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Abstract. This article extends the authors' previous results (Commun. Math. Phys.
124,169-215 (1989) to inverse scattering in two space dimensions. The new problem
in two dimensions is the behavior of the backscattering amplitude near zero energy.
Generically, this has the form

where b(0) = 0 and b{ξ) is Holder continuous. In order to work in weighted Holder
spaces as before, the constant β and the function b(ξ) must now be interpreted as
"coordinates" on the space of backscattering data. In this setting the mapping to
backscattering data is again a local diίfeomorphism at a dense open set in the
real-valued potentials.

I. Introduction

This article extends the results of [ER] to problems in two space dimensions. As
in [ER] we define the scattering amplitude associated with the Hamiltonian
- A + q{x\ xeR", in the following way. Let h(ξ, ζ, k), (ξ, ζ, /c)eR" x RM x R + , be the
solution to the integral equation

'-τdη=-q(ξ-ζ\ (I.I)

where q denotes the Fourier transform

q{ξ)=\ e-iχSq(x)dx.

Then the scattering amplitude is the restriction of h to | ξ | = | ζ \ = k, and the
backscattering amplitude is h(ξ, — ξ,\ξ\), £eJR"\0. We assume that q belongs to
one of the weighted Holder spaces, HaN used in [ER]. The space HaN is defined
as the closure of C^(IRn) in the norm
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where || ||α is the Holder α-norm and Λ(ξ) = (l + \ξ\2)1'2. The function h(ξ,ζ,k)
is understood to be the solution of (I.I) belonging to HaN in ξ for each value of
the parameters (ζ, k).

In [ER] we showed that in three dimensions on an open set of q the mapping
from q to backscattering is locally an analytic isomorphism of HaN. The
impossibility of obtaining this result in two dimensions is due to the singularity
in the fundamental solution for - A — (k + /0)2 at k = 0. While in three dimensions
one has

in two dimensions

|fy|a J

2
and Y0(/c|x|)~ — Ink as k-+Q. This singularity produces the following generic

π

behavior for h(ξ, - ξ,\ξ\) as ξ-»0 (see Theorem 2.4): for 4eHatfhN>0, 0 < α < 1,

h(ξ,-ξΛξ\) = 2π(ln\ξ\ + 2πβΓ1+b1(ζ)i (1.2)

where b1(0) = 0 and bx is Holder α-continuous. Note that

}
Hence, fixing χ e C J ( R 2 ) with χ = 1 on a neighborhood of ξ = 0, we can define
"coordinates" on the backscattering data (/?,fto)eCx {/eiία J V:/(0) = 0} with jS
defined by (1.3) and

bΌ(ξ) = (1 - χ«))A(ί, " ί,lίI) + X(ξ)(h(ξ, - ξ,\ξ\)- 2πQn\ξ\ + 2π/0" :). (1.4)

Then we show that for 0 < α < ^ and JV > 0,

is a local analytic isomoprhism of HaN on an open subset of HaN. This subset has
dense intersection with Hr

aN = {qeHaN:q( -ξ) = 4(f)}, the subspace oΐHaN over the
reals consisting of Fourier transforms of real-valued potentials. As in [ER] the
"restricted" mapping Sr:Hr

ΛtN-+Hr

atN9 taking q to the projection of S(q) onto Hr

aN,
has a Fredholm Frechet derivative of index zero on a dense open subset Θ of Hr

aN.
Thus, by the argument from real analyticity used in [ER], the restricted back-
scattering mapping Sr, is a local isomorphism on a dense open subset of each
connected component of Θ which contains a q0 such that dS (q0) is invertible.

Many of the arguments needed to establish these results are identical to those
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in [ER]. We will omit these here and restrict attention to the new problems which
arise in two dimensions.

There is a very extensive literature on the problem of determining the set of
full scattering amplitudes in Rw, the functions h(kθ,kω,/c)onS""1x5"~1xlR+ in
our notation, see Faddeev [F], Newton [N], Beals-Coifman [BS], Nachman-
Ablowitz [NA], Novikov-Khenkin [NK], Melin [M], and Weder [W]. These
works deal with n ^ 3. For n = 2 results on the problem of characterizing the set
of scattering amplitudes have been obtained by Cheney [C]. Much less work has
been done on the problem of determining potentials from backscattering
amplitudes. Aside from the formal results of Prosser [P] and the numerical study
by Bayliss, Li and Morawetz, [BLM], we only know of [ER] and the recent work
of Melrose and Uhlmann, [MU]. These papers deal with n = 3 in [P] and [ER],
general odd n ^ 3 in [MU], and n ;> 1 in [BLM].

We will use the notation of [ER]. In particular

Δ(μ)f(ξ, ζ9 k) = f(ξ + μ9 ί, k) - f(ξ, ζ9 k\

Δ(v)f(ξ9 C, k) = f(ξ, ζ + v, k) - f(ξ9 ζ9 k\

Δ{s)f{ξ9ζ9k) = f{ξ9ζ9k + s)-f(ξ9ζ9k) with s > 0 ,
and

1. Direct Estimates

We begin with the analogue of Theorem 2.1 of [ER]. Let χ and χ0 be functions
in C f ( R 2 ) and QftR) respectively satisfying χ{ξ)=l for \ξ\<p,χ{ξ) = O for
\ξ\ > 2p9χ0(k) = 1 for \k\ <Po a n d χo(k) = 0 for \k\ > 2p0. W e define

Theorem 1.1. The operator Aί satisfies

» N δ

ε , (1.1)

where Λζ{ξ) = Λ(ξ-ζ), 0 < α < l , JV>0, O ^ ε < α , 0^£<min{l ,JV} and
γ i { l δN δ}

Remark. The statement given here is merely a way of combining what are really
two results. When fce[2p0, oo), A^q,k) reduces to what was called A(q,k) in [ER]
and the proof of Theorem 1.1 is precisely the same as the proof of Theorem 2.1
in [ER].

To prove Theorem 1.1 we will need the following lemmas (cf. [ER], Lemmas 2.2
and 2.3).

Lemma 1.2. Let

where ω = (cos θ, sin θ), ξelR2 and /ce!R+.
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Then

'Cfc-1 for N>1

fc-Mnίl + fc) for JV = 1, (1.2)

Ck~N for O<JV<1

where C is independent of ξ and fc.

Proof We have

π

— π

and for any δ > 0,

J (1 + fc2 + \ξ\2 - 2k\ξ\cosθ)~mdθS Ca(ί + k2yN/1.

θ2

Furthermore, for δ small enough that cos θ < 1 — —- for |0| < δ,

J (l + /c2 + |ξ | 2 -2/c|ξ |cos0)- i V / 2 ί/0^ J l + ( f c - | ξ | ) 2 + J - y — d0.

Making the change of variables t = (k\ξ\)ί/2θ,

\θ\<δ \t\<(k\ξ\)ι'2δ

If |/c - \ξ\ I < | / c , t h i s l e a d s d i r e c t l y t o (1.2). H o w e v e r , if | / c - \ξ\ \ >\k,

j {i+(k-\ξ\)2 + ϊk\ξ\θ2rN/2dθ<c(i + k2yN/2. m
\θ\<δ

Lemma 1.3. Let

Λ%(ξ)Λ*{η) dη

where 0 < 5 < min {1, N}. Then for 0 < y < min {N - δ, 1 - δ} we have

J(/c,ξ,ζ)^C(l+/c)-y.

Proo/. We have

=c ί \w^\
by Lemma 1.2, where β = 1 for N > 1, and β = y + 5 + i(N - y - 5) for iV ^ 1. Since
(5-/?<0, for k < \ we have J < C. For k>\, we set \η\ = kt and have

J{KU)ύC J (1 + / c 2 ί 2 ) ^ - ^ 2 ~ r

ί - | T d ί
| ί - l | > l / k IΓ ~~ 1 I
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The proof of Theorem 1.1 will use the decompositions of integrals that were used
in the proof of [ER, Theorem 2.1 ] with the same labels, IUI2,I3 etc. One sees that
the only new features here are that dη = | η \ d | η \ dθ instead of dη = | η | 2 d | η \ dΩ and
that we can use \Pf(η)\ = \f(η)-f{0)χ(η)\ £C\η\Λ\\f\\a in place of \f(η)\ g | | / | | . .

In two dimensions formula 2.6 of [ER] becomes, for 0 < k < 1,

=4ln(l+2fc)-lnfc-?.

Since Lemma 1.2 implies2,
6 Λ%{kω)Λ%(kω)

we again have | / 3 | ^ C(l + &)~y||g||α,jvl!/Hα Since this estimate holds if we apply
\μ\ ~*Δ{μ) to the integral as well, we conclude that I3 satisfies the required estimate.

