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Abstract. In a previous paper [11] it was shown that to each locally normal state of
a boson system one can associate a point process that can be interpreted as the
position distribution of the state. In the present paper the so-called conditional
reduced density matrix of a normal or locally normal state is introduced. The
whole state is determined completely by its position distribution and this function.
There are given sufficient conditions on a point process Q and a function k
ensuring the existence of a state such that Q is its position distribution and k its
conditional reduced density matrix. Several examples will show that these
conditions represent effective and useful criteria to construct locally normal states
of boson systems. Especially, we will sketch an approach to equilibrium states of
infinite boson systems. Further, we consider a class of operators on the Fock space
representing certain combinations of position measurements and local measure-
ments (observables related to bounded areas). The corresponding expectations can
be expressed by the position distribution and the conditional reduced density
matrix. This class serves as an important tool for the construction of states of (finite
and infinite) boson systems. Especially, operators of second quantization, creation
and annihilation operators are of this type. So, independently of the applications in
the above context this class of operators may be of some interest.

1. Introduction

For a mathematical explanation of many structural effects, phase transitions,
characterizations of equilibrium states, etc. of "large" quantum systems it turned
out to be useful to have available mathematical models for infinite quantum
systems. There are several approaches to the study of infinite particle systems. In
quantum statistical mechanics a common approach is the concept of quasilocal
C*-algebras J/ . Hereby stf is the (norm completion of the) union of all local
algebras representing measurements in bounded areas of the phase space. The
local algebras are assumed to be (isomorphic to) the algebras of bounded linear



316 K.-H. Fichtner and W. Freudenberg

operators on the symmetric Fock space over the bounded region. The state of such
a system is given by a positive normalized linear functional on the quasilocal
algebra.

Though this approach is fairly general and elegant it is quite difficult to
construct in a rigorous way examples of states of infinite systems. Furthermore,
even for standard examples it is complicated to calculate explicitly the expec-
tations of numerous physically important measurements. The difficulties are
connected for instance with the non-existence of the Lebesgue measure on R00. In
classical statistical mechanics one could avoid these troubles by using the well-
developed theory of infinite point processes (cf. [5, 6, 18, 27]).

The aim of our investigations was first to associate - as in classical statistical
mechanics - to a state of an infinite quantum system an infinite point process that
can be interpreted as the position distribution of the state, i.e. the point process
contains all information connected with (finite or infinite) position measurements.
This step was done in [11]. The position distribution alone never will characterize
the whole state of the quantum system. We relate to a given state a function
describing the behaviour in bounded regions given a fixed configuration outside.
This function which we called conditional reduced density matrix (c.r.d.m.)
determines together with the position distribution the state completely, and allows
to calculate all kinds of conditional intensities. The point process and the c.r.d.m.
are defined in such a way that all troubles connected with infinity are "packed" into
the probabilistic part (the point process) where one can use the results of classical
statistical mechanics and the theory of infinite point processes. By integrating the
c.r.d.m. with respect to the position distribution one gets the reduced density
matrix of the state well-known in statistical physics. The advantage of such a
description of locally normal states is that one obtains effective sufficient
conditions on a point process Q and a function k ensuring that Q is the position
distribution and k the c.r.d.m. of a locally normal state. This allows an explicit
construction of states. Several examples of states of infinite boson systems are
given, and an approach to equilibrium states is sketched.

First we will introduce a class of operators combining position measurements
with other local measurements. This class is used for the characterization of locally
normal states. However, independently of this application this class of operators
may be of some interest, especially because of its connections with stochastic
calculus and Maassen's kernel approach.

All our considerations are reduced to locally normal states of boson systems
without spin. We further assume that the local algebras consist of all bounded
linear operators on the symmetric Fock space over the bounded regions of the
phase space G which is assumed to be a complete separable metric space equipped
with a locally finite diffuse measure.

Let us sketch briefly the contents of the single sections of the present paper.
In Sect. 2 we introduce some basic notions and notations from point process

theory. Further, we describe the symmetric Fock space in a manner adapted to the
language of counting measures and point processes, i.e. this space is defined as the
L2-space over the set of all finite counting measures on the phase space. This space
describes (by definition) indistinguishable systems. In our opinion this represen-
tation of the Fock space allows a more convenient description of boson systems
because one achieves indistinguishibility by definition and not - as in the usual
approach - by using operators of symmetrization acting on a space describing
distinguishable particles. Further, we introduce in Sect. 2 the concept of quasilocal
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algebras, and we refer some results obtained in [11] concerning the position
distribution of locally normal states.

In Sect. 3 we define the above mentioned type of operators on the Fock space
representing combinations of counting procedures with other measurements.

In Sect. 4 it is shown that many operators describing physically meaningful
measurements are operators of the above type, as for instance creation and
annihilation operators and operators of second quantization.

Some further notions from point process theory, especially the important class
of so-called Σ'v-point processes and conditional intensity measures are introduced
in Sect. 5.

The next section deals with a description of normal states. We introduce the
c.r.d.m. of a normal state and give a characterization of a normal state by its
position distribution and its c.r.d.m. Section 7 contains the main results. We give
sufficient conditions on a function k and a point process Q such that there exists a
uniquely determined locally normal state with position distribution Q and c.r.d.m.
k (Theorem 7.3). In Sect. 8 we give a method for an explicit construction of a state
having a given point process as its position distribution. This method is based on
an application of Theorem 7.3. Examples resulting from this approach are given in
Sect. 9. In the subsequent section we will sketch a characterization of equilibrium
states. Details of these investigations will appear in a forthcoming paper.

The proofs of all results are contained in the remaining sections.
The present paper represents an enlarged, generalized, and revised version of

the reports [9,10].

2. Basic Notions and Notations

2.1. Counting Measures and Point Processes

Let G be a complete separable metric space. By (5 we denote the σ-algebra of Borel
subsets of G, 95 is the ring of bounded sets in (δ. G will represent the phase space of
the considered boson systems (i.e. the space of the positions of the bosons). In
applications, G usually will be an Euclidean space Rd, d^ί.

2.1. Definition. Let Λe(ΰ. A counting measure on A is an integer-valued locally
finite measure on [G, 6>] concentrated on A. By MΛ we denote the set of all
counting measures on Λ, i.e.

MΛ: = {φ: φ is a measure on [G,(5], φ(Ac) = 0, φ(J3)eN for Be95}

where N : = {0,1,...} and Ac: = G\A.
The elements of MΛ may be interpreted as locally finite point configurations in

A. Indeed, a measure φ on [G, ©] is a counting measure on A if and only if φ can be
written in the form φ = £ δx. with J an at most countable index set, x e A for all

JeJ J

jeJ and the sequence {XJ)J€J having no accumulation points [each bounded subset
of A contains only finitely many elements from (Xj)jeJ]. By δx we denote the Dirac
measure in x.

We equip MΛ with the σ-algebra W,Λ generated by all sets of the type

{φeMΛ:φ(B) = n},
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The set Mf

Λ : = {φe MΛ: φ(Λc) < 00} of finite counting measures on A is obviously
a measurable subset of MΛ.

In the case A = G we omit the index A in the above notations. For A e © we
denote by υΛ the restriction from M to MA, i.e.

vΛ(φ): = φ(-nΛ) (φeM). (2.1)

We also write φΛ instead of vΛ(φ). Obviously, vΛ is measurable.
Further, we set for arbitrary Ae<5 JfJl: = {vA\Y): YeWlΛ}. dSWλieβ is an

increasing net of σ-subalgebras of SDΪ (23 ordered with respect to inclusion), and

In the sequel we have to distinguish carefully between βR and WΛ. Counting
measures from a set belonging to $JlA have no mass points outside A while the sets
from Ayil are determined by the behaviour of their elements inside A. More
precisely, we have the following characterization of A$R which is very easy to verify.

2.2. Lemma. Let Ae&, ΓGSDΪ. The following conditions are equivalent:
(i) YeJJl;

(ii) Y={φ + φ:φeυΛ(Y),φeMΛC};
(iii) For all φeM χγ(φ) = χVΛiY)(φΛl
where χx denotes the indicator function of a set X.

2.3. Definition. A point process is a probability measure on [M,SDΪ]. A point
process P is called finite if P(Mf) = l. P is called a point process on Aedΰ if
P(MΛ) = 1.

According to the interpretation of counting measures a point process on A is
the distribution of a random point system in the phase space A.

For details and further information about counting measures and point
processes we recommend the monographs [21,26].

2.2. The Fock Space Over A

The notion of the Fock space we want to introduce now is adapted to the language
of counting measures.

Let v be an arbitrary but in the sequel fixed locally finite diffuse measure on
[G,©] [i.e. v(B)<oo for all £e33, v({x}) = 0 for all xeG].

For each A e © we define a σ-finite measure FΛ on [M, SOΪ] by

FAY) • = Xκ(<D) + Σ ~, ί Adixu • •.,xJkr ( Σ < U (YeSR), (2.2)
n^iniA" \j=ί J

where © denotes the empty configuration, i.e. ©eM, (D(G) = 0.
Observe that FΛ is concentrated on Mf

Λ and that for A e 95 the measure FΛ is
finite (FΛ(M) = Qxp{v(A)}. In the case G=R d , v usually will be the d-dimensional
Lebesgue measure.

The set of^omplex numbers is denoted by (C, and for a complex-valued
function f by f its complex conjugate is denoted.

2.4. Definition. Let A e ©. The set

JΐΛ: = {ψ:M^€, Ψ measurable, suppΨQMf

Λ, $FΛ(dφ)\Ψ(φ)\2<oo}
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endowed with the scalar product

(Ψ\Ψ2)Λ:=lFΛ(dφ)Ψ\φ)Ψ2(φ)

we call the (symmetric) Fock space over A.
In the case A = G we again omit the index A. A similar definition of the Fock

space over G = R 1 one can find in [19,24,25]. In [11], (Remark 2.5) Definition 2.4
is compared with the usual definition (cf. instance [15, 1, 2, 3]).

In the sequel we often will use the following property of the measures FA:

2.5. Lemma. Let A,AΈ(ΰ, AnA' = Φ, and let h:MxM-+<E be a FAxFA,-
ίntegrable function. Then

I(FΛ x FΛ){d[_φu φ2\)Kφu φ2) = \FΛκjΛ{dφ)h(φΛ, φA). (2.3)

Now, for ΨeJί and φeM we denote by Ψφ.M-*<L the mapping defined by

Ψφ(φ): = Ψ(φ + φ) (φeλi). (2.4)

2.6. Remark. Since Ψ is concentrated on Mf we have ΨΦ = O for all φφMf.
Obviously, WO=W. However, ΨeJί and φeMf does not imply in general
Ψφ e Jί. One can construct easily Ψ e M such that for all φ e Mf, φ Φ © one has
Ψφ φ Jί. We will give now a class of functions Ψ with the property that for all
φeM, ΨφβJί.

For arbitrary A e (δ we set

: = {ΨeJίΛ: supp^gM^ for some meN}, (2.5)

where M™: = {φeMΛ:φ(A)^m}. Functions from J(£ are called usually finite-
particle vectors.

2.7. Lemma. For all Λe<5, φeM, and ΨeJί{ it holds ΨφeJί{.

The set Jίf

A is obviously dense in the Fock space MA and it will represent the
domain of definition for many operators considered in Sect. 3.

2.3. Quasilocal Algebras

For arbitrary measurable / : M^><£ denote by Of the operator of multiplication by
/, i e.

(OfΨ) (φ) =f(φ)Ψ(φ) {ΨeJί,φeM). (2.6)

If / is the indicator function of a set Ye 501, i.e. / = χy, we will denote OXγ for
brevity by Oγ.

Now, by JS?(Jί) we denote the algebra of all bounded linear operators on Jί.
For each A e © we set

s/Λ : = {Ae Se(Jί): A = OMΛAOMJ . (2.7)

s/Λ may be identified with the algebra t£{Ji^ of bounded linear operators on MA.
S£(Jlώ is a von Neumann-algebra. We have sίG = ̂ £(Jί). For definition and
properties of von Neumann-algebras cf. instance [28, 4, 7, Chap. 2, Sect. 1.5, 2,
Chap. 2.4].
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It is not difficult to show [11, Proposition 2.6] that for each A e © there exists a
unique isomorphism IΛ between JiA®JiAC and such that for all Ψ e JMA, Ψ e JίAC,

ψ e M ' IAV®$)(<p)=n<PA)n<PA<) (2-8)

(® denotes the tensor product).
This allows a natural embedding of stA into i£(M). More precisely, for A e 93

we define a mapping JA:srfA-+S£(Jί) by

JAA:=IA(A®lAC)IA

l (Aes/J, (2.9)

where H Ĉ = OM^C is the identity in sfAc.

