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Abstract. We present an algorithm which calculates the monopole number of an
Sί/2-valued lattice gauge field, together with a lattice Higgs field, on a simplicial
lattice of dimension ^ 3. The calculation is gauge invariant. The expected value
of the monopole density (for a fixed Higgs field) does not depend on the Higgs field.

Introduction

This paper addresses the problem of locating the abelian monopoles of an
Sl/2-valued lattice gauge-Higgs field system on a complex of dimension ^ 3. In the
smooth case, these phenomena have been extensively studied from the analytic and
algebraic-geometric side (for example, [2-6,9,16]) but we believe a more local and
topological analysis, besides being of intrinsic interest, will be useful in the study
of monopoles as vacuum fluctuations, especially by lattice-theoretic methods as in
[7]. A summary of this material appeared in [12].

We present an algorithm which, given a generic Sl/2-valued lattice gauge field
u, and a lattice Higgs field e, defined on a locally ordered simplicial lattice Λ,
associates to each oriented 3-simplex ΔeΛ an integer μue(Δ), the monopole number
of the pair u,e in A.

The lattice gauge field u, as usual, assigns to every oriented 1-simplex (ij}eΛ
an SC/2-element u.p with uji = u[j

1, and the lattice Higgs field e assigns to each
vertex (i}eΛ a unit vector e feR3. If we change gauge via a family g = {^:<i>GΛ}
of elements of SU2, then in the new gauge u becomes the lattice gauge field gug~1

which assigns giu^gj * to <(/' >, and e transforms under the adjoint action to geg~ \
which assigns gi*ei = gieig[1 to <ΐ>> identifying SU2 with the unit quaternions
and R3 = {a\ + b\ + ck} with the pure imaginary quaternions as usual.
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This monopole number has the following properties:
• Coboundary zero {Local conservation law). Suppose Σ is an oriented 4-simplex

of A. Then each 3-simplex ΔedΣ inherits an orientation from Σ, and with respect
to these orientations

v
ΔedΣ

i.e. μu e is a 3-cocycle (see Sect. 1). It follows that on the boundary of a 4-simplex
the positive monopoles must exactly balance the negative ones; if we imagine
joining each of the positives to a negative by an arc in the interior of the 4-simplex,
we will obtain a set of closed curves in Λ, which are lattice monopole world lines
associated to u and e.

(If A is a triangulation of an oriented 4-manifold, then each oriented monopole
world line can be given a sign: for example, call it positive if it goes through a
positive monopole on its way out of a positively oriented 4-simplex.)

• Gauge invariance. If both u and e are modified as above, then μ remains
unchanged:

(This will be proved in Sect. 3.)
• u-expected value independent ofe. Fix the coupling constant β and consider

the monopole density

W ΔeΛ

where N is the number of 3-simplexes in the lattice, and its expected value (with
respect to u)

where S(u) is the Wilson action of the lattice gauge field u, or any other
gauge-invariant action. Here G is the space of all S(72-valued lattice gauge fields
on Λ9 du is the product of the Haar measures, and Z = J e~βS(u)du, as usual. This

expected value is independent ofe. For suppose e' = geg" 1 is another unit lattice
Higgs field. It follows from gauge invariance that

since u-^g - 1 ug is an action-preserving isometry of G, this substitution will not
change the integral. We may thus define

for any choice of e. In particular one may choose the "constant" Higgs field
et = (1,0,0) which makes the calculation somewhat easier (see Sect. 4, C).

This independence still holds if the Higgs field is made dynamical (with
suppression of its radial degrees of freedom [14]) by adding to the action the
gauge-invariant term
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The general idea of the construction is as follows: generically the lattice gauge
field u determines a principal SL^-bundle ξ over A; on the boundary of each
3-simplex Δ, together u and the lattice Higgs field e pick out a most plausible
reduction of the structural group of ξ from SU2 to U1. This defines a certain
L^-bundle over dΔ; the monopole number μue{Δ) is defined to be the first Chern
number of that bundle.

Here is the plan of the rest of this paper. We first discuss the general problem
of reduction of structural group of a bundle from a Lie group G to a subgroup
H, following Steenrod [15]. Then we explain how (in a local sense) this reduction
can be forced by a connection, and how the lattice analogue of this concept requires
additional data which, when G = SU2, H =Ul9 amount to the choice of a lattice
Higgs field. We show in detail how to compute monopole numbers on the lattice
in the SU2, Ut case, and in the last section we check that this algorithm gives the
expected answer when applied to a 't Hooft-Polyakov monopole on R3.

1. Reduction of Structural Group

We review here some material from Steenrod [15] in a notation appropriate for
our purposes.

Consider given a G-bundle ξ defined by coordinate patches {l/J and transition
functions {vi}\ ί/ fn t/y-> G}. A reduction of the structural group of ξ to a subgroup
H cz G is a choice of gauges {Λf: ί/f -• G} such that with respect to the new gauges
the transition functions take values in H, i.e.

The basic fact that allows a topological study of the existence and equivalence
of structural group reductions is the following. A reduction of the structural group
ofξtoH gives a section in the associated bundle ξ/H with fiber G/H, and vice-versa.

