y2 for k| x|

large. Thus E,(x) = —~ln k + b(0) + E{V(x), where

E“’(x)+ ln]x| —0
uniformly on |x| £ R for all R.
We now assume that y has been chosen so that I + A,(4,0) is invertible. If

I + A,(4, k) has a nontrivial nullspace, then as before we have g,eC§ with support
contained in support g satisfying

+ qu(Qo - 52 godxi> =0,
R
where E, f = [ E;(x — y) f(y)dy. Hence
go+qE§¢”<go— fgodXJZ>=0. (3.11)
R

However, choosing R so that support q is contained in |x| < R, as an operator on
L*(]x| < R) gE{" - gE, in norm as k— 0. Moreover,

1
E(x) 42— In |x|| < Cklx|(Ink|x]| + 1)
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for k|x| < R and

1
Eil’(x)+%lnlx| <C+Cl|ln|x||

for k|x| > R. Since ye.%, one sees easily that qE“’x converges uniformly to gE,y
as k—0. Thus, since invertibility of operators is preserved under small norm
perturbations, it follows that there is p, > 0 such that for 0 <k < p, there is no
goeL,(x| < R) satisfying (3.11). W

The set ¢" is open in H, y: clearly h,(0,0,0) is a continuous function of § on the
set of ¢ such that I + A(4,0) is invertible. To see that the union of the sets ¢ over
x and p, contains dense subset of the Fourier transforms of real-valued potentials
we will again consider potentials in CP(R?) with an additional constraint.

Proposition 3.2. Let g be a real-valued function in CP(R?). Assume

a) there is no nontrivial solution go€Cg to

g0+ 5 § nlx—5lgaly =0, [ golxkix =0 (3.12)

b) there is no solution hyeC§(R?) to
ho(x )+ f In|x — ylho(y)dy = q(x), [ ho(x)dx =0. (3.13)
R
Then there are x and p, such that Ge0'.

Proof. The requirement that h,(0,0,0) # 0 is insured by b) for any choice of x such
that I + 4,(4,0) is invertible: if h,(0,0,0) =0, then the inverse Fourier transform
of h,(&,0,0) gives an hy(x) satisfying (3.13). Moreover, in the proof of Proposition 3.1
we showed that for any choice of y such that I + A4,(4,0) is invertible there will
be a p, > 0 such that I + A,(4, k) is invertible for 0 < k < p,. Thus, since hypothesis
a) insures that there is a choice of y such that I + A4,(4,0) is invertible, we are
done. W

Remark 3.3. A slight variation of the proof of Proposition 3.1 shows that f is not
zero for real-valued geCg(R?) such that §e®'. One shows that, if I+ qE, is
invertible, there are cutoffs y with arbitrarily small imaginary part such that
I+ A,(4,0) is invertible and y is real-valued. Also, if I + gE, is not invertible but
hypothesis a) of Proposition 3.2 holds, one can choose a cutoff p2 such that
I+ A,(4,0)is invertible and both y and 7 are real-valued. Then, since ¥ is real-valued
and, taking the inverse Fourier transform, h, (x,0,0) satisfies

7’1 + qE0<711 - Lﬁﬂxi) =—q,
R
711(x,0, 0) is real-valued, and h,(0,0,0) is real. The constant a,(0) equals g(0),

h
where 2 pA0=40=0)

g =(1+A1(4,0))"1<(27t)‘ 3
R? 14

x(0)dC )
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Taking inverse Fourier transforms

g+ qu<g' -1, g’dxi) =qF,
where, since ¥ is real-valued,

i{'

Fx)=Qn)% [ ——— -
RZ

1s real-valued. Thus §(x) is real-valued. By (2.8) x,(0)=- — (4n) ™! f f'(8)In|s|ds =
Z+ ¢, where f(s)=(2n)~ j/ sw)dw. Thus

Im B = {1 —a,(0) — 1,(0,0,0)21(0)} = h,(0,0,0)(; + Imc).

Since we can choose Im y as small as we wish in C¥(R?), we can make Imc as
small as we wish. Hence, since h,(0,0,0) # 0, Im § #0.

Remark 3.4. Note that the set of real potentials for which (3.12) has a nontrivial
solution is of codimension 2 in the space of real-valued functions in CZ(IR?), while
the set of real potentials such that (3.13) has a solution is of codimension 1 in the
space of real-valued functions in C¥(R?), and real codimension 2 in the space of
complex-valued functions in CP(IR2). This reasoning leads one to the conclusion
that the set of real potentials satisfying the hypotheses of Proposition 3.1 is
connected in real-valued CP(IR?), and the set of real potentials satisfying the
hypotheses of Proposition 3.2 is contained in a connected component of the union
of the ¢'. A rigorous proof of this sort of result is given in Sect. 5 of [ER].

The representation (2.4) for h(&,{, k) holds for §e® provided [A(h,, k)x](0) # 1
for 0 <k < py. We have

LALh,, k)x](0) = a,(k) + h,(0,0, k)( lnk+xl>

so that there is clearly a p’ such that
LAk, K)x10)#1 for 0<k=p'
Moreover, since h,(0,0,k) and a,(k), considered as elements of C[0, p’], depend
continuously on 4, we see that for §,e (' there is a p’ > 0 such that the representation
(2.4) holds for all 4 in a neighborhood of §, in H, y for k < p'. Thus for |¢| < p’
one has the representation of the backscattering given in Theorem 2.4 for all § in
this neighborhood.
We can summarize the results of this section in the following way:

Theorem 3.5. For an open set U of § in H, y which has dense intersection with the
set, Hy y, of Fourier transforms of real-valued functions, there are constants r and s,
0<r<s, locally independent of §, such that the backscattering b(¢) has the
representation (2.9) for 0 < || < s and hence

2n
b(¢) = In[2] + 21 +b,(¢), beCx([0,s])
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with b,(0) =0, and the representation for |£| =,

b&) =T + A4 1ED)'q-1(0).