2.8. Definition. Let Λ e®. The subalgebra Ast of S£(M) defined by

(2.10)

is called the local algebra on A.
Identifying isomorphic spaces we simply could write Λsf = s/Λ®'ίΛc.

2.9. Definition. The pair |>/,Cî Xie©]> where si is the uniform closure of \J Astf
we call the quasilocal algebra over the Fock space Jί. ΛeίB

2.10. Remark. The uniform closure is the closure with respect to the operator norm
in J?(Jt). If we assume that the phase space G is unbounded then stf is a proper
subset oi£?(Ji). A more general definition of a quasilocal algebra is given e.g. in [2,
Definition 2.6.3]. More information one can find in [33-36].

Finally, we want to make some remarks on multiplication operators. It is well-
known that {Of:feJίb} with

Mh = {/: M->C, / measurable and F-a.e. bounded} (2.11)

is the maximal set of multiplication operators contained in <£{Jt) (cf. instance
[22]). The relation between Asi and sfA corresponds to the relation between βίl
and 9RA. Observe that for all Λe© and YeWA one has 0ΎesίA.

2.11. Proposition. Let geJfb, As®. The following conditions are equivalent:
(i) OgeΛ^.

(ii) There exists a βSi-measurable function g such that Og = Og.
(iii) Og = JAOgoVΛ.

2.12. Remark. Observe that for geJ(b we have Og = O9χ . However, gχMf is not
^SOί-measurable for any A e 23 (provided the whole space G is unbounded). Since

Asi "does not feel" this ^SDΪ-measurability we cannot conclude from (i) that g is

Λ2»-measurable but only (ii).

2.4. Locally Normal States and Their Position Distribution

Now, let sSl be a C*-subalgebra oi^£{Jί). A positive normalized linear functional η
on ji is called a state on si. A state η on a von Neumann subalgebra si oi<£(J() is
called normal if there exists a density matrix ρ on Jί (i.e. a positive trace-class
operator with trace one) such that

(AeJZ). (2.12)

[By Tr we denote the trace in &(JΓf].
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2.13. Definition. A state ω on si is said to be locally normal if for all Λe93 the
restriction Λω of ω to ^ is a normal state, i.e. for all A e 23 there exists a density
matrix ^ρ on ^ such that

ω(A) = κω(^) = Tr (ΛρA) (A e ̂ ) (2.13)

(cf. [2, Definitions 2.6.6, 2.4.20 and Theorem 2.4.21]).

2.14. Definition. Let ω be a locally normal state on sf and Q a point process. Q is
said to be the position distribution of ω if for all FeϊR such that Oγesiwe have

ω(Oγ). (2.14)

Now we mention the main result of [11].

2.15. Theorem. Let ωbea locally normal state on si. There exists exactly one point
process Qω being the position distribution of ω.

2.16. Remark. The above result was shown in [11] in the case G=R d , v the
Lebesgue measure on RΛ However, the proof of Theorem 2.15 for a more general
phase space G requires only minor notational changes because all results from
point process theory used in the proof are valid in this more general case.

Moreover, in [11] there is given a more detailed characterization of the class of
point processes which may occur as position distributions of locally normal states
of boson systems.

3. A Class of Operators on the Fock Space

In this section we will introduce operators S(Y,A) corresponding to Aes/Λ and
sets ΓeSDΪ that can be interpreted as a combination of A with the position
measurement 0y. For the special case Y= M and A being a self-adjoint operator
concentrated on the L2-space Jίγ over one-point configurations this operator
coincides with the usual second quantization of A. Further, we will show that for A
being the operator of a position measurement the expectation ω(S(Y,A)) of S(Y,A)
in the state ω can be expressed with the aid of the compound Campbell measure of
the position distribution Qω. Usually, the operator S(Y,A) will be unbounded but
we will give sufficient conditions on A and Y ensuring that S(Y9 A) will be bounded
again. As examples of operators S(Y,A) we will introduce (generalized) creation
and annihilation operators. Especially, it will be shown that each element of Asi is
an operator of the type S(Y9 A) for certain Y and A. Consequently, the whole state ω
will be determined by the expectations ω(B) with B being operators of the type
S(Y,A).

The domain of an operator B on M will be denoted by D(B).

3.1. Definition. Let Ae(ΰ, YeWl, AesiΛ. By SΛ(Y,A) we denote the set of all
(possibly unbounded) operators B on JίΛ such that

(i) f

(ii) (BΨ)(φ)= Σ χy(Φ)(AΨφ)(φ-φ) {ΨeJίf

A, F-a.a. φ),
φgφ

(iii) BΨ= lira B{OM~Ψ) (ΨeD(B)).
m-+co

In the case A = G we write S(Y, A) instead of SG(Y,A).
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Jίs

A was defined in (2.5). φ Q φ means that φ is a subconfiguration of φ, i.e.
φ — φeM.

3.2. Remarks, a) Condition (i) is a very natural one because the finite particle
vectors should belong to the domain of any reasonable operator on the Fock
space. Further, (i) ensures that all operators from SΛ(Y, A) are densely defined.
b) Two operators from SΛ(Y,A) may differ only with respect to their domains of
definition. Because of (ii) they coincide on Jίf

A. Since for each me¥ί,0MrnψeJίs

A

condition (iii) ensures that for B1,B2eSΛ(Y,A) it holds B1=B2 if D(B1) = D(B2).
c) If Bί9B2eSΛ(Y9A) and Bx is unbounded then B2 is unbounded too. In what
follows bounded operators are always assumed to be defined on the whole space.
So if BeSΛ(Y,A) and B is bounded then SΛ(Y,A) = {B}, and we write simply
B = SΛ(Y,A).
d) Also in the case that SΛ(Y9A) consists of unbounded operators for ΨeJί{ we
will write SΛ(Y, A)Ψ though SΛ(Y, A) denotes the set of operators. This will not lead
to misunderstandings because they all coincide on Mf

A (ii)).
e) For each Ψ e Jt^ the right side in (ii) is a well-defined function from M into C
First observe that for φφMf the right side is equal to zero because Ψφ = 0 (if
φ φ Mf) or (A Ψφ) (φ-φ) = 0(iϊφ-φφ Mf). Consequently, the sum over all φ Q φ
(the sum over all subconfiguration of φ) is a finite one. Further, from Lemma 2.7 we
conclude that for all φ we have ΨφeJίΛ (even ΨφeJϊf

A). Thus AΨφeJtA.
However, there may exist Ψ eJt{ such that the function on the right side of (ii) is
not an element of Jί (i.e. that it is not square integrable). In this case SΛ(Y9 A) is the
empty set.
f) Condition (ii) defining all operators from SΛ(Y, A) on Jίs

A may be illustrated as
follows: We "pick" out from the configuration φ one by one all subconfigurations
φ and check whether φ belongs to Y or not. To the rest configuration φ-~φ we
apply the operator A holding φ fixed.

Operators concentrated on finite particle vectors will play an important role.
For arbitrary A e © we set

A = OmAOMΊ for some m e N } , (3.1)

and for A e 33

Asf': = {JΛA:Aes/β. (3.2)

Analogously, we set for arbitrary Λ e (5,

mf

A: = {YeWlA: Y<LMm

A for some m e N } , (3.3)

^^{υ-ΛYy.Yem^}. (3.4)

We will collect now some properties of the operator classes SΛ(Y,A).

3.3. Proposition. Let Λ e ©, Y e WA, A e stf

A. Then SA( Y,A)e stf

A. If A is self adjoint
then ^(^^4) is self-adjoint.

If A is positive then SA(Y,A) will be positive too.

The connection between SΛ and S is given by the following proposition:

3.4. Proposition. Let Λe(5, Aest{9 YeWΛ. Then
JΛSΛ(Y,A) = S(Y,JΛA) = S(vA 'X

Identifying isomorphic operators, Proposition 3.4 could be written simply in
the form SA(Y,A)®±AC = S(Y,A®tΛC) = S(Y+MΛc,A). As an immediate conse-
quence of 3.3 and 3.4 we obtain the following result:
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3.5. Proposition. Let A e ©, Ye WΛ, A e s/{. Then S(Y, A) e A$4f. If A is self-adjoint
(positive) S(Y9A) will be self-adjoint (positive).

Each operator from Asi itself is an operator of the type S(Y,A). Indeed, we have
the following result:

3.6. Proposition. Let Ae95. For all AεΛstf we have

A = S(MΛC,OMΛAOMΛ).

However, the above representation of A is not the only possible one. For all
A'2Λ, A e ©we get

A = S(MiΛΎ9 OMΛΛOMA) (A e Asf).

Further, we get for all A e Λstf A = S({©}, A) (taking A' = G). Proposition 3.6 allows
another description of the isomorphism JΛ between siA and A$i.

3.7. Proposition. For all Ae(ΰ, AestfA we have JΛA = S(MΛC,A).

Now we deal with the question what one can say about Y and A if S(Y, A) e Asrf
for some A e 95.

3.8. Proposition. Let Λe23, Ae^Λ, 7G$R. // S(Y,A)eΛ<stf then there exists an
Ϋejm such that OΫ = OY.

Proposition 3.8 is intuitively clear. Since each operator from Λstf is "outside A"
the identical operator there may occur "real" measurements only in the region A.
Therefore if A is concentrated on JίA the set Y may contain only information
about positions of points in A.

"Conversely" to 3.8 we have

3.9. Proposition. LetAe&,Ae S£(M\ Ye JR. If S(Y, A) e As/ then there exists an
operator Bes/Λ such that S(Y,A) = S(Y,B).

However, we have to remark that S(Y, A) e Asf for some A e 2? does not imply in
general neither the conclusion of Proposition 3.8 nor of 3.9.

3.10. Proposition. Let A, A'e®, AnΛ' = 09 Ye^SiA,AesίA. Then

So if A and Y (not necessarily from <stf{ respectively *!8lf

A) "act" in disjoint
regions S(Y,A) will be bounded.

Finally, we want to discuss operators of the type S(Y,A) if A corresponds to a
position measurement. We remarked above that for general Ye SDΪ and A e 5£(M)
the class S(Y,A) may be empty. However, for A being a multiplication operator
with a bounded function on M S(Y,A) always will be non-void.

3.11. Proposition. Let 7G9K, feJlh (cf (2.11);. Then S(Y,Of)ή=0. Especially, for
Yu Y2e$)ΐ iS(71,Oy2)Φ0 and S(YUOY2) consists of positive (possibly unbounded)
operators on Ji.

The expectation ω(S(Y,A)) may be expressed with the aid of the so-called
compound Campbell measure of the position distribution if A corresponds to a
position measurement. This will be shown in Sect. 5.

3.12. Remark. There is close connection between the operator class introduced
above and the stochastic calculus (cf. instance [39]). Each operator of the type
S(Y, A) can be expressed in the form Sfc{0Y®A)<3c, where Sf* and 3)c are generalized
Skorohod integrals and Malliavin derivatives. For details we refer to [12].
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3.13. Remark. If A e S£(Jί) is an integral operator with kernel k then we get for all
YeWl,

S(Y9A)Ψ(φ)= Σ χγ(φ-φ)SF(dφ)k(φ,φ)Ψ(φ-
φgφ

Especially, for Y= M we get

S(M, A)Ψ(φ) = Σ ίF(dφ)k(φ, φ)Ψ(φ-φ + φ). (3.5)
φCφ

Operators of the type (3.5) were considered by Maassen ([24,25]) for the case that
G = R 1 and v the Lebesgue measure.

4. Examples

In the sequel we denote for A e <5, n e N by MntΛ : = {φe MΛ: φ(A) = n] the set of
n-particle configurations, and we put Mn = Mn G.

4.1. The Number Operator

Let A = 0Ml. Obviously, we have 0Mί e stff. For each Ye SOΪ we consider the class
S(Y,OMί). For ΨsJίf and F-a.a.φwe obtain

S(Y,OMι)Ψ(φ)= Σ Xγ(Φ)(OMlΨφ)(φ-φ)
φgφ

Σ 1
φgφ

= Ψ(φ)Sφ(dx)χγ(φ-δx). (4.1)

In the case Y=M we get from (4.1) for all ΨeJtf and for F-a.a. φ

S(M,OMι)Ψ(φ) = φ(G)Ψ(φ). (4.2)
Consequently S(M,OMl) is the set of all number operators on Jί (which differ only
with respect to their domains of definitions). For each B e S(M,OMί) we have on Ms

the representation (4.2). If D(B)DJΐf we get BΨ for ΨeD{B)\Jίf from
condition (iii) in Definition 3.1.