The terms lγ and |μ|~M(μ)/ 1 ? are both bounded by

where β = 1 for N > 1 and β = y + δ + £(JV - y - δ) < N ϊov 0 < N ^ I. Moreover,

\r\<r Γ
I \η\-k\<ι

^ ( 1 + 1*1) ^ Il/L
There is no change in the estimate of \Δ(μ)Jι |, except that δ — β + 1 becomes

δ- β. This is also true of Ku X4, LUL2, L3, L 4 and M. The estimate of the integral
P for 0 < k < 1 is now

and we have

d\η\

These integrals are bounded by Ink independently of μ. Since ka\nk is bounded
when 0</c < 1, we conclude that M 2 satisfies the desired estimate. For M 3 we
have for 0 </c < 1,

J

d\η\

which also leads to the desired estimate.
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The function Ax(q,k)f also has the regularity in k described in [ER, Theorem
2.2].

Theorem 1.4. For N,δ,<x in the set used in Theorem 1.1, s>0 and f satisfying

/(0, ξ9 0 = 0, we have for k<p0,

The proof of Theorem 1.4 follows the proof of [ER, Theorem 2.2] in the same
manner that the proof of Theorem 1.3 followed the proof of Theorem 2.1 of [ER],
and we omit it.

Much of the analysis of Sect. 3 of [ER] applies to Ax(q,k) in two dimensions.
In particular, there is an open set Θo of q in HaN (which will be discussed in
Sect. 3) such that for qeΘ0 the operator

is invertible on Cα(R 2) for (£,fc)elR2 x [0,p 0 ] and the norm of its inverse is
uniformly bounded for (ζ, fc)eR2 x [0, p 0 ] . Thus for qeΘ0 the solution, h^ξ, ζ, fc), of

h,+AMK)h=~^ (1.3)

exists for (ζ,/c)eIR2 x [0,p 0] and satisfies

with C independent of (ζ, k).
The function h^ξX.k) is not uniformly α-Hόlder continuous in ζ and k near

k = 0. In the following paragraphs, assuming k < p0 < 1 we will derive estimates
for Δ{y)hί and Δ(s)hί as well as Δ{v)Ph1 and Δ(s)Phί9 where

These estimates will be α-Hόlder estimates with weights of |lnfc|. The methods we
use to derive them are those of Sect. 3 of [ER]. We will use the density of CQ in
HaΉ to write q = qι 4- 4«» where \\q1 \\ΛtN < ε0 and q^eC^i'R2). The constant ε0

is chosen small enough that the Neumann series for (/ + A^^k))'1 converges.
Hence

ht + A.iq^kjh, + A^q^k)ht = - qζ

and

where g1 is the solution to

gx + AMoo, k)(I + AMu k)Γ lQi = Λ^q^k^I + Ax(ξuk))' ιqζ.

The general term in the Neumann series expansion of (/ + Aι(qi,k))~1qζ has
the form (suppressing a factor of (— l)"(2π)~2"):

= ί
R2"

Π
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for n ^ 1. Introducing

we have

where f(ξ, η) = 4ι(ξ- η). We will show that for 0 < k < ρ0 < 1,

a) ll̂ î /

and
b) Mfi(p,

for 0 < OK! < a. Then it will follow that

(1.4)

uniformly in ξ. Moreover, using Theorem 1.4 and Liebnitz's expansion, a) and b)
also imply that

f ^ wC-s-llίlL.Λrllβi ll^llnfcl (1.5)

uniformly in ξ.

The estimate a) is an immediate consequence of Theorem 1.1. Let

f ( η ξ ) = Δ(μ)(p(η-ξ)-p(-ζ)χ(η))

Then \\f{'Λ,μ)ΛN

ξ\\^a,^\\p\\^. Since/(0,& μ) = 0,

l\μΓ*'Δ(μ){A\(p, k)g)M) = [A M k)/](0)

where f̂(fy) = g( — η). Thus a) follows from Theorem 1.1 with ζ = ζ.
To prove b) we need to review the proof of Theorem 1.1. Using the

decomposition

as in the proof of Theorem 2.1 of [ER], we have for 0 < k < ρ0 < 1,

Since \p{kω -ξ)-p{-ξ)\< ck*Λ~N(ξ)9 this implies

\h\^C\\g\\0\\p\\ΛtN9

as before. However, when we apply Δ(μ) to / 3 there are no useful cancellations
between Δ(μ)p(kω — ξ) and 4(μ)p(— ξ) as fe->0. Thus we only have

As in the proof of Theorem 1.1, all other estimates from the proof of Theorem 2.1
[ER] go through mutatis mutandis until one reaches M 2 . In M2 we no longer have
the factor of /cα so that now
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For M 3 we now have

For 2|μ| <k<\ this gives

\n\ (\μ\'\\n\-k\' + \μ\

Γ 1+k

\n\2-k2

Ll+2|μ|/t S - 1

d\η\.

(1.6)

d s

For fe < 2|μ| < 1, (1.6) gives

since |^ | + | μ | > ΐ | |»?| — k\. Thus

and we have established b) in the case α' — α. However, this suffices for the general
case just as in the proof of Theorem 1.1 (see [ER, p. 175]). This completes the
proof of (1.4) and (1.5).

To estimate P(I + A^ξ^k))'1^ we note that

with f(ξ,η) = Uξ -η)- U- n)x(ξ) Thus

and a) and b) imply that for n ̂  1,0 < k < p0 < 1 and 0 < α' < α,

I Λ ^ μ w c p μ Λ ^ (1.7)
and

I^M^C^^iWi fe))11^]^)! ^nC^llίl l^Hί! ||^|5|--e'|lnfc|. (1.8)

Finally taking | |^i || sufficiently small, i.e. ε0 sufficiently small, (1.4), (1.5), (1.7) and
(1.8) imply
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\ΛN

ζΛ{v)(I + AM,Λ))~ιqζ\^C\vnq\\^\\nkl

(s)(/ + ^1(41,fe))-1

ίζ|gCsβ||4||N|lnfc|,

where the constants depend on ε0 and α', but not on (ξ, ζ, k).
To get the estimates in (1.9) for (/ + Λί{quk))~1g1 and P{I+ A1{4l9k))'1gu

and thus for ht and Phx, we need to repeat the arguments in [ER] deriving the
"extra" smoothness of gi in ξ. In this case the extra smoothness takes the form

and \\Δ{v)AN

ζ9l \\a£ C|v|α|ln/c|, (1.10)

where || ||α denotes the norm in ξ and C is uniform for (ξ, Q G 1 R 2 X R 2 and
0<k<po. The estimates (1.10) are derived in the same manner as the extra
smoothness estimates in [ER], see [ER, (3.21) and (3.23)]. Moreover, given (1.10),
one proceeds to derive (1.9) for h1 and Phί as in the final portion of the proof of
Theorem 3.2 in [ER]. Thus we have:

Theorem 1.5. For qeΘ0 the solution hx{ξ,ζ,k) of hx + Λ1(qik)h1 = -qζ satisfies

\Λ?Δ(s)Ph1\SCs«\ξ\Cί-«'\\nk\

for 0 < / c < p o < l , 0 < α ' < α . The constants here depend on the choice of p0 and oΐ
but are independent of (ξ, ζ, fe).

2. The Generic Form of the Backscattering Amplitude near Zero Energy

As in [ER] we define

Then (I.I) can be written

- q(ξ - 0 = Hξ, ζ, k) + 1AM, k)K]{ξ) + χo(k)lA(q, k)χ]{ξ)h(O, ζ, k), (2.1)

and, applying (/ + At)~1 to (2.1), it follows from (1.3) that for k < pQ,

h(ξ,C,k) ~ lA(huk)χ]{ξ)h{0,ζ,k) = hx{ξ9ζ,k\ (2.2)

where

Setting ξ = 0 in (2.2) and assuming [A{huk)χ](O) φ 1 for k < ρ0, we have
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and from (2.2)

\-[Λ(hl9k)χ](0)

π ^
1 - LA(huk)χ](0)

Formula (2.4) will be used to analyze the singularities of h(ξ9 — ξ,\ζ\) for
\ξ\ < p o Note that the third and fourth estimates from Theorem 1.5 show that
Phίiξ, — ξ,\ξ\)eHΛtN. The next step in the analysis is the study of \_A(huk)χ](0).

Defining

we have

Lemma 2.1. For 4^^o w ^ have for 0 < fc < p 0 < 1,

l α i W I ^ C (2.6)

and
14(5)^^)1 ^Cs«|lnfc|. (2.7)

Proo/. The estimate (2.6) is immediate from (2.5) and the estimate || hχ(O9 , k) ||α, ^ C,
0 < α' < α.