Remark 3.6. One can strengthen Proposition 3.2 by dropping the requirement that
qeCZ(R?) and replacing (3 12) and (3.13) respectively by
a) there is no solution in H, yn{f(0)=0} of

a(&—ng n)
O+ L

b) there is no solution in H, v {f(0)=0} of

—nh
R Gl G PR
R? Inl

This does not change the conclusion of the proposition.

=0, and

ho(&) + 2m)~

4. The Frechet Derivative

Theorem 3.5 only states that the backscattering mapping S:4— B~ x(¢&) + bo(&)
maps % into H, 5. However, the argument from Cauchy’s formula used to prove
Corollary 3.4 of [ER] applies here to show that S is an analytic mapping of the
open set % into H, . In particular, the Frechet derivative dS(4) is a bounded
operator on H, y depending continuously on 4. Our objective in this section is to
show that, for je, dS(g) is a Fredholm operator of index zero. Since CX(R?) is
dense in H, , it will suffice to prove this for §eCg (IR?). Note that this implies
hy(€,¢,k) is C' ¢ in all variables for all ¢ > 0. The arguments we present here will
show that for §eCg, dS(§) = P + T, where P is invertible and TP~ 'T is compact
on H, y, provided o < 3. Hence dS(g) is Fredholm of index zero when o < 3. The
restriction on « is surely a result of our method of proof. (TP~ ')" is undoubtedly
compact on H, y for a <1 for n sufficiently large, but we will not give a proof of
that here.

It is also true for k > 0 that §— h(-,-, k) is a differentiable mapping from % to
the space of functions satisfying

Sélcp(ll AT DN+ TAZCSE ) ) < oo
We can use this to derive formulas for dS(4) which will be needed later. Setting
. d
4(s)= 4 + sv,ve H, 5, and, letting f denote %(0), we have

hy + A48 0y = — 4o — A, (4, .
Then, since (I + A,(h;,k))(I + A,(4,k)) =1, we have

hy = —(I+ Ay (hy, k)4, — (I + Ay(hy, K)A (4, k)b, . (4.1)
By (2.4) for |£] < 6 the function by(£) defined in the Introduction is given by
LAy, 1£D)x(©) 2n

bo(8) =hi (&, =& 1EN +

(0, & |E]) — — (42
= A, 1600 O D e 4P
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Therefore, setting (&, k) = [A(hy, k)x1(&), we have for & #0,

S 1€

s h e
o&=m —&Ieh+ 707

hy(0, — & |€]) + hy(0, — &, |&])

(AGENAO  fEIE) QR
( [—f(0, 1)) +(1—f(0,lé‘l))z[A(hl’lélm(O)>+(lnl€l+_2nﬁ)2ﬂ
- FENED (0, & 1))

=h - b PR b E) 2*——
e ~g1eD+ LS 0.6 g0 + O

; fE&IEN x(n)
: h(&n, ———h,(0,n, PRGN\ LANS—
“{( (& lélHl—f(O,lél) 10,1 lél)>|'1|2~(lél+i0)2d’1

(2n)?
*miel+ 2P *.3)

We exclude & = 0 because several terms in (4.3) are undefined at £ =0. However,
combining (4.1) and (4.3) we necessarily get an expression for [dS(4)§]1(¢) for
0 <[ <4. Since dS(g) restricted to |£| < is a bounded mapping from H, y to
C*(|&| £ 6), the expression for by(¢) derived from (4.1) and (4.3) must extend to a
C* function on |&| <d, though this involves cancellations which are not yet
obvious.

In the decomposition dS(4) = P + T, the operator P will be given by [P§](¢) =
—§(2¢). In analyzing T we will make much use of the fact that operator norm
limits of compact operators are compact. In particular, modulo operators with
one-dimensional range, we can decompose T:H,y— C*|£]<0) as a sum of
operators T; with the property that [ T,f7(0) = 0. This is completed in (4.11). Most
of the T;’s will have the additional property that the norm of T; as an operator
from H, 5 to C*(|&| £ 6) goes to zero as § goes zero. Denote the sum over these
T;s as )T, and the sum over the rest as Y"T;. Our strategy will be as follows. For
any peCg such that p=1 in a neighborhood of ¢ =0 we will show (Prop. 4.1)
that (1 — p)TP~*(1 — p)T is compact. From the preceeding it is clear that py'T,
can be given arbitrarily small norm by taking the support of p sufficiently close
to zero. Finally we will show (Prop. 4.2) p(}." T)P~'p(}."T;) is a sum of compact
operators and operators whose norm tends to zero as the support of p shrinks to
¢=0. Since the operators (1 — p)TP~'p(}."T;) and p(}." T,)P~*(1 — p)T are also
compact (Prop. 4.3), it will follow that TP~ 'T is the norm limit of compact
operators.

We will begin by simply going through the terms in (4.3), and regrouping them
to form T}s. In view of the structure of the terms we need to begin with

—i _ij 1 SEH -0
=h(& LR = (0.5 k) + 5 —f(O k)h1(0,C,k)+ — 0.0 h1(0,¢,k)

= =4 -0+ 40+ —F7=7hi(0,8,k) + [Todl(& L, k). 44

1 f(0 k)
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We note that all contributions to [Tod1(¢,{,k) except —[A,(4, k), 1(E, L, k) +
[A4,(4,k)h,1)(0,¢, k) will contribute operators of arbitrarily small norm to dS(4g),
since they all contain factors of h,(&,n,k) — h,(0,7, k). Expanding further

1 . 1 X . .
—h —_ (A Al _A
T r0E O LD = T (A0 010 ~ doy
—[B,41(0,¢,1€]) — [B4 (G 1ED), 4.5)
where
ByG=(I+ Ay(hy,|E) A4, 1E)hy
and

hy (0,1, 1E1)(@G( — 0 — 4O)x(m))
7% — (I€] + i0)

(B¢ 1ED =207 |,

We now have in place of (4.4):

f&1¢D
1—f(0,1¢D)
-1

=—4€-0+ w(f(&iél)q(o) +[B1410,5,1E1)

+[B241(G1€1) + [Tod1 (&, L, 1E)). (4.6)

