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Abstract. In a previous paper [11] it was shown that to each locally normal state of
a boson system one can associate a point process that can be interpreted as the
position distribution of the state. In the present paper the so-called conditional
reduced density matrix of a normal or locally normal state is introduced. The
whole state is determined completely by its position distribution and this function.
There are given sufficient conditions on a point process Q and a function k
ensuring the existence of a state such that Q is its position distribution and k its
conditional reduced density matrix. Several examples will show that these
conditions represent effective and useful criteria to construct locally normal states
of boson systems. Especially, we will sketch an approach to equilibrium states of
infinite boson systems. Further, we consider a class of operators on the Fock space
representing certain combinations of position measurements and local measure-
ments (observables related to bounded areas). The corresponding expectations can
be expressed by the position distribution and the conditional reduced density
matrix. This class serves as an important tool for the construction of states of (finite
and infinite) boson systems. Especially, operators of second quantization, creation
and annihilation operators are of this type. So, independently of the applications in
the above context this class of operators may be of some interest.

1. Introduction

For a mathematical explanation of many structural effects, phase transitions,
characterizations of equilibrium states, etc. of “large” quantum systems it turned
out to be useful to have available mathematical models for infinite quantum
systems. There are several approaches to the study of infinite particle systems. In
quantum statistical mechanics a common approach is the concept of quasilocal
C*-algebras /. Hereby « is the (norm completion of the) union of all local
algebras representing measurements in bounded areas of the phase space. The
local algebras are assumed to be (isomorphic to) the algebras of bounded linear
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operators on the symmetric Fock space over the bounded region. The state of such
a system is given by a positive normalized linear functional on the quasilocal
algebra.

Though this approach is fairly general and elegant it is quite difficult to
construct in a rigorous way examples of states of infinite systems. Furthermore,
even for standard examples it is complicated to calculate explicitly the expec-
tations of numerous physically important measurements. The difficulties are
connected for instance with the non-existence of the Lebesgue measure on R®. In
classical statistical mechanics one could avoid these troubles by using the well-
developed theory of infinite point processes (cf. [5, 6, 18, 27]).

The aim of our investigations was first to associate — as in classical statistical
mechanics — to a state of an infinite quantum system an infinite point process that
can be interpreted as the position distribution of the state, i.e. the point process
contains all information connected with (finite or infinite) position measurements.
This step was done in [11]. The position distribution alone never will characterize
the whole state of the quantum system. We relate to a given state a function
describing the behaviour in bounded regions given a fixed configuration outside.
This function which we called conditional reduced density matrix (c.r.d.m.)
determines together with the position distribution the state completely, and allows
to calculate all kinds of conditional intensities. The point process and the c.r.d.m.
are defined in such a way that all troubles connected with infinity are “packed” into
the probabilistic part (the point process) where one can use the results of classical
statistical mechanics and the theory of infinite point processes. By integrating the
cr.d.m. with respect to the position distribution one gets the reduced density
matrix of the state well-known in statistical physics. The advantage of such a
description of locally normal states is that one obtains effective sufficient
conditions on a point process Q and a function k ensuring that Q is the position
distribution and k the c.r.d.m. of a locally normal state. This allows an explicit
construction of states. Several examples of states of infinite boson systems are
given, and an approach to equilibrium states is sketched.

First we will introduce a class of operators combining position measurements
with other local measurements. This class is used for the characterization of locally
normal states. However, independently of this application this class of operators
may be of some interest, especially because of its connections with stochastic
calculus and Maassen’s kernel approach.

All our considerations are reduced to locally normal states of boson systems
without spin. We further assume that the local algebras consist of all bounded
linear operators on the symmetric Fock space over the bounded regions of the
phase space G which is assumed to be a complete separable metric space equipped
with a locally finite diffuse measure.

Let us sketch briefly the contents of the single sections of the present paper.

In Sect. 2 we introduce some basic notions and notations from point process
theory. Further, we describe the symmetric Fock space in a manner adapted to the
language of counting measures and point processes, i.¢. this space is defined as the
L,-space over the set of all finite counting measures on the phase space. This space
describes (by definition) indistinguishable systems. In our opinion this represen-
tation of the Fock space allows a more convenient description of boson systems
because one achieves indistinguishibility by definition and not — as in the usual
approach — by using operators of symmetrization acting on a space describing
distinguishable particles. Further, we introduce in Sect. 2 the concept of quasilocal
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algebras, and we refer some results obtained in [11] concerning the position
distribution of locally normal states.

In Sect. 3 we define the above mentioned type of operators on the Fock space
representing combinations of counting procedures with other measurements.

In Sect. 4 it is shown that many operators describing physically meaningful
measurements are operators of the above type, as for instance creation and
annihilation operators and operators of second quantization.

Some further notions from point process theory, especially the important class
of so-called X' -point processes and conditional intensity measures are introduced
in Sect. 5.

The next section deals with a description of normal states. We introduce the
cr.dm. of a normal state and give a characterization of a normal state by its
position distribution and its c.r.d.m. Section 7 contains the main results. We give
sufficient conditions on a function k and a point process Q such that there exists a
uniquely determined locally normal state with position distribution @ and c.r.d.m.
k (Theorem 7.3). In Sect. 8 we give a method for an explicit construction of a state
having a given point process as its position distribution. This method is based on
an application of Theorem 7.3. Examples resulting from this approach are given in
Sect. 9. In the subsequent section we will sketch a characterization of equilibrium
states. Details of these investigations will appear in a forthcoming paper.

The proofs of all results are contained in the remaining sections.

The present paper represents an enlarged, generalized, and revised version of
the reports [9, 10].

2. Basic Notions and Notations
2.1. Counting Measures and Point Processes

Let G be a complete separable metric space. By ® we denote the o-algebra of Borel
subsets of G, B is the ring of bounded sets in ®. G will represent the phase space of
the considered boson systems (i.e. the space of the positions of the bosons). In
applications, G usually will be an Euclidean space IR?, d > 1.

2.1. Definition. Let A€ ®. A counting measure on A is an integer-valued locally
finite measure on [G, ®] concentrated on 4. By M, we denote the set of all
counting measures on 4, i.e.

={¢p: ¢ is a measure on [G, ®], p(4)=0, ¢(B)eN for Be B}

where N:={0,1,...} and 4°:=G\4.

The elements of M , may be interpreted as locally finite point configurations in
A.Indeed, a measure ¢ on [G, ] is a counting measure on A if and only if ¢ can be
written in the form ¢ = Z d,, with J an at most countable index set, x;€ 4 for all

j€J and the sequence (x ]) e havmg no accumulation points [each bounded subset
of A contains only finitely many elements from (x;);. ;]. By 6, we denote the Dirac
measure in X.

We equip M, with the g-algebra 9, generated by all sets of the type

{peM,:p(B)=n}, BeB,neN.
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The set M4 :={peM ,: p(A9) < o0} of finite counting measures on A is obviously

a measurable subset of M ,.
In the case 4=G we omit the index A in the above notations. For 1€ ® we

denote by v, the restriction from M to M, ie.
vA@):=0(-n4) (peM). @1

We also write ¢, instead of v ,(¢). Obviously, v, is measurable.

Further, we set for arbitrary 4e® I:={v"(Y): YeM,}. (,M) . is an
increasing net of g-subalgebras of I (B ordered with respect to inclusion), and
Ggﬁ = ?.R.

In the sequel we have to distinguish carefully between ,9 and I ,. Counting
measures from a set belonging to M , have no mass points outside 4 while the sets
from ,I are determined by the behaviour of their elements inside 4. More
precisely, we have the following characterization of ,9 which is very easy to verify.

2.2. Lemma. Let A€®, YeIR. The following conditions are equivalent:
@i Ye M,

(i) Y={p+¢:0ev,(Y), e M,};

(iii) For all pe M xy(@)= Yy ,x|(® 4);

where xx denotes the indicator function of a set X.

2.3. Definition. A point process is a probability measure on [M,M]. A point
process P is called finite if P(M/)=1. P is called a point process on 4e® if
P(M )=1.

According to the interpretation of counting measures a point process on A is
the distribution of a random point system in the phase space 4.

For details and further information about counting measures and point
processes we recommend the monographs [21,26].

2.2. The Fock Space Over A

The notion of the Fock space we want to introduce now is adapted to the language
of counting measures.

Let v be an arbitrary but in the sequel fixed locally finite diffuse measure on
[G, ®] [ie. v(B)< oo for all BeB, v({x})=0 for all xeG].

For each 4 €® we define a o-finite measure F, on [M, ] by

1 n
Fo¥): = @)+ % 3 § Vdlxs, o Xalty (j;l 5x,-> (Yed), (22

where @ denotes the empty configuration, ie. Oe M, O(G)=0.

Observe that F, is concentrated on MY, and that for 4 B the measure F, is
finite (F 4(M)=exp{v(4)}. In the case G=R, v usually will be the d-dimensional
Lebesgue measure.

The set of complex numbers is denoted by €, and for a complex-valued
function f by f its complex conjugate is denoted.

2.4. Definition. Let A€ ®. The set
My:={p:M—>C, ¥ measurable, supp ¥ S MY, [F ,(d)|¥(p)|* <0}
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endowed with the scalar product
(P, P2)4:=[F Ado) ¥ () P*(9)

we call the (symmetric) Fock space over A.

In the case 4 =G we again omit the index A. A similar definition of the Fock
space over G=IR! one can find in [19, 24, 25]. In [11], (Remark 2.5) Definition 2.4
is compared with the usual definition (cf. instance [15, 1, 2, 3]).

In the sequel we often will use the following property of the measures F ,:

25. Lemma. Let A,4'€®, AnA'=0, and let h:-M xM—C be a F,yxF,-
integrable function. Then

JF4xF ) @AdLp1, 02D @1, 92)=[ F 4,4 (d0)H(P 4, 1) - (2:3)
Now, for ¥ € # and ¢ e M we denote by ¥, : M—C the mapping defined by
Yol@):=P(@+9¢) (peM). 2.4)

2.6. Remark. Since ¥ is concentrated on M/ we have ¥,=0 for all ¢¢ M .
Obviously, Po=Y. However, Ye.# and ¢e M’ does not imply in general
¥, € 4. One can construct easily ¥ € .# such that for all e M’, ¢ + O one has
¥,¢.#. We will give now a class of functions ¥ with the property that for all
¢eM, ¥Y,e .

For arbitrary 4e ® we set

ML ={VeM,: suppP <M for some me N}, 2.5
where M%:={peM ,: p(4)<m}. Functions from .# are called usually finite-
particle vectors.

2.7. Lemma. For all A€ ®, M, and ¥ € M it holds ¥, M.

The set .4 is obviously dense in the Fock space .#, and it will represent the
domain of definition for many operators considered in Sect. 3.

2.3. Quasilocal Algebras

For arbitrary measurable f: M —C denote by O, the operator of multiplication by

fie.
O,V (Q)=fp)¥(@) (YeM,peM). (2.6)

If f is the indicator function of a set Ye M, i.e. f=yy, we will denote O, for
brevity by Oy.

Now, by Z(#) we denote the algebra of all bounded linear operators on /.

For each 1€ ® we set

ol ={Ae L(M): A=0,, 40, }. @.7)

o , may be identified with the algebra #(.# ) of bounded linear operators on .#,.
P(M,) is a von Neumann-algebra. We have of;=L(#). For definition and
properties of von Neumann-algebras cf. instance [28, 4, 7, Chap. 2, Sect. 1.5, 2,
Chap. 2.4].
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Itis not difficult to show [11, Proposition 2.6] that for each 4 € 6 there exists a
unique isomorphism I , between #,® .# ,. and such that for all Ve # ,, ¥ € M .,

peM, L(P®P)(0)=¥(0.) (040 28)

(® denotes the tensor product).
This allows a natural embedding of o/, into £(.#). More precisely, for 4€B
we define a mapping J ,: &/ — L(#) by

JA: =1 (A1) (Aded,), (2.9
where 1,.=0), . is the identity in &/ .
2.8. Definition. Let A€ ®. The subalgebra ,of of L(.#) defined by
aZ ={JA: Ae o} (2.10)

is called the local algebra on A.
Identifying isomorphic spaces we simply could write ,&/ =.o/,®1 4.

2.9. Definition. The pair [, (;ﬁxai) 1e)> Where & is the uniform closure of () ,/
we call the quasilocal algebra over the Fock space .. AeB

2.10. Remark. The uniform closure is the closure with respect to the operator norm
in Z(MH). If we assume that the phase space G is unbounded then </ is a proper
subset of Z(#). A more general definition of a quasilocal algebra is given e.g. in [2,
Definition 2.6.3]. More information one can find in [33-36].

Finally, we want to make some remarks on multiplication operators. It is well-
known that {O,: f e .#°} with

MP={f:M—C, f measurable and F-a.e. bounded} (2.11)

is the maximal set of multiplication operators contained in #(.#) (cf. instance
[22]). The relation between .o/ and <, corresponds to the relation between M
and 9t ,. Observe that for all A€ ® and Ye, one has Oy e <.