The proof (2.7) follows the proof of Theorem 1.5. In particular, if one substitutes
the Neumann series for (/ + ̂ ( ^ , / c ) ) " 1 ^ for hx in (2.5) the general term is

(2π)2

where P l f l f(ξ) = ̂ (ξ) - g(O)χι(ξ) with Z l eC?, Z l = l o n support χ, and /(ιy) = q(- η).
Thus, using Theorems 1.1 and 1.4, one estimates Δ(s)In(k) as in (1.5), and completes
the proof as in the proof of Theorem 1.5. •

The estimate (2.7) does not imply that ax(\ζ\) is Cα at ξ = 0. However,
(Mlf l 1 is Cα, as the following lemma shows.

L e m m a 2.2. Assume that a(ξ) is a continuous function on\ξ\^δ<ί, satisfying

|4(μ)α(ξ)|^C|μr(|ln|ί + μ| | + | ln | ί | | ) .

Then (a(ξ)-a(0))(\n\ξ\y1eCa(\ξ\^δ). In particular if a(ξ)eCa, then (a(ξ)-

Proof We have for \ξ\^δ, and n = 0,1,2,. . . ,



Inverse Backscattering in Two Dimensions 461

and, since \ξ\ ̂  δ, summing on n and changing the constant, this implies

\a(ξ)-a(O)\^C\ξ\"\ln\ξ\\.

Thus, letting b(ξ) = (a(ξ) - α(0))(ln \ξ\)~ \ we have \b(ξ)\ ί C\ξ\". Since

+ μ)-a(0) a(ξ)-a(O)
\Δ(μ)b(ξ)\ =

, then

a(ξ + μ)-a(ζ)
μ)-a(0)\

| l n | ί | | \ξ\

If | μ | >±\ξ\, then \ξ + μ\S 3 |μ |, so that

\Δ(μ)b(ξ)\ϊ\b(ξ + μ)\ + \b(ξ)\^C\ξ

The next lemma describes the remaining term in [A(hι,k)χ](0).

Lemma 2.3. The function χ1, defined by

ήn)
2nΓ2 f = -(2π)"1ln/c

belongs to C°°[0, oo).

Proof We let f(k) = (2π)" x f χ(kω)dω. Then

= (4π)~ x f
o

- (/c + /0)2)

^ - ( 4 π ) " 1 ] f\s)\n{k +s)ds
4 o

f'(s)ln\s2-k2\ds. (2.8)

We are now ready to prove (1.2). Let Oγ be the subset of Θo such that
ft1(0,0,0)#0 for qeΘ,. Note that Lemmas 2.1 and 2.3 imply lA(hί9k)χ](0)~
- (2π)"1/i1(0,0,0)ln/c as /c^O so that [>4(Λl9fc)χ](0) # 1 for k < ε if ε is sufficiently
small when qeΘ1. We will discuss Θo and 0x further in Sect. 3.

Theorem 2.4. For qeΘ1 and \ξ\ sufficiently small, the scattering amplitude b(ξ) =
h{ξ,-ξ,\ξ\) satisfies
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where β = (l- αx(0) - ft1(O,O,O)χ1(O))(MO,O,O)ΓJ A ( 0 ) = ° and bιeC*

Proof. Putting ζ = — ξ and k = \ζ\ in (2.4), we obtain

= Phι(ξ,-ξ,\ξ\) + j_ ^ n

(M0,-{,l̂ l)-fci(0,0,0))x(O K^-ξAξ^jPAjh^ξ^χM)

As noted earlier, the estimates of Theorem 1.5 imply Phiiξ, — ξ,\ξ\)eC, and
P^i (0,0,0) = 0 by the definition of P.

The singularity in b(ξ) comes from the second term in the expansion (2.9). From
(2.5) and the definition of χx one has

2πM0,0,0)

Note that the functions satisfying the hypotheses of Lemma 2.2 form an algebra
which is closed under quotients as well when the denominators do not vanish.
Since Theorem 1.5 and Lemma 2.1 show that ^(O.O,\ξ\) and α^l^l) satisfy the
hypotheses of Lemma 2.1, it follows that

gi+g2ln\ξ\

where the /'s and ̂ f's satisfy the hypotheses of Lemma 2.2. Moreover, #i(0) =
g2(0) = 0. Hence

where g3 has the properties of gx and g2- By Lemma 2.2 it will follow that β i e C \
if we can show that (/\ + / 2 l n | £ | + (ln|^|)2)~1gf3 satisfies the hypotheses of
Lemma 2.2. We have

The initial portion of the proof of Lemma 2.2 shows that \g3(ζ)\ g
Since \Δ(μ)\n\ξ\ \£C\μ\ Iξ]'1 when |μ| < i | ξ | , one sees that

f 2 l n \ ξ \ + ( } n \ ξ \ ) 2 ) - ι g 3 ) \ £ C \ μ \ ' ( \ l n \ ξ \ \ + \ l n \ ξ + μ \ \ )
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when | j t/ |<j |<i | . When | μ | >2l<!Π> we simply use

and \g3(ξ)\ ^ C|//|β|ln|ξ| | to get the same estimate. Thus βxeC.
Next we observe that

g g\n\ξ\

where g and / are as in (2.10). Thus the argument just given for βx shows this term
is C" as well.

Finally we have

h1(O,-ξ,\ξ\)lPA(h1,\ξ\)χ](ξ)

(2.11)

where

Note that ^(0, /c) = aγ{k\ the function introduced in (2.5).
Theorem 1.5 implies that Ph^ξ.O, \ξ |)eCα, and, since Phx(0,0,0) = 0, one checks

easily that P/1^,0, |ξ | ) ln |^ | satisfies the hypotheses of Lemma 2.2. Hence the
right-hand side of (2.11) has exactly the form of the right-hand side of (2.10) (with
fi and gx identically zero), provided that we can show a^ξ,\ξ\) satisfies the
hypotheses of Lemma 2.2.

We claim that a^ξ, k) satisfies the usual weighted estimates,

a) \Δ(μ)aι(ζ,k)\^C\μf\\nk\, and7

b) \Δ(s)aι(ξ,k)\ύCs«\\nk\,

which imply \Λ{μ)a^(ξ,\ξ\)\ g C|μΓ(|ln |£ | I + |ln \ξ + μ\\). To get b) we must again
use the decomposition of hγ into a Neumann series plus a term with extra
smoothness. This argument is essentially the same as the proof of Lemma 2.1. In
particular when one substitutes the Neumann series for (/ + A^q^k))'1^ for hx

in the definition of aγ(ξ,k), the general term is

(-1)"
{2π)2

R2 \η\2(k + i0)2 Ά'
J j

{In)1 R2 \η\2-(k
where f(η, ξ) = q(ξ - η) and P^ξ) = g{ξ)-g{ϋ)χγ{0 as the proof of Lemma 2.1.

T o prove a) we note that by the definition of hx, at(ξ, k) = [(/ + A1 (q, k))~1 g~](ξ),
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where

Γ
Thus, by the reasoning used to prove that

Mti(p,fc)/ll«.N^C||p||

we have || g || αfN ^ C | In k |. Since (/ + A ί(q, k)) ~~λ is bounded on HaN by the definition
of Go, we conclude a^ξ.k) satisfies a). Thus ax(ξ,\ξ\) satisfies the hypotheses of
Theorem 2.2, and we may use the argument given for β1 for the final term in (2.9)
as well. •

3. Analysis of the Hypotheses of Theorem 2.4

The sets Θ and G\ defined by

0 = {qeHaN:I + Ax(q,k) is invertible on HaN for 0 ^ k ^ p0 and

/ + A(q,k) is invertible on HaN for k^pγ for some px <p0} (3.1)

and

(3.2)

will be studied here. Note that in Sect. 1 we defined Go as the set of q such that
I Λ- A^Ax(q,k)A^N was invertible on Cα with the norm of its inverse uniformly
bounded for (C,/c)eR2 x [0,p ? ]. τ h e set G is a subset of 0O and for qeG we also
have / + AζA(q,k)AςN invertible with inverse uniformly bounded for (ζ,fc)eR2 x
\_p1, oo] (cf. [ER], Lemma 3.3). Hence & is a subset of the set Θ x introduced in Sect. 2.

The set 0 is open in HaN by the arguments used to prove the corresponding
result in Sect. 3 of [ER]. Since whether or not q belongs to G depends on χ and
p 0 , we are really interested in the set of q which belong to G for some choice of χ
and p0. As a union of open sets, this set, G, is open. The following proposition
shows that G contains a dense subset of the Fourier transforms of real-valued
potentials.

Proposition 3.1. Let q be a real-valued function in CQ(R2\ and assume that there
is no nontrivial solution goeCo(TR.2) to

Qo(x) + ^ J In |χ - y\go(y)dy = 0 (3.3)

satisfying J go(x)dx = 0. Then there are χ and p0 such that qeG.
R2

Proof If / + A(q, k) fails to be invertible for some k> 0, then there is a nontrivial
solution to —Δu-\-qu — k2u = 0 satisfying the radiation condition. It is a classical
result that such solutions do not exist for the q considered here. Thus we only
need to show there exist p 0 and χ such that / -+• Ax(q, k) is invertible for 0 ^ k g p 0 .