Analogously, the number operator (respectively the set of number operators)
on Jί counting the particles in a region AsSB (respectively Ae(S) will be
S ( M , O M l J . Indeed, for all ΨeJΐf and F-a.a. φ

S(M,OMlΛ)Ψ(φ)= Σ lu(Φ)XMj<
φQφ

= Ψ{φ)\φ{dx) =
A

4.2. (Generalized) Creation Operators

Let geJίx, and denote by A*(g) the operator on Jί> defined by

(A*(g)Ψ) (φ) = g(φ)Ψ(<D) {ΨeJί,φeM) (4.3)

[© denotes the zero measure in M, i.e. ©(G) = 0] .

Observe that (A*(g)Ψ)(φ) = 0 for φφMv Because of A*(g) = OMlA*(g)OMo we
have A*(g)ejtff, and if suppgQMΛ for some Ae(ΰ then A*()/^
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Let Ye SOt. For each Ψ e Jtf and F-a.a. φ we obtain

S(Y,A*(g))Ψ(φ) = J Ψ(dx)χγ(φ - δx)g(δx)Ψ(φ - δx)

(S{Y,A*{g))Ψ(O) = 0).

For YeW S(Y9A*(g)) will be a bounded operator (Proposition 3.3). For
general Ye 901 S(Y, A*(g)) usually will be a set of unbounded operators on Jί having
on Jίf the representation (4.4). The "usual" creation operator we get by setting
Y = M. Indeed, from (4.4) we conclude that for all Ψ e Jtf and F-a.a. φ we have

S(M, A*(g)) Ψ(φ) = J φ(dx)g(δx) Ψ(φ - δx)

= Σ g(δx)Ψ(φ-δx). (4.5)
x:φ({x))>0

The operator B e S(M, A*(g)) with D{B) = Jίf we denote as usual by a*(g).
Let Λe(5, g e ^ # l y l . For Ψ eJif

A and F-α.α. φ we get

SΛ{MΛ,A*{g))Ψ(φ) = \φ{dx)χMΛ(φ-δx)χMΛ(δx)g{δx)Ψ(φ-δx)

= \ψ{dx)g{δx)Ψ{φ-δx).

Observe that because of Ψ e Jίs

A and g e MA the expression above will be equal to
zero if φφMΛ. SΛ(MΛ,A*(g)) represents the set of creation operators on JtA

corresponding to g. The operator B e SΛ(MΛ, A*(g)) with D(B) = Jt{ we will denote
by a*Λ{g).

43. (Generalized) Annihilation Operators

Let geJtv We define an operator A(g)e<£(Jί) by setting

A(g)Ψ{φ)=\^dxmΨ^ Ψ^M^ = (D (4.6)

(v denotes again the locally finite diffuse measure on G - cf. Sect. 2.2). Observe
that A(g) = 0MoA(g)0Ml. So we have A(g)estff, and if geJίltΛ for some Λe(5
then A(g)ej/l

Let YeSR. For all ΨeJίf and F-a.a. φ we get

S(Y9A{g))Ψ(φ) = χγ(φ) J v(dx)g(δx)Ψ(φ + 5 J . (4.7)

For YeSK7 S(Y,A(g)) is bounded. Analogously to Example 4.2 S(M,A(g)) repre-
sents the set of all annihilation operators on Jί with respect to g. In this case we
get immediately from (4.7) for all Ψ eJίf and F-a.a. φ

The operator BeS(M,A(g)) with D(B) = Jίf we denote by a(g). By aΛ(g) we
denote the operator from SΛ(MΛ, a(g)) with domain Jί{.

Let YeSDΪ, geJίv We still want to show that B1eS{Y,A*{g)) and
B2eS(Y,A(g)) are mutually adjoint. Indeed, for all Ψl9 Ψ2eJίf we obtain

(B1Ψl9Ψ2) = jF(dφ)ίφ(dx)χγ(φ-

1 n

- L ~τJ v V«L î, •• > ^ J i L Xy
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Since norm-convergence in Jί implies weak convergence in Jί from Defini-
tion 3.1, (iii) follows that for all ΨxeD{B^ Ψ2eD(B2) the equality (B1ΨUΨ2)
= (Ψί,B2Ψ2) holds. As one has to expect the canonical commutation relations
hold for general g e Jίγ only in the case Y= M. The proof of these CCR properties
is rather straightforward and we will omit it. Thus α(/), α*(g) represent "usual"
creation and annihilation operators on Jί [respectively aA(f\ ά%g) are the usual
creation and annihilation operators on JiA~]. An approach to creation and
annihilation operators similar to the above one (in the case G = R 1 ) one can find
for instance in [24,25].

4.4. Composition of Creation and Annihilation Operators

In 4.2 and 4.3 we defined creation and annihilation operators with respect to
functions from Jtv Now we transfer this notion to functions from

f { J ,
Let m be a natural number, m^ 1, and fmeJim. We define operators A*(fm\

A(fm) from &(Jl) by

A*{fm)Ψ(φ) = m\fm(φ)Ψ((D) (ΨeJί,φeM) (4.9)

and

Observe that

A*{n=o
and

Thus A*(fm\ A(fm)ejtff, and if fmeJίmΛ for some Λe® then A*(fm\
A{fm)e^{.

In the sequel, for xn: = (xu ..., xn), Xj e G ΐorj e {1,...,«} we write δχn instead of

Ϋ δx.9 and φ(dxn) denotes the nth factorial measure of φeM9 n ^ l , i.e.

φ(dxn): = φidxj(φ-δxι)(dx2) ...(φ-δ^-i)(dxn). (4.10)

Now, let Ye 3DΪ, fm e Jίw m ̂  1. Using the above notations, we get for all Ψ e Ms

and F-a.a. φ
S(Y,A*(fm))Ψ(φ)= £ χγ(φ)A*(Γ»)Ψφ(φ-φ)

φζφ

\Σ Xy(Φ)f
φgφ

- δχm)fm(δsm)Ψ{φ - δχm). (4.1
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Hereby we have used the fact that for arbitrary function h on M we have

—Λ
mi

Similarly, one gets easily for each Ψ &Jί{ and F-a.a. ψ

(4.12)

Obviously, in the case m= 1 (4.12) coincides with (4.7).
For Yemf we get that S(Y,A*(fm)) and S(Y,A(fm)) are bounded. For

YeSRXSR' all operators B from S(Y,A*(fm)) respectively S(Y,A(fm)) have on Jίs

the representation (4.11) respectively (4.12). On D(B)\Jίf the operators are defined
according to Definition 3.1, (iii).

Let Yem, fneMm, m ^ l , BγeS{Y,A*{fm)\ B2eS(Y,A(fm)). For all
Ψu Ψ2eJϊί we get

)^l F(dφ) I φ{dxm)Xy(φ - δ χm)fm(δ ,m)Ψ\(φ - δχm)Ψ2(φ)

^ 777

= J F(dφ)Ψ1(φ)S(XA(n)Ψ2(φ) = (ΨUB2ΨJ. (4.13)

From (4.13) and Definition 3.1, (iii) we conclude that for all Ψ1eD(B1)9 Ψ2eD(B2)
the equality (Bί Ψl9 Ψ2) = (ΨUB2 Ψ2) is valid. Thus Bγ and B2 are mutually adjoint.

Further, one easily checks that for fmeJίm, gneJίn, A:=A*(fm)Λ(gn) is an
integral operator on Jί (A e srff) with kernel

(4.14)

and we get for all YG9K, ΨeJΐf, and F-a.a. φ,

S(Y,A)Ψ(φ)= Σ
φgφ

= f v"(dx ^

x XY(Ψ ~ δ^Ψiφ - δym + δ,n). (4.15)

Again from Proposition 3.3 we may conclude that S(Y,A) is bounded for YeSDϊΛ
Now, let fm e Jtm, gn e Jin be the symmetrized products of functions from Jίγ,

i.e.

I^L, 1 1 Jσ{j)\^xj/ Viv V v l ? •••? ' v m / *- v / ? V^ ^ ^ /

W 2 ! <τ 7 = 1

(4.17)

with fpgjeJίi where the sum is taken over all permutations σ of {l,...,m}
respectively {l,...,n}.
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For each Ψ e Jtf and F-a.a. φ we get

a*(f1)...a*(fJa(gJ...a(g1)Ψ(φ)
=ί<p(dyι)fι(δyi)a*(f2)...a(g1)Ψ(φ-δyi)

r ~ διm + δχn).

We thus may conclude [cf. (4.15)]
m m

S(M9A*(fm)A(gn))= Π a*(fj) Π 4gj), (4.18)
j l fcl

where fm and g" are the symmetrized products of fl9...9fm and g1?...,gπ

respectively. In this sense S(M, A*(fm)A(gn)) are compositions of creation and
annihilation operators, and the operator B e S(M, A*(fm)A(gn)) with D(B) = Jίs we
will denote by a*(fm)a(gn). Analogously, one may define corresponding operators
on Jiλ.

4.5. Second Quantization of an Operator on Jtγ

Let A be an operator from S£(Jί) concentrated on Mγ. Let Ye 501. For all Ψ e Jlf

and F-a.a. φ e M we get

S(Y,A)Ψ(φ) = f φ(dx)χγ(φ - δx) (AΨφ.δJ (δx). (4.19)

For Yemf (4.19) defines a bounded operator on &(Jf). We will call S(Y,A)
second quantization of A. This is justified by the fact that in the case Y= M we get
on Jίf for F-a.a. φ

S(M,A)Ψ(φ) = \φ(dx)(AΨφ_δχ)(δx)= £ (AΨφ_dχ)(δx).
x:φ({x})>0

Thus S(M, A) coincides with the usual second quantization of an operator A on
Jίv For historical and modern approaches to second quantization, cf. [15 and 3],
but also for instance [2, Chap. 5.2.1], [7, Chap. 1, Sects. 1, 3], and [1, Part II].

5. Σ'v-YiAxA Processes - Conditional Intensity Measures

First we want to introduce the notions of so-called ZVpoint processes and
Campbell measures.

5.1. Definition. Let Q be a point process (i.e. a probability measure on [M, SDΪ]) and
n a positive integer, (i) The nth order reduced Campbell measure C^ is the measure
on [Gw x M, ©" x ail] given by

C%\B x Y) = J β(dφ) f φ(rfxw)χy(φ - <?,„) (5 e <5M, 7e 9K). (5.1)
M

(ii) The compound Campbell measure C^oo) is the measure on [M x M, SOΪ x 501]
characterized by

Σ XY1(Φ)XY2(Ψ-Φ) ( ϊ ί^eSW). (5.2)
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Let us remark that Cty and C^co) are σ-finite measures and C(

Q

CO) is concentrated on
Mf x M. We have the following relation between Cg* and C^:

% g \ n ^ l , YeSR).

(For details see [21, Chap. 12.3] and [26].)

5.2. Definition. Let Q be a point process.
(i) Q is said to be a Σc

v-point process if there exists a σ-finite measure S on [M, SDΪ]
(called a supporting measure of Q) such that

gS. (5.3)

(ii) Q is said to be a Σ'v-point process if

β. (5.4)

By <̂  we denote absolute continuity.
Observe that each ZVpoint process is Σc

v (put S = Q). The converse is not true.
For a more detailed discussion of Z"v-point processes see e.g. [27,29,20,26, 31,

and 21, Chap. 13.2] I^-point processes are discussed in [38].

5.3. Lemma. Let Q be a Σ'v-point process. Then

C^<FxQ, (5.5)

and for Q-a.a. φ by

dC{oo)

f(φ) (Ym) (5.6)
there is defined a measure on [M,SDΪ] with the following properties:

(i) η% is σ-finite and concentrated on Mf : = {φeM: φ(G) < oo},
(ii) for all bounded A from © η%ΛC ° vΛ is a finite measure on [M, Jΰl],

(iii) for all bounded A from (5 and X e ̂ SDΪ

iC(MΛ). (5.7)

Q(X\ΛcW) denotes the conditional probability of X with respect to the σ-algebra

A proof of the statements in Lemma 5.3 can be found in [21, Chap. 13.2] and
the Russian edition of [26, Chap. 9.1].

5.4. Definition. The family (ηζ)φeM of measures related to a 2^-point process Q by
(5.6) we call the family of conditional intensity measures of Q.

5.5. Remark. The intensity measure IQ of a point process Q is a measure on [G, ©]
defined by IQ(A) = J Q(dφ)φ(A), Ae(ΰ. Because of IQ = C(

Q

υ( x M) an easy calcula-
tion shows

IQ(A)=SQ(dφ)η*Q({δx:xeA}) (Ae®). (5.8)

Equations (5.7) and (5.8) justify Definition 5.4.