At this point it may be helpful to consider what must happen when we substitute
(4.6) into (4.3). The operator T, is quite well-behaved, and, since [T,4](0,,|¢]) =0,
we will never need to expand it further. The operator B is also well-behaved, but
we will need to expand [B,47(0, —¢&,|&]) as

([B141(0, —¢&,1¢1) — [B141(0,0,0)) + [B,41(0,0,0)

to split (1 — £(0,[&])) " '[B,41(0, —¢&,|¢]) into the sum of an operator Ty and a
rank one operator. This is also true of (1 — f(0,|&]) ™ *[B,3J(—¢, [£1). In the integral
term in (4.3) there are further complications. We will expand [B,41(0,7,|&]) as

([B141(0,1.1¢1)~[B141(0,0,1£])~[B,41(0, 7,00+ [B,41(0,0,0))+([B,41(0,0,¢])
—[B141(0,0,0)) + ([B,41(0,7,0) — [B,41(0,0,0)) + [B,41(0,0,0).

However, [ B,4](#,0) is undefined, and we cannot use this expansion for [ B,§1(1,|¢|).
We will need to expand the part of the integral term in (4.2) involving [B,4 (1, |£|)
as a further sum of integrals.

Setting

h(E 618D + hi(0,2,1¢1)

; o o (@& —m) — 4(0))x(n)
[B341(1¢1) =(2n) RL nE = (12| + 02

and

— ()2 #___.Ld ,
m(IE)=@n"* § o
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(4.3) can now be written

bo(¢) = — q(2§)+ (f(0,1£Dd(0) + [B1411(0, —&,1¢1) + [B,41(— &, 1£D)

hi (0, —¢&,1¢1) m(|£1)4(0)
—f(0,1¢1) 1—10,1¢1)

(2m) [B,410,n,1Exn) [B,41(n, 1) x(n)
1 —f(0,|é|)<n§z W —Ge+ 02 1t L qe + oy d”)

ane2 ¢ [Tod1(E m, € Dx(n) (2n)? .
2 IRL Inl* —(1¢] + i0)? d >+(lnlél+2nﬁ)2ﬁ' (4.7)

Only three of the terms in (4.7), —§(2¢), [To41(£, —&,|€|) and the integral involving
T,, are operators mapping §e H, y boundedly into C*(|¢| < 5). However, we can
show each terms is the sum of a bounded operator from H, y to C*(|¢| < 6) and
one or more rank one operators. To state this more precisely we introduce

[T141(¢, k)= —(1 = f(0,k)~([B141(0, — & k) — [B,41(0,0,0)),
[T241¢ k)= — (1 — £(0,k) " *([B,41(—&,k) — [B,41(0,0)),
[T341(E, k)= — (1= f(0,k)™*hy(0, — & k)([ B341(¢, k) — [B341(0,0)),
[T4d1(&0) = ~(1 = f(0, k)" ?h,(0, — &, k)

(-2 ¢ [B2d1n 0~ [B2d10, )t
e T

—@n)” 4; f 1)k, (0,,0)(g(¢ — '1l)’1lqu(CCI)2 (4(=n)—40)x(©)) dn dC>,
[Ts41(&, k) = hy (0, 6, k)m(k)(l — f(0,k) ' [T»41(0, k),

[T641(& k) = hy(0, =& k) f(0, k)(1 — £(0, k)" *[T541(0, k),

[T,41(E k) = —(1 — £(0,k))~h, (0, — &, K)
(o> BDOLO- (80000,

f(0 19))

+[Tod1& ¢, 1ED =~ ([Baé](f,lélH

— f(0,K)[B341(0,)

In1? — (k + i0)?
e | ([B;41(0,1,0) — ‘ [12314](0 0, 0)))(('1) )
R il
and
[Ted1(& k) = hy (0, — & kym(k)(1 — £ (0, k)) " [T;§1(0, k).
Setting

[Tod1(E. k) = hi (0, — &, k) I[Toq](é;n,k)x(ﬂ)

dn,
QP = f0,K) g2 [n®—(k+i0p
we can write (4.7) as

bo=—428) + (f(0,11)4(0) + [B,41(0,0,0) + [B,41(0,0))

-1
110,11
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h — . .

- (T“—_‘)’J,T—ﬁg—)'%([sm(o, 0)+ m(|1)4(0)

[ [ HOL0UC 1)~ 4O~ G-~ d0)0)
R? R? |'7|2|C|2

; - B,41(0,7,0)— [B,41(0,0,0
+m(|¢])[B,4](0,0) + (2m) znfz([ 31(0,n,0) |'7[12 ql( ))x(n)

+ (2n)

dnd(

(2m)?
(In|¢] + 2np)*

We need to identify the cancellations in (4.8). Some of these are consequences
of the following simple observation:

hy(0, 7,
f(0,|5|)=(zn)—zézﬁ7%

+M(l~fl)[31t§](0,0,0)> B+ Z [T:41(& IED). (4.8)

dn

_5 ¢ (h(0,m,1E1) — hy(0,0,0))x(n)
=h 27) 2
1(0,0,0)m(|¢]) + (2m) RL 112 = (12| + 02
Thus

fO,1¢) _ hi(0,0,0)m(|&1) 4 a,(0)
1=f(0,1¢)  1=101E)  1-=f(0,1&N)
where Q(&) is a function whose norm goes to zero in C*(|¢| < 8) as § — 0. Keeping
in mind that (h,(0, — &,|£]) — h,(0,0,0))(1 — f(0,|&])” tm(|&]) is also a function

whose norm goes to zero in C*(|¢| < J) as 6 — 0 and collecting terms of arbitrarily
small norm as T4, (4.8) becomes

4(0) + a,(0)4(0)
(A= fO,1ED)* (1= f10,1¢])?