We begin by deriving some simple consequences of the hypothesis on q. The
operator qE0, where

£ 0 / = (2π)- 1 I ln\x-y\f(y)dy, (3.4)
2
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is compact on L2(\x\ <R) for each R, and for R greater than the support radius
of q the nullspace of / + qE0 consists of CQ functions with support contained in
the support of q. Thus, if there is no solution to (3.3) with mean zero, there are
two possibilities:

a) / + qE0 is injective on CJ(R 2 ), or
b) the nullspace of / + qE0 on CJ(R 2 ) is spanned by g0 and J godx φθ. In

R 2

both cases the Fredholm alternative applies to / + qE0 on L2(|x| < R). Hence, in
case a) given geQf^R2), there is heL2(\x\ <R) for R sufficiently large such that
h + qEoh = g. It follows that h belongs to C£(R 2). Thus / + qE0 maps C£(R 2) onto
C?(R 2 ) in case a).

We can use (3.4) to define Eo on the Schwartz space ^ ( R 2 ) . Since

$ ln\x-y\f(y)dy = $ln\z\f(x-z)dz,
R 2 R 2

we see that qE0 maps Sf into C^(R2). In case a) we extend (/ -f- qE0)~ι to Sf by
defining

Since / -f qE0 maps £f into Sf and one may check easily that it is a two-sided
inverse to (I + qEo)"1 as defined above, it follows that in case a) (I + qE0) is a
linear isomorphism of £f.

We will now show that we can choose χ so that I + A1(4,0) is invertible. If
I + Λ^q.O) is not invertible, then by the compactness of Λ^q.O) on HaN there is
hoeHaN in the nullspace of I + A^fcO). Taking the inverse Fourier transform
(denoted by " v " , we have

h0 + qE0(h0 - j 2 hodxχj = 0 (3.5)

which implies h0 is in CJ(R 2 ). In case a) (3.5) implies

J hodx= J (I + qEoΓ'qEoχdx J hodx.
R2 R2 R2

Since j hodx Φ 0, by hypothesis, we have
R

l = f (/H-ίBoΓ^o^x. (3.6)
2

If (3.6) holds for all admissible χ, then, since any function in Q?(R\0) can be written
as the difference of two admissible χ's,

0= l{\+qE0)-ιqEjdx (3.7)
2R

for all / 6 C J ( R 2 - {0}). Thus

0 = J ( / + < Ϊ £ O Γ 7 Λ C (3.8)
R 2

for all / e C ^ ( R 2 — {0}). However, taking limits, one checks that (3.7) must hold
for all / e ^ o = {/e«^:/(0) = 0}, if it holds for a l l / e C J ( R 2 - {0}). Thusp.8) holds
for all feSf0. Since ^ 0 is codimension 1 in Sf, if (/ + qE0)~ι mapped fφ&0 into
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^ 0 it would necessarily map & into S?o contradicting the conclusion that

(/ -I- qE0)~* is an isomorphism of Sf. Thus if (3.6) holds for all admissible χ, 1 + qE0

maps ^ o onto Sf0 and, taking Fourier transforms we conclude

for all feSf0. Thus 0 = 0, and / + AX(49O) is trivially invertible.
In case b), since the nullspace of the adjoint of / + qE0 in L 2(|x| < R), when

suppg c {|χ| czK}, is spanned by Eogo restricted to |x |<jR, the Fredholm
alternative applied to (3.5) implies

0= $(Eogo)qEoχdx. (3.10)
R2

As in case a), if (3.10) holds for all admissible χ, we have

0 = j (Eogo)qEofdx = j Eogofdx
R2 R 2

for all fe£f0. Thus Eogo must be constant. Since Δ(Eogo) = g0, and goφ0, this is
a contradiction.

As we pointed out in the Introduction,

£.(x) ( 2 ^ j 2 | ? ? | 2 _ ( f c + , 0 ) 2 ^ = (jo(/c

By standard results on Bessel functions, Ek(x) = (-—hα(fc|x|)fc|x| )lnfc|x| +

\2π J
b(k\x\), where a{z) and b(z) are entire functions and |Ek(x)| ^ C/c~1/21xΓ1/2 for /c|x|

large. Thus Ek(x) = ̂ — In k + b(0) + 4 υ M , where
2π

uniformly on |x | £ R for all R.
We now assume that χ has been chosen so that I + Ax(q,0) is invertible. If

/ + Aγ(q,k) has a nontrivial nullspace, then as before we have goeCQ with support
contained in support q satisfying

Go + qEk\ do - ί Qodxχ ) = 0,
\ R2 /

where Ekf = J Ek(x — )>)/(.yHy. Hence

^O. (3.11)

However, choosing R so that support g is contained in | x | < K, as an operator on
L2(|x| < R) qE^ +qEβ in norm as /c->0. Moreover,

In
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for k\x\ <R and

for fc|x| > R. Since χ e ^ , one sees easily that qE(

k

1]χ converges uniformly to gEoχ
as fc->0. Thus, since invertibility of operators is preserved under small norm
perturbations, it follows that there is p0 > 0 such that for 0 <£ k ^ p0 there is no
g0eL2{\x\ < R) satisfying (3.11). •

The set Θ' is open in HaN: clearly hx(0,0,0) is a continuous function of q on the
set of q such that / + A(q, 0) is invertible. To see that the union of the sets Θ' over
χ and p0 contains dense subset of the Fourier transforms of real-valued potentials
we will again consider potentials in CQ(R.2) with an additional constraint.

Proposition 3.2. Let q be a real-valued function in CJ0R2). Assume

a) there is no nontrivial solution goeC£ to

go(x) + p . J in |χ -y\go(y)dy = 0, f go(x)dx = 0, (3.12)

b) there is no solution ft0eCJ(IR2) to

ho(x) + ^ I2\n\x-y\ho(y)dy = q(xl j2K(x)dx = 0. (3.13)

Then there are χ and p0 such that qe&.

Proof. The requirement that hx(09 0,0) φ 0 is insured by b) for any choice of χ such
that / + A ^4,0) is invertible: if /i!(0,0,0) = 0, then the inverse Fourier transform
oϊh^ξ, 0,0) gives an ho(x) satisfying (3.13). Moreover, in the proof of Proposition 3.1
we showed that for any choice of χ such that / + A^q.O) is invertible there will
be a p0 > 0 such that / + Aγ{q, k) is invertible for 0 ^ k ^ ρ0. Thus, since hypothesis
a) insures that there is a choice of χ such that ί + A^^O) is invertible, we are
done. •

Remark 33. A slight variation of the proof of Proposition 3.1 shows that β is not
zero for real-valued g e Q ^ R 2 ) such that qeΘf. One shows that, if I + qE0 is
invertible, there are cutoffs χ with arbitrarily small imaginary part such that
/ + A^q.0) is invertible and χ is real-valued. Also, if / + qE0 is not invertible but
hypothesis a) of Proposition 3.2 holds, one can choose a cutoff χ, such that
/ + A! (4,0) is invertible and both χ and χ are real-valued. Then, since χ is real-valued
and, taking the inverse Fourier transform, h^x&Q) satisfies

+ qEol h1 - J hxdxi I = -q,
\ R2 /

/^(XJOJO) is real-valued, and hλ (0,0,0) is real. The constant αx(0) equals #(0),
where

g =(/ + /!1(4,0))-1((2π)-2 J ^ " ^ ' "
2 Isl
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Taking inverse Fourier transforms

IT

where, since χ is real-valued,

• oo

is real-valued. Thus g(x) is real-valued. By (2.8) χt(0) = - - (4π)~* ί /'(s)ln \s\ds
I _ 4 o
- + c, where f(s) = (2π) ι J χ{sω)dω. Thus

Since we can choose Imχ as small as we wish in C^(R2), we can make Imc as
small as we wish. Hence, since ft t(0,0,0) 7*0, Im β Φθ.

Remark 3.4. Note that the set of real potentials for which (3.12) has a nontrivial
solution is of codimension 2 in the space of real-valued functions in CQ(R2), while
the set of real potentials such that (3.13) has a solution is of codimension 1 in the
space of real-valued functions in C£(R2), and real codimension 2 in the space of
complex-valued functions in CQ^R 2 ). This reasoning leads one to the conclusion
that the set of real potentials satisfying the hypotheses of Proposition 3.1 is
connected in real-valued CJ(R2), and the set of real potentials satisfying the
hypotheses of Proposition 3.2 is contained in a connected component of the union
of the Θ'. A rigorous proof of this sort of result is given in Sect. 5 of [ER].