5.6. Remark. Since the Radon-Nikodym-derivative dC{Q)/d(F x Q) is only
F x Q-a.e. uniquely determined the family (η%)φeM is only Q-a.s. unique, i.e. if
(ηtyφeM and (ή%)φeM are two versions of the family of conditional intensity
measures then Q({φ: rfQ is a measure and r]<ξi{Y) = ή<^{Y) for all 7eSDΪ}) = 1. Finite
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I"v-point processes Q are determined by their conditional intensity. This is not true
for general (infinite) Z"v-point processes. We have the following statement which is
an easy consequence of Lemma 5.3.

5.7. Lemma. Let Qbea finite Σ'v-point process, and (ηQ)φeM * ί s family of conditional
intensity measures. Then

Q(X)=η%X)/η%(M) (XefR). (5.9)

The expectation ω(S(Y,A)) may be expressed by the position distribution Qω

and the conpound Campbell measure or the conditional intensity measures of Qω if
A corresponds to a position measurement.

5.8. Proposition. Let ωbe a locally normal state with position distribution Qω, and
assume that Qω is a Σ'x-point process. Then
(i) for all

ω(S(Yί9OY2)) = j{

(ii) for allAe®,ge JίA9 YeβR such that S{Y,Og)eAsΛ9

ω(S( X Og)) = J QJdφ) J tfcjdφ)g(φ) = J Cffidφ, dφ)g(φ)χγ(φ).

We will see in the subsequent sections that an analogous representation holds
for ω(S(Y9A)) with A being an arbitrary local measurement. The conditional
intensity measures only have to be replaced by the conditional reduced density
matrix.

6. The Conditional Reduced Density Matrix of a Normal State

Let ω be a normal state on ££{Jί\ Thus there exists a density matrix ρ on Jί such
that

ω(A) = Ύv(ρA) (A e <£{M)). (6.1)

6.1. Proposition. The position distribution Qω of ω is a finite Σc

v-point process.

The proof of Proposition 6.1 is completely analogous to the proof of
Proposition 3.1 in [11] (one only has to cancel the index A\ and we will omit it.

In the sequel we will consider only states the position distributions of which are
processes. We already remarked that each I7v-point process is of the type

6.2. Definition. A normal state ω on JS?{Jί) is called a normal Instate if Qω is a
ZVpoint process.

Before we will give the main characterization of normal Instates on S£(M) let
us still make a notational convention.

6.3. Definition. Let T: M2-><C, k: M3^><£ be measurable functions, A e (5. For all
φί,φ2eM we set

T * k(φu φ2): =\FA{dφ)T{φ1, φ)k(φ, φl9 φ2) (6.2)
Λ

provided the right side of (6.2) makes sense (in the case A = G we omit the index A).
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6.4. Theorem. Let ωbe a normal Instate. There exists a FxFxQω-a.e. uniquely
determined measurable function /cω:M

3—><C with the following properties:
(i) For all Ye 9JI and integral operators A e £?{J() such that S{Y, A) e <£{Jl) we have

ω(S(Y,A)) = J Qω(dφ)SF(dΨl)kA * kjφl9 φ), (6.3)

where kA is a kernel of A.
(ii) For F x Q-a.a. (φ, φ)

kω(φ, φ, φ) = ^ω (φ). (6.4)

6.5. Definition. Let ω be a normal Instate. The FxFx Qω-a.e. uniquely
determined function kω associated to ω by Theorem 6.4 is called the conditional
reduced density matrix (c.r.d.m.) of the normal state ω.

6.6. Remark. In Sect. 3 there are given sufficient criteria on Y and A ensuring
S(Y, A) e <£(J(). Since integral operators are dense in <£(J() and for each A e S£{Jt)
we have A = S({<D},A) (6.3) enables us to calculate ω(A) for all

6.7. Remark. In quantum statistical mechanics one is also interested in the
expectation ω(A) for certain unbounded operators on Ji. Since ω is a functional on
S£{M) it is not quite easy to give such expectations a precise mathematical
meaning (cf. [2], part II). However, observe that the right side of (6.3) may make
sense also for unbounded operators of the type S(Y,A). So, without further
assumptions about the state ω we can define ω(S(Y, A)) by the right side of (6.3) for
all operators of the type S{Y, A) for which the integral on the right side of (6.3) exists
(possibly equal ± oo). This allows to give the relation between the c.r.d.m. kω of ω
and the reduced density matrix commonly used in statistical mechanics (cf. 2, 33,
34, 35]).

Let m be a positive integer and fj9gj9je{!,...,m} be functions from Jiγ.
Further, let A = a*(f1)-... a*(fm)a(gm) ... -a(gx) be the symmetrized product of
the creation and annihilation operators corresponding to the functions /), g7 [with
O(A) = M* - cf. Sect. 4.4]. A function λ: G 2 m -»C is called the mth reduced density
matrix of ω if for all operators A of the above type

ω(A) = J vm(dxm) J vm(dym) Π ϊβΓMδχ)W*> **) ( 6 5 )

(cf. instance [2, Chap. 6.3.3]).
In Sect. 4.4 we observed that A — S(M, B), where B is an integral operator (from

f with kernel

where the sum is taken over all permutation {σ(l), ...,σ(m)} of {1, ...,m}. A very
easy calculation shows that if the right side of (6.3) exists it will be equal to

,=-. - - wίβ
Finally, we get

λ(xm, ym) = J Qω(dφ)kω(δχm, δym, φ) (v2m-a.a.(xm, ym)). (6.6)
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Thus, /l(xm

5^
m) = EQ ω/cω(^m,ί w, ). This justifies to call kω the conditional

reduced density matrix. We prefer to use kω instead of λ. There are several
disadvantages of the reduced density matrices. First, there exist normal states for
which the functions λ are not finite or do not exist at all. Moreover, even if for a
state ω for each m^.ί the mth reduced density matrix exists and is finite a.e. the state
possibly will not be determined by its reduced density matrices. Even the position
distribution is in general not determined by them. This is caused by the fact that the
reduced density matrices are connected only with "global" second quantizations
(Y=M). The function kω however exists a.e. and determines together with the
position distribution the whole state ω (Theorem 6.4).

Formula (6.4) elucidates the connection between the c.r.d.m. and the con-
ditional intensity measure of the position distribution. The c.r.d.m. cannot be
chosen arbitrarily on the "diagonal" kω(φ, φ, ψ) but in such a way that the trace
formula is valid.

We will deal now with the converse question. What conditions a function
k: M3->(C has to fulfill so that there would exist a normal Σ'v-state ω with c.r.d.m.

6.8. Theorem. Let k:M3-+<E be a measurable function and Q a finite Σ'v-point
process with the following properties: There exists a positive trace-class operator K
on M such that

(i) forallYeW

Tr(KOY) = η%Y) = J F(dφ)k(φ, φ, 0) (6.7)

(ii) for all integral operators A e ££{J()

Ύx{KA) = J F(dφ)kA * k(φ, <D), (6.8)

where kA is a kernel of A;
(iii) for allφuφ2,φ,φeM

k(φί + φ,φ2 + φ, Φ) = k(φ, φ, φ)k{φu φ2, φ + φ). (6.9)

Then there exists exactly one normal Instate ω such that Qω = Q and kω = k a.e.

6.9. Remarks, (i) gives the connection between k and the point process Q.
(ii) guarantees normality of the state which has to be constructed.

(iii) represents a compatibility condition. Loosely speaking, one could interpret
(6.9) in the following way:

Passing over from the configuration φx + φ to φ2 + φ having around the
configuration φ is the same as adding first φ to φ and then passing from φί to φ2

having around the configuration φ + φ.
Observe that (6.9) and (6.4) imply (on the "diagonal")

+ <P,Φ) = KQ(<P, Φ)KQ{<PU Ψ + Φ) (6.10)

for F2xQ-a.a. (φi9φ,φ), where κQ denotes (a version of) the Radon-Nikodym
dCiao)

d e r i v a t i v e 5 ( F ί β )
(6.10) is a well-known characteristic property of (not necessarily finite) I7v-point

processes (cf. instance [26, 31, and 38]).
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Summarizing, we get the following result:

6.10. Theorem. Let k:M3-^(C be a measurable function and Q a finite Σ'v-point
process. The following conditions are equivalent:
(I) There exists a normal Instate ω such that Qω = Q and kω — k a.e.

(II) k and Q fulfill assumptions (i) to (iii) of Theorem 6.8.

6.1 1. Remark. All results of this section remain true if we consider normal states
on &{JiA\ Ae%. We only have to replace M, Jί, F by MΛ, JίA, and FΛ

respectively. Especially, all results are true for the restrictions ωΛ of a locally
normal state on J / to if {JίA\ ΛeS&.

7. The Conditional Reduced Density Matrix of a Locally Normal State

We want to extend now Theorem 6.8 to the case of locally normal states.

7.1. Definition. Let ω be a locally normal state on si such that its position
distribution Qω is a Z"v-point process. A measurable function fc:M3->(C is called
the conditional reduced density matrix (c.r.d.m.) of ω if k has the following
properties:

(i) k(φ,φ,φΛC)= -%jr(Φ) (FΛ x Qω-a.a.

(ii) For all A e 23 and Qω-a.a. φ

is the kernel of a positive trace-class operator on JίA.
(iii) For all Λe95,Ye Jΰl and all integral operators^ e stfA such that S(Y, A) e Λs/
we have

ω(S(Y, A)) = f QJdφ) J FΛ(dφ)kA * k(φ, φ), (7.1)

where kA is a kernel of A.

7.2. Remarks. 1°. In [17] it is shown that the c.r.d.n. of a locally normal state
is a.e. uniquely determined (provided it exists), i.e. if kί,k2 :M3-*<C are measurable
functions satisfying conditions (i) -• (iii) of Definition 7.1 then for F x F x Qω-a.a.
(φu φ2, ψ) we have kx(φl9 φ2, φ) = M<Pi> <Pi> ψ) I n this paper we will not make use
of this fact.

2°. It is easy to check that the (a.e.-uniquely determined) c.r.d.m. of a normal
2"v-state is a c.r.d.m. in the sense Definition 7.1. So if the locally normal state is a
normal one [i.e. may be extended to a normal state on =Sf(^)] both notions
coincide.

3°. Condition (i) in Definition 7.1 gives the connection between the c.r.d.m. and the
position distribution of ω. We see that the c.r.d.m. has to be chosen on the
"diagonal" in each bounded region A for a fixed configuration φ outside in such a
way that

/ # , φ, ψ) = κQω(φ, ψ) (φ e MΛ),

where κQco is the Radon-Mikodym derivative dC(o2/d(F x Qω).
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4°. Condition (ii) ensures the existence of the family of so-called conditional states
(ωΛ)φeMΛc f° r e a c h Λ G 93 which describe the behaviour of the system inside A
having outside the configuration φ (cf. [17]).

5°. From (iii) follows that ω will be determined by Qω and the c.r.d.m. k. Indeed, for
all A e © and all A e sίA we have JΛA = S(MΛC, A) (cf. Proposition 3.7). So we get
from (7.1) for all integral operators AesίΛ (with kernel kA)

ω(JΛA)= J Qω(dφ)SFΛ(dφ)kA*k(φ,φ).

Since the integral operators from stA are dense in sίA the continuity of the state
allows to calculate from the above formula the expectations of all local operators
through which the whole state ω will be determined.

6°. The connections between the c.r.d.m. and the reduced matrices in the case of
normal states given in Sect. 6 remain true in the locally normal case without any
changes.

7.3. Theorem. Let Q be Σ'v-point process, and fc:M3-»C a measurable mapping
satisfying the following conditions:
(I) For all A e 2? and Q-a.a. φ

K'>',<PAC)XMAXMA('>')

is the kernel of a positive trace-class operator Kφ

Λ

ΛC on MA such that

T r ( X r OΎ) = j F(dφ)k(φ, φ, φΛC) = rfc\Y) (Ye SRJ. (7.2)

(II) For all φl9 φ2, φ,φeM,

(7.3)

Then there exists a unique locally normal state ωons/ such that Qω = Q and k is the
c.r.d.m. of co.

7.4. Remark. The interpretation of the conditions k has to fulfill is analogous to the
case of finite systems (cf. Remarks 6.9). However, while a finite point process is
determined completely by k(φ, φ, φ) this is not true for infinite point processes.
In [17] we show that a locally normal state is a normal one if and only if the
position distribution is a finite point process. Furthermore, in [17] we deal with
the problem of the existence of the c.r.d.m. to a given locally normal state.
However, the examples below show already that a wide and important class of
locally normal states allow a characterization by their position distributions and
their c.r.d.m.

8. On the Construction of Certain States

First we present a method of constructing states which is based on an application
of Theorem 7.3 and will be applied in Sect. 9 to more specific examples.