2.11. Proposition. Let ge .#°, A€®. The following conditions are equivalent:

(i) 0,e,4.

(i) There exists a ,IMM-measurable function g such that O,=O0,.
(i) 0,=J40,.,,.
2.12. Remark. Observe that for ge .#® we have 0,=0,, . However, g, is not
+P-measurable for any 4 € B (provided the whole space G is unbounded). Since
4 “does not feel” this ,9M-measurability we cannot conclude from (i) that g is
4M-measurable but only (ii).

2.4. Locally Normal States and Their Position Distribution

Now, let o bea C*-subalgebra of £(.#). A positive normalized linear functional n
on &/ is called a state on «7. A state # on a von Neumann subalgebra .of of #(#)is
called normal if there exists a density matrix ¢ on .# (i.e. a positive trace-class
operator with trace one) such that

n(A)=Tr(ed) (Ae). (2.12)
[By Tr we denote the trace in £(.4)].



States of Infinite Boson Systems 321

2.13. Definition. A state w on f is said to be locally normal if for all A€ the
restriction ,o of w to 447 is a normal state, i.e. for all 4B there exists a density
matrix 4,0 on .4 such that

o(4)= 40(A)=Tr(,04) (A€ ) (2.13)
(cf. [2, Definitions 2.6.6, 2.4.20 and Theorem 2.4.21]).

2.14. Definition. Let  be a locally normal state on & and Q a point process. Q is
said to be the position distribution of w if for all Ye M such that Oy € o/ we have

0(Y)=w(0y). (2.14)
Now we mention the main result of [11].

2.15. Theorem. Let w be a locally normal state on </. There exists exactly one point
process Q,, being the position distribution of .

2.16. Remark. The above result was shown in [11] in the case G=IRY v the
Lebesgue measure on IR?. However, the proof of Theorem 2.15 for a more general
phase space G requires only minor notational changes because all results from
point process theory used in the proof are valid in this more general case.

Moreover, in [11] there is given a more detailed characterization of the class of
point processes which may occur as position distributions of locally normal states
of boson systems.

3. A Class of Operators on the Fock Space

In this section we will introduce operators S(Y, A) corresponding to A€ .«/, and
sets YeWt that can be interpreted as a combination of 4 with the position
measurement Oy. For the special case Y=M and A being a self-adjoint operator
concentrated on the L,-space .#; over one-point configurations this operator
coincides with the usual second quantization of A. Further, we will show that for A
being the operator of a position measurement the expectation w(S(Y, A)) of S(Y, A)
in the state w can be expressed with the aid of the compound Campbell measure of
the position distribution Q. Usually, the operator S(Y, A) will be unbounded but
we will give sufficient conditions on 4 and Y ensuring that S(Y, A) will be bounded
again. As examples of operators S(Y, A) we will introduce (generalized) creation
and annihilation operators. Especially, it will be shown that each element of &/ is
an operator of the type S(Y, A) for certain Y and A. Consequently, the whole state w
will be determined by the expectations w(B) with B being operators of the type
S(Y, A).
The domain of an operator B on . will be denoted by D(B).

3.1. Definition. Let Ae®, YeM, Ae,. By S,(Y,A) we denote the set of all
(possibly unbounded) operators B on .#, such that

(@) D(B)2.41,
(i) (BY)(p)= (»;«: 1w(P) (AP (9—¢) (PeM, F-aa. g),
(i) BY=lim B(Oy?) (¥eD(B)).

In the case 4=G we write S(Y, A) instead of Sg(¥, A).
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MJ was defined in (2.5). ¢ ¢ means that ¢ is a subconfiguration of ¢, i.e.
o—@eM.

3.2. Remarks. a) Condition (i) is a very natural one because the finite particle
vectors should belong to the domain of any reasonable operator on the Fock
space. Further, (i) ensures that all operators from S (Y, A) are densely defined.
b) Two operators from S (Y, A) may differ only with respect to their domains of
definition. Because of (ii) they coincide on .#4. Since for each me N, Oyn¥ e M
condition (iii) ensures that for B,, B,eS (Y, A) it holds B, =B, if D(B,)=D(B,).
c) If B;,B,€eS (Y, A) and B, is unbounded then B, is unbounded too. In what
follows bounded operators are always assumed to be defined on the whole space.
So if BeS,(Y,A) and B is bounded then S ,(Y,A)={B}, and we write simply
B=S5 (Y, A).
d) Also in the case that S (Y, A) consists of unbounded operators for ¥ € .4 we
will write S (Y, 4)¥ though S ,(Y, A) denotes the set of operators. This will not lead
to misunderstandings because they all coincide on . (ii)).
e) For each ¥ e . the right side in (ii) is a well-defined function from M into C.
First observe that for ¢ ¢ M/ the right side is equal to zero because ¥,=0 (if
¢ ¢ M’) or (A¥,) (¢ — $)=0 (if o — ¢ ¢ M). Consequently, the sum over all pC ¢
(the sum over all subconfiguration of ¢)is a finite one. Further, from Lemma 2.7 we
conclude that for all ¢ we have ¥Y,e.#, (even ¥,e.4}). Thus A¥,eM,.
However, there may exist ¥ € .4 such that the function on the right side of (ii) is
not an element of ./# (i.e. that it is not square integrable). In this case S 4(Y, 4) is the
empty set.
f) Condition (ii) defining all operators from S (Y, A) on .4 may be illustrated as
follows: We “pick” out from the configuration ¢ one by one all subconfigurations
¢ and check whether ¢ belongs to Y or not. To the rest configuration ¢ — @ we
apply the operator 4 holding ¢ fixed.

Operators concentrated on finite particle vectors will play an important role.
For arbitrary A€ ® we set

) ={Aed ;: A=0ynAO0yn for some meN}, (3.1)
and for 41eB
A ={J,A:AeAd]}. (3.2
Analogously, we set for arbitrary A€ ®,
WM. ={YeM,: YC M7 for some me N}, (3.3)
A ={v N(Y): Ye,}. (3.9

We will collect now some properties of the operator classes S (Y, A).

3.3. Proposition. Let A€ ®, Ye W, A .o/. Then S (Y, A) e o4 If Ais self-adjoint
then S 4(Y, A) is self-adjoint.
If A is positive then S (Y, A) will be positive too.

The connection between S, and S is given by the following proposition:
3.4. Proposition. Let A€ ®, Ac /%, YeW,. Then
JaSAY, A)=S(Y,J 4,A) =S5 'Y, A).

Identifying isomorphic operators, Proposition 3.4 could be written simply in
the form S (Y, A)®1,.=S(Y, A®1,)=S(Y+M ,., A). As an immediate conse-
quence of 3.3 and 3.4 we obtain the following result:
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3.5. Proposition. Let Ac ®, Y e MY, Ae o). Then S(Y, A)e /7. If Ais self-adjoint
(positive) S(Y, A) will be self-adjoint (positive ).

Each operator from ..o/ itself is an operator of the type S(Y, A). Indeed, we have
the following result:

3.6. Proposition. Let A€ B. For all Ae o/ we have
A=S(MA0, OMAAOMA)‘

However, the above representation of A4 is not the only possible one. For all
A'24, A'e® we get

A=S(M 4,0y, A0y ) (A€ 15).

Further, we get for all 4 € , o A=S({D}, A) (taking A’ = G). Proposition 3.6 allows
another description of the isomorphism J, between &/, and ,.</.

3.7. Proposition. For all Ae®, Ae o, we have J ,A=S(M 4, A).

Now we deal with the question what one can say about Y and 4 if S(Y, A) € ,of
for some 4€B.

3.8. Proposition. Let AeB, Aes/,, YeM. If S(Y,A)e 4o/ then there exists an
Ye M such that Oy=0y.

Proposition 3.8 is intuitively clear. Since each operator from ,.&/ is “outside 4”
the identical operator there may occur “real” measurements only in the region A.
Therefore if A is concentrated on .#, the set Y may contain only information
about positions of points in A.

“Conversely” to 3.8 we have

3.9. Proposition. Let A€ ®, Ae L (M), Ye ;. If S(Y, A)e ,of then there exists an
operator Be o/, such that S(Y, A)=S(Y, B).

However, we have to remark that S(Y, A) € 4,/ for some 4 € B does not imply in
general neither the conclusion of Proposition 3.8 nor of 3.9.

3.10. Proposition. Let A, A'€ ®, AnA'=0, YeM ., Ac /. Then S(Y, A) € o4, 4--

So if A and Y (not necessarily from /4 respectively M) “act” in disjoint
regions S(Y, A) will be bounded.

Finally, we want to discuss operators of the type S(Y, 4) if A corresponds to a
position measurement. We remarked above that for general Ye Wt and A € ¥(#)
the class S(Y, A) may be empty. However, for 4 being a multiplication operator
with a bounded function on M S(Y, A) always will be non-void.

3.11. Proposition. Let Ye M, fe 4" (cf. (2.11)). Then S(Y,0,) 0. Especially, for
Y, Y,eM S(Y;,0y,)%0 and S(Y,,Oy,) consists of positive (possibly unbounded)
operators on M.

The expectation w(S(Y, 4)) may be expressed with the aid of the so-called
compound Campbell measure of the position distribution if A corresponds to a
position measurement. This will be shown in Sect. 5.

3.12. Remark. There is close connection between the operator class introduced
above and the stochastic calculus (cf. instance [39]). Each operator of the type
S(Y, A) can be expressed in the form #4(0y,® A)Z¢, where ¥° and 2° are generalized
Skorohod integrals and Malliavin derivatives. For details we refer to [12].
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3.13. Remark.If Ae #(4)is an integral operator with kernel k then we get for all
YeM, Ped, peM,

S(Y, A¥(0)= ¢§¢ 10— 0) [Fdp)k(, 9)¥ (90— D+ ).

Especially, for Y=M we get
S(M, A)¥(p)= ; [Fd)k(o, p)¥(o— ¢+ ). (3.5
(294

Operators of the type (3.5) were considered by Maassen ([24, 25]) for the case that
G=IR! and v the Lebesgue measure.

4. Examples

In the sequel we denote for 41€®, neIN by M, ,:={peM ,: ¢(4)=n} the set of
n-particle configurations, and we put M,=M, ;.

4.1. The Number Operator

Let A=0,,,. Obviously, we have 0,,, € #’. For each Ye M we consider the class
S(Y,0y,). For Y& .4’ and F-a.a. ¢ we obtain

S(Y, 04,)¥(9) =¢;¢ 11(9)(0n, ¥5) (0 — )

=¥(o) @% X (Pxn (0 — )

=¥(0) | e(dx)xy(¢—9,). 4.1)
In the case Y=M we get from (4.1) for all ¥ e #” and for F-a.a. ¢
S(M, 0y,)¥(0)=0(G)¥(9). 4.2)

Consequently S(M,0,,,) is the set of all number operators on . (which differ only
with respect to their domains of definitions). For each Be S(M,0,,,) we have on .47
the representation (4.2). If D(B)D>.#’ we get BY for ¥YeD(B)\A’ from
condition (iii) in Definition 3.1.

Analogously, the number operator (respectively the set of number operators)
on ./ counting the particles in a region AeB (respectively 4e®) will be
S(M,0y, ,)-Indeed, for all ¥ €.#7 and F-a.a. ¢

S(M, Oy, ,)¥(9)= ,;,‘E, 2OV 1aa (9 — D) taa (0 — P)¥(@)
=¥(9) | pldx)=o(A)¥(9).

4.2. (Generalized) Creation Operators

Let ge.#, and denote by A*(g) the operator on .#, defined by
(A*@)P)(9)=g(@)P(®) (YeM,peM) (4.3)
[© denotes the zero measure in M, i.e. O(G)=0].

Observe that (4*(g)?)(¢)=0 for ¢ ¢ M. Because of A*(g)=0,,A4*(g)0y, we
have A*(g)e o7, and if suppgC M, for some A€ ® then A*(g)e ;.
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Let Ye M. For each ¥ e.#/ and F-a.a. ¢ we obtain

S(Y, A*(8))¥(9) =] p(dx)xy(¢ — 6,)8(6,) ¥ (¢ —J,)
(S(Y, 4*(2))¥(0)=0).
For YeM S(Y,A*(g)) will be a bounded operator (Proposition 3.3). For
general Ye IR S(Y, A*(g)) usually will be a set of unbounded operators on .# having

on .4’ the representation (4.4). The “usual” creation operator we get by setting
Y= M. Indeed, from (4.4) we conclude that for all ¥ e .#/ and F-a.a. ¢ we have

S(M, A*(2)) ¥(¢) = 9(dx)g(0)¥ (¢ — b5)
= 3 80)¥(e—9). (4.5)

x:p({x})>0

The operator Be S(M, A*(g)) with D(B)=.#' we denote as usual by a*(g).
Let A€ ®, ge M, 4. For Y e M) and F-a.a. ¢ we get

S4(M 4, A*(2)P(0) = [ (dx)xp1,(@ — 0:)%n1,(6,)8(0,) (@ —I,)
=] 0(dx)g(6.)¥(p—0,).