The representation (2.4) for h(ξ,ζ,k) holds for qeΘ provided \_Λ(huk)χ](0) φ 1
for 0 ^ k <> p0. We have

^ +
\ 2π

so that there is clearly a p' such that

LA(huk)xW)Φl for O^/c^p'.
Moreover, since 7^(0,0, fc) and ax{k\ considered as elements of C[0,pr], depend
continuously on q, we see that for qoeΘ' there is a p' > 0 such that the representation
(2.4) holds for all q in a neighborhood of q0 in HaN for k ̂  p'. Thus for \ξ\<p'
one has the representation of the backscattering given in Theorem 2.4 for all q in
this neighborhood.

We can summarize the results of this section in the following way:

Theorem 3.5. For an open set °U of q in HaN which has dense intersection with the
set, Hr

aN, of Fourier transforms of real-valued functions, there are constants r and s,
0 < r < s, locally independent of q, such that the backscattering b(ξ) has the
representation (2.9) for 0<\ξ\^s and hence
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with b1(0) = 0, and the representation for \ξ\ ^ r,

Remark 3.6. One can strengthen Proposition 3.2 by dropping the requirement that
qeCS(ΈL2) and replacing (3.12) and (3A3) respectively by

a) there is no solution in HaNn{f(0) = 0} of

i ^ f = 0, and
R 2 I'/l

b) there is no solution in HaNn{f(0) = 0} of

This does not change the conclusion of the proposition.

4. The Frechet Derivative

Theorem 3.5 only states that the backscattering mapping S:q-+β~1χ(ξ) + b0(ξ)
maps ty into HaN. However, the argument from Cauchy's formula used to prove
Corollary 3.4 of [ER] applies here to show that S is an analytic mapping of the
open set °U into HaN. In particular, the Frechet derivative dS{q) is a bounded
operator on HaN depending continuously on q. Our objective in this section is to
show that, for qeW, dS(q) is a Fredholm operator of index zero. Since CQ(R2) is
dense in Ha N, it will suffice to prove this for 4 G Q ? ( I R 2 ) . Note that this implies
h^ξ, ζ, k) is C 1 ~ε in all variables for all ε > 0. The arguments we present here will
show that for qeCo, dS(q) = P -h T, where P is invertible and TP~1T is compact
on HaN, provided α < j . Hence dS(q) is Fredholm of index zero when α < \. The
restriction on α is surely a result of our method of proof. (TP~ι)n is undoubtedly
compact on HaN for α < 1 for n sufficiently large, but we will not give a proof of
that here.

It is also true for k > 0 that q -• /i( , , k) is a differentiable mapping from °U to
the space of functions satisfying

We can use this to derive formulas for dS(q) which will be needed later. Setting
df

q{s) = q + sv,veHaN9 and, letting / denote —(0), we have

as

h, + Ax{49 k)hx =-4ζ- A^i k)hv

Then, since (/ + A^h^k))^ + A^q.k)) = /, we have

h^-V + Aάh^k^-il + A^MAΛik)^. (4.1)

By (2.4) for \ξ\ < δ the function bo(ξ) defined in the Introduction is given by
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Therefore, setting /(&k) = lA(huk)χ](ξ)9 we have for £ # 0,

We exclude ξ = 0 because several terms in (4.3) are undefined at ξ = 0. However,
combining (4.1) and (4.3) we necessarily get an expression for [dS(4)$](ξ) for
0<\ζ\^δ. Since dS(q) restricted to |ζ| < δ is a bounded mapping from HaN to
Ca(\ξ\ ̂  <5), the expression for bo(ξ) derived from (4.1) and (4.3) must extend to a
Cα function on | ξ \ < <5, though this involves cancellations which are not yet
obvious.

In the decomposition dS(q) = P + T, the operator P will be given by [Pfaiξ) =
— ή(2ξ). In analyzing T we will make much use of the fact that operator norm
limits of compact operators are compact. In particular, modulo operators with
one-dimensional range, we can decompose T:HatN-+Ca(\ξ\ ^δ) as a sum of
operators Tf with the property that [T£/](0) = 0. This is completed in (4.11). Most
of the Tf's will have the additional property that the norm of Tf as an operator
from HaN to Ca(\ξ\ 5̂ <5) goes to zero as δ goes zero. Denote the sum over these
Ti's as Σ'Ά and the sum over the rest as Σ 'T; . Our strategy will be as follows. For
any ptCξ such that p = 1 in a neighborhood of ξ = 0 we will show (Prop. 4.1)
that (1 -p)TP~x{\ -p)T is compact. From the preceeding it is clear that p^Tt

can be given arbitrarily small norm by taking the support of p sufficiently close
to zero. Finally we will show (Prop. 4.2) p(^' Tt)P~ιp(^f Tt) is a sum of compact
operators and operators whose norm tends to zero as the support of p shrinks to
ξ = 0. Since the operators (1 - p ) T P - V ( Σ " T t ) a n d ptΣ'W^1 ~ f>)τ a r e a l s o

compact (Prop. 4.3), it will follow that TP'ιT is the norm limit of compact
operators.

We will begin by simply going through the terms in (4.3), and regrouping them
to form T/s. In view of the structure of the terms we need to begin with

(4-4)
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We note that all contributions to [Tofa(ξ9ζ,k) except -lAί($9k)hί'](ξ9ζ,k) +
[y41(4, ^)^i])(0, C, fc) will contribute operators of arbitrarily small norm to dS(q),
since they all contain factors oϊ hx{ξ,η,k) — h^.η.k). Expanding further

£l), (4.5)

where

and

We now have in place of (4.4):

, |ξ |) . (4.6)

At this point it may be helpful to consider what must happen when we substitute
(4.6) into (4.3). The operator To is quite well-behaved, and, since [Γ04](0, ζ, | ξ\) = 0,
we will never need to expand it further. The operator Bλ is also well-behaved, but
we will need to expand [2?i43(O, — ξ, \ζ\) as

(C î4](o, —ί.iίi) — [ M m o,o)) + [^^(0,0,0)

to split (1 -f{0,\ξ\))~1lB14']{0, -ξ,\ξ\) into the sum of an operator Tx and a
rank one operator. This is also true of (1 — /(0, | ξ \)~x[B24] (— ί»I ̂  I )• ^ n t n e integral
term in (4.3) there are further complications. We will expand [#i4](O,>7,\ξ\) as

However, [B 2 4](^,0) is undefined, and we cannot use this expansion for [B24](η,\ξ\).
We will need to expand the part of the integral term in (4.2) involving \_B2q~\(η, \ξ\)
as a further sum of integrals.

Setting

Γ J D 3 ^ J ( ς , ς|) = (2π) I = =—dη
j^2 \η\ι — (\ξ\ -f /0)

and
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(4.3) can now be written

bo(ξ)= - j ( 2 f l + ^ ^ ^ ^ ( / ( O , | ^ | ) 4 ( 0 ) + [5 1 4]](0, -ξ,\ξ\) + lB2fa(-

m(\ξ\)4(0)

J _
lB3qj{ξ,\ξ\)

() / f ίBιqW,η,\ξ\)χ(η) lB2fa(η,\ξ\)χ[η)
i r m \ p \ \ \ J ι ι 2 n u m ί a r l ~*~ J ι ι 2 / m , ; m 2

< 4 7 )

Only three of the terms in (4.7), -q{2ξ), \_T0^(ξ, -ξ,\ξ\) and the integral involving
To, are operators mapping 4eHxN boundedly into C (\ξ\ f^δ). However, we can
show each terms is the sum of a bounded operator from Hx ^ to C"(\ξ\ ^ δ) and
one or more rank one operators. To state this more precisely we introduce

,fc)= -(1 -f(0,k)Γ%(0, -ξ,

i(o,C,Q)(4(C->?)-4(0-(4(-»?)-

[T64](5, k) = hAO, - ξ, *)/(o, fc)(i - / ( o , Λ»- 1 [τ 3 4](o, k),

R2

and

Setting

we can write (4.7) as

b0 = - 4(20 + ϊ — - = I ^ ( / ( 0 , |£|)4(0) + [B14](0,0,0) + [B24](0,0))
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O. C.
R 2 R 2 l*/l ICI

D 2 \n\2

14](o,αo))+n .χn'- 0,J+ t ίτMUξ\) (4.8)
~ | ζ | + iTip) i = o

We need to identify the cancellations in (4.8). Some of these are consequences
of the following simple observation:

Thus

fίOJfh hΛ0.0.0)m(\£\) a JO)
777 +

where Q(ξ) is a function whose norm goes to zero in Ca(\ξ\ ̂  ^) as δ -»0. Keeping
in mind that (h1{09-ξ9\ξ\)-hί{0A0))(l--f(09\ξ\)-ίm(\ξ\) is also a function
whose norm goes to zero in Ca(\ξ\ ̂  δ) as δ -^0 and collecting terms of arbitrarily
small norm as T1 0g, (4.8) becomes

l2i^-«i(0))[Bi4](0,0,0) + (l- f l l (

f χ(ηM0ΛM4(ζ-η)-4(Q-(4(-η)-m)χ(Q)λ Ar

J a\ra "^"^

+ /ι1(0,0,0)(2π)"2

) ί2π) 1 0

Next we recall that:

a)
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and hence

and

where /^(O) = 0 and βxsCa' for all α' < 1. Using (4.1) to evaluate hu one sees from
(4.10) that the coefficient of (1 - / ( 0 , | ξ | ) ) " 2 in (4.9) is -A?(0,0,0)0, and, using b)
one concludes that these terms cancel against (2π)2(ln \ξ\ + 2πβY2β modulo a final
error term of small norm, Tιlq. Thus we have

io(ί)= -4(20 + 4(0) + Σ LTMξ,\ξ\) (4.H)
ί = 0

At this point we have twelve operators Γf to analyze. Most of the Tf have
norms, as operators from HaN to Ca(\ξ\ ̂  £) which tend to zero as δ goes to zero,
and are therefore part of Σ ' To make this precise, we list the following observations.

i) The operators T 1 0 and T n clearly have norms tending to zero with δ and
do not require further discussion.

ii) The operators Γ2, T3, T5 and T6 are of the form

where

The coefficients τ i9 i = 1,2, are in C^ for all jS< 1, and are of rapid decrease as
|f/|-»oo. These properties follow from the assumption that 4eCJ(IR2). We also
have τi(0,0) = τ2(0,0). The function g(ξ) is of the form

where ae<C and w e C ^ R 2 ) for all β < 1.
To simplify these terms we expand

,

,

Theorems 1.1 and 1.4 imply directly that J2 is bounded from HxN to C(\ξ\ ^
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We expand J3 as

r (τi(ζjf?)"~τi(0jf?))(4(ί ~fi)~4(ζ)) ,
J ίξ) = \ dη

ί/1 'η ~τ\l\η\2-(\ξ\ + i0

, i?) - τ 2(0, i?) - (τ2(& 0) - τ2(0,O))χ(η) Λ

w^MTW dη

Applying estimate b) for A\, Theorems 1.1 and 1.4 to Kl9 we see that Kx

maps HΛtN boundedly to Cα(|ξ| ^ δ). Theorems 1.1 and 1.4 also imply that K2 and
K4 are bounded, and K3 and K5 are bounded by Lemma 2.3. Thus J3 is bounded

Next we note that the proof of Lemma 2.2 shows that, for aeCa(\ξ\ 5̂ <5),
(a(ξ) — α(0))(ln l^l)" 1 goes to zero in norm in Cα(|<i;| ̂  δ). Since the same conclusion
holds if we replace ( l n ^ l ) " 1 by g(ξ)(l -f(0,\ξ\)Γι by the analysis of (2.10), it
follows that the Jh i = 2,3 contribute operators to T whose norm goes to zero as
(5->0. The remaining term, Jί9 does not contribute to a term to T whose norm
goes to zero with δ, and it will be considered in Proposition 4.2. However, replacing
g{ξ){\ — /(0, l ί l ) ) " 1 in J\ by α(lnlξl)" 1 only adds a term whose norm goes to zero
with δ, when α = lim g(ξ)(ί - / ( O ^ l ) ) ' 1

l ί l olίl

iii) The operator B1 is given by

4 A 4 (4.12)

Thus, since h1 comes from geQ^lR 2 ), Theorems 1.1 and 1.4 show that Bx maps
q boundedly to Ca{\ξ\ ^ δ). Thus by the argument used in ii), we conclude that Tx

and T8 go to zero in norm as δ-*0.
iv) As noted earlier, modulo operators of small norm, [T04](£, η, k) is an integral

operator of the form

where veC for β< 1 and v(O,ζ,k) = O. Thus

ξ|) ( | ί | )J

(l-f(0\ξ\M2π)2l>\η\-(\ξ\ + i0)

ξ\))χ(ζ) Λ ,,.,.
( 4 i 4 )

(l-f(0,\ξ\M2π)2l>\η\2-(\ξ\

(v(η,ζ,\ξ\)-v(ηΛ\ξ\))χ(ζ)
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The first term in (4.14) can be represented as a sum of an integral over \ξ\ < 2δ
that is an operator whose norm goes to zero with δ and of an integral over | ξ \ > 2δ
that is clearly a compact operator since | ξ | < δ. Since t?(0, ζ, k) = 0, the second term
in (4.14) also has norm going to zero with δ by the argument in ii).

v) We claim that T4 and T7 are also continuous mappings oϊHaN to C\\ξ\ ^ δ)
multiplied by (1 — /(0, | ξ | ) )" * so that they too have norm tending to zero as δ -• 0.
The operators T 4 and T7 are of the form

=g(ξ)(i - f(o,\ξ\r2m- mi
where g is in Cβ(\ξ\ ̂  δ) for all β < 1, and in T4,

4 - if) - i(-

(4.15)

In T7 /(£) has the form

4 ι y ) - 4 ( - η ) x ( Q ) + M?>

where M i?i= 1,2, is C^ in all variables for β< 1 and of rapid decrease in (η,ζ).
Moreover,

If we apply the difference operator Δ(μ) to I(ξ) in either (4.15) or (4.16) and expand
by Liebnitz rule, we can place the difference operator either on the coefficients in
the numerators or on one of the two factors in the denominators. If the difference
operator is on a coefficient, then the "extra regularity" of the coefficients insures
that this term will be bounded by |μ|α. In (4.15) a difference operator on a factor
in the denominator gives a term of the form

where the f{ are Cβ,β<\, and of fast decrease, and /\(p) = /2(p) on a neighborhood
of p = 0. Combining estimate b) for A\ with Theorem 1.4, we see that \M(ξ9μ)\ S
C|μ | α | ln |ξ | I as desired. The argument for terms arising from difference operators
on the denominator in (4.16) is the same. Thus we have established our claim, and
we conclude that the norms of T 4 and T7 go to zero as <5->0.

We are now ready to prove that dS(q) = P + Γ, where P is invertible and TP~XT
is compact. The preceding remarks have reduced this to the following propositions:

Proposition 4.1. For any p{\ξ\)eC£(Έί2) satisfying p(\ξ\)= 1 on a neighborhood

of ξ = 0, the operator

(1 - p)(dS(q) - P)P" Hi - p)(dS(q) - P)

is compact from HaN to HaN for α < \, N > 0.
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Proposition 4.2. Let p be as in Proposition 4.1 and let W be given by

Γ (417)

Then pWP~xpW restricted to the subspace HaN = {feHaN:f(0) = 0} has norm
tending to zero as the support of p tends to ξ = 0.

Proposition 4.3. The product of (1 - p)(dS(q)~ P)P'ip with the operator W of
Proposition 4.2 is compact.

The proof of Proposition 4.1 is the argument given in Sect. 4 of [ER].
There is one significant difference between two and three dimensions. When
one carries out the computations to determine the singularities of the kernel of
( ( l - p ) ( d 5 - P ) ) p - 1 ( ( l - p ) ( d S - P ) ) one is lead, as in [ER, pp. 203-204], to
integrals of the form

/ ( 4 τ ) = J
V

However, we now have p = 1 instead of 2 as in [ER]. Substituting μ2 =
ω{2\ξ\'-ω2)1/2

9 one sees

/(ξt)=f 2f(ω(2\ξ\-ω2)V\ξ τ)dω

where ω2 <\ζ\ on the support of/. Thus

'«• τ> - (ifi) 1/2/(0, ί, τ) f Ϊ — ^ + Io{ξ, τ)

<4 18)

where yj~ is the branch positive for positive argument and I0(ξ9 τ) has a milder
singularity. The term Io actually behaves like the leading singular term in [ER]

with a singularity like In ί | τ | - — - | ξ \ - iO I. The first term in (4.18) is an integral

kernel mapping HaN into Cα for any α' < \. For this reason we need to assume
α < \ in Proposition 4.1. The remainder of the proof of Proposition 4.1 is the same
as the argument of [ER, Sect. 4], and we will not give it here.

Proposition 4.2 is the most delicate of these three propositions, and the most
tedious to prove. This is the argument which we will give here. The proof of
Proposition 4.3 is simpler, and will be omitted.
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On HaN the integral operator — (pW)P~1(ρW) has the kernel

Pi\η\)

where the limits are taken in distribution sense. As in [ER] our objective is to
analyze the singularities of K(ξ, τ). We will show, for α ̂  1/2, that they are
sufficiently mild that ]n\ξ\K(ξ9τ) maps HaN boundedly to Ca(\ξ\^δ).