Let Q be an arbitrary Γ'v-point process. We denote by κ$ a version of
^ xQ). Further, let Φ:GxM-^(C be a measurable mapping satisfying

$ ^ - a . (*,<?)) (8.1)
and

Φ(x, φ)Φ{y, ψ + δx) = Φ(y, ψ)Φ{x, φ + δ,) (Cψ-α.α. (x, y, φ)). (8.2)
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For instance, take

Φ(x, φ) = eιcyκ(Q \x, φ) (x e G, φ e M),

where c is an arbitrary real constant.
For all n^ 1, xn = (xu..., xn)e Gn and φ e M we set

Φπ(xπ,φ)= Π Φ */,<? + Σ ^ w ) (8 3 )
J=l \ m =1 /

0 \

£ δ X m : = 0 I. Because of (8.2) Φn(-,φ) is a symmetric function on G". Conse-

quently, the function Φ:MxM->(C defined by

Φ(δχn, φ) = Φn(xn, φ) (n ̂  1, xn e Gn, φ e M) (8.4)
and

Φ(©,φ)=ί9 Φ(φ,φ) = 0 (φeM\Mf, φeM) (8.5)

is a well-defined measurable function.
Finally, we set

This completes already the whole construction. We have the following result:

8.1. Proposition. Let Qbea Σf

v~point process, Φ a function satisfying (8.1) and (8.2).
Then there exists exactly one locally normal state ω on stf such that Qω = Q and k
defined by (8.6) is the c.r.d.m. of ω. Moreover, ω is a normal state (i.e. may be
extended to a normal one on <£{Ji)) if and only if Q is a finite point process.

Observe that we get from Proposition 8.1 that each I"'v-point process
(respectively finite ^-point process) Q gives rise to at least one locally normal state
(respectively normal state) ω with position distribution Qω. This part of
Proposition 8.1 was shown (for more general point processes) already in [11,
Theorem 3.3].

9. Examples

9.1. Pure Normal States on 5£{Jί)

First we want to illustrate the construction given above by dealing with a very
simple example. Let Ψ be an arbitrary normalized wave function, Le. ΨeJί,
II y || = 1. We set

Q(Y) = S F(dφ) I Ψ(φ)\2 (YeWl). (9.1)

Obviously, by (9.1) there is defined a finite point process. However, Q is not
necessarily of the type Σ'v.

9.1. Lemma (cf. [31]). Let Q be the point process defined by (9.1). Q is a Σ'y-point
process if and only if the following implication holds:

I Ψ(φ + δx)\ > 0 implies \ Ψ(φ)\ > 0 (v x F-a.a. (x, φ)). (9.2)
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Now, we assume that Q defined by (9.1) is a Z'v-point process. We define a
function Φ:Gx M->C by

Φ(x, Ψ) = Ψ%l^x) «*> 9) e G x M), (9.3)

where we make the convention $=0. Because of (9.2) Φ is a well-defined
measurable function. An easy calculation shows that

*%\x, φ) = \Φ(x, φψ (v x Q-a.a. (x, φ)). (9.4)

Consequently, Φ satisfies (8.1). Condition (8.2) results immediately from (9.3). By
the construction (8.3) to (8.6) we finally get the almost everywhere well-defined
function

By Proposition 8.1 there exists exactly one normal state ω on ££{J() such that
Qω — Q a n d k is the c.r.d.m. of ω.

As one could expect ω is nothing else but the pure normal state on if(Jί) given
by the wave function Ψ, i.e. we have the following result:

9.2. Proposition. Let Ψ be from Ji,\\Ψ\\ = \ and assume that Ψ satisfies (9.2). Let Q
be defined by (9.1) and k by (9.5). Further, let ω be the state obtained by
Proposition 8.1. Then

ω(A) = (Ψ,AΨ) (Ae JS?(uT)). (9.6)

9.2. Coherent States

First we want to introduce the notion of a Poisson point process. Let / be a locally
finite measure on [G,(δ] [i.e. I(A) <oo for all

9.3. Definition. A point process P is called a Poisson point process with intensity
measure I if for all m>0, nu . . . ,n m eN and Bl9 . . .,#we33, BinBj = Φ for i+j we
have

P({φeM:φiB^n,,...,<p(BJ=nm})=exp j - / ^ U *;]j .Π -\f~ (9-7)

(cf. instance [26,21]).
By I^l"{G, v) we denote the space of all locally square integrable functions, i.e.

g€Il°2
c{G, v) if g: G-><C and J v(dx) |g(x)|2 < oo for all A e 95. For g eLιlc(G, v) we

A

denote by I9 the locally finite measure on [G, ©] with v-density |g|2, i.e.
F{Λ) = \v{dx)\g{xψ.

A

So each g e I}%C(G, v) gives rise to a Poisson point process with intensity measure
I9. This point process we will denote by P9. From (9.7) we conclude that P9 is
uniquely determined by g.

We want to consider now states of infinite boson systems where all bosons are
in the same "one-particle state."
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Let g be an arbitrary function from ίi28(G,v). We define a function
Φ:GxM-+<£ by

Φ(x,φ) = g(x). (9.8)

Φ fulfills condition (8.1) with respect to the Poisson point process P9 because

κ$(x,φ) = \g(x)\2 (xεG,φeM).
Condition (8.2) is trivially satisfied. By the construction (8.3)-(8.6) we obtain a
function k9:M3-><C,

Ί> Φ2> Φ) = Φ{ψ\)Φ(ψ2) (ψi> Ψi> φεM) (9.9)

with
> = Θ

>= Σ δxpXjeG9m^ί (9.10)
J=I

0 φeM\Mf.

From Proposition 8.1 we thus obtain a uniquely determined locally normal state ω
with Qω = P9 and fcω = jy.

9.4. Definition. Let g be from ί]2c(G, v). The locally normal state ω o n i with
<2ω = P9 and the c.r.d.m. k9 is called the coherent (or Glauber) state wiί/z respect to g,
and we will denote it by ω9.

To call ω9 a coherent state is justified by the fact that in the case geL2(G,v)
Definition 9.4 coincides with the usual definition of a coherent state (cf. instance
[30]). Indeed, assume geL2(G,v). Then it is easy to observe that P9 is a finite
Poisson point process. From Proposition 8.1 we conclude that ω9 is a normal
state. Φ defined by (9.10) belongs to Jί9 and one has || Φ| | 2 = exp {||g||2}, where ||g||2

= $v(dx)\g(x)\2. Consequently, Ψ:M-+<E defined by

Ψ(φ):=cxp{-±\\g\\2}Φ(φ) (φeM) (9.11)

has the properties Ψ eJί, 119*11 = 1, and as in Example 9.1 one easily gets

ω9(A) = (Ψ,AΨ) (Ae S£{Jί)). (9.12)

Thus ω9 is a pure normal state, and from the definition of Ψ we see that ω9 may
be interpreted as a state of free bosons being all in the same "one-particle state g"
(cf. instance [30]).

Coherent states were discussed in detail in [13] (in the case G = Rd, v the
d-dimensional Lebesgue measure). Let us mention only some interesting prop-
erties of coherent states. Let ω be a locally normal state on si. ω is coherent if and
only if for all Λ9A'e9i9 AnA' = Φ and all AeΛs/, BeΛ,s/ it holds

ω(AB) = ω(A)ω(B) (9.13)

(cf. [13], Sect. 2.4). This result is a generalization of a well-known characterization
of Poisson point processes with diffuse intensity measure by local independence (cf.
[26, Theorem 1.11.8]). A characterization of normal coherent states of photons by
local independence was given already in [37] (with A,B being creation and
annihilation operators).

Finally, we want to give still another interpretation of coherent states if g is
only locally square integrable. Let g be from ΰ5c(G, v) and A e 5£{J(^) such that
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(g, Ag) exists (for instance let ^4^0 or assume A e stfΛ for some A e 93). An easy
calculation shows

)). (9.14)

S(M,A) is the operator of (global) second quantization of A (cf. 4.5). For
g e I}%C(G, v) [but g φ L2(G, v)] thus (9.14) coincides with the physical interpretation
of a non-normalizable wave function as a "wave packet" of independent particles.
These particles do not exist as single particles but only as part of the infinite system.
According to the interpretation of the Poisson point process P9, \g\2 is not the
density of the position distribution of a single particle but of the "wave packet."

93. States Preserving the Number of Particles

Let Q be an arbitrary Γ'v-point process, and Φ:GxM^><£ be a measurable
function satisfying (8.1) and (8.2). Let Φ be defined by (8.4) and (8.5). We define a
function ίc by

Γ/ * ί° i f <Pi(G)*Ψ2(G) / π , o

k ( φ ί 9 ω 2 , φ ) = < _ . . . . ( 9 . 1 5 )
\ψi>ψ29ψ> \k{φuφ2,φ) otherwise, v ;

where k is the function defined by (8.6). Exactly as in the proof of Theorem 8.1 one
easily shows that the pair [Q, k~] fulfills the assumptions of Theorem 7.3. Thus there
exists a locally normal state ωonrf such that Qω = Q and kω = £a.e. Because of the
definition (9.15) of the c.r.d.m. the state ω is concentrated on operators preserving
the number of particles [i.e. if Aestf and for all n e N OM AOM =0 then

(A) 0]In [8] we considered the time evolution and the question of invariance of such
states with respect to a given potential (in the case G=Rd, v the Lebesgue measure).
We introduced a certain function Wω:ΊRd M-^R d that can be interpreted as an
"average velocity field." Under certain differentiability conditions (cf. [8]) this
function Wω is equal to

Wω(x, φ) = -jϊy (Re h(x, φ) - Im h(x, φ)),
KQ \x,φ)

where
h(x, φ) = gradyίfo, δy, φ)\y=x.

If As denotes the velocity operator of the s th component of the particles,
{l,...,rf} we get for all

ω(S(Y,As))= J C$\d\;x,φ])W%x9φ) (9.16)
Rdχy

provided this expectation exists (for convenience we set the particle's mass and
Planck's constant equal to one).

For pairs [ β ί ? £ j (or equivalently [_QV WJ) we considered in [8] equations of
motion being equivalent to the usual Schrόdinger equation if the states are normal
ones, i.e. if the point processes Qt are finite. Especially, one may conclude from the
results in [8] that states the c.r.d.m. of which we have the property

£(<5X, δr φ) = γκ$Kx9φ)κ%>(y9φ)

may be interpreted as equilibrium states. For details we refer to [8].
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9.4. An Infinite Linear Chain of Coupled Harmonic Oscillators

In this example we consider one-dimensional systems, i.e. G = R , v the Lebesgue
measure on R. For a configuration φeM and a point x e R denote by x+(φ)
[respectively x_(φ)] the smallest mass point of φ greater than x (respectively the
greatest one less or equal x).

The local (or conditional) potential ί / :RxM->R defined by

where a is a positive constant describes harmonic oscillations of x around the
centre of the two neighboured points in φ.

Let Q be a stationary simple recurrent point process with continuous density fQ

of the spacing distribution function

where Qo is the Palm distribution of Q (cf. [26, Chap. 9.5] or [8, Sects. 5 and 10]).
For what follows we only use the fact that a point process Q of this type is
determined completely by the density fQ and that K^ has the form

fQ(xΛφ)-x4φ))

(cf. [8, Sect. 10]).
Setting

^~~ I, φeM)

we obtain from the construction as in Example 9.3 [cf. (8.15)] a state ω with Qω = Q
and the c.r.d.m. £, where

In [8, Sect. 10] we proved that the state ω described by Q and £ is invariant with
respect to the time evolution according to the potential U given by (9.17) if the
density fQ of the spacing distribution of Q satisfies

i.e. if fQ corresponds to a (one-sided) normal distribution.

10. Some Remarks on Quantum Equilibrium States

In a forthcoming paper we will consider conditional intensities of equilibrium
states. In this section we will sketch only some basic ideas. For that reason we
restrict here our considerations to the case of a free Bose gas with phase space
G = R X .

We start with free bosons moving in a finite box A: = [r, s] with natural
boundary conditions (cf. [2]). H denotes the corresponding Hamilton operator
and N denotes the number operator in JίA. Then for all β>0 and α < 0
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exp{ — β(H—(xN)} is a positive trace-class operator (cf. [2]). By ωΛ we denote the
normal state on stA related to the density matrix

_ exp{-/?(7?-«ΛQ}
ρΛ~Ύrcxp{-β(H-aN)} ( i α i )

It is easy to verify that the position distribution QωΛ of ωΛ is a finite Σ'v-point
process.

Using the Feynman-Kac formula (cf. [2]) and the representation of kωΛ (see the
proof of Theorem 6.4) the c.r.d.m. can be calculated explicitly. The result can be
formulated as follows:

First we set

~£
(m is the mass of the boson, h Planck's constant).

Denote by n(φuφ2) the set of all one-to-one mappings from the support of
φxeM onto the support of φ2eM.