Observe that because of ¥ € 44 and g e .4, the expression above will be equal to
zero if p¢é M ,. S,(M ,, A*(g)) represents the set of creation operators on .4,
corresponding to g. The operator Be S (M ,, A*(g)) with D(B)= .44 we will denote

by a%(g)-

4.4

4.3. (Generalized ) Annihilation Operators

Let ge.#,. We define an operator A(g)e L (#) by setting

dx)g(0,)¥(S =
A2 ()= {{)V( x)g(6.)¥(3.) g:z Z#g- 456)

(v denotes again the locally finite diffuse measure on G — cf. Sect. 2.2). Observe
that A(g)=0,,,4(g)0y,. So we have A(g)e /', and if ge M, , for some Ae®
then A(g)e /7.

Let Ye M. For all Y e.#7 and F-a.a. ¢ we get

S(Y, A®)¥(@) = xx(9) [ Wdx)g(0,) ¥(¢ +9.). .7

For YeW S(Y, A(g)) is bounded. Analogously to Example 4.2 S(M, A(g)) repre-
sents the set of all annihilation operators on .# with respect to g. In this case we
get immediately from (4.7) for all ¥ e #/ and F-a.a. ¢

S(M, A(g)) (@)= W(dx)g(0.)¥(p +3.). (4.8)

The operator BeS(M, A(g)) with D(B)=.#’ we denote by a(g). By a,(g) we
denote the operator from S (M 4, a(g)) with domain ..

Let YeI, ge#,. We still want to show that B,eS(Y,A*(g)) and
B, € S(Y, A(g)) are mutually adjoint. Indeed, for all ¥,, ¥, € .#” we obtain

(B1¥,,¥,)=[F(do) | p(dx)xy(¢p —0,)8(5,) ¥ 1(¢ — 3,0 ¥ 2()
1 n n n n
= Z _'Iv"(d[xh "':xn]) Z Xy ( Z 5xk g((sxj)q]l ( Z 5xk 'P2< Z 5xk>
n=1Nh! j=1 l;;} llcc::} k=1
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1 n—1 n—1
=n§l mjvn—l(d[xl, cesXp- 1DV <k;1 5xk> Xy <k;1 5xk>

x [v(dx)¥, (kg Ou. T 5x> 8(9)

= [ F(do)¥? (0)x5(9) [ V(dX)g(0,) ¥5(¢ +6,) =(¥,, B, ¥>).

Since norm-convergence in .# implies weak convergence in .# from Defini-
tion 3.1, (iii) follows that for all ¥, e D(B,), ¥, € D(B,) the equality (B,¥,, ¥,)
=(¥,,B,¥,) holds. As one has to expect the canonical commutation relations
hold for general g € #, only in the case Y= M. The proof of these CCR properties
is rather straightforward and we will omit it. Thus a(f), a*(g) represent “usual”
creation and annihilation operators on .# [respectively a,(f), a¥(g) are the usual
creation and annihilation operators on .#,]. An approach to creation and
annihilation operators similar to the above one (in the case G=IR') one can find
for instance in [24,25].

4.4. Composition of Creation and Annihilation Operators

In 4.2 and 4.3 we defined creation and annihilation operators with respect to
functions from .#,. Now we transfer this notion to functions from
My, a:={V €My Y=Y}, m21 (M, g=M,).

Let m be a natural number, m>1, and f™ e .#,,. We define operators A*(f™),
A(f™ from L(A) by

AX(fM)¥(@)=m!fM(@)¥(©) (YeM, peM) (4.9)

and -
m!F(do)f"(@)¥(p) Ve, p=0

A(fm)q'(‘”)={0 Ve, p+O.

Observe that

A*(f "= OMmA*(f m)OMo
and

A(f™) =0y, A(f™)O0,,-

Thus A*(f™), A(f™es/’, and if fmeM,, , for some Ae® then A*(f™),
A(f™e .
, In the sequel, for x": =(x, ..., x,), x;e G for je {1, ..., n} we write . instead of

Y. 0., and ¢(dx") denotes the n™ factorial measure of pe M, n=1,ie.
i=1

@dx"): = p(dx,) (¢ —0x,) (dx;) .. (¢ — Oyn-1) (dx,). (4.10)

Now, let YeO, f™e 4, m=1. Using the above notations, we get for all ¥ € .#”
and F-a.a. ¢
S(Y, A*(f™)¥(p)= @; 1 P)A*(fM)Y o0 — )
Co

=m! @%«: X @) f ™o — P) ¥ ,(D)
= [ @AX™) )y — O 3m) [ (O ym) P(0 — Oryom) - (4.11)
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Hereby we have used the fact that for arbitrary function h on M we have

N m
@% (@)= [ dx")(3zm).

PeMm

Similarly, one gets easily for each ¥ € #” and F-a.a. ¢
S AN ¥(@)=m! () [F(dP)[™()¥(p + ). (4.12)

Obviously, in the case m=1 (4.12) coincides with (4.7).

For YeW/ we get that S(Y,A*(f™) and S(Y,A(f™) are bounded. For
Ye W\ all operators B from S(Y, A*(f™)) respectively S(Y, A(f™)) have on .4/
the representation (4.11) respectively (4.12). On D(B)\.#” the operators are defined

according to Definition 3.1, (iii).
Let YeM, fme,, m=1, B,eS(Y,A*(f™), B,eS(Y,A(f™). For all
¥Y,¥,eM! we get

(B, ¥, %) = [ F(do) [ p(dx™(@ — ) [0 ¥ 1 (0 — 5 ,m) ¥ ()

n!
=nz '.‘.vn( )|XY

. ;ﬂax,)fm( 5.6, v( 5 0,) ¥

-3 T35, [ T ol + )

=[F(do)¥1(o)S(Y, A(f™)¥2(0)=(¥1, B, V). (4.13)

From (4.13) and Definition 3.1, (iii) we conclude that for all ¥, € D(B,), ¥, € D(B,)

the equality (B, ¥, ¥,)=(¥,, B,¥,)is valid. Thus B, and B, are mutually adjoint.

Further, one easily checks that for f™e .#4,, g"€ #,, A:=A*(f™A(g") is an
integral operator on ./ (A e «/7) with kernel

ka(@1, 02)=1"(@1)g"(@2)m!n! (4.14)

and we get for all Ye M, Y e .4/, and F-a.a. o,
S(Y, A¥(p)= ¢§¢ x¥(P) [F(d®)f ™ — $)g"(®) P(P + )m!n!
= [v(dx") § p(dy™) f™(0ym)8"( 5r)
X X (P — Oym) V(@ — O pm+ O 4n) - 4.15)

Again from Proposition 3.3 we may conclude that S(Y, 4) is bounded for Ye /.
Now, let f™e M, g" € M, be the symmetrized products of functions from .#,,

ie.
1 m
0= T T fopf0s) ("= (%10 x) €67, (4.16)
.0 j=
1 n
gn(éx") = _' Z l=_.[ ga'(j)(axj) (X" = (xla CRE) xn) € Gn) (417)
with f;,g;e.#, where the sum is taken over all permutations o of {1,...,m}

respectively {1,...,n}.
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For each ¥ € #/ and F-a.a. ¢ we get

a*(f1) ... a*(fmalgy) --- alg ) ¥ (@)
=[0(dy)f1(6,)a*(f2) ... a(g)¥(9—9,,)
=[o(dy)[(9—96,)(dy,)f1(6,)1>(0,,)a*(f3) ... a(g) ¥(¢ — ), —5,,)
=[o(dy™) [0 m)alg,) --- a(g ) ¥(¢ —Oym)
=[@dy™)[™(0m) [ v'(dx")g"(03) ¥(@ —Oym+ O n) -

We thus may conclude [cf. (4.15)]
S(M, AX(f "‘)A(g"))=jl'l a*(f) kl;Il a(g)), (4.18)

=1
where f™ and g" are the symmetrized products of fi,...,f, and g,...,8,
respectively. In this sense S(M, A*(f™)A(g") are compositions of creation and
annihilation operators, and the operator Be S(M, A*(f™)A(g")) with D(B)= .#* we
will denote by a*(f™)a(g"). Analogously, one may define corresponding operators
on .

4.5. Second Quantization of an Operator on M,

Let A be an operator from .#(.#) concentrated on .#,. Let Ye M. For all ¥ e .4~
and F-a.a. pe M we get

S(Y, A)P(p)={ p(dx)yxy(@¢ — ) (AP, ;) () - (4.19)

For Ye M/ (4.19) defines a bounded operator on £(#). We will call S(Y, A)
second quantization of 4. This is justified by the fact that in the case Y=M we get
on 4’ for F-a.a. ¢

S(M, A)¥ (@)= ¢(dx)(A¥,-;,)(0,)= «Z» . (A¥4-5)(0,).
x:p({x})>
Thus S(M, A) coincides with the usual second quantization of an operator 4 on

. For historical and modern approaches to second quantization, cf. [15 and 3],
but also for instance [2, Chap. 5.2.1], [7, Chap. 1, Sects. 1, 3], and [1, Part II].

5. X’-Point Processes — Conditional Intensity Measures

First we want to introduce the notions of so-called X'-point processes and
Campbell measures.

5.1. Definition. Let Q be a point process (i.e. a probability measure on [M, I]) and
n a positive integer. (i) The n™ order reduced Campbell measure C3 is the measure
on [G"x M,®" x M] given by

CP(Bx Y)= ! Q(dfp)lj; Pdxy(p—05)  (Be®", YeM). .1

(ii) The compound Campbell measure C3> is the measure on [M x M, M x M]
characterized by
CE Y, x Y,)=[ Q(do) p Xy, (P, (0—¢) (Y, Y,eM). (52)

Co
peMS
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Let us remark that C) and Cj3* are o-finite measures and C§” is concentrated on
M/ x M. We have the following relation between C3’ and C§):

COBxY)=n!CgN{6,.:x"€B}x Y} (Be®", nx1, YeM).
(For details see [21, Chap. 12.3] and [26].)

5.2. Definition. Let Q be a point process.
(i) Q is said to be a X-point process if there exists a o-finite measure S on [M, ]

(called a supporting measure of Q) such that

CP<vxSs. (5.3)
(i) Q is said to be a X'-point process if

CP<vxQ. (5.4)

By < we denote absolute continuity.
Observe that each X'-point process is 2% (put S = Q). The converse is not true.
For a more detailed discussion of 2'-point processes see e.g. [27, 29, 20, 26, 31,
and 21, Chap. 13.2] Z¢-point processes are discussed in [38].

5.3. Lemma. Let Q be a X',-point process. Then

CP<FxQ, (5.5)
and for Q-a.a. ¢ by
dcg”
ng(Y): *I Fd®)—"—F¢ AFx0) (®,90) (YEM) (5.6)

there is defined a measure on [M, W] with the following properties:

(i) 1% is o-finite and concentrated on MY :={peM:¢(G)< o0},

(ii) for all bounded A from ® ng* ov, is a finite measure on [M, ,9M],
(iii) for all bounded A from G and Xe M

QX | 4 ) (@) =nG* (04 X)/NG (M 4). (5.7)
Q(X | 4IN) denotes the conditional probability of X with respect to the o-algebra
AL‘ .

A proof of the statements in Lemma 5.3 can be found in [21, Chap. 13.2] and
the Russian edition of [26, Chap. 9.1].

5.4. Definition. The family (#§), . Of measures related to a 2\ -point process Q by
(5.6) we call the family of conditional intensity measures of Q.

5.5. Remark. The intensity measure I, of a point process Q is a measure on [G, 6]
defined by I,(A)=[ Q(d¢)¢(A), 4 € ®. Because of I, = Cy)(- x M) an easy calcula-

tion shows
Io(A)=[ Qdomy({65:xeA}) (4e®). (5.8
Equations (5.7) and (5.8) justify Definition 5.4.

5.6. Remark. Since the Radon-Nikodym-derivative dCy®/d(F x Q) is only
F x Q-a.e. uniquely determined the family (#§),.» is only Q-a.s. unique, ie. if
(MQ)pem and (19),en are two versions of the family of conditional intensity
measures then Q({¢: 1§ is a measure and n(Y)=A%(Y) for all Ye M})=1. Finite
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2'-point processes Q are determined by their conditional intensity. This is not true
for general (infinite) 2'-point processes. We have the following statement which is
an easy consequence of Lemma 5.3.

5.7. Lemma. Let Q be a finite 2',-point process, and (1), » its family of conditional
intensity measures. Then

QX)=n3X)/ng(M) (X eM). (5.9)

The expectation w(S(Y, A)) may be expressed by the position distribution Q,,
and the conpound Campbell measure or the conditional intensity measures of Q, if
A corresponds to a position measurement.