To study the behavior of K(ξ9 τ) near (ξ9 τ) = (0,0) we will stretch variables by
setting η = rη\ ξ = rζ' and τ = rτ\ where r = (\ξ\2 + | τ | 2 ) 1 / 2 . This gives

, P(lίl)l£l „* ,
' r a |τ |In|ίΓw"

where, using v for the unit vector in direction of v,

w/ΐ , r S(ή-ξ)(ή τ)p(r\η'\)dη'

ξ> -2η'\2 -(\ξ'\ + iθ)2)ln(r\η'\)(\τ' -η'\2 -(\η'\ \2 '

For δlξl-clτl^c^" 1 !^! the zeros of the denominator of the integrand of I(ξ, τ) are
bounded away from η' = 0. Moreover, excluding a neighborhood of η' = 0,1(ξ'9 τ')
has the form of the kernel of the operator Tί defined in (4.9) of [ER] with 2τ
replaced by τ. Thus, for δ\ξ\ < | τ | <<5" 1 | ίL it follows from (4.18) that I(ξ9τ) =
ξΆ(ξ\τ\r)τ with the matrix A given by

Λ(ξ\ τ\ r) =K(ξ\τMrr)

(4.19)

where h0 is smooth and order |lnr|~1,^40 is a superposition of functions of the form

w h e r e h1 is s m o o t h a n d o r d e r ( l n r ) 1,a^j\ξf\, a n d A v is C α for all α' < 1 in ξ'
a n d o r d e r ( l n r ) " 1 . N o t e t h a t for δ\ξ\ < \τ\ < δ'1 \ξ\ b o t h | ξ ' | a n d | τ ' | lie in [ε, 1 - ε]
with ε = ε(δ) > 0.

W h e n | τ | > 2\ξ\ t h e zeros of \ξ' - 2η'\2 = \ξ'\2 a n d \τ' ~η'\2- \η'\2 a r e disjoint.
T h u s , t a k i n g \ξ'\ < 1/8, we c a n use a cutoff χ(\η'\) t o split I(ξ,τ) i n t o

2 R2 (I'/'Γ "

where g is smooth and bounded, and

?)(l-X(W\)p(W\r)

where h is smooth, and |3£Λ| ^ C | ^ Γ 2 ~ | α | Clearly / 3 is of the form ξ A(τ\ ξ\
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where A is a smooth matrix-valued function which is O^lnr)" 1). In I2 we split
g(η'9 ξ

f,τ') into g(0, ξ',τ') and g(η'9 ξ9τ') - g(0, ξ'9τ'\ forming I21 and I22.lnl21 we
use polar coordinates centered at η' = 0. Since this gives ή'ξ = zosφ and ή-τ' =
cos(φ — φo\ where φ0 is the angle counterclockwise from ξ to τ, one can evaluate
the integral in φ explicitly:

Setting 5 = I^'|t4, we have

where /'21 = f / ( « ) . ' , ' V " with f \f(ύ)\du < oo. Assuming χ(s) = 1 for \s\ < δ,
o ln(r|ς \u) o

χ(\ξ'\u) ™lχ(v)dv

Γ~du= ί In rv

Since \g(η'9ξ',τ')-~g(09ξ'9τ')\^C\η'\9I22 is less singular than J 2 1 .
The remaining case is | τ | <δ\ξ\,δ small. The new feature of this case is that

the factors in the denominator of the integrand have common zeros near η' = 0.
Since common zeros outside \η'\<ε(δ) occur when the zero sets of the factors
intersect transversally and hence contribute smooth functions of (ξ'9 τ', In r9 ξ9 τ), we
will only consider the integrand multiplied by a cutoff χ(\ηf\) supported in the set
where p(r\ηr\) = 1 for r < 1. Thus the contribution to I{ξ9τ) is of the form

1 °°2π 8cosφcos(φ-φ 0 )χ(s)
- dφ as,(S-\ξ'\cosφ-i0)(lnrs)(\τ'\-2scos(φ-φ0)-iQ)

(4.21)

where we have again used the polar coordinates s=*\η'\9ή-ξ = cos φ,ή-τ = cos (φ — φ0).
As one would expect, the function J(ξ, τ) is most singular when the zero sets of
the factors of the denominator of the integrand are tangent, i.e. when

| £ Ί ( l + c o s φ 0 ) = |τΊ. (4.22)

To study this singularity one can evaluate the integral in φ (the method of residues
is convenient here), and then study the integral in s. This contains spurious
singularities at s = | ξ'\ and 2s = \τ'\ that can be eliminated by changes of variable,
and more complicated spurious singularities when |τ ' | = 2 |ξ ' |cosφ 0 . Instead of
tracking down the cancellations which eliminate the latter singularities, we simply
split this case into two, considering first | τ | < (5|ξ |, |cosφ 0 | > 1 — <5, where these
singularities do not occur. In this case the result is that

(4.23)
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modulo less singular terms. Here b = \ξ'\2 — (|τ'| — |£'|cosφ0)
2 and/is a smooth,

bounded function of ξ\τ',φ0, Jb — zΌ,Inr and the functions ln(± \ξ'\ύnφ0 ±

y/b^ΪO).

When \ξ-τ\<l-δ, the functions u = 2τ η' and v = ξ' η' -\η'\2 can be used as

coordinates near 77'= 0. Thus, assuming | τ | < δ | ξ | and taking the support of χ

sufficiently small, for (ξ, τ) in this region we have

UP τλ=

 1 f u(v + g(u,v))f(u,v)dudv
K } \τ'\\ξ'\l2(υ-i0)(\τ>\-u-ί0)(\nr2g(u,v))g(u,vy { ' ]

where g(u,υ) = \η'\2 and / is smooth with support near (u,υ) = (0,0). Thus

|τ'||<r|R

J2(|τ'|-M-i0)

, 1 f I2{u,ξ',fMr)

where

/1(w,ξ',τ,ω)=ί

and

Note that / and g depend smoothly on ξ and τ.
To check the regularity of I2 in u we set v = us. This gives

f uf{u,us)ds

R (s - (sgn u)ΐθ)(2ω + In g(u9 su))

Since we may assume that g(u9v)<\ on support /, one sees that I2 is C1~ε in

uniformly on ω^O. Moreover, | / 2 | < C | ω | and for ω<0.
dω

Applying Privaloff's theorem, we may conclude that J2 = \τ'\~1F2(ξ\τ9\τ'\9lnr),
where F2 is smooth in (^,τ,lnr) and C 1 - ε in |τ'|, and F2(£',τ,|τ'|,ω) satisfies the
same estimates as I2 as ω-> oo.

Iλ is a little more singular. We will write

where χ is a smooth cutoff, equal 1 on support /.

Since u—g~ι is bounded, one computes that dljdu is bounded uniformly by
du
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C\u\~ι. We also have

R | τ Ί — M R l - y

so that

du
3|τ'|Vi \τ'\~u

Q
is bounded by ——. Thus we conclude that

where Fi is smooth in ξ and bounded in τ, F2 is C l ε in |τ ' | uniformly in (ξ',τ),
and dFJd\τ'\ is bounded by C\τ'\~ι.

The final point to be checked here is that the singularities we have found are
sufficiently mild that (ln\ξ\){ρW)P~ι{ρW) is a bounded map of

HΛ,N = {veHΛy.r(0) = 0} to Cα = {υeC\\ξ\ ^ l):i>(0) = 0}.

Hence (pW)P~ 1(ρW) can be given arbitrarily small norm by taking the support of
p sufficiently close to zero.

The list of singularities we have found is as follows. When 1

the most singular terms are of the form

J

where / is smooth in (ξ/r, τ/r, In r, r) and bounded in τ. Moreover, / is order |ln r\ ~ *
as r-+0. When 4\ξ\ < |τ | , the most singular terms are of the form

where / is a smooth function of (ξ/r,τ/r), bounded in τ. When <5|<!;|>|τ| and
\ξ"t\>(l—δ) with δ sufficiently small, the most singular terms are of the form

where / is as in (4.23).
Finally, when δ\ξ\ > | τ | and |<f f | < (1 — δ) the most singular terms are of the

form

r/r,f), (4.28)
\τ\2\n\ξ



482 G. Eskin and J. Ralston

where f{u,v9w) is smooth in M, bounded in w and df/dv is bounded by \v\~x.
We will introduce a partition of unity subordinate to the cover of {(ξ\ τ'): | ξ'|2 +

2

and {|τ'| < 2δ\ξ'\}9

as well as a partition of unity subordinate to the cover of {(<f,τ):|<f | = |τ | = 1} by

{|£ τ | < (1-2(3)} and {ξ-τ\>(l - δ)}.

Then the leading singularity in K(ξ,τ) is the sum of K1,K2,K3 and K4 multiplied
by the appropriate factors from the partitions of unity. Since this only introduces
additional factors of smooth functions of (ξ\ τ') in Kx and K2 and smooth functions
of (ξr, τ', ξ"t) in K2 and K3, the only change in the forms of the singularities is that
/ in (4.28) now depends on ξ τ as well as (ξ/r9 τ/r,τ).