π(φ): = π(φ, φ) is the set of all permutations of the mass-points of φ.
One obtains for all φι,φ2,φeM, φί(Λ) + 0,

KΛ(ψu φ2, ψ)=
γ(2πσ)

Σ
geπ(φ,φ)

If π(φu φ2) = 0 the sum £ w^ be set equal to zero. Observe that for all
g ( φ i , p 2 )

φ e M w e have kωΛ((D,<D,φ) = l. Since π(φuφ2) = ψ if φ1(R)Φφ2(IR) w e further
have kωΛ(φl9φ29φ) = 0 if φί(R)ή=φ2(JR).

Now, for φ e MΛ, φ(A) + 0 we denote by Pφ the probability measure on π(φ) (i.e.
the distribution of a random permutation of the points in φ) given by

- ^ J φ(^)(x-g(x))2J (geπ(φ)), (10.4)

where Z is the normalization factor. With this notation we get from (10.3)

- ϊ ; ^ . ,,05,

If for a fixed β we take σ->Ό (i.e. the mass m will be very large compared with h)
one gets easily from (10.4) and (10.5)

So we get in the limit that the position distribution of ω will be a Poisson point
process with intensity exp {ocβ}, i.e. the position distribution of a free gas in classical
mechanics. It is also possible to express kωΛ explicitly in terms of the probability
measures Pφ what gives hints for a characterization of the state ω of the infinite
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volume ideal Bose gas (cf. [2]) corresponding to the same inverse temperature β > 0
and chemical potential α < 0. The position distribution Qω of this infinite ideal Bose
gas is discussed in detail in [14]. It is shown there that Qω is an infinitely divisible
point process on R. Especially, clustering representations of this distribution are
considered. Using Qω one may define for Qω-a.a. φ a distribution Pφ of a random
permutation of the infinite point configuration φ. Now, if {Λn)n^0 is an increase
sequence from 93 with lim Λπ=]Rweget that QωΛ converges weakly toward Qω,

n-+ao n ^

and for Qω-a.a. φ the sequence Pφ converges weakly to Pφ. Further, one can show
that for FxFxQω-a.a. (φί9φ29φ) lim kωΛn(φ1,φ2,φΛn) exists and defines a
function k: M3->C given by ""°°

(10.6)

It turns out that k given by (10.6) is just the c.r.d.m. of ω. It would be interesting to
calculate the c.r.d.m. k of infinite equilibrium states corresponding to more general
types of potentials. One could follow the ideas of Dobrushin, Lanford, and Ruelle
from classical statistical mechanics and consider infinite equilibrium states as
states corresponding to a given c.r.d.m. of a certain type. This concept can be
realized for the ideal Bose gas and should be investigated for more general models
in the future.

Proofs

11. Proofs from Section 2. In the sequel we will use again the abbreviation δχn for
n

Σ δχj> χTt = (xι> •••>*«)• Further, we write v°(dx°) instead of δφ, i.e. for arbitrary

A e © and g: M-+1E we set
}o (11.1)

lί.l. Proof of Lemma 2.5

Using the above notations we get

SFΛuΛdφ)h(φΛ9φΛ,)=Σ ^ ί

.1 β J. -wu- v-v/ -w,.,

. a
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11.2. Proof of Lemma 2.7

Let Ψ be from Jt{. There exists a natural number m0 such that supp ΨQMA° [cf.
(2.5)].

For φφMA° we have Ψφ = 0 and thus ΨφeJK{. We obtain the following
estimations [where we again use the notation (11.1)]:

J FΛ(dφ) J FΛ(dφ) I Ψφ(φ)\2 = J FΛ(dφ) \FΛ{dφ) \ Ψ(φ + Φ)\2

= Σ - Ϊ ί Λdχn) Σ Y, ί
w = 0 n ! Λn k = 0 K\ Λk

= Σ Σ ί FΛ(dψ)\Ψ{φ)\2ύC\\Ψ\\\

n = o k=o \ n J Mn+k,Λ

where C is a constant depending only on m0. Consequently, we get

FΛ(dφ)\\Ψφ\\2<oo.MΛ

Thus, for FA-a.a. φ we have Ψφ e M. Moreover, because of Ψφ(φ) = 0ϊorφφ M^°we

have for FΛ-a.a. φ Ψφ e Jtf

A. It is easy to deduce from this fact that for FΛ-a.a. φ

we have that for all ψQφ Ψφe Jt{. We denote this set by M, i.e.

Since FA(MC) = 0 and we identify two functions from JiA if they are equal FA-a.e. we
v e ^ = ^ .

For φeM we have Ψφe Jί{. For φφM we get

M was so defined that φφM implies φ + φφM for all φeM. Consequently, for
φ φ M we get {ΨXύ)φ = 0e Jίs

A. This proves Lemma 2.7. •

113. Proof of Proposition 2.11

It is enough to show 2.11 for indicator functions, i.e. for functions g of the type χγ,
YeWl.

Let A e S, Ye 9W. We will show that (i) implies (ii). For all φ e M we have

Xγ(φ)=ivAY){ψΛ)ivΛciY){φ^) (i 1.2)

Consequently, we get O y = /yl(Ot;^(y)®Ot;^lc(y))/^1. From the assumption
OγeΛs/ we conclude that there exists an Ae<srfΛ such that

Thus we have A = O ^ ( y ) and OVΛC(Y) = tAc. Since tAC = OMΛC we get OVΛC(Y) = OMΛC.

S i

we thus get OY = OΎ. Because of vΛ(Ϋ) = vΛ(Y) we conclude from Lemma 2.2
Ϋ€Λm.

Now, assume (ii) holds. From Lemma 2.2 we get for all Ψe Jt, φeM

OγΨ(φ) = OΫΨ(φ) = χVΛ(Ϋ)(φΛ)Ψ(φ) = χVΛ(Y)(φΛ)Ψ(φ)

= IAOVΛσ)®tΛ<)rΛ ' Ψ(φ) = (JΛOVΛm)Ψ(φ).
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Thus (iii) is valid.
Finally, suppose (iii) holds. For arbitrary X e 9DΪ we have OVΛ(X) e S/Λ. Thus for

all Xe9Jt we get JΛOvΛ(x)E Λ ^ From the assumption OY = JΛOVΛ(Y) we thus get

12. Proofs from Section 3

We start with proving several lemmas.

12.1. Lemma. Let Λe(5 and h:M x M^><C be a measurable mapping. Then for all
natural numbers n,m the following equalities hold (provided the integrals exist):

\FΛ(dφ) Σ KΦ>φ~Φ) — \FJ^dφ)\FΛ(dφ)h{φiφ) (12.1)
ΦQφ

and

ί FJdφ) Σ h(φ,φ-φ)= $ FΛ(dφ) $ FΛ(dφ)h(φ,φ). (12.2)
Mn+m φQφ Mn Mm

φ(Λ) = m

Proof In the sequel we often will use the following abbreviation

n k

δx

n . : = Σ <>χ•" Σ δχt (xneΛn, k^n, {il9 ...Jk}Q{l, ...,n}) (12.3)
I 1 ' ' l k j = i J z = i ι ι

(i.e. from the configuration δχn we take out the points xiί9 ...,xik).
For arbitrary n , m ^ 0 w e obtain the following chain:

J FΛ(dφ) Σ HΦ,9-φ)=7ΓΓZZϊ.i. v"+m(^"+m)
Mn + m ΦQψ

φ(Λ) =

x y
{ii im)

1 ίn + m)

= 1 J Ad*")—, ί vm(dr)h(δyn,,δχn)= j FΛ(dφ) f FΛ{dφ)h(φ,φ)
n\ Λ» m\ Λ™ ' Mn Mm

This proves (12.2). From (12.2) we get

\FΛ{dφ)\FΛ{dφ)KΦ,φ)= Σ ί FAdψ) f FΛ{dφ)h(φ,φ)
«,meN Mn Mm

= Σ ί FΛdφ) Σ h(φ,φ-φ)
π,meN Mn + m ΦQφ

φ(Λ) = m

= Σ Σ $ FΛdφ) Σ Hφ,φ-φ)
weN 1 = 0 Mn φgφ

φ(Λ) = l

= Σ ί FΛdφ) Σ h(φ,φ-φ) = $FΛ(dφ) Σ Kφ,φ-φ).
neN Mn φCφ φQφ

Thus (12.1) holds. •

12.2 Lemma. Let h:M^><£ be a measurable function. Then for all Λe& the
following equality holds (provided the integrals exist):

f FΛ(dφ) I FΛ(dφMφ + φ) = \ F Λ(dφMψ)2φ(Λ). (12.4)
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Proof. We set %>i,φ2) = % ) i + <P2) From (12.1) we get

$FA(dφ)$FA(dφ)h(φ + φ) = $ Σ
φgφ

= $FA(dφ)h(φ) Σ l=ίFΛ(dφ)h(φ)2^ΛK •
φgφ

12.3. Proof of Proposition 3.3

1 °. Assume A e (5, A e stf{, YE WΛ. Let B be an operator from SA(Y9 A). For Ψ e Jί{
and F-a.a. φ we get from the definition of SΛ(Y,A),

BΨ(φ)= Σ χY(Φ)Aψφ)(φ-Φ). (12.5)
φgφ

Because of Lemma 2.7 the right side of (12.5) is a well-defined function from M into
<C. We will show that B is bounded. For ΨeJt^we get

lFA{dφ)\BΨ{φ)\2=lFΛ{dφ)

Σ Σ
<p2<kφ-φ\ φsQφ-φ

xΛΨφi+φ2(φ-φ2)AΨφi+φ3(φ-φ3)

Λ(dφi) J FΛ(dφ2) J FΛ(dφ3)χγ(φi + φ2)χγ(φ1

+ φ 2(φ + φ 3) | 2

= J FΛ(dφ) j F ^ φ J χ ^ J \ΛΨφι(φ)\22^^2^. (12.6)

In the last step we applied Lemma 12.2. From the assumptions about Y and A
we get that there exists a n m e N such that YQM™, A = 0M™A0Mm. We thus get
applying once more Lemma 12.2,

2

Consequently, there exists a constant C depending on A and 7 but not on Ψ e Mf

A

such that | |B!P| |^C| |¥Ί| for all Ψ e Jt{. B may be extended to the whole space JίA

and BEJ^A. From B = 0M2mB0M2m we finally get f

2°. Now, let A e $#{ be self-adjoint. Because of SA(Y, A) e stfA we only have to prove
that SA(Y,A) is symmetric. For Ψ1,Ψ2eJίΛ

r we get using Lemma 12.1 and
Lemma 2.7

(Ψ\SΛ(Y,A)Ψ2)Λ=ίFA(dφ) Σ ΨUΨ-ΦMΦ^ΨKΨ-Φ)
φgφ

=IFΛ(dφ)χγ(φ)(Ψ1

Φ>AΨl)A=ίFΛ(dφ)χϊ{Φ)(AΨ1

Φ,Ψ2

Φ)Λ

= $FΛ(φ) Σ χγ(Φ)AΨl(φ-φ)Ψ2(φ)
φςφ

=(SΛ(Y,A)Ψ\Ψ2)A.



States of Infinite Boson Systems 345

From Definition 3.1, (iii) we conclude that the above equality holds for all
Ψ\ Ψ2eJίΛ. Thus SΛ(Y,A) is self-adjoint.

3°. Now let A e stf*A be a positive operator, Ye SOt£. For all Ψ e Jί{ we get applying
Lemma 12.1 and Lemma 2.7,

Σ χγ(Φ)Ψ{φ)AΨφ(φ-φ)
φgφ

= J FΛ(dφ) J FΛ(dφ) Ψφ(φ)A Ψφ(φ) = J FJdφ) (Ψφ, A Ψφ)Λ ^ 0.