5.8. Proposition. Let w be a locally normal state with position distribution Q,,, and

assume that Q, is a X',-point process. Then
@) for all AeB, Y,eM,, Y, e M,

a(S(Yy, 0y,)= | Quldo), (Y1)=CGXY; x 1),
Y,

(i) for all A€W, ge M, Ye,M such that S(Y,0,)€ 4o/,
o(S(Y,0,)) = i 0.(do) [13,(dP)g(P) = CGXdP, dp)g(P)rx(®)-

We will see in the subsequent sections that an analogous representation holds
for w(S(Y, 4)) with 4 being an arbitrary local measurement. The conditional
intensity measures only have to be replaced by the conditional reduced density
matrix.

6. The Conditional Reduced Density Matrix of a Normal State

Let o be a normal state on Z(.#). Thus there exists a density matrix g on .# such
that

w(A)=Tr(ed) (AeL(A)). 6.1)
6.1. Proposition. The position distribution Q,, of w is a finite ZS-point process.

The proof of Proposition 6.1 is completely analogous to the proof of
Proposition 3.1 in [11] (one only has to cancel the index A), and we will omit it.

In the sequel we will consider only states the position distributions of which are
2'-point processes. We already remarked that each X',-point process is of the type
e
6.2. Definition. A normal state w on Z(#) is called a normal X'-state if Q,, is a
2’ -point process.

Before we will give the main characterization of normal X'-states on £ (/) let
us still make a notational convention.

6.3. Definition. Let T: M?>—C, k: M*—C be measurable functions, 4 € ®. For all
01,0, €M we set

T k(@1 92): =[F (d@)T(1, p)K(@, @1, P2) (6.2)

provided the right side of (6.2) makes sense (in the case 4 =G we omit the index A).
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6.4. Theorem. Let w be a normal X'-state. There exists a F x F x Q -a.e. uniquely
determined measurable function k,: M3—C with the following properties:
(i) For all Ye M and integral operators A€ L (M) such that S(Y, A) € L (M) we have

o(S(Y, A)=[ Qulde) [Fldoi)k * ka1, 0) (6.3)

where k, is a kernel of A.
(ii) For F x Q-a.a. (¢, p)

an®
kol 6, 0)=22(9). 64

6.5. Definition. Let w be a normal X-state. The F x F x Q,-a.e. uniquely
determined function k,, associated to @ by Theorem 6.4 is called the conditional
reduced density matrix (c.r.d.m.) of the normal state w.

6.6. Remark. In Sect. 3 there are given sufficient criteria on Y and A ensuring
S(Y, A)e L (). Since integral operators are dense in #(.#) and for each A € L (H)
we have 4 =_S({0}, 4) (6.3) enables us to calculate w(A) for all 4 e L(H).

6.7. Remark. In quantum statistical mechanics one is also interested in the
expectation w(A) for certain unbounded operators on .#. Since wis a functional on
ZL(A) it is not quite easy to give such expectations a precise mathematical
meaning (cf. [2], part II). However, observe that the right side of (6.3) may make
sense also for unbounded operators of the type S(Y, ). So, without further
assumptions about the state w we can define w(S(Y, A)) by the right side of (6.3) for
all operators of the type S(Y, A) for which the integral on the right side of (6.3) exists
(possibly equal =+ o0). This allows to give the relation between the c.r.d.m. k,, of @
and the reduced density matrix commonly used in statistical mechanics (cf. 2, 33,
34, 35]).

Let m be a positive integer and fj,g;je{1,...,m} be functions from ..
Further, let A=a*(f)): ... - a*(f,)a(g,) --. - a(g,) be the symmetrized product of
the creation and annihilation operators corresponding to the functions f}, g; [with
D(A)= M7 — cf. Sect. 4.4]. A function A: G*"—C is called the m™ reduced density
matrix of w if for all operators A of the above type

w(A)=[v™(dx™) [ v™(dy™) II1 80, )10, )AY™, x™) (6.5)
j=
(cf. instance [2, Chap. 6.3.3]).
In Sect. 4.4 we observed that A= S(M, B), where Bis an integral operator (from
27 with kernel
k(S m, 53"-) =§ jl=_[1 S j)(éxj)g kl;ll 850y,

where the sum is taken over all permutation {a(1), ...,a(m)} of {1,...,m}. A very
easy calculation shows that if the right side of (6.3) exists it will be equal to

[v™(dx™) fv™(dy™) jlfll 8/0,)/165) 1 Qaldo)eo(05m: Oym: ).

Finally, we get
l()_Cm, .}’m) = 1{[ Qw(d(p)kw(éx"w 53"" (P) (v2m_a.a.(zcm, ,Ym)) . (66)
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Thus, A(x™ y™)=Egy k(0sm O,m ). This justifies to call k, the conditional
reduced density matrix. We prefer to use k, instead of A. There are several
disadvantages of the reduced density matrices. First, there exist normal states for
which the functions A are not finite or do not exist at all. Moreover, even if for a
state o for each m = 1 the m™ reduced density matrix exists and is finite a.e. the state
possibly will not be determined by its reduced density matrices. Even the position
distribution is in general not determined by them. This is caused by the fact that the
reduced density matrices are connected only with “global” second quantizations
(Y=M). The function k, however exists a.e. and determines together with the
position distribution the whole state o (Theorem 6.4).

Formula (6.4) elucidates the connection between the c.r.d.m. and the con-
ditional intensity measure of the position distribution. The c.r.d.m. cannot be
chosen arbitrarily on the “diagonal” k, (¢, ¢, ¢) but in such a way that the trace
formula is valid.

We will deal now with the converse question. What conditions a function
k: M3 has to fulfill so that there would exist a normal X'-state o with c.r.d.m.
k,=k?

6.8. Theorem. Let k: M®>—C be a measurable function and Q a finite X-point
process with the following properties: There exists a positive trace-class operator K
on M such that

@) for all YeM/

T r(K0y)=n2(Y)=)I{ F(do)k(, ¢, D); (6.7)

(i) for all integral operators Ae L (M)
Tr(KA)={F(dp)k,*k(p, D), (6.8)

where k4 is a kernel of A;
(lll) for all (pb (Pz, (Ps ¢ € M

k(@1 + @, 02+ @, 0)=k(0, ¢, P)k(@1, 95, 0 + ). (6.9)
Then there exists exactly one normal X'-state w such that Q,=Q and k,=k a.e.

6.9. Remarks. (i) gives the connection between k and the point process Q.

(ii) guarantees normality of the state which has to be constructed.

(iii) represents a compatibility condition. Loosely speaking, one could interpret
(6.9) in the following way:

Passing over from the configuration ¢, +¢ to ¢,+ ¢ having around the
configuration ¢ is the same as adding first ¢ to ¢ and then passing from ¢, to ¢,
having around the configuration ¢ + ¢@.

Observe that (6.9) and (6.4) imply (on the “diagonal”)

Ko(@1 + @, ®)=Kn(@, )k o(@1, ¢ + ) (6.10)
for F2 x Q-a.a. (¢4, ¢, §), where k, denotes (a version of) the Radon-Nikodym
(o0)
. . Q
derivative AFx0)

(6.10) is a well-known characteristic property of (not necessarily finite) X' -point
processes (cf. instance [26, 31, and 38]).
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Summarizing, we get the following result:

6.10. Theorem. Let k: M3*—C be a measurable function and Q a finite X,-point
process. The following conditions are equivalent:

(I) There exists a normal X'-state o such that Q,=Q and k,=k a.e.

(II) k and Q fulfill assumptions (i) to (iii) of Theorem 6.8.

6.11. Remark. All results of this section remain true if we consider normal states
on ¥(4,), Ae®. We only have to replace M, #, F by M,, .#,, and F,
respectively. Especially, all results are true for the restrictions w, of a locally
normal state on &/ to & (.#,), A€B.

7. The Conditional Reduced Density Matrix of a Locally Normal State

We want to extend now Theorem 6.8 to the case of locally normal states.

7.1. Definition. Let @ be a locally normal state on & such that its position
distribution Q,, is a X,-point process. A measurable function k: M3 —-C is called
the conditional reduced density matrix (cr.dm.) of w if k has the following
properties:

N oA angs’ R

(1) k(% ¢’ (PA°)= de ((P) (FA X Qm'a'a‘ ((P, (P), 4 E%)

(i) For all AeB and Q,-a.a.¢
k(-,-, q’AC)XMA XMA(" )

is the kernel of a positive trace-class operator on .#,.
(iii) Forall 4eB, Ye ,M and all integral operatorsA4 € .o/, such that S(Y, 4) e ,o/

we have
o(S(Y, A))= l{ Q,(do) [ F ((d)k 4 % k(®, 9), (7.1)

where k, is a kernel of A.

7.2. Remarks. 1°. In [17] it is shown that the c.r.d.n. of a locally normal state
is a.e. uniquely determined (provided it exists), i.e. if k;, k,: M*—Q are measurable
functions satisfying conditions (i) — (iii) of Definition 7.1 then for F x F x Q-a.a.
(@1, 92, ) We have k(¢4, @2, @) =k,(@4, @4, @). In this paper we will not make use
of this fact.

2°. It is easy to check that the (a.e.-uniquely determined) c.r.d.m. of a normal
2'-state is a c.r.d.m. in the sense Definition 7.1. So if the locally normal state is a
normal one [ie. may be extended to a normal state on £(.#)] both notions
coincide.

3°. Condition (i) in Definition 7.1 gives the connection between the c.r.d.m. and the
position distribution of w. We see that the c.r.d.m. has to be chosen on the
“diagonal” in each bounded region A for a fixed configuration ¢ outside in such a
way that

k(, ¢, 0)=ko (D, 90) (peM,),
where x,  is the Radon-Mikodym derivative dC3°)/d(F x Q).
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4°. Condition (ii) ensures the existence of the family of so-called conditional states
(0%pem . for each 4eB which describe the behaviour of the system inside 4
having outside the configuration ¢ (cf. [17]).

5°. From (iii) follows that  will be determined by Q,, and the c.r.d.m. k. Indeed, for
all 4eB and all Ae o/, we have J ,4=S(M 4., A) (cf. Proposition 3.7). So we get
from (7.1) for all integral operators 4 € o/, (with kernel k)

o4 A)= ] Qu(dp) | F4(dO)e, %KD, ).

Since the integral operators from 7, are dense in <7, the continuity of the state
allows to calculate from the above formula the expectations of all local operators
through which the whole state w will be determined.

6°. The connections between the c.r.d.m. and the reduced matrices in the case of
normal states given in Sect. 6 remain true in the locally normal case without any
changes.

7.3. Theorem. Let Q be X,-point process, and k: M*—@ a measurable mapping
satisfying the following conditions:
(I) For all AeB and Q-a.a.¢

k("" ¢A°)XMAXMA(’>’)
is the kernel of a positive trace-class operator K%*° on .M , such that
Tr(KG*0y)= £ F(dQ)k(, 9, @ 4)=nG"(Y) (YeIR,). (7.2)

() For all ¢,,0,,0,peM,

ki + @, 02+, p)=k(@, ¢, P)k(@ 1, 02, 0 + §). (7.3)

Then there exists a unique locally normal state w on &/ such that Q= Q and k is the
crd.m. of o.

7.4. Remark. The interpretation of the conditions k has to fulfill is analogous to the
case of finite systems (cf. Remarks 6.9). However, while a finite point process is
determined completely by k(¢, @, @) this is not true for infinite point processes.
In [17] we show that a locally normal state is a normal one if and only if the
position distribution is a finite point process. Furthermore, in [17] we deal with
the problem of the existence of the c.r.d.m. to a given locally normal state.
However, the examples below show already that a wide and important class of
locally normal states allow a characterization by their position distributions and
their c.r.d.m.

8. On the Construction of Certain States

First we present a method of constructing states which is based on an application
of Theorem 7.3 and will be applied in Sect. 9 to more specific examples.

Let Q be an arbitrary X'-point process. We denote by k)’ a version of
dCQ’/d(v x Q). Further, let #: G x M—C be a measurable mapping satisfying

|B(x, P)* =xQ’(x,0) (CY-a.a. (x,9)) 8.1
(x, 9)D(y, p +6,) =Dy, P)P(x, 0 +3,)  (CP-a.a. (x,y,9)). (8.2)

and
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For instance, take
d(x, p)=€Yk’(x,9) (x€G, peM),

where ¢ is an arbitrary real constant.
For all nz1, x"=(xy,...,Xx,)€G" and p € M we set

n j—1
2,(x"9)=1] @ (xj, e+ X 5x.,.> (8.3)
j= m=

( § 0,,.: =0 ). Because of (8.2) @,(-, ¢) is a symmetric function on G". Conse-
qz;itly, the function &: M x M —C defined by
B0, 0)=D,(x",0) (21, x"€G", pe M) (84)
and
30, p)=1, &p,9)=0 (peM\M’, peM) 8.5)

is a well-defined measurable function.
Finally, we set

K1, 92 0) =801, )B(02,0) (91,02, 0€M). (8.6)
This completes already the whole construction. We have the following result:

8.1. Proposition. Let Q be a X',-point process, @ a function satisfying (8.1) and (8.2).
Then there exists exactly one locally normal state w on </ such that Q,=Q and k
defined by (8.6) is the c.r.d.m. of ®w. Moreover, w is a normal state (i.e. may be
extended to a normal one on L (M)) if and only if Q is a finite point process.