+0(),

bo(&) = — §(2¢) + §(0) —

1

- W((l — a1(0)[B,41(0,0,0) + (1 — a,(0)) [B241(0, 0)

(0,5, 0)(C — 1) — 40— (d(— n)— 40
+1,(0,0,002m) % | jX(") (0,£,00d(¢ —n) ;J(C)Z (@(—n—4O)x()
R’R’ [nI*IC]

B ] _ 1& ,0,

(2n)?
(In|¢] +2mp)*

dndl

. 10 .
+h,(0,0,0)[B341(0, 0)) + B+ ;O [T:q1(2). 4.9)

Next we recall that:

a) 1-a,(0)

F=4 .00 T 1O
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and hence
=000 HOAG MO0
- h—l((;’z))_oz) J, UL _l,f'l‘z(o’ 0.0} g, }1&?0“6(8; 7,(0,0,0),
andb) h,(0,0,0)0  2x L8O, “10)

1—f(0,1¢])  In|&|+2np

where ,(0) =0 and B,eC? for all o < 1. Using (4.1) to evaluate h,, one sees from
(4.10) that the coefficient of (1 — £(0,|&]))~? in (4.9) is — h%(0,0, 0)B, and, using b)
one concludes that these terms cancel against (27)*(In || + 278) ™2 B modulo a final
error term of small norm, T,,4. Thus we have

bo(&) = — 4(28) + 4(0) + ;O [T:41( 1¢)). (4.11)

At this point we have twelve operators T; to analyze. Most of the T; have
norms, as operators from H, y to C*(|¢| < 6) which tend to zero as 6 goes to zero,
and are therefore part of ) . To make this precise, we list the following observations.

i) The operators T,, and T, clearly have norms tending to zero with é and
do not require further discussion.

ii) The operators T,, T5, Ts and Ty are of the form

[T41(0) = g()(1 — f(0,1€)~*(J(&) — J(0)),

where

(& M4 — 1) — 1, m4(0)
JE=[ - :
=L e e o
The coefficients t;,i= 1,2, are in C* for all f< 1, and are of rapid decrease as

|n| - 0o. These properties follow from the assumption that jeC?(R?). We also
have 7,(0,0) = 7,(0,0). The function g(¢) is of the form

90 = + w(é),

4
1—-70,1&D)

where aeC and we C#(IR?) for all f < 1.
To simplify these terms we expand

- A _ A O
o

+ (71(0,7) — 7,(0,0))(4(¢ — ) — 4(O0)x(n)) dn
RZ

In1* —(1¢] +i0)?
+ (Tx('f,n)—ﬁ(O,'l))é(f—'I)—(Tz(f,n)—fl(O,n))é(O)d”
R? In|> — (1] + i0)?
=J1() + (&) + J5(9).

Theorems 1.1 and 1.4 imply directly that J, is bounded from H, y to C*(|&| £9).
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We expand J; as
(14(&, 1) — 7,0, ) (@(€ — 1) — 4())

50=1, 2 —(1&] + i0)? an
o (Em) — 120 ) — (14(6.0) — ,(0,0)z(rn)
Ho ], In (&1 + 0
x(n)

+4(8)(7,1(£,0) — 7,(0,0)) éz mE=(e[+ R
75(&, 1) — 75(0, 1) — (72(¢, 0) — 7,5(0, 0) x () dn
Inl? = (1&] +i0)?

. x(n)
—4(0)(,(£,0) — 7,(0,0)) Bgz ME= (1] % i0)2 n

=K, +K,+Ky+K,+Ks.

Applying estimate b) for A%, Theorems 1.1 and 1.4 to K,, we see that K,
maps H, y boundedly to C*(|¢| < 9). Theorems 1.1 and 1.4 also imply that K, and
K, are bounded, and K ; and K5 are bounded by Lemma 2.3. Thus J; is bounded
from H, y to C*(|&| £ 9).

Next we note that the proof of Lemma 2.2 shows that, for acC?%|¢&| <),
(a(é) — a(0))(In | &]) ! goes to zero in norm in C*(|¢| < ). Since the same conclusion
holds if we replace (In|&])™! by g(é)(1 — f(0,]€]))~! by the analysis of (2.10), it
follows that the J;,i = 2,3 contribute operators to T whose norm goes to zero as
06— 0. The remaining term, J,, does not contribute to a term to T whose norm
goes to zero with d, and it will be considered in Proposition 4.2. However, replacing
g(&)(1 = f(0,1€))" tin J, by a(In|&])~* only adds a term whose norm goes to zero
with 6, when o = lgmo g - £O,1E1) ™ In &l

iii) The operator B, is given by
Big=A,(§,1EDhy + Ay(hy,1ED AL, €. (4.12)

Thus, since h; comes from §eCg(IR?), Theorems 1.1 and 1.4 show that B, maps
4 boundedly to C*(|¢| < 8). Thus by the argument used in ii), we conclude that T,
and Ty go to zero in norm as 6 —>0.

iv) Asnoted earlier, modulo operators of small norm, [ T,41(&, 1, k) is an integral
operator of the form

40 |

v(n, &, k)(G(E —n) — 4(—1n))

[Vci](é,c,k)=n§2 P 4 07 dn, (4.13)
where veC* for § < 1 and v(0,(, k) =0. Thus
: h0, - ¢, ,0, 5E —n)—b(—
[Tod1(E 18] = 1 é[él)m(lé]) | v(n,0,1€1)(q(E —n) — 4( n))dn

1—f(0,1¢1) R? [n1? = (&) +i0)?
hy (0, — & 1€1) i 4E—m—4(—n)
(1= f0,1¢1)C2m)* g2 In]* — (1¢] + i0)?