From Definition 3.1, (iii) and because of SΛ(Y,A)ejtfΛ we get

(Ψ9SΛ(Y9A)Ψ)ΛZO for all ΨeJfΛ. D

12.4. Proof of Proposition 3.4

Let Λe93, Aesίs

A9 YeWΛ. From Proposition 3.3 we know that I
Hence JΛSΛ(Y,A)eΛjtf

f. Observe that for each BestfΛwe have

, φeM). (12.7)

(Observe that OMΛΨφΛCeJίΛ)
For all ΨeJίf, φeM we get using (12.7),

(JΛSΛ(Z A)Ψ) (φ) = (SΛ(X A)OMΛΨφ J (φΛ)

= Σ Xγ(Φ)(Λ(OMΛΨφJφ)(φΛ-φ)
ΦQ<PΛ

= Σ Xγ(Φ)(ΛOMΛΨφΛC+φ)(φΛ-φ)
ΦQ<PΛ

= Σ Xr(Φ)(AOMΛ(Ψφ)φJ(φΛ-φ)
ΦQ<PΛ

= Σ IY{Φ){JΛAΨΦ){ΨΛC+ΨΛ-Φ)
ΦQψΛ

= Σ χγ(φ)(JΛAΨφ)(φ-φ)= Σ χγ(Φ)(JΛAΨφ)(φ-φ)
ΦQ<PΛ ΦQ

= (S(XJΛA)Ψ)(φ). (12.8)

Analogously, one shows JΛSΛ( Y,A) = S(v^ 1Y,A). •

12.5. Proof of Proposition 3.6

From the assumption A e Asrf we get A = JΛOMΛAOMΛ. Using (12.7) we get for all
ΨeJtf

9φeM,
(AΨ)(φ) = (OMΛAOMΛΨφJ(φΛ)

= Σ XMjΦ)(OMΛAOMΛΨφ)(φ-φ)
φgφ

= (S(MΛC,OMΛAOMΛ)Ψ)(φ).

Since A was assumed to be bounded we get from Definition 3.1, (iii)

> = S(MΛC,OMΛAOMΛ) for all ΨeJί.
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12.6. Proof of Proposition 3.7

Assume A e sίΛi A e 95. We have A = OMΛ(JΛA)OMΛ. SO from Proposition 3.6 we

conclude
JΛA = S(MΛC9 OMΛ{JΛA)OUΛ) = S(MΛC, A). •

12.7. Proof of Proposition 3.8

Assume YeSR, Aes/Λ, S(Y,A)eΛs/ for some Λe95. From the identity (11.2) we
obtain especially

lMΛ{ψ-φ) = lMΛ(ψΛ-ψΛ)lm{ψΛc-ψΛc) (φ,φeM, φQφ). (12.9)

From (11.2) and (12.9) we get for all ΨeMf and F-a.a.φ,

S(Y,A)Ψ(φ)= Σ Λ ( ) Λ ( ί φ φ
ΦQφ

= Σ XvAY)(Φ)lvΛc{Y)(ψΛc)AΨφ+φΛC{φΛ-φ)
Φ£<P

= IΛ(SΛ{vΛ(n A)®OvMY))ΓΛ *Ψ(ψ). U2.10)

From the assumption S{Y,A)eΛs/ we get for all ΨeJίf and F-a.a.φ,

S(Y,A)Ψ{φ) = {OMΛS{Y,A)OMΛΨφJ{φΛ)

= Σ Xr(Φ)A(OMΛΨφJΦ(φΛ-φ)
ΦQφ

= Σ χVΛm(Φ)A°MΛi'φΛC+φ(φΛ-Φ)XvΛ.iY)((ί»- (12.11)
ΦQψΛ

<DevΛc(Y) because otherwise we would have S(Y,A) = 0.
But since we assumed S(Y, A) e Astf this cannot happen (each operator from Astf

is "outside A" the identical operator and thus not identically zero).
Consequently, from (12.11) we get

)IA

ί. (12.12)

Combining (12.12) and (12.10) we get

Thus, for 7e9Jl such that vΛ(Ϋ) = vΛ(Y), vΛC(Y) = MΛC we get OY = OY. But from

Lemma 2.2 we know that Ye ŜDΪ. •

12.8. Proof of Proposition 3.9

Let A e 95, A e S£{Jί\ Ye βR, S(Y9 A) e Astf. From Lemma 2.2 we know that for all
φeM we have χγ{φ) = χVΛ^(φΛ). Further, we have S(Y,A) = JΛ(OMΛS(Y,A)OMJ.
Using the above observations we get for all Ψ e Jif and F-a.a. φ,

S(Y9A)Ψ(φ)= Σ xAΦ)(Λ(0MAΨ9JΦ)(φΛ-φ)
ΦQφi

= Σ xAΦ)XMΛ(φΛ-Φ)(A0MΛΨφΛC+Φ)(φΛ-φ)
ΦQψΛ

= Σ
ΦQφ

But0MΛA0MΛes/Λ. •
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12.9. Proof of Proposition 3.10

Let A, ΛΈ23, ΛnA' = 0,
For all Ψe M9 ψeM the sum

Σ Xγ(Φ)(AΨφ)(φ-φ)
φgφ

exists (φeYQMΛ, and φQφ imply φQφΛ,QφΛC). Further, if φ + φΛ> then
φ — φφMΛ because AnΛ' = φ. Consequently,

S(X A)Ψ(φ) = χγ(φΛ) (AΨφJ (φ - φΛ).

From Aes/Λvfe get that S{Y,A)Ψ(φ) = 0 for φφMΛuΛ,.
It is easy to check that S{Y,A) is bounded. Thus S(Y,A)es/AuΛ.. D

12.10. Proof of Proposition 3.11

Let Yl5 Y2 be from 9K. Using several times Lemma 12.1 and Lemma 12.2 we get for
f

\\S(YuOY2)Ψ\\2 = jF(dφί) Σ Σ Z Γ M ) Z Γ M - Φ 2 )
<P2Qφι S

u φ2, φ3,

^ ί f *(d[φl9 φ29 φ39

(12.13)

where C is a constant depending on ΨeJίf (Ψ=ΨχMm for some meN). Thus
S(Yl9OγJΨeJ( for all ^ e ^ . Consequently, S(YuOY2) + 0. Further, for all
ΨeJίf we get

= ί F(dφ) J F(dφ)χYi(φ)χY2

We thus get that all operators from S(Yl9OY2) are positive. Analogous estimations
as in (12.13) prove that for 7e9K, feJίh, \f\^a F-a.e. we get

\\S(Y9Of)Ψ\\2£a2C\\Ψ\\2

for all Ψ eJίf, where C is a constant depending on Ψ. This proves 3.11.

13. Proofs from Sections 5 and 6

13.1. Proof of Theorem 6.4

Γ. Let ω be a normal state on $£{Jί). Thus there exists a density matrix ρ on M
such that ω(̂ 4) = Tr(ρ^4) for all AES£(M\ Consequently, there exists an ortho-
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normal system (Ψs)seS of elements from M (with S a finite or countable index set)
and a sequence (αs)seS, α s>0, £ αs = l such that

seS

?=Σ«Λ )^ (13.1)
seS

Having this representation of ρ we get for all Ye SDΐ,

Σ*JίV»OγΨJ
seS

2 == J F(dφ) Σs α.l VM 2 = ί F{dφ)D{φ), (13.2)

where we have set for all φeM,

seS

Thus Qω<F, and D(φ) is a version of dQJdF.

2°. Observe that the density D(φ) has the following property:

κ(φ, φ)D(φ) = D(φ + <p) (F x F-α.α. (φ, ψ)), (13.3)

where K : = dC{^J/d(F x βω). Indeed, for all yl5y2e9W we get from (13.2) and
Lemma 12.1,

Ci<?J(YίxY2) = ίF(dφ) Σ D(φ)χYί(φ)χY2(φ-φ)

φQφ

= J F(dφ) J F(dφ)χYι(φ)χY2(φ)D(φ + φ)

= jF(dφ)SF(dφ)D(φ + φ). (13.4)

On the other hand, from (5.5) and (13.2) we obtain

C(cfJ(ΪΊ x Y2)= ί F(dφ) f F(#)D(φ)κ(φ,φ). (13.5)
1" 3^

Combining (13.4) and (13.5) we obtain (13.3).

(13.3) implies that for F x F-a.a. (φ, φ) we have the implication:

D(φ + φ)>0=>D(φ)>0.

Especially, the function fcω:M3->(C given by

kω(φ»φ2>φ)=— -j^ (φ»φ2,φeM) (13.6)

is a well-defined measurable function (we set §=0).

3°. Now, let Y be from SOΪ, A an integral operator from &(Jΐ) such that
S(Y,A)e<£{Jί). First we additionally assume that S(Y,A) is concentrated on Jίf,
i.e. there exists a n m ^ l such that S(Y,A)OMm = S(Y,A) (Mm = {φeM:φ(G)^m}).
Observe that for all φeM we have (0MmΨ)φeJi (Lemma 2.7). Denoting by kA a
kernel of A we get for arbitrary Ψe{Ψs:seS} the following chain of equalities:

(Ψ9S(Y9A)Ψ)

Σ Xi(φ-φi)lF(dφ2)kA(φl9φ2)Ψ(φ-φ1
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Diφ+ψi)
) f F(dφ2)kA(φu φ2)Ψ(φ + φ2)

^ ^ (13.7)

Consequently, by Definition (13.6) we get

ω{S(Y,A))=Σ^(Ψs,S(Y,A)Ψs)
seS

= ίQω(dφ)iF(dφί)SF(dφ2)kA(φί, φ2)kω(φ2, φl9 φ)
Y

= ί Qω(dφ) ί F{dΨl)kA * kω(φl9 φ). (13.8)

4°. Now, let S(Y, A) be from Se(Jί). From the definition of S(Y, A) [Definition 3.1,
(iii)] and the continuity of ω we deduce that (13.8) holds for arbitrary YeSDί and
integral operators Ae&{Jί) such that S(Y9 A)e <£{M\ This proves (i).

5°. From Lemma 5.3, (5.6) we know that for Qω-a.a. φη%<ζF and K is a version of
dJά. From step 2° of the above proof we immediately get (6.4).

6°. We still have to prove that kω is a.e. uniquely determined. For arbitrary
y0, 7 l5 Y2eyjlf the function χYί(φ1)χγ2(φ2\ ΨuΨi^M represents the kernel of a
Hilbert-Schmidt operator A from st. Consequently, S(Y0,A)ejtff (cf.
Proposition 3.3).

So if £:M3-»(C is a measurable function satisfying (6.3) and (6.4) we get

ί Qω(dφ)j F(dVl)j F(dφ2)(kω(φuφ2ίφ)-^φuφ2,φ)) = O. (13.9)

Since F and Qω are concentrated on Mf from (13.9) we easily conclude that kω = ίί
FxFx Qω-a.e. •

13.2. Proof of Theorem 6.8

Since K is assumed to be a positive trace-class operator on Jί there exists an
orthonormal sequence (Ψs)seS from Jί with S an at most countable index set and a
sequence (αs)seS, α s>0, £ αs<oo such that

seS

K=Σocs(Ψs,)Ψs (13.10)
seS

Consequently, ίi:M2^(L defined by

%<P»<P2):= Σ ^IΨiWJψI) (<P»<P2eM) (13.11)
seS

is a kernel of K.
We will show that ω( ): = Tr (ρ ) with

= Q({<D})K (13.12)

and fcω = fe.

Trρ = Q({<D})ΎτK = β({0})^(M). (13.13)

is the normal I"v-state with Qω = Q and kω = k.
First observe that
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Because of

from (13.13) we get Trρ = 1. Thus, ω is a normal state. For all YeSDΐ we get from
(13.14) and assumption (6.7)

QJY) = Tr(ρOy) = β({Θ}) Ίτ(KOγ) = Q({<D}]η%Y) = β( Y).

T h u s β ω = β.
From (13.10), (13.11), and (6.8) we conclude

%>i,<P2λ ©) = %>i, Φ2) (FxF-a.a.(φuφ2)). (13.15)

Now, let Y be from 9JΪ, A an integral operator from l£(Jί) such that
S(Y9A)e&(Jt). Let fc^ denote a kernel of A. Then we get from (13.12), (13.14),
(13.15), (6.9) and Lemma 12.1,

ω(S(Y, A)) = Q({(D}) Σ ocs(Ψsi S(Y,A)ΨS)
seS

Σ i i ) Σ
seS φQφ

Σ
seS

i) J F(dφ2)kA(Ψί, φ2)£{φ + φ2,

i)$F(dφ2)kA(φu φ2)k(φ + φ2iφ + φ1, Φ)

, φ, ©) J F(φi) J F(dφ2)kA(φu φ2)k(φ2, φl9φ)

^ * M Φ I , φ)

= J Q(dφ)F(dφ1)kA * k(φ1? φ).
y

Thus k fulfills condition (6.3) of Theorem 6.4.
From (6.7) and (6.9) we get for F x F-a.a. {φl9 φ)

where κQ = dC{Q>)/d(F x Q). One easily checks that for F x F-a.a. (φl9 φ\

) . (13.16)

Since κQ(φ1 + φ, 0 ) > 0 implies κQ(φ, <D) > 0 we get for F x Q-a.a. (φuφ) (6.4). From
Theorem 6.4 we thus conclude kω = k a.e. what ends the proof. •

13.3. Proof of Theorem 6.10

The implication (II) => (I) is the contents of Theorem 6.8. Assume (I) is fulfilled.
In the proof of Theorem 6.4 we obtained that the a.e. uniquely determined

function kω can be written in the form (13.6), i.e.