Observe that we get from Proposition 8.1 that each X-point process
(respectively finite 2'-point process) Q gives rise to at least one locally normal state
(respectively normal state) w with position distribution Q,. This part of
Proposition 8.1 was shown (for more general point processes) already in [11,
Theorem 3.3].

9. Examples
9.1. Pure Normal States on L (M)

First we want to illustrate the construction given above by dealing with a very
simple example. Let ¥ be an arbitrary normalized wave function, ie. ¥e.#,
[Z=1. We set

Q(Y)=£F(d</>)Iﬁl”(co)l2 (Yedn). ©.1)

Obviously, by (9.1) there is defined a finite point process. However, Q is not
necessarily of the type 2.

9.1. Lemma (cf. [31]). Let Q be the point process defined by (9.1). Q is a X'-point
process if and only if the following implication holds:

|P(p +6,)|>0 implies |¥(¢)|>0 (v F-a.a. (x,9)). 9.2)
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Now, we assume that Q defined by (9.1) is a 2'-point process. We define a
function @:G x M—>C by

b4 0
o5 0= g0

where we make the convention $=0. Because of (9.2) & is a well-defined

measurable function. An easy calculation shows that

Ko'(x, @)=12(x, 9))>  (vx Q-aa. (x,9). 64

Consequently, @ satisfies (8.1). Condition (8.2) results immediately from (9.3). By
the construction (8.3) to (8.6) we finally get the almost everywhere well-defined
function

(x,9)eGx M), ©3)

p Y0, 0)
o1 02 0)= — 21 T;f()(p)l(;p 2+¢) (01,02, 0€M). 9.5)

By Proposition 8.1 there exists exactly one normal state @ on #(.#) such that
0,=0 and k is the c.r.d.m. of w.

As one could expect w is nothing else but the pure normal state on .£(.#) given
by the wave function ¥, i.e. we have the following result:

9.2. Proposition. Let ¥ be from A, |¥| =1 and assume that V¥ satisfies (9.2). Let Q
be defined by (9.1) and k by (9.5). Further, let w be the state obtained by
Proposition 8.1. Then

o(A)=(P,AP) (de L(M). 9.6)

9.2. Coherent States

First we want to introduce the notion of a Poisson point process. Let I be a locally
finite measure on [G, ®] [i.e. I(4)< oo for all 4 € B].

9.3. Definition. A point process P is called a Poisson point process with intensity
measure 1 if for all m>0, n,,...,n,eN and B, ...,B,eB, B,nB;=0 for i+j we
have

PiloeM:oB)=n,. ..o =n)=e| ~1( [ 5,)} [} L2 o)

Jj= j=1
(cf. instance [26,21]).
By I)3°(G, v) we denote the space of all locally square integrable functions, i.e.
g€ LS(G,v) if g: G—»C and [ v(dx)|g(x)|* <o for all 4eB. For ge L$(G,v) we
A

denote by I¢ the locally finite measure on [G,®] with v-density |g|?, ie.
I°(4)= £ w(dx) |g(x).

Soeach g e I)3%(G, v) gives rise to a Poisson point process with intensity measure
I°. This point process we will denote by P?. From (9.7) we conclude that P? is
uniquely determined by g.

We want to consider now states of infinite boson systems where all bosons are
in the same “one-particle state.”
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Let g be an arbitrary function from I!3¥G,v). We define a function
®:GxM—-C by
P(x, p)=g(x). 9.8)
@ fulfills condition (8.1) with respect to the Poisson point process P? because
Kpd(x, 9)=lgx)>  (x€G, peM).

Condition (8.2) is trivially satisfied. By the construction (8.3)—(8.6) we obtain a
function k?: M3->C,

k@1, 02, 0)=B(01)B(02) (91,02, 0€M) 9.9)
with
1 =0
&(p)= _ng(x,-) <0=.Zl5xj, x;€G,m=1 (9.10)
i= i=
0 pe M\M’.

From Proposition 8.1 we thus obtain a uniquely determined locally normal state w
with Q,=P? and k,=k?.

9.4. Definition. Let g be from L)3°(G,v). The locally normal state @ on </ with
Q.= P? and the c.r.d.m. k? is called the coherent (or Glauber) state with respect to g,
and we will denote it by w?.

To call w? a coherent state is justified by the fact that in the case ge L,(G,v)
Definition 9.4 coincides with the usual definition of a coherent state (cf. instance
[30]). Indeed, assume ge L,(G,v). Then it is easy to observe that P? is a finite
Poisson point process. From Proposition 8.1 we conclude that «? is a normal
state. @ defined by (9.10) belongs to .#, and one has || &2 =exp{| g||?}, where | g|2
= (v(dx) |g(x)|*. Consequently, ¥: M —C defined by

P(p): =exp{—3lgI*}B(¢) (peM) 6.11)
has the properties ¥ € .#, |¥?| =1, and as in Example 9.1 one easily gets
0(A)=(Y,AY) (AeZL(M)). 9.12)

Thus w? is a pure normal state, and from the definition of ¥ we see that w? may
be interpreted as a state of free bosons being all in the same “one-particle state g”
(cf. instance [30]).

Coherent states were discussed in detail in [13] (in the case G=IRY, v the
d-dimensional Lebesgue measure). Let us mention only some interesting prop-
erties of coherent states. Let w be a locally normal state on /. @ is coherent if and
only if for all A4,4'eB, AnA’'=0 and all A€ o/, Be .o/ it holds

o(AB)=w(A)a(B) (9.13)

(cf. [13], Sect. 2.4). This result is a generalization of a well-known characterization
of Poisson point processes with diffuse intensity measure by local independence (cf.
[26, Theorem 1.11.8]). A characterization of normal coherent states of photons by
local independence was given already in [37] (with A4, B being creation and
annihilation operators).

Finally, we want to give still another interpretation of coherent states if g is
only locally square integrable. Let g be from I}%(G,v) and A e #(4,) such that
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(g, Ag) exists (for instance let 4=0 or assume A€/, for some A€ B). An easy

calculation shows
(8, Ag)=@(S(M, 4)). (9.19)

S(M, A) is the operator of (global) second quantization of A (cf. 4.5). For
g€ I$°(G, v) [but g ¢ L,(G, v)] thus (9.14) coincides with the physical interpretation
of a non-normalizable wave function as a “wave packet” of independent particles.
These particles do not exist as single particles but only as part of the infinite system.
According to the interpretation of the Poisson point process P?, |g|? is not the
density of the position distribution of a single particle but of the “wave packet.”

9.3. States Preserving the Number of Particles

Let Q be an arbitrary X\-point process, and @:G x M—C be a measurable

function satisfying (8.1) and (8.2). Let @ be defined by (8.4) and (8.5). We define a
function k by

0 if G)+,(G

E((pl,rpz,¢)={ ¢1(G)+¢2(6) (9.15)

ko4, ¢, ¢) otherwise,

where k is the function defined by (8.6). Exactly as in the proof of Theorem 8.1 one
easily shows that the pair [Q, k] fulfills the assumptions of Theorem 7.3. Thus there
exists a locally normal state  on .« such that Q= Q and k,, =k a.e. Because of the
definition (9.15) of the c.r.d.m. the state  is concentrated on operators preserving
the number of particles [ie. if Ae/ and for all neN 0, A0, =0 then
w(4)=0].

In [8] we considered the time evolution and the question of invariance of such
states with respect to a given potential (in the case G =R, v the Lebesgue measure).
We introduced a certain function W,:IR* M—IR¢ that can be interpreted as an
“average velocity field.” Under certain differentiability conditions (cf. [8]) this
function W, is equal to

W, (x, 0) = m(keh(x, 9)—Imh(x, ),

where
h(x, p)=grad k(d,,6,, 0)),--

If A% denotes the velocity operator of the s component of the particles,
se{l,...,d} we get for all YeIR,

oSG AN=_J Codlx, ])W(x, 9) (.16)

provided this expectation exists (for convenience we set the particle’s mass and
Planck’s constant equal to one).

For pairs [Q,, k] (or equivalently [Q,, W;]) we considered in [8] equations of
motion being equivalent to the usual Schrodinger equation if the states are normal
ones, i.e. if the point processes Q, are finite. Especially, one may conclude from the
results in [8] that states the c.r.d.m. of which we have the property

E(ax’ 6)» (P) = I/K(Q“(x5 (P)Kg )(y’ (P)
may be interpreted as equilibrium states. For details we refer to [8].
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9.4. An Infinite Linear Chain of Coupled Harmonic Oscillators

In this example we consider one-dimensional systems, i.e. G=IR, v the Lebesgue
measure on IR. For a configuration pe M and a point xeR denote by x,(¢)
[respectively x _(¢)] the smallest mass point of ¢ greater than x (respectively the
greatest one less or equal x).

The local (or conditional) potential U:IR x M—IR defined by

Ulx, )= % (M x>2, 9.17)

where a is a positive constant describes harmonic oscillations of x around the
centre of the two neighboured points in ¢.

Let Q be a stationary simple recurrent point process with continuous density f,
of the spacing distribution function

Fo(x):=00({0:0.(p)=x}),

where Q, is the Palm distribution of Q (cf. [26, Chap. 9.5] or [8, Sects. 5 and 10]).
For what follows we only use the fact that a point process Q of this type is
determined completely by the density f, and that kg’ has the form

ey _ Jolx—x_(9))folx+(9) —x) 0,
ee9)= fox +(@)—x_(9)) (Co-aa. (x,9)) (9.18)

(cf. [8, Sect. 10]).
Setting

D(x,0)=)/kP(x,9) (xR, peM)

we obtain from the construction as in Example 9.3 [cf. (8.15)] a state w with Q ,=Q
and the c.r.d.m. k, where

k(@ 1, 02, 0)=8(01, ©)B(02, 9)5,, ) @2(R)).

In[8, Sect. 10] we proved that the state w described by Q and kis invariant with
respect to the time evolution according to the potential U given by (9.17) if the
density f, of the spacing distribution of Q satisfies

fox)= f { (x=0),

ie. if f, corresponds to a (one-sided) normal d1str1but10n

10. Some Remarks on Quantum Equilibrium States

In a forthcoming paper we will consider conditional intensities of equilibrium
states. In this section we will sketch only some basic ideas. For that reason we
restric} here our considerations to the case of a free Bose gas with phase space
G=R".

We start with free bosons moving in a finite box 4:=[r,s] with natural
boundary conditions (cf. [2]). H denotes the corresponding Hamilton operator
and N denotes the number operator in .#,. Then for all >0 and a<0



340 K.-H. Fichtner and W. Freudenberg

exp{ — B(H —aN)} is a positive trace-class operator (cf. [2]). By w, we denote the
normal state on &/, related to the density matrix

_ _exp{—pH—aN)}
€a= Trexp{—p(H—aN)} (10.1)

It is easy to verify that the position distribution Q,, , of w4 is a finite 2',-point
process.

Using the Feynman-Kac formula (cf. [2]) and the representation of k,, , (see the
proof of Theorem 6.4) the c.r.d.m. can be calculated explicitly. The result can be
formulated as follows:

First we set

ph
o= (10.2)
(m is the mass of the boson, # Planck’s constant).
Denote by n(¢,, @,) the set of all one-to-one mappings from the support of
@, € M onto the support of ¢, e M.
n(p): =7(@, @) is the set of all permutations of the mass-points of ¢.
One obtains for all ¢, 0,, e M, ¢,(4)=*0,

exp{afo (1)}

ko (@01, 02, 0)= /2oy ™

exp{ — 510+ 90) @) (c— g(x)7)

gen(@1+¢,92+ )

S ep{— ol (gl

gen(e, ¢)

(10.3)

Ifn(p, p,)=0thesum Y  will be set equal to zero. Observe that for all

gen(@1, 92)

@eM we have k, (0,0, p)=1. Since (¢, p,)=0 if ¢,(R)=+¢,(R) we further

have k, (91,92, ¢)=0 if ¢,(R)+ ¢,(R). B .
Now, for ¢ € M 4, p(A) + 0 we denote by P, the probability measure on n(¢) (i.e.

the distribution of a random permutation of the points in ¢) given by
1 1
P,({g}):= 7 XP { — 55l edx)(x —g(x))’ } (gen(e), (104)
where Z is the normalization factor. With this notation we get from (10.3)

_ _exp{af-p(4)} 1
KQwA(¢s (P) = kwA(¢’ ¢’ (P) (271:0_)(7,(/1) P,,,+¢({g . g(x) —x for xe ¢}) . (105)

If for a fixed f we take 6—0 (i.e. the mass m will be very large compared with #)
one gets easily from (10.4) and (10.5)
KQwA((pla @)——— exp{afo,(4)}.