01, &, 1€1) — 0,0, 1) () )
. d¢ )dn.
(.52 2= (|¢] + i0)? € )dn

(@.14)
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The first term in (4.14) can be represented as a sum of an integral over |&| <25
that is an operator whose norm goes to zero with § and of an integral over || > 26
that is clearly a compact operator since || < 8. Since v(0, {, k) = 0, the second term
in (4.14) also has norm going to zero with é by the argument in ii).

v) We claim that T, and T, are also continuous mappings of H, y to C*(|¢| < 6)
multiplied by (1 — £(0,|¢])) ™! so that they too have norm tending to zero as § —0.
The operators T, and T, are of the form

[U41(©&) = g(&)(1 — f(0,[E)"2(1(&) — 1(0)),
where g is in C#(|¢| < 6) for all f< 1, and in T,

hl 0, , Ay Al _A I3 0
1©)=2n* | | xmhy0,4,1EN@E —n) — 4(=n)x(©) — 4() + 4(0)x(0)

dl dn.
& (nl2 =&+ 0P (TP - (&1 +i0P) Cn

(4.15)

In T, I(£) has the form

9= { uy (1, &, 1 ED@E = 1) — 4(= M) + ua(m,,1£1)4 ()
R’ R? (In1? = (11 + i0°)(1C1* ~ (1€] + i0))

where u;,i=1,2, is C? in all variables for f <1 and of rapid decrease in (7, ).
Moreover,

dtdn, (4.16)

u1(05C5‘€')=u2(0,67|€|)=u2('7’0,lé!)=0'

If we apply the difference operator A(u) to I(£) in either (4.15) or (4.16) and expand
by Liebnitz rule, we can place the difference operator either on the coefficients in
the numerators or on one of the two factors in the denominators. If the difference
operator is on a coefficient, then the “extra regularity” of the coefficients insures
that this term will be bounded by |u|* In (4.15) a difference operator on a factor
in the denominator gives a term of the form

oy )
MEm =) L[MMQML%W+mV

(L4114, 1EDg1(p) f1(p) — [41(4,1¢1)g1(0) f2(p))dp,

where the f; are C?, < 1, and of fast decrease, and f,(p) = f,(p) on a neighborhood
of p = 0. Combining estimate b) for A with Theorem 1.4, we see that |[M(, )| <
Clp|*|In|&] | as desired. The argument for terms arising from difference operators
on the denominator in (4.16) is the same. Thus we have established our claim, and
we conclude that the norms of T, and T, go to zero as 6 —~0.

We are now ready to prove that dS(4) = P + T, where P is invertibleand TP~ T
is compact. The preceding remarks have reduced this to the following propositions:

Proposition 4.1. For any p(|&])eCR(R?) satisfying p(|&|)=1 on a neighborhood
of &=0, the operator

(1 - p)dS(@) — P)P™ (1 — p)(dS(g) — P)

is compact from H, y to H, y for a <3, N >0.
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Proposition 4.2. Let p be as in Proposition 4.1 and let W be given by

[Wdle) =

1 5(é(é—n)—x(n)é(O)_q‘(—rl)—x(n)é(O)
In[¢l g2\ [nl* —(1¢] +i0)° Inl?

)dn. (4.17)

Then pWP™pW restricted to the subspace ﬁaN= {feH, y:f(0)=0} has norm
tending to zero as the support of p tends to {=0.

Proposition 4.3. The product of (1 — p)(dS(§)— P)P~'p with the operator W of
Proposition 4.2 is compact.

The proof of Proposition 4.1 is the argument given in Sect. 4 of [ER].
There is one significant difference between two and three dimensions. When
one carries out the computations to determine the singularities of the kernel of
((1 = p)(dS — P))P~Y((1 — p)(dS — P)) one is lead, as in [ER, pp.203-204], to
integrals of the form

f(#z; C’ T)dﬂz

16,7 = | : .
Rp\/léll—lmV(lrl—g— |¢|2—|u212—io)

Izl

However, we now have p=1 instead of 2 as in [ER]. Substituting u, =
02| E'— w?)*2, one sees

_2\1/2 g,
P (e bl et L

R\/2I§I—wz<lrl—é1—|é|+coz—io)

Il

where w? <|¢| on the support of f. Thus

2 1/2 d
I(E,T)=<m) JO.LD ] —— 2 +1o(&,7)
lel—m—lé[-%-wz—io
1/2
=<I%I> /0.9 - +1o(¢ ), 4.18)

\/(Iri—%—lél—m)

where f is the branch positive for positive argument and I,(&,t) has a milder
singularity. The term [, actually behaves like the leading singular term in [ER]
with a singularity like In (Irl - ‘i—r — &= i0>. The first term in (4.18) is an integral
kernel mapping H, y into C* for any o’ <3. For this reason we need to assume
a < % in Proposition 4.1. The remainder of the proof of Proposition 4.1 is the same
as the argument of [ER, Sect. 4], and we will not give it here.

Proposition 4.2 is the most delicate of these three propositions, and the most
tedious to prove. This is the argument which we will give here. The proof of
Proposition 4.3 is simpler, and will be omitted.
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On ﬁa, w the integral operator — (pW)P~1(pW) has the kernel

(gD 4 _
k(¢ o) =lim lim lnmJ(lé—znv—uémszy W)

,p(|n|)< 1 __1_>d”
Ininl \|t—nl>—(nl+ie)* |z1?)7"
where the limits are taken in distribution sense. As in [ER] our objective is to
analyze the singularities of K(¢,7). We will show, for « <1/2, that they are
sufficiently mild that In|&|K(&, 1) maps H,, ~ boundedly to C“(lél <9).

To study the behavior of K(¢,1) near (&, 1) = (0,0) we will stretch variables by
setting n=rn’, ¢ =r{ and © =r7’, where r = (|£|® + |t|?)Y/2. This gives
pENIE]
r?|tln|¢|
where, using o for the unit vector in direction of v,
i 8(4-&)(i-£)p(rin'))dn
R2 (1€ =272 = (1€ 1+ 0 In(rln' (|7 —n'1> — (1| + i0)?