The kernel K3(ξ,τ) of (4.27) has the most complicated behavior. To estimate

sup Δ(μ)(ln\ξ\K3(ξ,τ))f(τ)dτ

it will suffice to consider Δ(μ) acting on each factor in (In | ξ\)K3 separately. Letting
Δ{μ) act on (\ξ\ + ξ τ - \τ\ - i θ ) " 1 / 2 , and setting | τ | = s, ξ-τ = cosφ, we get a term
bounded by

2δ\ξ\

ξ-τ-s-iOΓ1/2)f(τ)dφ ds.

(4.29)

It suffices to estimate (4.29) separately when φ0 ~ 0 and φo~π and to consider
only μ giving purely radial or purely rotational changes in ξ. This gives us four
cases: a) μ|| ξ and cosφ <2δ— 1, b) μ\\ξ and cosφ > 1 — 2<5, c) |ξ -h μ| = |ξ\ and
cosφ <2δ — 1, and d) jξ + μ| = |<J| and c o s φ > 1 —2(5.

Since f o r / e H β ^ , | / ( τ ) | ^ | τ | α | | / | | α J V , in case a) (4.29) is bounded by

cm1/2n/ιu
n + δ'

\(\ξ + μ\(l +cosφ)-s- iθ

or, setting s = \ζ\u,

+ c o s φ ) - s - JO)"

(4.30)

Setting (1 + cosφ) = uβ2, i.e. u1/2β = y/2cos—9 we see that (4.30) is bounded by

(4.31)

= | ξ 4 - μ | K Γ 1 - l . We have \Δ\ ̂  \μ\\ξ\~\ and, since \μ\ <$\ξ\,\Δ\ <i
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To estimate the inner integral we split it into the integrals over {|1 — β\ < \Δ\}
and {11 - β\ > \Δ\}. Estimating the integrals of |(1 + Δψ - 1 Γ 1 / 2 and |j?2 - 1 Γ 1 / 2

separately over the first domain, and then using the cancellation in the integrand
in the second domain, we see that (4.31) is bounded by

1 / 2

(4.32)

and, since |μ| <\\ξ\, this is bounded by |μlΊI/Hαjv as desired.
In case b) (4.29) is bounded by

\ξ\m I \ί(\ξ\(ί-cosφ) + sy'2Γ= \ξ\ι~°

which, since \μ\ <j\ξ\, is stronger than(4.32).
In case c) the change of variables that lead to (4.30) shows that (4.29) is bounded

by

2δ

0
f (0

π-<p|<<5'

- φ{μ)) -u- i

— (1 + cos φ — u — /O) 1 / 2 ) / ( I ξ I u cos φ, \ ξ \ u sin φ)dφdu, (4.33)

where 2|ξ||sin(φ(μ)/2| = |μ|. Writing the integral over |π — φ\ < δ' as the sum of the
integrals of the two terms in the integrand, sending φ — φ{μ) to φ in the first and
recombining, one sees that (4.33) is bounded by

\μ\*
2δ

,N

Since the integral is finite, we again have the desired estimate.
Case d) is a simpler version of c), just as b) was a simpler version of a).
When Δ(μ) acts on (\ξ\ — ζ-τ + \τ\)~1/2 one encounters terms like those we

have just estimated. The remaining factors are less singular and do not cause
problems.

To estimate

sup Δ{μ)(hi\ξ\K3{ζ9τ))f{τ)dτ\9

we simply note that

\\n\ξ\K^τ)\\τ\«dτ^C\ξ\«]u«-1 f \\-(u-cosφ)2\-ιi2dφds^C\ξ\\
0 |cosφ|>l-2<5

Thus

4(/ι)(ln|{|X3.(ξ,t))/(τ)dτ

and, since \ξ\ < 2|μ|, we have the desired estimate.
The preceding analysis should be repeated for Kί9 K2, and X4. As noted earlier

these are somewhat less singular.
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5. Conclusion

From the arguments of Sects. 3 and 4 it follows that the Frechet derivative dS{q)
is a Fredholm operator of index zero for q in a connected component ^ 0 of °U
such that yo = Won{q:qeCQ(15l2) and q is real-valued} is dense in Hr

ΛtN. To
complete the proof of the result stated in the Introduction we prove the following
lemma.

Lemma 5.1. The Frechet derivative dS(q) is invertible for some q0e%0, and hence,
by the analyticity ofS(q) on Wo, for all q in an open dense subset of

Proof. We will show that there are 4 o e ^ o with small norm in HaN such that
dS(q0) is invertible. Using the decomposition dS = P + T of Sect. 4, it suffices to
show that {l-TP~ι)dS = P-TP~ιT is invertible, and we will do this by
showing that for a suitably chosen sequence qne^0 converging to zero, the norm
of TiqJP'1 T(qn) goes to zero. For this we simply choose a real-valued g0eCJ(IR2)
with qo(0) = 1, and set qn = n~1q0. By Theorem 1.1 for any fixed χ and χ0 the norm
of ΛζA^q^tyΛ^" as an operator from Cα to Ca goes to zero as π-» oo, uniformly
for k ^ 0, £eR 2 . Hence, since

it follows that for n sufficiently large,

Re{/zM(0,0,0)}< - R ( 0 ) ^ -cUnhs,

for some c>0 independent of n, and qneΘf. Moreover, since qneCQ the first two
estimates of (1.9) hold without the factors of |lnfc|. Hence, for n sufficiently large
-Re{/z lπ(0,0,0)} ^ε||fri,J|α-)iV for some ε > 0 independent of n, and | | / i l M | | α V V ^
C||4Jα,N = cn'1. Here we use || \\aN to denote the α-Hόlder norm in (ξ,ζ,k) with
weight Λ%.

Now we only need to check that the terms in the decomposition of TP~1T
which had small norm can now be given small norm uniformly in n, and that those
that were compact have norm tending to zero as rc-> oo. The choice of qn in the
preceding paragraph insures that the crucial factor 1 — fn{O,k) satisfies (see (2.5))

where Re {^i,π(0,0,0)} ^ —εn" 1, ε > 0. Hence there is a radius p independent of n
such that for n > n0 and \ξ\<p,

The estimate (5.1) shows that the reasoning used to show that the operators T,(<?„),
i Φ 0,2,3,5,6,9 have small norm when cutoff near ξ = 0 holds uniformly in n, and
that the reduction of the contributions of Th i = 2,3,5,6 to operators of the form
(4.17) can be done keeping the norms of the errors uniformly small in n. However,
one can see that the norms of To and T9 go to zero as n-> oo directly from (5.1)
and their definitions. We also need to show that (1 — p)(dS(qn) — P) goes to zero
as n-> oo. However, since (1 — p)S(q) is analytic in q at q = 0 and (1 — p)P is the
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value of its Frechet derivative at q = 0, this is immediate. Finally,

where | |RJ | goes to zero as n-*oo (see (4.10)). Thus

dS(qM) = dbo(qn)4 + χ(ξ)dβ~ \qn)k = (P +

where T^^P'^T^^) has a small norm in HaN as n-»oo. Therefore dS(qn) is
invertible large n.

As in the proof of Theorem 5.4 of [ER], the analytic dependence of dS(q) on
q implies that °lί0 has a dense open subset °U^ with fy^nH^x dense in Hr

aN such
that dS(q) is invertible for qe^ίaQ.

Now an application of the implicit function theorem gives

Theorem 5.2. The mapping q -• S(q) = bo{ξ) + β~ ιχ{ξ) is a local analytic isomorphism

As a final remark we consider, analogously to [ER], the "restricted" backscatter-
ing problem. As was noted in [ER], the inverse problem of recovering of a
real-valued potential from the backscattering amplitude b(ξ) is still oi erdetermined
since q(ξ) satisfies the relation q(ξ) = q( — ζ). Therefore we consider the restricted
backscattering problem of recovering a real-valued potential q(x) from

In fact F " 1 ^ is the real part oϊ F~ιb. Since

we have

2π 2π

where β, = Reβ,β 2 = Imβ. Since bro(ξ) = %bo(ξ) + bo(-ξ)) = O(\ξ|α) for |ξ\ small,
knowing br(ξ) we can recover separately bro{ξ),βγ and β2. Denote by Sr(q) the
following map of Hr^Nn<% to Hr

aN:

ι

Analogously to the proof of Theorem 5.2 we obtain

Theorem 5.3. Sr(q) is an analytic map of^nH^ into Hr

aN. The Frechet derivative
dSr(q) is a Fredholm operator of index zero for any
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Note that %r\Hr
aN is not a connected set Jfr

atN. AS in Theorem 5.2 we can
prove that dSr(q) is invertible for some small qe%nHr

aN and this gives that Sr(q)
is a local analytic isomorphism for an open dense set in a connected component
containing those q.

In another paper we shall study the invertibility of dSr(q) in all components of
% n Hr

aN and also reconsider the same problem for n = 3.
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