=0

So we get in the limit that the position distribution of w will be a Poisson point
process with intensity exp {af}, i.e. the position distribution of a free gas in classical
mechanics. It is also possible to express k,, , explicitly in terms of the probability
measures P, what gives hints for a characterization of the state w of the infinite
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volume ideal Bose gas (cf. [2]) corresponding to the same inverse temperature >0
and chemical potential o <0. The position distribution Q,, of this infinite ideal Bose
gas is discussed in detail in [14]. It is shown there that Q , is an infinitely divisible
point process on R. Especially, clustering representations of this distribution are
considered. Using Q,, one may define for Q-a.a. ¢ a distribution 15,,, of a random
permutation of the infinite point configuration ¢. Now, if (4,),5, is an increase
sequence from B with lim 4,=IR we get that Q,,, converges weakly toward Q,,

n—+oo

and for Q,,-a.a. ¢ the sequence P, , converges weakly to 13 Further, one can show
that for FxFx Q,-a.a. (¢, ¢, (p) hm k,,,A (@1, 02,0 A.,) exists and defines a
function k: M3 given by

_ exp{efoy(4)}

k(§01, ?2 (0) - I/W—)
[P, 1, (dg)exp { - 51; § ©1(dx) (h(x) — x) (h(x) + x — 2g(x))}

P, ., ({g:g(x)=x for xep,})

It turns out that k given by (10.6) is just the c.r.d.m. of w. It would be interesting to
calculate the c.r.d.m. k of infinite equilibrium states corresponding to more general
types of potentials. One could follow the ideas of Dobrushin, Lanford, and Ruelle
from classical statistical mechanics and consider infinite equilibrium states as
states corresponding to a given c.r.d.m. of a certain type. This concept can be
realized for the ideal Bose gas and should be investigated for more general models
in the future.

(10.6)

X

Proofs

11 Proofs from Section 2. In the sequel we will use again the abbreviation d,. for
Z 0., X"=(Xy,...,X,). Further, we write v%(dx°) instead of dq, i.. for arbitrary

Ae(Y)andg M-C we set 010
Afo V(dx")g(d,0)=g(D). (11.1)

11.1. Proof of Lemma 2.5

Using the above notations we get

1
S F 40 4d)N@ 45 0 47) =”§N 1] (AUIA - V(dx (8 5) 45 (O ) 4)

Z Z ( ) /if" Vk(dlck) (A’)j;' -k v _k(dy " k)h(‘sx"’ 5yn - k)

neN N

- k(. k n—ke 3. n—k .
nEZN n;h k!(n__k)! /i‘.k v (d'—x )(A')J:"k v (dy )h(éxk’ 52" )

1 1
- kszN ic_". v"(dgc) ..EZN ;l—"[ v"(dy ")h(éxk, 52")

=[(F4x F4)(@d[o1, 0, D01, 0). O
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11.2. Proof of Lemma 2.7

Let ¥ be from .. There exists a natural number m, such that supp ¥ < M™° [cf.

2.5)]-
For ¢ ¢ M’° we have ¥,=0 and thus ¥,e./#]. We obtain the following

estimations [where we again use the notation (11.1)]:
[FAd®)|F A(d<0) |40 =I F ((d9)[F «(do)|¥(p + @)

mo-—n

= Z prl 5 s X I VI(dy") |0 ,n+ 0,0l

='§m°z"<"+") [ FAdo)|¥@)P=C|¥|?,

n=0 k=0 n n+k, A
where C is a constant depending only on m,. Consequently, we get
I Fdo)|¥,l*<o0.

Thus, for F 4-a.a. ¢ we have ¥, € /4. Moreover, because of ¥ ,(¢) =0 for ¢ ¢ M7j°we
have for F 4-a.a.$ ¥,e.#4. It is easy to deduce from this fact that for F s-a.a.$

we have that for all S ¢ ¥, e.4#]. We denote this set by M, ie.
M={¢peM,: ¥ e M] for all pCP}.

Since F ,(M°)=0 and we identify two functions from .#,, if they are equal F ,-a.e. we
have ¥=¥, .
For ¢eM we have ¥, e 44 For ¢ ¢ M we get

(P1:0o(@)=215(® + @) () + @) .

M was so defined that ¢ ¢ M implies ¢+ ¢ ¢ M for all ¢ e M. Consequently, for
¢ ¢M we get (¥,,,),=0€ 4. This proves Lemma 2.7. [

11.3. Proof of Proposition 2.11

It is enough to show 2.11 for indicator functions, i.e. for functions g of the type xy,
Yedk
Let 4B, YeIR. We will show that (i) implies (ii). For all ¢ € M we have

X¥(@)=1%» A(Y)((pA)XUAc(Y)(¢A¢) . (11.2)

Consequently, we get Oy=140,,y®O0,,x) ;' From the assumption
Oy e 4o we conclude that there exists an 4 e .o/, such that

O”A(Y)®OvAc(Y) = A®11Ac .
ghus we have A=0, ,y, and O, ,.y,=1 4. Since 1 4o= 0y, We get O, ,.ry=O0 .-
ettlng ?. ={(p+¢‘¢€v/‘(y)’ ¢EMAG}

vfze thus get Oy=0y. Because of v,(¥Y)=v,(Y) we conclude from Lemma 2.2
€ M.
Now, assume (ii) holds. From Lemma 2.2 we get for all Ye #, pe M
0y¥(0)=0+¥(0)=1, A(?)(‘PA)W((P) =X A(Y)(¢A)ql(¢)
=140, A(Y)®11A'-‘)I 4 ! Y(p)=(J 40, ,,(Y)) (o).
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Thus (iii) is valid.

Finally, suppose (iii) holds. For arbitrary X € 9t we have O, ,x, € ./ 4. Thus for
all X eM we get J .0, ,x € /. From the assumption Oy=J ,0, .y, We thus get
Oye . [

12. Proofs from Section 3

We start with proving several lemmas.

12.1. Lemma. Let A€ ® and h: M x M —Q be a measurable mapping. Then for all
natural numbers n,m the following equalities hold (provided the integrals exist):

[ F (do) ‘;,%,,, W@, o —P)=[F (do) [ F 4(dP)h(d, ¢) (12.1)
and
| Fado) Z W}, p— @)= I F 4(do) I F (do)n(), ). (12.2)
e o Zm

Proof. In the sequel we often will use the following abbreviation

n

5o =Y 8 zax,, "ed” k<n, {iy,.., 05} C{1,..,n}) (12.3)

(i.e. from the configuration §,, we take out the points x; , ..., x;,).
For arbitrary n,m=0 we obtain the followmg chain:

[ Faldo) Z h(@, 90— @)= [ vmax"m)

Mp+m ( +m)’
ll’(A) m
X Z h< Z 5xi.,(sx';:m ; >
{15 eeesim} j=h T m
c{1,..,n+m}
1 n+m . _
= n+m d n+m h 5 , 5x

(n+m)'< " >A"I+m ( * ) <Z le nzl:+1 l>

=% [ ""(dl‘")i, [ V(dy" (B ym, 03n)= [ F 4(d@) | F4(dO)H(P, ).
. An m! m Mn Mm

This proves (12.2). From (12.2) we get
[F A(d) [ F s(d))h(o, ¢)= 2 I F 4(do) I F (d)h(0, ¢)
= Y [ Fydo) Z h(¢ »—9)

n,meN My +m
¢(A) m

—Z Z IFA(dfp) Z h(p, 9 —¢)
¢(A) 1
=3, | Fildo) 3 ho,0=0)=[F (do) 3 6,09
Thus (12.1) holds. [

12.2 Lemma. Let h: M—QC be a measurable function. Then for all Ae® the
following equality holds (provided the integrals exist):

[ F A(do) [ F {(dp)h(¢ + @) =[F (d)h()2”. (12.4)
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Proof. We set h(¢,, 9,)=h(¢, + ¢,). From (12.1) we get
§F Aldo) [ F s(P)h(p + )= F 4(do) ¢§¢ k¢, 0—9)
=(F ,(do)h(¢) ¢§¢ 1=(F (do)h(p)2* Y. O

12.3. Proof of Proposition 3.3

1°. Assume 4 € ®, A e /%, Ye M/,. Let B be an operator from S (Y, A). For ¥ e 4
and F-a.a. ¢ we get from the definition of S (Y, 4),

B¥(p)= ‘%w 1P Ap,) (9 —P). (12.5)

Because of Lemma 2.7 the right side of (12.5) is a well-defined function from M into
C. We will show that B is bounded. For ¥ € .44 we get

JF4(do)|BY(@)*=[Fdo) 3 Y 1@ )ty(0)A¥, (90— )AY,(0—0,)

P1SQ 9250

=({Fdo) ¥, > ) xr(@1+ @2)xy(@1 + @3)

P1S@ 9280~ Q1 P3SP—P1— @2
XAq’¢1+¢z((p—(p1_¢2)A‘I’¢1+¢3(¢_(p1_(p3)
=[F,dp)[Fsdpy) ¥ ¥ xd@1+@2)xr(@1+¢3)

@280 935002
XAY ) 40 (@ —02)A¥ 5, 4 (0—@3)
=[F4(d9) [ F s(dg,) [ F s(d9,) [ F s(d@3)xy(@1 + @ 2)xx(®1+ ¢3)
XAY ) 400+ 03)A¥ 44, (0+))
SIF o) [ F (doy) [ F 4do,)
X [ F Jdo3)xy(91+ 02)1x(01+ @3) AP, 4 o,(0 + 03)|?
=[F 4(d¢) [ F s(do )xy(@1)|AY ,,(@)|?271 D20, (12.6)
In the last step we applied Lemma 12.2. From the assumptions about Y and 4

we get that there exists an meIN such that YCM”, A=0,mA0,m We thus get
applying once more Lemma 12.2,

[F (o) |1B¥(p)I* <2°™| A]? A Faldo) [P(@)?- 22" < 2% 4|21 P12

Consequently, there exists a constant C depending on 4 and Y but not on ¥ € .4
such that | BY|| < C||¥| for all ¥ e .. B may be extended to the whole space .# ,
and Be «/,. From B=0,.:mB0,.:m we finally get Be o/%.

2°. Now, let 4 € o/} be self-adjoint. Because of S ,(Y, 4) € o/, we only have to prove
that S,(Y,A4) is symmetric. For V!, ¥Y2e.#% we get using Lemma 12.1 and
Lemma 2.7

(P, S Y, A)¥?) = F ((do) ¢§¢ P30 — Py(PA¥ (0 — )

= F {dp)xr(9) (¥, A¥7) 1= F JdP)1r(9) (AP}, ¥7)4
=[F {(do) [ F {d0)xy(P)AY J(0) ¥ ()
=[F4(9) (%“P DAY (0 — P)¥(0)

=(SAL AP, ¥?),.
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From Definition 3.1, (iii) we conclude that the above equality holds for all
Y1, ¥Y2e M ,. Thus S,(Y, A) is self-adjoint.

3°. Now let 4 € &/ be a positive operator, Ye M. For all ¥ € .4/ we get applying
Lemma 12.1 and Lemma 2.7,

(¥, SAY, A)¥) 4= F 4(do) (g‘p WO F(PAY (9 — )
=[FAdR) [ FAdo)¥o(9)A¥ o(0)=[ F 4(d) (¥ A¥)420.