For 6|&| < |t] < 6 !|¢| the zeros of the denominator of the integrand of I(&, 7) are
bounded away from 5" = 0. Moreover, excluding a neighborhood of #' =0, I(£',7')
has the form of the kernel of the operator T, defined in (4.9) of [ER] with 2t
replaced by t. Thus, for 6|¢[<|t| <™ L1¢], it follows from (4.18) that I(¢,7) =
& A(¢,7,r)t with the matrix 4 given by

hO(é > Ty In r, r)

\/Ié’l\/lr’l—élt'—,rl—lé’l—iO

K(S1)= 1¢,7)

1¢,7)=

A, )=

+ Ao, 7 Inr,r)+ A,(&,7,Inr,7),

(4.19)

where h is smooth and order |Inr| ™1, 4, is a superposition of functions of the form

!

hy(&,7,1nr, r)ln(lrl—élr—l—«/lél2 a—i0>,

where h, is smooth and order (Inr)~',a £$|&|, and A4, is C* for all o’ <1 in &
and order (Inr)~*. Note that for §|&| < |t| <6~ !|¢| both |¢'| and |7'| lie in [¢, 1 — ¢]
with & = ¢(d) > 0.

When |t| > 2|&]| the zeros of [€' — 21'|2 = | €| and [t — n'|> — |n’|? are disjoint.
Thus, taking |£'| < 1/8, we can use a cutoff x(]5']) to split I(¢, 1) into
[ (- &) t)gn', &, )x(ln'l)
g2 (71> = &0 —i0)In(r|n'])
where g is smooth and bounded, and
| @ &)@y, £)Y1 — x(In' D) p(ln'|7) dyf

(712 =2t -y —i0)Inr|y| ’

where h is smooth, and |05, h| < C |n'|~2~1l. Clearly I, is of the form &- A(t’, &, Inr)t,

12(5, T) =

I 1) =
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where A is a smooth matrix-valued function which is O((Inr)™!). In I, we split
9(n',&',7') into g(0,¢',7') and ¢(1', &', 7') — g(0, &', 7'), forming I, and I,,. In I,, we
use polar coordinates centered at n' = 0. Since this gives #-¢ =cos @ and 77’ =
cos (@ — @), Where @, is the angle counterclockwise from £ to 7, one can evaluate
the integral in ¢ explicitly:

; _ 1g(0,&,7') [ scos o(s — /s> — &) —i0) | x(s)ds 420
21(6,7)_ 2 t‘; Iéllzm Inrs ( )

Setting s =|¢&'|u, we have

I (&)=

<u(u— u2—1~10)> 2 ¢ ) du
Jut—1—i0 /In(r|¢'u)

wemw ,21]

o 1
= 19(0,¢, )t €[§ win(r1€T)

where I, j f(u )lxilfé‘ I))d with oj: | f(u)]du < co. Assuming x(s) = 1 for |s| < 9,
Ll 21 x(v)dv s
Laineiene ™= 15 Ty +inlinr

14!
Since |g(n’, &', 7') —g(0,&,7")| < C|n’|, I,, is less singular than I,;.

The remaining case is |t| < §|&|,6 small. The new feature of this case is that
the factors in the denominator of the integrand have common zeros near ' = 0.
Since common zeros outside |n'| < ¢(d) occur when the zero sets of the factors
intersect transversally and hence contribute smooth functions of (¢, 7',Inr, ¢, £), we
will only consider the integrand multiplied by a cutoff y(|n'|) supported in the set
where p(r|n'|) =1 for r < 1. Thus the contribution to I(&,7) is of the form

1 @ 2r 8.cos ¢ cos (¢ — @o)x(s)
160211 ] | 5= 12Teoso = 00iaro)171 = 25008 (g — o) = 10) 7 %
4.21)

where we have again used the polar coordinates s =|#'|, & = cos ¢, 4t =cos (¢ — Qo)
As one would expect, the function J(&, 1) is most singular when the zero sets of
the factors of the denominator of the integrand are tangent, i.e. when

1€ +cos @o) = |7 4.22)

To study this singularity one can evaluate the integral in ¢ (the method of residues
is convenient here), and then study the integral in s. This contains spurious
singularities at s =|¢£’| and 2s = |7'| that can be eliminated by changes of variable,
and more complicated spurious singularities when |t'| =2|&|cos ¢,. Instead of
tracking down the cancellations which eliminate the latter singularities, we simply
split this case into two, considering first |t| < d|&|,|cos @] > 1 — &, where these
singularities do not occur. In this case the result is that

1 s
[Tl /b—i0

(4.23)
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modulo less singular terms. Here b = |&'|> — (]7'| — | £'|cos @,)? and f is a smooth,
bounded function of &, 7, ¢4,./b—i0,Inr and the functions In(+|&'|sin @y +
b —i0).
When | %] < 1 — 6, the functions u = 2t and v= &5 —|#'|? can be used as
coordinates near n' =0. Thus, assuming |7| < J|¢| and taking the support of y
sufficiently small, for (&,7) in this region we have

1 u(v + g(u, v)) f (u, v)dudv
J =
G = T & o =011 = u— 10)in rg(a, 0ot

where g(u,v) = |#'|*> and f is smooth with support near (u,v) = (0,0). Thus

4.24)

1 Lw? 4l
Y= L=

1 I,(u,&,%,Inr)

du

+ —Ldu=J,+J,,
TIE & (7] —u—io) =1
where
Il(u9é’,f,a))=§ uf(uiv)
R (20 + In g(u,v))g(u, v)
and

L uf(u,v)
L ¢t o) = 0m +in g o)

Note that f and g depend smoothly on £ and .
To check the regularity of I, in u we set v = us. This gives

3 ,f uf(u,us)ds
" R(s— (sgn w)i0)(2w + In g(u, su))

I,

Since we may assume that g(u,v) <1 on support f, one sees that I, is C' “*in u
oI
uniformly on  <0. Moreover, |I,|<Clw|™! and Ea_jl <Clw|™? for w<0.

Applying Privaloff’s theorem, we may conclude that J, = |t'|"1F,(&,4,|7],Inr),
where F, is smooth in (&, £,Inr) and C'~¢in ||, and F,(&,%,|’|, w) satisfies the
same estimates as I, as w— 0.

I, is a little more singular. We will write

e, = L7 20 (B =L

rlIT|—u—i0 g || —u

t]

where x is a smooth cutoff, equal 1 on support f.