Σ ^Jί + WJί+) (φx,φ2,φeM), (13.17)

where we use the notations from step 1° in the proof of Theorem 6.4.
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Since 0 < βω({<D}) = D(<D) we have that %> 1 ? φ2): = kω{φl9 φ2, <D) is the kernel of
a positive trace-class operator K with

Tr(XOy) = J F{dφ)U{φ, φ) (Ye mf)
Y

where we used formula (13.14). Thus condition (i) is fulfilled. Condition (ii) follows
directly from the definition of K. Finally, for all φί9 φ2, φ , φ e M w e get from (13.17),

ΣHφ + ώ) 1
, Φ) = L J ' D ( + Λ} Σg *sVl<Pi + Ψ + Φ)^s(φ2 + Ψ + Φ)

= kω(φ, φ, Φ)kω(φu φ2, φ + φ)

which proves (6.9). Π

13.4. Proof of Proposition 5.8

From Proposition 3.4 we obtain S(YU Oγ^) = JΛSΛ{Yi> °VAY2)- Denoting by ωΛ the
normal state on S£(M^ given by ωΛ(A) — ω(JΛΛ) for A e ££(M^ we thus get

Obviously, the position distribution QΛ of ωΛ is given by

. (13.18)

There exists a density matrix ρ on JiA such that ωΛ = Tr (ρ ). Let ρ be written in the
form (13.1) (with ΨseJfΛ). Using the notations from s t e p l 0 of the proof of
Theorem 6.4 and (13.18) we get

= Σ *.IFA(dφ)ΨJίφ) Σ XYl(Φ)XvΛγ2(φ-φ)Ψs(φ)
seS φgφ

= $FΛ(dφ)D(φ) £ χri(Φ)XoΛr2(ψ-φ)

(13.19)

From Lemma 5.3 ((5.6)) we obtain C^J(YX x Y 2 ) = j Qωidqήη^JYi)- This proves (i).

By the usual approximation procedure of measurable functions by step functions
we obtain (ii). •

14. Proof of Theorem 7.3

Let A e 23 be fixed. For all φ e MΛC we set

Denote by QΛC the measure Q°v^ (on [M^c, SDΪ^J). From assumption (I) we
conclude that for QΛC-a.a. φK^isa positive trace-class operator on JίA. Further, it
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is well-known (cf. the Russian edition of [26, Proposition 9.1.10]) that for
QΛc-a.a. φθ<η%(MA)< oo. Now we fix a φeMΛC such that Kφ

A is a positive trace-
class operator and 0<η^(MΛ)<oo. From (7.2) we conclude

0 < Ύτ(KA) = f FA(dφ)k(φ, φ, ψ) = ̂ ( M J < oo . (14.2)

There exists an orthonormal sequence (Ψs)seS from JίA and a sequence (αs)seS,,
&s > 0, Σ ̂ s < °° with £ a n a t most countable index set such that

seS

ί f i . Ϋ ^ Σ ^ Λ i t o (<Pi,<P2eMA) (14.3)
seS

is a kernel of K^ (!PS and αs depend on the fixed counting measure φ). For the kernel
defined this way we get

Ύr(KAOγ) = J F(dφ)£(φ, φ) (YE SR J .
r

So from (14.1) and (14.2) we may conclude

Kψu Ψ2, φ) = Hψu Ψi) (FΛ x FΛ-a.a. (φl9 φ2)) (14.4)

and

/ # , φ9 φ) = £(φ, φ) = κQ(φ, φ) (FΛ-a.a. φ). (14.5)

Consequently, for QΛC-a.a. φ e MΛC by

Λώ*(A): =(ifg(Mil))-1 T r ( ^ O M ^ O M J ( Λ e ^ ) (14.6)

there is defined a normal state on ^ J / .
N̂ ow we set

Λώ(A)= f β ^ φ ^ ώ ^ μ ) ( i G ^ ) . (14.7)

Obviously, Λώ is a state on Λs/. Applying Theorem 2.6.14 in [2] and
Lebesgue's dominated convergence theorem we get that Λώ is again a normal state
on As/.

Consequently, for all Λ e 95 by (14.6) there is defined a normal state on As/. We
will prove now compatibility of this family of states, i.e. we fix two arbitrary sets A,
Axe9i9 AQA1 and show

Λώ(A) = Λίώ(A) {AeΛ^).

Let A E srfA be an integral operator with kernel kA, and let φ e M{Λi)c be such that
Kφ

Λi is a positive trace-class operator on MA\ the kernel of which is of the form

K<P»<P2,<P)= Σ ocsΨs(φί)Ψs(φ2) (φuφ2EMΛl) (14.8)
seS

with (Ψs)seS an orthonormal sequence in MA^ α s>0, Σ α s < °°
S€S

Using several times assumption (7.3), Lemma 2.5 and (14.5) we get

Tr(K*Λ,OMΛlJΛAOMJ
= Σ ΛtiF^(dφi)ΨJίφi)ίFA(dφ2)kA(φiΛ,φ2)ΨJί

seS

= J F(rfφo) ί F(dφx) f F{dφ2)kA(φ1,φ2)k(φ2
MΛι\Λ MΛ MΛ

= J F(dφo)k(φo,φo,φ) J F^φJ J F(dφ2)kA(φuφ2)k(φ29φuφ-\-φ0)
MΛι\Λ MΛ MΛ

= ί ^ ( # o ) ί F(dφ1)fci4 Λ(φ1,φo + 9») (14.9)
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Thus, we get from (14.7), (14.6), (14.9), Lemma 2.5, (6.10) and (5.7)

Λ l ώ ( J Λ A ) = f Q i Λ ψ ( d φ ) f % ( d )
MiΛi)C MΛι\Λ

x J F(dφ2)kA*Mφl9φ0 + φ)
MΛ

 Λ

= ί Q(Λψ(dφ) J F(dφ0) f
Λf M Λf

x J F(dφ2)kA*k(φ2,φΛi\Λ

= ί β^(#)-^^ίF(#)/c^*/c(φ,φ) = ̂ ώ(J^). (14.10)

Thus we obtained that for all Λ, Λ1 e 23, A Q Λ1

 Λiώ(A) = Λώ(A) for all integral
operators from Asf9 and consequently, we have equality for all A e As/. This proves
that there exists a locally normal state ω o n j / such that Λco = Λcb for all Λe93.

We have to prove that Qω = Q. For all Ae 2? and Ye ̂ 501 we get using (14.7),
(14.6), and (14.5) and Lemma 5.3 (5.7)

= J QΛ4dφ)Λώ*(Oγ)

i f f F(dφ)κQ(φ,φ)
MΛc ηAM) YM

Since Q is determined by all sets from (J ΛW this implies β ω = Q.
ΛeSB

Finally, we have to show that the function k has the properties (i)-(iii) of
Definition 7.1. Properties (i) and (ii) follow immediately from assumption (I).

We fix A e 23 and a φ e MΛC such that KΨ

A is a positive trace-class operator with
a kernel of the form (14.3) (where Ψs and α s depend on A and the chosen counting
measure φ). Let Ye Λffll, A an integral operator from s/A with kernel kA such that
S(ί i4)e Λ Λ/. Using the fact that S(Y,A) = JASA(vAY,A) (Proposition 3.4) we get
using (14.3), (14.4), Lemma 12.1, (7.3), (14.5) and Lemma 5.3

Ύτ(KlSΛ(ΌΛY,A))= Σ κsSFΛ(dφ1)$FΛ(dφ2)Ψs(φ1+φ2)χVΛY(φ2)A(Ψs)φ2(φ1)
seS

= ίFΛ(dφ1)SFA(dφ2)kA{φ1,φ2)

x J
VΛ

= ί
vΛY
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Using (14.6) and (14.7) we finally get

= J QΛC
MΛc

= ί QAc(dφ) J ηUdφnrflLMJ)-1 lFA{dφi)kΛ*k(φl9φ + φ)
M Y ΛVΛY

= $Q(dφ)$FA(dφι)kA*k(φ1,φ).
Y

 Λ

This ends the proof of Theorem 7.3.

15. Proof of Proposition 8.1

We will show that the function k defined by (8.6) satisfies the assumptions of
Theorem 7.3. It is easy to check (cf. also [26]) that for all δχneM, xneGn, n^ί,
and φeM,

j=l \ 1=1 /

where κQ = dC$yd(F x Q). Consequently, directly from the definition of Φ
(5.1M5.5) we get

f = κQ(ψ,φ) (φ,φeM). (15.2)

Now, for arbitrary A e 95 we set

Ψ5(φ): = Φ(φ, φ)χMΛ(φ) (φeM,φe MΛ.).

Directly from the definition of C^ and κQ we get

J Q(dφ)\F(dφ)\Ψ*Λ(Φ)\2= ί Q(dφ) J F(dφ)κQ(φ,φ)
MΛc M MΛ

C MΛ

= C$XMΛxMΛC) = \Q(dφ) Σ XMMXMJΨ-Φ)
φgφ

φeMf

= J Q(dφ)χMΛ{φA)χMΛC{φAC) = Q(M) = 1.

Consequently, for all Λe95 and Q-a.a.φ \\Ψφ

A

ΛC\\<oo and thus Ψφ

Λ

ΛCeJίA.
This implies that for all A e 95 and Q-a.a. φ e MAC by

(15.3)

there is defined a positive trace-class operator on JtA with kernel

H(<Pi)H(φ2) = % i > <P2? φ)XMΛ*MΛ(ψu Ψi) (<P

Because of (15.1) condition (7.2) is satisfied. This proves (I).
From (8.4) and (8.3) we get for all n,m^l , xneGn, ymsGm, and φeM,

,φ)= Π φ(χj,φ+Σδχ) Π
j l \ r = l / / 1

(15.4)
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(15.4) and part (8.5) of the definition of Φ imply

Φ{ψι + <p2, φ) = Φ((pu φ)Φ(φ2, Ψ + Ψi) (<Pi> <P2> Ψ e Af). (15.5)

From (15.5) we immediately get that the function k defined by (8.6) fulfills
condition (II) of Theorem 7.3.

Consequently, there exists a unique locally normal state c o o n i such that
Qω = Q a n d k i s the c.r.d.m. of ω.

Now, if ω is a normal state then β is a finite point process (Proposition 6.1). We
prove the converse. If β is a finite Z"v-point process then β({0}) > 0 and β(X)
= <2({®})riQ(X) for all XeW [cf. (13.14)].

Observe that Φ{,(D)eJί. Indeed

JF(dφ) \Φ(φ, ©)|2 = f F(#)κ(φ, 0) = η%M) = ^

Consequently, the operator KonJt with kernel k(φu φ2,0) is a positive trace
class operator, and

ω: = β({0})Tr(K) (15.6)

defines a normal state on S£(Jf) with position distribution Qω — Q. Since it was
already shown that k is the c.r.d.m. of a certain state ώ and Q& = Qω = β we only
have to show that k has the property (iii) of Definition 7.1. For that reason, let A be
from 95, AestfΛ an integral operator with kernel kA, YeJOl and assume
S(Y,A)eΛjtf. From Definition (15.6) we get applying Lemma 12.1

ω(S(Y9A)) = β({©}) Ύr(KS(Y,A))

= Q({<D})SF(dφ)Φ(φ,<D) Σ

x ί FJdφ2)kA(φ - φl9 <p2)*K<Pi + Ψi, 0)
J J FΛ(dφ2)kA(φ, φ2)k(φ2

x J FΛ(dφ2)kA(φ, φ2)k(φ2, φ,

Finally, we thus get that the normal restate ω given by (15.6) is the uniquely
determined state ω o n i such that β ω = β and k is the c.r.d.m. of ω. •

16. Proof of Proposition 9.2

Let ω be the state obtained by Proposition 8.1, and denote by ώ the normal state
given by ώ = (Ψ,Ψ).

Obviously, β ω = β ώ = β. For all AeSΆ and Aes/Λ we have JΛA = S(MΛC,A)
(Proposition 3.7). So, from Theorem 6.4 we conclude that for all integral operators
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Ae stfA (with kernel kA) we have applying Lemma 2.5,

)= f Q{dψ)\FΛ{dφ1)kA*k{ψ^φ)
MΛc Λ

= f F(dφ)ίFΛ(dφ1)ίFΛ(dφ2)kA(φuφ2)k(φ2,φί9φ)\Ψ(φ)\2

MΛc

= J F(dφ) J FΛ(dφ2)kΛ(φΛ, ΨiMψi + <PΛ>)W)

=SF(dφ)ΨW)AΨφJφΛ)=\F(dφjΨΐφ)JΛAΨ(φ)

Since Λ was chosen arbitrarily and integral operators are dense in 3?(Jl) this
implies ω = ώ. •
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