From Definition 3.1, (iii) and because of S (Y, 4)e o/, we get
(P,8,Y,4)¥),=20 forall Yes,. O

124. Proof of Proposition 3.4

Let AeB, Ae ), YeM). From Proposition 3.3 we know that S (Y, A)e /5.
Hence J ,S (Y, A)e /7. Observe that for each Be o/, we have

(J4BY)(9)=(BOy , ¥y, ) (00 (VEM, 0EM). (12.7)

(Observe that Oy ¥, ,.€ M 4.)
For all Ye.#’, pe M we get using (12.7),

(J4SAY, A)P) (0)=(SA(Y, A)Op , ¥, ) (@4)
= Y xdP) (A0, Y ,.0) (04— )

PCoa

= 2 2040y, ¥y o+ 0) (04— P)

@S0

= Y x(P)(A0y A( 'P(b)(p Ac) (pa— )

PCoa

= 2 O UAP) @4+ 04— )

<o

= 2 1P 44¥) (0 —P)= ,;,%,,, 1(P)(J 44Y,) (9 — D)

¢Soa

=(S(Y,J44)¥)(9). (12.8)
Analogously, one shows J S (Y, A)=S(v; 'Y, 4). [

['a}

g}

12.5. Proof of Proposition 3.6

From the assumption A € 4o/ we get A=J 40, ,A0,, . Using (12.7) we get for all
Yed!, peM,
(4¥) (@)= (04 , A0y, ¥, ) (0.0

= ‘g Y4 P) (O ,AOy ¥ ) (0 — D)
£
=(S(M 4e, Orr , A0 ) ¥) (9).-
Since A was assumed to be bounded we get from Definition 3.1, (iii)
AY =S(M 4,0, ,AO,,,) forall ¥Ye.
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12.6. Proof of Proposition 3.7

Assume A€ o/ 4, AeB. We have A=0,,,(J 4,4)0), . So from Proposition 3.6 we

conclude
J4A=8(M 4., 0y ,(J 4A)Opt ) =S(M 4o, 4). [

12.7. Proof of Proposition 3.8
Assume YeI, Ae A, S(Y,A)e .o for some AeB. From the identity (11.2) we
obtain especially
XMA(q’ —9)= XMA((pA - ¢A)X{0)}(‘PA¢ —P4) (0, 0EM, $C0). (12.9)
From (11.2) and (12.9) we get for all ¥ € #7 and F-a.a. ¢,
S(Y, A)¥(p)= ¢§¢ Xo Ac(Y)(¢A‘)Xv A(Y)(@A)A lP¢(‘P —9)

= o qu:p Xo A(Y)(¢)Xu AC(Y)(¢A°)A 'I'aa +o Ac((PA —9)
A
=1,4(S4(Y), RO, ,.x)] 4 ¥(¢). (12.10)
From the assumption S(Y, A)e ,of we get for all ¥ € 47 and F-a.a. ¢,
S(Y, A)¥(9)=(0y ,S(Y, A)Op , ¥, ,) (9.4
= ,;,% x{P)AO0y ¥y ,)e(04— D)
14

= N QZ‘:P Xo A(Y)(@)AOM % Py ¢(‘PA —Pw Ac(Y)(‘D) . (12.11)

Oev,(Y) because otherwise we would have S(Y, 4)=0.
But since we assumed S(Y, A)e ,.&/ this cannot happen (each operator from ,.o/
is “outside A” the identical operator and thus not identically zero).
Consequently, from (12.11) we get

S(Y, A)=1 (S s0(Y), @14 1 *. (1212
Combining (12.12) and (12.10) we get

OVAc(y)=1Ae=0MAc.

Thus, for Ye I such that v,(Y)=0v,(Y), v,{(Y)=M 4. we get Oy=0y. But from
Lemma 2.2 we know that Ye . [

12.8. Proof of Proposition 3.9

Let AeB, Aec L (M), Ye M, S(Y,A)e . From Lemma 2.2 we know that for all
p €M we have xy(p)= 1y, (@) Further, we have S(Y, 4)=J (0, ,S(Y, A)O,, ).
Using the above observations we get for all ¥ € .#” and F-a.a. ¢,

S(Y, A)¥(p)= ,%,, XAP) (A(Oy ¥, )0) (94— D)
=¢§Z¢A AP Mm@ 4— D) (AOMA Y’¢Ac+¢) (@a— )

= ¢§¢ 11(@) (041, A0y ¥ ) (9 — §)=S(Y, 0 ,AOy ) ¥(90).
But 0y ,40y e/, [
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12.9. Proof of Proposition 3.10

Let A, A'e€B, AnA'=0, YeM ., Ac,.
For all Y e .#, p € M the sum

¢§¢ xy(9) (4 'P(;;) (o—9)

exists (pe YCM,, and $C¢ imply ¢S, S ) Further, if ¢+¢, then
©—p¢M , because AnA'=0. Consequently,

S(Y, A)¥(0)=xy(04) (A¥, ) (@ — 1)

From Ae o/, we get that S(Y, A)¥P(p)=0 for o ¢ M, 4
It is easy to check that S(Y, A) is bounded. Thus S(Y,4)e </ 4. O

12.10. Proof of Proposition 3.11

Let Y, Y, be from 9. Using several times Lemma 12.1 and Lemma 12.2 we get for
Ve,

[1S(Y1, Oy,) ¥l 2 =[F(dp,) Y X X (@2xy(01—0,)

P2C801 @351
X Xy (@3)1y (@1 — @3) [P0
=[F(dp,) Y, > > Xy, x v, (92 @3, 02+ 04)

92601 @358Q17 92 9aSP1— 02— @3
XX, x 12 (@1— 02— @3 01— 02— 04) [P0
=[FYd[p1, 2,93 @aDty, xv,(92+ 93, @2+ 04)
X1y, x @1+ P 01+ 03) |P(01 + 02+ @3+ )|
STFYALo1 902,03 0a]) P(@1 + 02+ 03+ 0,
<[F(de)2**9¥(p)><C| ¥, (12.13)

where C is a constant depending on Ye.#/ (¥ =¥,,,,. for some meN). Thus

S(Y,,0y,)¥ e for all ¥e.#’. Consequently, S(Y;,0y,)+0. Further, for all
Vel we get

(¥, 5(Y,, Oy,) )= F(dp)¥(9) %‘P 2y (Py,(9 — P ¥ (@)

= F(d) | Fd®)ty,(Pxv,(@) P(¢ +P)* 20.

We thus get that all operators from S(Y;,0y,) are positive. Analogous estimations
as in (12.13) prove that for YeM, fe #°, |f|<a F-a.e. we get

IS(%,0,)%|12 <a*C|# )
for all ¥ e 4/, where C is a constant depending on ¥. This proves 3.11.
13. Proofs from Sections 5 and 6
13.1. Proof of Theorem 6.4

1°. Let w be a normal state on Z(.#). Thus there exists a density matrix ¢ on .#
such that w(4)=Tr(gA) for all Ae £ (#). Consequently, there exists an ortho-
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normal system (¥ ). s of elements from .# (with S a finite or countable index set)
and a sequence (&5, %>0, Y a,=1 such that

seS

0= af¥,")¥;. (13.1)

seS

Having this representation of ¢ we get for all Ye I,
Qw(Y) = Tr(QOY) = ZS as(lpw OYTS)
= ; F(do) Zs o V(@)= £ F(do)D(¢), (13.2)

where we have set for all pe M,
D(g): = X ol P o).
S€

Thus Q< F, and D(¢) is a version of dQ,/dF.
2°. Observe that the density D(¢) has the following property:

(0, p)D(@)=D(¢p+¢) (FxF-aa(d,9)), (13.3)
where k:=dC§>/d(F x Q,). Indeed, for all Y,,Y,eM we get from (13.2) and

Lemma 12.1,
C3XY; x Yy)={ F(do) ¢§¢ D(o)xy,(P)xy,(0— )

=[ F(do) [ F(dd)1y,(9)xx,(¢)D(¢ + @)
= YI F(do) YI F(d@)D(p + ). (13.4)

On the other hand, from (5.5) and (13.2) we obtain
Co(Yi x )= YSZ F(dy) Yfl F(d@)D(@)k($, ¢). (13.5)
Combining (13.4) and (13.5) we obtain (13.3).
(13.3) implies that for F x F-a.a.(¢, ¢) we have the implication:
D(¢p + ¢)>0= D(¢)>0.
Especially, the function k,: M*—C given by

Zs a, V(@ + )P[0, + )
ko(@1, 02, 0)== D) (@1, 92, 0€M) (13.6)

is a well-defined measurable function (we set 3=0).

3°. Now, let Y be from I, A an integral operator from #(.#) such that
S(Y, A) e £(M). First we additionally assume that S(Y, A) is concentrated on .4/,
ie. there exists an m=1 such that S(Y, 4)Oym=S(Y, A) (M™={p € M : ¢(G) <m}).
Observe that for all ¢ € M we have (Oym¥), € # (Lemma 2.7). Denoting by k4 a
kernel of A4 we get for arbitrary ¥ e {¥:s€S} the following chain of equalities:

(7,5(Y, A)P)
=[F (d¢)Y’_(<p)¢§¢ 1@ —@1) [F(do )k 4(01, 92) P9 — @1+ 2)

1
={ Qw(d(/’)m (ng:‘p 10— 1) P(0) JFAp )k (@1, 0)P(0—01+,)
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=1CGdlo1,0]) V(@ +¢1) [ Fdp)k (01, 02)¥(9+¢2)

1
D(¢+¢,)
= Qulde) 1 Fdo,) o 222 W 7) [ Fldg ks 02) (0 + )

D(p+¢4)
~ [ 0.ld0) [ Fdg,) [ Fldp ks, ) 20T 022, 137)

Consequently, by Definition (13.6) we get
o(S(Y, 4)= ZS (¥, S(Y, A)¥)
= £ 0.,(do) [ F(do,) [ F(dp )k (@1, P2)kal®2, 915 9)
=! Qu(do) [F(dp )k * ko(01,9). (13.8)

4°. Now, let S(Y, A) be from #(.#). From the definition of S(Y, A) [Definition 3.1,
(iii)] and the continuity of w we deduce that (13.8) holds for arbitrary Ye I and
integral operators 4 e Z(.#) such that S(Y, A)e £(#). This proves (i).

5°. From Lemma 5.3, (5.6) we know that for Q -a.a. ¢ < F and « is a version of
dng/dF. From step 2° of the above proof we immediately get (6.4).

6°. We still have to prove that k, is a.e. uniquely determined. For arbitrary
Yo, Yy, Y, € M the function xy,(¢1)xy,(®2), ¢1,9,€M represents the kernel of a
Hilbert-Schmidt operator 4 from /. Consequently, S(Y,,A)es/’ (cf.
Proposition 3.3).

So if k: M®>C is a measurable function satisfying (6.3) and (6.4) we get

] Quldo) | Fldgy) | F(dgs)(ku(91, 92, @)~k 02 0)=0. (139

Since F and Q,, are concentrated on M/ from (13.9) we easily conclude that k, =k
FxFxQ,ae []

13.2. Proof of Theorem 6.8

Since K is assumed to be a positive trace-class operator on ./ there exists an
orthonormal sequence (¥,),.s from .# with S an at most countable index set and a
sequence (o)., % >0, Y o< oo such that

seS
K=Y a(¥,)?,. (13.10)

seS

Consequently, k: M?—>C defined by
K91, @2):= T 0¥ (@) P02 (91,026 M) (13.11)

is a kernel of K.
We will show that w(-):=Tr(g-) with
0=0({O)K (13.12)

is the normal X'-state with Q,=Q and k,=k.
First observe that

Tro=Q({O)T:K = Q({O)nS(M). (13.13)
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Because of
0(Y)=C (Y= {0})= mf) : Qdoyg(Y)=0({@hmg(Y) (YeM)
from (13.13) we get Trg=1. Thus, w is a normal state. For all Ye It we get from
(13.14) and assumption (6.7)
0,(Y)=Tr(e0y)=Q({0}) Tr(KOy)=Q({O})ng(Y)=Q(Y).

Thus @,=0.
From (13.10), (13.11), and (6.8) we conclude

k@1, @,), ®)=E(¢1,§02) (Fx F-a.a.(py, 05)). (13.15)

Now, let Y be from IR, 4 an integral operator from Z(.#) such that
S(Y,A)e L (). Let k, denote a kernel of A. Then we get from (13.12), (13.14),
(13.15), (6.9) and Lemma 12.1,

o(S(Y, A)=Q({0}) T, ¥ S(Y, A)¥)
=00} ¥ «fF (MJW%m 1(@) (A(P),) (91— @)
=0({0)) 3, o] F(do) [Fdo,) | Fldgo)k (@1, 02)

x¥(o+9)P(0+09)

=0({0)) [ F(dg) [ F(dp,) [Fdp k(@1 PP+ @2, 0+0))
= Q({‘D})i F(do) [ F(de,) [Fdp )k (@1, 92)k(¢+ 02,0+ ¢4, 0)
=0({0}) ; F(do)k(p, ¢, O) [ F(¢1) [ Fd@ o)k s(01, 92)k(@2, @1, ¢)
=0({0}) i 10(do) § F(do )k, * k(@ 1, )
=! QdP)F(dp )k 4 * k(p1, 9).