0 . . .
Since u a—gg‘ ! is bounded, one computes that 01, /0u is bounded uniformly by
u
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Clu|™!. We also have

js D, - D ZLUED 11y
R 7' —u
so that
_?_(j(li@_ﬁﬂ)l@ >
o7\ & || —u

Cc
is bounded by o Thus we conclude that

1T =F (&l ) + F2(E 5 17')),

where F; is smooth in ¢ and bounded in 1, F, is C! ¢ in |7| uniformly in (&, 1),
and 0F,/0|7'| is bounded by C|t’'|™ 1.

The final point to be checked here is that the singularities we have found are
sufficiently mild that (In|&|)(pW)P~(pW) is a bounded map of

v={veH, yr0)=0} to C*={veC(|¢| < 1):0(0)=0}.

Hence (pW)P~!(pW) can be given arbitrarily small norm by taking the support of
p sufficiently close to zero.

The list of singularities we have found is as follows. When 6|¢} <|t| <67 1|¢&],
the most singular terms are of the form

p)E-f
r|¢)2 el In] €] (Jt] — &€~ | €] — i0)'/*°

K, ()= (4.25)

where f is smooth in (¢/r, t/r,Inr, r) and bounded in T. Moreover, f is order |Inr| ™!
as r—0. When 4|¢| <|1|, the most singular terms are of the form

p(1ENE fIn(n|&])~! , (4.26)
r?|t|In|&|

Ky 1=

where f is a smooth function of ({/r,t/r), bounded in . When 4|¢| > |t| and
[-%| > (1 — 8) with § sufficiently small, the most singular terms are of the form

pUEDIELS

K1) = ,
T eI — (7l = ¢ 2 =10

4.27)

where f is as in (4.23). .
Finally, when || > |t| and [ | < (1 — 6) the most singular terms are of the
form

a(I<€))

K4(5J)=l PIn|¢]

f (&/r.t/r, %), (4.28)
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where f(u,v,w) is smooth in u, bounded in w and 0 f/dv is bounded by |v| ™.
We will introduce a partition of unity subordinate to the cover of { (&, 7'):|&'|* +
|72 =1} by

o1& <II<o7 &1, {1€1<208]7]} and {|7']<26|¢},
as well as a partition of unity subordinate to the cover of {(E, )18 =11 = 1} by
{IE¢l<(1—26)) and {&¢]>(1—-09)}.

Then the leading singularity in K(&, 1) is the sum of K, K,, K5 and K, multiplied
by the appropriate factors from the partitions of unity. Since this only introduces
additional factors of smooth functions of (¢, 7') in K, and K, and smooth functions
of (¢,7,€4) in K, and K, the only change in the forms of the singularities is that
f in (4.28) now depends on &-¢ as well as ¢&/r, t/r,9).

The kernel K;(&, 1) of (4.27) has the most complicated behavior. To estimate

sup
lul<1/21&l, 181 <1

[, AwIn |¢|K (6, 7)) f (e)dz|,

R?

it will suffice to consider A(u) acting on each factor in (In|¢])K; separately. Letting
A(p) act on (|&] + &£ — |t — i0) /2, and setting |t| =s, - = cos ¢, we get a term
bounded by

24\¢&| s ! s
R [ L I e

4.29)

It suffices to estimate (4.29) separately when ¢, ~ 0 and ¢, ~ 7 and to consider
only u giving purely radial or purely rotational changes in £ This gives us four
cases: a) u||€ and cosp <26 —1, b) ul|€ and cosp >1—24, c¢) |¢£ + u|=[&| and
cosp <26—1,and d) |£+ p|=|&| and cos > 1 —26.

Since for f eﬁa ' f @I =Z171*) f ll,n> in case a) (4.29) is bounded by

n+d’

Clil”zllfllazv I o f

(1€ + pl(1 + cos @) — s —i0) "2 — (|¢|(1 + cos @) — s —i0) ™ /2| dods,

or, setting s =|&|u,

n+o’

CIEPNS Now I u! I

[E+ ull €711 + cos @) — u — i0) ™2 — (1 4 cos ¢ — u — i0)~ /2| dedu.
(4.30)

Setting (1 + cos @) = uf?, i.e. u“zﬁ=\/§cos % we see that (4.30) is bounded by

¢l /U

e flon |t ] A =1 i0) (= —i0) R, (431
h U

—ci

where A= &+ p |7 — 1. We have |A| < |ul|¢|7", and, since |u| <3[¢],|4] < 3.
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To estimate the inner integral we split it into the integrals over {|1— | <|A4|}
and {|1 — B| > |A|}. Estimating the integrals of |(1 + 4)8> — 1|~ /2 and | — 1|~ !/?
separately over the first domain, and then using the cancellation in the integrand
in the second domain, we see that (4.31) is bounded by

1/2
c(%) NS o 4.32)

and, since |u| < 3|&|, this is bounded by |u|*| f ||, v as desired.
In case b) (4.29) is bounded by

ClAIS Non Zéfl(f" s~ do ) ZCIul S Ny
112 o \o(I€l(1 —cos)+9)"2 )7 = [&[' 7"
which, since |u| < 3|€], is stronger than(4.32).

In case c) the change of variables that lead to (4.30) shows that (4.29) is bounded
by

(1 +cos(¢ — @(p) —u—i0)~ 12

|n—¢|<d

26
Cflu!?
0

—(1+cosp—u—i0)~Y2) f(1€|ucos @,|E|usin ¢)de|du, (4.33)

where 2| &||sin(@(u)/2| = | 1|. Writing the integral over |7 — @| < ¢’ as the sum of the
integrals of the two terms in the integrand, sending ¢ — ¢@(u) to ¢ in the first and
recombining, one sees that (4.33) is bounded by

26
LU S e J u™72f11 + cos @ — u| ™2 deodu.
0

Since the integral is finite, we again have the desired estimate.

Case d) is a simpler version of c), just as b) was a simpler version of a).

When A(y) acts on (|&] — &£+ |t])” /2 one encounters terms like those we
have just estimated. The remaining factors are less singular and do not cause
problems.

To estimate

sup | | A(w)(In|¢|K;(&, 1)) f (),

121¢l<lul<2 R2
we simply note that

[
IzIlnl'flKa(é,T)Hfl“dféClél“(f)u"‘ | N—(u—cosg)’|"2dpds<CIE|"
R

|cosg|>1-24

Thus

[ Aw)In €K& 1)) (de| < Cllp+ 1+ 1EP LS lan
R

and, since || < 2|ul, we have the desired estimate.
The preceding analysis should be repeated for K, K ,, and K. As noted earlier
these are somewhat less singular.
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5. Conclusion

From the arguments of Sects. 3 and 4 it follows that the Frechet derivative dS(4)
is a Fredholm operator of index zero for 4 in a connected component %, of %
such that #o=%,n{4:qeCJ(R?) and gq is real-valued} is dense in Hjy. To
complete the proof of the result stated in the Introduction we prove the following
lemma.

Lemma 5.1. The Frechet derivative dS(§) is invertible for some §,€% ,, and hence,
by the analyticity of S(4) on %, for all § in an open dense subset of U,.

Proof. We will show that there are §,e&, with small norm in H,y such that
dS(g,) is invertible. Using the decomposition dS =P + T of Sect. 4, it suffices to
show that (I — TP~ Y)dS=P— TP T is invertible, and we will do this by
showing that for a suitably chosen sequence g, converging to zero, the norm
of T(4,)P~*T(4,) goes to zero. For this we simply choose a real-valued g,e C¥(IR?)
with §4(0) = 1, and set 4, = n~14,. By Theorem 1.1 for any fixed y and y, the norm

of AYA,(4,,k)A; " as an operator from C* to C* goes to zero as n— oo, uniformly
for k= 0,{eR2. Hence, since

hl,n(é C’ k) + [Al(‘?m k)hl.n(" C? k)](é) = - Qn(é - C):

it follows that for n sufficiently large,
Re {hl,n((), O, 0)} <- %‘jn(o) é —C ” qn "Zz.N’

for some ¢ > 0 independent of n, and §,€¢’. Moreover, since §,eCg the first two
estimates of (1.9) hold without the factors of |In k|. Hence, for n sufficiently large
—Re{h, ,(0,0,0)} = ¢||hy ,ll;y for some &>0 independent of n, and [ hy |,y <
Clldllon Scn™t. Here we use || || «n to denote the a-Holder norm in (¢, {, k) with
weight A}

Now we only need to check that the terms in the decomposition of TP~'T
which had small norm can now be given small norm uniformly in n, and that those
that were compact have norm tending to zero as n— co. The choice of §, in the
preceding paragraph insures that the crucial factor 1 — f,(0, k) satisfies (see (2.5))

1—f"(0,15|)=1+<”—‘%°’ﬂ ('5'“»1 lél+0< )

where Re {h; ,(0,0,0)} < —en" !, ¢ > 0. Hence there is a radius p independent of n
such that for n > ny and || < p,

A1l ¢
L= £, 1EDI ~ n+e¢/2nlIn &I

The estimate (5.1) shows that the reasoning used to show that the operators T;(g,),
i#0,2,3,5,6,9 have small norm when cutoff near ¢ = 0 holds uniformly in n, and
that the reduction of the contributions of T;, i = 2,3, 5,6 to operators of the form
(4.17) can be done keeping the norms of the errors uniformly small in n. However,
one can see that the norms of T, and T, go to zero as n— oo directly from (5.1)
and their definitions. We also need to show that (1 — p)(dS(g,) — P) goes to zero
as n— o0. However, since (1 — p)S(g) is analytic in § at § =0 and (1 — p)P is the

IIA

(5.1)
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value of its Frechet derivative at ¢ =0, this is immediate. Finally,

dﬁ_ I(Qn)qA = - é(O) + Rné’
where |R,|| goes to zero as n— oo (see (4.10)). Thus

dS(4u(4) = dbo(d,)d + 1(E)dB ™" (d)d = (P + T(d.))d,

where T(4,)P~*T(4,) has a small norm in H,y as n— co. Therefore dS(g,) is
invertible large n.

As in the proof of Theorem 5.4 of [ER], the analytic dependence of dS(4) on
4 implies that %, has a dense open subset % ,, with % , " H, y dense in H}, y such
that dS(4§) is invertible for §e# .

Now an application of the implicit function theorem gives

Theorem 5.2. The mapping § — S(4) = bo(&) + B~ ' x(&)is alocal analytic isomorphism
of H, y at any 4% .

As a final remark we consider, analogously to [ER], the “restricted” backscatter-
ing problem. As was noted in [ER], the inverse problem of recovering of a
real-valued potential from the backscattering amplitude b(¢) is still overdetermined

since §(¢) satisfies the relation §(¢) = §(— &). Therefore we consider the restricted
backscattering problem of recovering a real-valued potential g(x) from

b() = b(&) +2b(~ ¢) '
In fact F~ b, is the real part of F~!b. Since
27
b(&) = bo(&) + mx(é),

we have

bo(§) +bo(—&) 1 21 2n
<2nﬁ+1n|afl +2nﬂ_+ln|5|)X(é)

br(é) =

2 2
b+ b(—d  2n(npy +InlE)
= @B, +In €))7 + @y N> G2)

where B, =Re , B, = Im B. Since b, (&) = 3(bo(&) + bo(—&)) = 0(||*) for [£] small,
knowing b,({) we can recover separately b, (&), f; and B,. Denote by S,(4) the
following map of H yn% to H}y:

b —
()= LD
by

m%(f)-

Analogously to the proof of Theorem 5.2 we obtain

=b,,(&) +

Theorem 5.3. 5,(§) is an analytic map of U N H, y into H}, y. The Frechet derivative
dS,(q) is a Fredholm operator of index zero for any §eU nH, y
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Note that  nH, y is not a connected set #7, . As in Theorem 5.2 we can
prove that dS,(q) is invertible for some small §e# N H}, y and this gives that S,(4)
is a local analytic isomorphism for an open dense set in a connected component
containing those 4.

In another paper we shall study the invertibility of dS,(4) in all components of
% nH, y and also reconsider the same problem for n=3.
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