Thus k fulfills condition (6.3) of Theorem 6.4.
From (6.7) and (6.9) we get for F x F-a.a.(¢4, ¢)
Ko(@1+ ¢, O)=ko(, O)k(¢1, 91, 0),
where ko =dCy”/d(F x Q). One easily checks that for F x F-a.a.(¢4, ¢),
Kol®1, P)eg(p, O)=kol@1 + ¢, D). (13.16)

Since ky(@; + @, ©) >0 implies k (@, O) >0 we get for F x Q-a.a.(¢,, ¢) (6.4). From
Theorem 6.4 we thus conclude k,=k a.e. what ends the proof. []

13.3. Proof of Theorem 6.10

The implication (II) = (I) is the contents of Theorem 6.8. Assume (1) is fulfilled.
In the proof of Theorem 6.4 we obtained that the a.e. uniquely determined
function k,, can be written in the form (13.6), i.e.
1 _—
kw((pla (8 (P) = _D_ia ZS OCsqls((pl + (p)qls((PZ + (P) ((pla P, QE M) s (1317)

where we use the notations from step 1° in the proof of Theorem 6.4.
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Since 0 < Q,,({0})= D(D) we have that k(¢, ¢,): =k,(@1, ¢,, ©)is the kernel of
a positive trace-class operator K with

Tr(K0y)=; Fdo)k(p,9) (YeM))
D(fp) 1
Do) ~ 0.({0)

where we used formula (13.14). Thus condition (i) is fulfilled. Condition (ii) follows
directly from the definition of K. Finally, for all ¢, ¢,, ¢, ¢ € M we get from (13.17),

D 1 -
ko(@1+ 0,0+ ¢, )= (g(;;)q)) Do+ 0) % Y Yo to+ )P0+ 0+ 9)

= kw((p, ?, @)kw((Pl’ P2 ¢+ (ﬁ)
which proves (6.9). [

13.4. Proof of Proposition 5.8

From Proposition 3.4 we obtain S(Y;, Oy,)=J 4S4(Y;, 0, ,y,). Denoting by w4 the
normal state on £( ,) given by w (A)=w(J 4A4) for Ae L(M,) we thus get

w(S(Yl’ OYz)) = wA(SA( Yl’ OI)AYZ)) .
Obviously, the position distribution Q , of w, is given by
0AY)=0Q,;'Y) (YeM,). (13.18)

There exists a density matrix g on .# , such that w ,=Tr(g -). Let ¢ be written in the
form (13.1) (with ¥, e.#,). Using the notations from step 1° of the proof of
Theorem 6.4 and (13.18) we get

o(S(Yy, Oy,)) =Tr(eS 4(Y1, 0, ﬂ
= s;S o, | F o(do)¥ () ‘%q, Xy (D)o 1y, (0 — D)V ()
=[F 4(de)D(¢p) Z Xy (D)o 4y, — P)
‘°°)(Y1 XV, Yz)
=c<°°>(Y1 x Y,). (13.19)
From Lemma 5.3 ((5.6)) we obtain C5°X(Y; x Y,)= j Q.(dom$, (Y,). This proves (i).

By the usual approximation procedure of measurable functions by step functions
we obtain (ii). []

14. Proof of Theorem 7.3

Let A€B be fixed. For all pe M ,. we set
KG¥(0)=[F [do)k(1, 02, 9)¥(p2) (WeMy 91eMy).  (14.1)

Denote by Q ,. the measure Qovy! (on [M 4., M ,.]). From assumption (I) we
conclude that for Q ,.~a.a. ¢ K9 is a positive trace-class operator on .# . Further, it
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is well-known (cf. the Russian edition of [26, Proposition 9.1.10]) that for
Q-a.a.9 0<n@(M ,) < co. Now we fix a ¢ € M 4. such that K¢ is a positive trace-
class operator and 0<n§(M 4) < co. From (7.2) we conclude

0<Tr(K%) = F 4[dP)k(®, §, p) =15p(M 1) < 0. (14.2)

There exists an orthonormal sequence (%), s from .#, and a sequence (&), s,
@;>0, Y d;<oo with S an at most countable index set such that

seS -
ko, 02)=%, L 0)P(02) (91, 0,6My) (14.3)

is a kernel of K% (¥, and &, depend on the fixed counting measure ). For the kernel
defined this way we get

Tr(K509)=] Fdp)k(p,p) (YeM,).

So from (14.1) and (14.2) we may conclude

K1, 02, 0)=k(@1,02)  (Fyx F4-a.0.(91,95)) (14.4)
and
Ko, 9, 9)=k($, P)=Ko(9,9)  (F s-aa. ). (14.5)
Consequently, for Q ~a.a. peM 4. by
40%(A): =ng(M 4)) ' Tr(K50y ,A0y,) (A€ 1) (14.6)

there is defined a normal state on ,.2/.

Now we set L B(A4) =Mj~ c 0,(dp)6%(4) (A€ ). (14.7)

Obviously, ,& is a state on ,«/. Applying Theorem 2.6.14 in [2] and
Lebesgue’s dominated convergence theorem we get that ,@ is again a normal state
on ,&f.

Consequently, for all 4 B by (14.6) there is defined a normal state on ,.o7. We
will prove now compatibility of this family of states, i.e. we fix two arbitrary sets 4,
AteB, AC A and show 5 3

AD(A)= 1 D(4) (A€ 1).
Let A € o/, be an integral operator with kernel k 4, and let ¢ € M ). be such that
K%, is a positive trace-class operator on ., the kernel of which is of the form

k@102 @)= T a¥(0)¥(02) (91,026 M) (14.8)

with (¥ ),.s an orthonormal sequence in 41, ,>0, Y a,<oo.
seS
Using several times assumption (7.3), Lemma 2.5 and (14.5) we get
TI'(K%, OMAl‘IAAOMAx)
= Zs ot [ F41(d0)P(@1) [ F A(dp2)k (@1 1 02) P02+ @140 ,)
= 1 Fdeo) | Fdpy) [ Fld k(91 92)k(@2+ @0 91+ @0 9)

Mang

= [ F(dpo)k(po, 9o, ) MI F(do,) MI F(do )k (91, 92)k(@2, 91, 0 + @)

Mana

= [ ngdeo) | F(dfpl)kAjk((Pu Po+ ). (14.9)
Mang M4
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Thus, we get from (14.7), (14.6), (14.9), Lemma 2.5, (6.10) and (5.7)

A= T Quonde) | o) i

Matye Manag

X I F(dga)k 4% k(@2 90+ @)
= Qw)c(dco) ! F(d‘l’o) I F(do,)ko(@o, @)ko(@1, @+ Po)

Matye

1

X ’7¢(M )77 +¢0(M ) j F(d¢2)kA*k(¢2’ (Po+<P)
o\t at
1

= | Q(Al)c(d(l’) .[ F(d(PO)KQ((Po,(P) ¢(MA1)’78+¢°"‘""’(MA)

Matye

X f F(dq’z)kA * k(@25 Po 4T P)

1
= f Q(Al)c(d¢) "’(MA) { 'IQ( (PO)W

Al)c

x j F(d("z)kA * k(@2 0 g\ 4+ @)

I Q4ddo) ¢(M )I F(d@)ky * P, p) = 4D(J 44).- (14.10)

Thus we obtained that for all 4, A'e€ B, ACA' 1B(A4)= 4&(A) for all integral
operators from 4o/, and consequently, we have equality for all 4 € ,/. This proves
that there exists a locally normal state w on o/ such that ;o= ,& for all A€ B.

We have to prove that Q,=Q. For all 4B and Ye I we get using (14.7),
(14.6), and (14.5) and Lemma 5.3 (5.7)

(O0y) = 40(0y)= ,&(Oy)= I QAc(d(P)ACT)(p(OY)

YoM,

= | Quddo) (,,(LA | Foe(0.0)

~10 )~ 0(d)O(Y ) )= 0L

Since Q is determined by all sets from () ,9 this implies Q,=Q.
AeB

Finally, we have to show that the function k has the properties (i)—(iii) of
Definition 7.1. Properties (i) and (ii) follow immediately from assumption (I).

We fix 4 €B and a ¢ € M ,. such that K9 is a positive trace-class operator with
a kernel of the form (14.3) (where ¥ and a, depend on A and the chosen counting
measure ¢). Let Ye ,9, 4 an integral operator from &/, with kernel k , such that
S(Y, A) e 4. Using the fact that S(Y, 4)=J,S,(v,Y, A) (Proposition 3.4) we get
using (14.3), (14.4), Lemma 12.1, (7.3), (14.5) and Lemma 5.3

Tr(K4S 404 Y, A))= Zs s [ F4(do,) [ F 4dp2) Y @1+ @)% A P)AY )y, (01)

=[F(do,) [ Fs(dp)k (01, 02)
x v.rY F [(do3)k(@,+ @3, 01+ @3, 0)

=ujy ﬂg(d¢)jFA(d¢1)IFA(dfpz)kA((Pv ©k(P2, 01,0+ P).
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Using (14.6) and (14.7) we finally get
(S(Y, A))=o(J 4S 4(v 4 Y, 4))
= ] Q.ulde) rBM.)) ™ Tr(KSS (0.4, 4)
= | Quldo) | ngd)yM.) ™ [ sdgikas Mos, 0+ )
=[QW) [ F 4do Yk 5 K91, 9)-

This ends the proof of Theorem 7.3.

15. Proof of Proposition 8.1

We will show that the function k defined by (8.6) satisfies the assumptions of
Theorem 7.3. It is easy to check (cf. also [26]) that for all §,.e M, x"e G", n=1,
and peM,

j-1
k(0 5m, )= ]'[ K“)(xj,<p+l_21 5,”) , (15.1)
where ko=dCy”/d(F x Q). Consequently, directly from the definition of &
(5.1)—(5.5) we get
1B, 0)* =Ko(h.0) (9, 0€M). (15.2)
Now, for arbitrary 4B we set
PUG): =B, Ou (D)  (PeM, peM,).
Directly from the definition of C3” and x, we get
f Qo) I F(do) |P4(9)* = I Q(dy) I F(d@)ey(, 9)
= C‘°°’(M XM 4= Q(d<p) X XMA(q))xMM(co )

(X9
(ber

= QdO)1rm (P Urt 1 (P 4) = QM) =1.

Consequently, for all 4e®B and Q-a.a. ¢ |P%*| < oo and thus P9 e 4,
This implies that for all 4B and Q-a.a. pe M 4. by

K%:=(¥Y%)¥% (15.3)
there is defined a positive trace-class operator on .#, with kernel

PP )PYP)=K(@1, 02 Olat  x @1, P2) (@1, 026 M).

Because of (15.1) condition (7.2) is satisfied. This proves (I).
From (8.4) and (8.3) we get for all n,m=1, x"€ G", y"e G™, and pe M,

~ n j-1 m -1
B(8n+ Sy, 0) =,-131 @ (x > +,;1 5x,> 1131 @ ( Vo @ +0um+ ;1 5ys>
=&(0n, Q)D(6,m, 9 +5,). (15.4)
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(15.4) and part (8.5) of the definition of & imply

B(@1+ 02 0)=B(@1, 0)B(@2, 0+ 01) (91,05, 0€M). (15.5)

From (15.5) we immediately get that the function k defined by (8.6) fulfills
condition (II) of Theorem 7.3.
Consequently, there exists a unique locally normal state @ on &/ such that

0,=0 and k is the c.r.d.m. of w.

Now, if w is a normal state then Q is a finite point process (Proposition 6.1). We
prove the converse. If Q is a finite X-point process then Q({®})>0 and Q(X)
=0({O}ng(X) for all X e M [cf. (13.14)].

Observe that &(-,0)e 4. Indeed

1
2 _ =79 = Srmn
F(do) 100, O)F = [ Fldg)x(p: O)=ngM)= G-

Consequently, the operator K on .# with kernel k(¢ 4, @,, ©)is a positive trace
class operator, and

w:=0({0} Tr(K-) (15.6)

defines a normal state on Z(.#) with position distribution Q,= Q. Since it was
already shown that k is the c.r.d.m. of a certain state & and Q;=0Q,=0Q we only
have to show that k has the property (iii) of Definition 7.1. For that reason, let 4 be
from B, Ae/, an integral operator with kernel k,, Ye ,M and assume
S(Y, A)e 4o/. From Definition (15.6) we get applying Lemma 12.1

o(S(Y, 4)) = Q({O}) Tr(KS(Y, A))
=Q({O}) [F(dp)P(e, D) 3, xx(01)

0150
X [ F Jd@ )k s(0— @1, 9,)B(01 + ¢, O)
=Q({O}) [ F (do) £ F(do,) [ F s(doy)k (@, 02)k(@2+ @1, 0+ ¢4, D)

=Q0({0}) IJ; F(do)k(@1, @1, O) [ F (do)

X [ F J(d@2)k 40, 02)k(@2, @, 1)
=Q0({0}) Ij, ’78(‘1(1’ DI F s(do)k 4 * ko, ¢4)

= [ Qo) [ F A(d)ks % k(@; 1)

Finally, we thus get that the normal X'-state @ given by (15.6) is the uniquely
determined state w on o/ such that Q,=0Q and k is the cr.dm. of . [

16. Proof of Proposition 9.2

Let w be the state obtained by Proposition 8.1, and denote by @ the normal state
given by & =(¥, - V).

Obviously, Q,=0,=0. For all 4B and A€/, we have J,A=S(M 4, A)
(Proposition 3.7). So, from Theorem 6.4 we conclude that for all integral operators
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Ae o, (with kernel k,) we have applying Lemma 2.5,
o(J 44)= Mj Q(do) [ F Ao 1)’@1: ko1, @)
=MI F(do)[F ((dp ) [ F 4(dp )k (@1, 92)k(@2, @1, @) [¥(0)?

=[F 4(d@) [ F [(do) [ F s(dp)k (01, 92) (02 + 0)P(0; + )
=[F(dp) [ F )k (¢ 4, 02)P (0, + 0 4)P(9)
=[{F(dp)P(9)AY, ,(¢) =] F(dp)¥()J 4A¥(p)

=(¥,J ,AP)=d(J ;A).

Since 4 was chosen arbitrarily and integral operators are dense in #(.#) this
implies w=&. [J
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