Let \_g~] represent the right coset of g in G/H (thus [hg~\ = [#] for heH), and
let G act on G/H by gm\jg'] = [g'g~1]. A section in ξ/H is then a collection
{Xi'.Ui-^G/H} such that on JJinUj we have Xj = vji-Xi.

Now let {λj be the reducing family of gauges mentioned above, and set
%i = [Λ-J Since at any point of ϊ / f n ί/,. we have λiυijλJ1sH, i.e. [^i;0] = \_λf\, or
υjim\.λi\ = [Λy], it follows that the Xt define a section in ξ/H. The converse is proved
in [15, Sect. 9.4]. It then follows immediately from [15, Theorem 14.4] that
homotopic sections give equivalent reductions, where in particular equivalent means
that the induced //-bundles are isomorphic.

The link with homotopy theory now comes naturally. Suppose that the base
of ξ is triangulated as a simplicial complex A. The problem of reducing the structural
group of ξ from G to H, i.e. of constructing a section in ξ/H, can be worked on
stepwise over increasing skeleta of A and in the i-skeleton simplex by simplex, as
follows.

Step 0. The section can be defined on the vertices of A by choosing a basepoint
in the ξ/H-Γiber over each vertex <z>.

Step 1. If G/H is connected, then the section can be extended over the 1-skeleton:
over each 1-simplex <(/> the bundle ξ/H must be trivial, i.e. isomorphic to
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G/H x <//>, so extending the section is equivalent to extending the map defined
on the endpoints to a map of <(/> into G/H.

Step 2, etc. If G/H is simply connected, the same argument shows that the section
can be extended over the 2-skeleton, and one can continue this procedure through
the range of dimensions d for which πd- i(G///) = 0.

Suppose πd(G/H) Φ 0 is the first nonzero homotopy group. Thus we may assume
we have constructed a section X over the ^-skeleton. The bundle must be trivial
over each (d + l)-simplex Δ; so over the boundary dΔ, a topological d-sphere, the
section X appears as a map of dΔ into G/H, which represents an unambiguous
element cx(Δ) of πd(G/H) [15, Theorem 16.11], and X extends to Δ iff cx(Δ) = 0.
The association Δ->cx(Δ) is a (d+ l)-cocycle [15, Theorem 32.4]. Furthermore it
is clear that if cx(Δ) = 0, then the //-bundle η, defined on dΔ by the reduction over
the ^-skeleton, is trivial. The converse holds if π d _ x G = 0, for then a section in η,
interpreted as a section in ξ\dΔ9 extends to a section over all of Δ; passing to cosets
gives a section in ζ/H extending X.

When ξ is a principal SU2-b\mdle and // = Uu we obtain an integer-valued
3-cochain. Since in this case πd_ίG = π2SU2 = 0, the element cx(Δ) is zero if and
only if the reduced bundle on dΔ is trivial; in fact it turns out to be precisely the
first Chern number of that bundle.

2. Forced Reductions, Higgs Fields

Suppose the G-bundle ξ has a connection ω. Then there is an induced connection
ωH on ξ/H (see below) and with respect to this connection it makes sense to ask
how horizontal a section is. In particular (supposing G/H to be (d — l)-connected,
as above) on the boundary dΔ of a (d + l)-simplex Δ of Λ, generically ωH will pick
out a family of "as horizontal as possible" sections of ξ/H, differing one from the
other only by translation by an element of G. (Depending on what one minimizes,
there is more than one way to define "as horizontal as possible;" we will not address
this question here since the lattice has its own natural criteria for this concept.)
Then we can say that ω has forced a certain reduction of the structural group over
dΔ. In particular, ω will have defined an //-bundle over dΔ; this bundle is trivial
if and only if the sections extend over Δ. The corresponding element of πά(G/H)
is the H-monopole "number" of ω on Δ.

From now on we will focus on the case of interest in this paper, i.e. G = SU2,
H =U1. Since SU2/U1 = S2 is 1-connected and π2(S2) = Z the abelian monopole
numbers will be integers associated to 3-simplexes.

The action of SU2 on the 2-sphere SU2/U1 is equivalent to the adjoint action
oϊSU2 on R3, restricted to the unit S2 a R3. To see the equivalence more explicitly,
note that the map SU2/U1^S2, going from the set of right l/1-cosets to the set
of pure imaginary quaternions, and taking [#] ->g~x *i = g~Hg, is a well-defined
bijection which commutes with the 5l/2-actions.

So with G = SU2, H = Ul9 sections in ξ/H are Higgs fields [17], the abelian
monopoles are winding numbers of Higgs fields [1], and our "as horizontal as
possible" condition corresponds exactly to the inclusion in the Lagrangian [13,
14] of a term measuring the covariant derivative of the Higgs field.
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Connections in associated bundles. For future reference, we give an explicit
construction of ωH.

Let ξ = (π.E-^B). The connection ω is a smooth 1-form with values in the Lie
Algebra g of G, defined on the total space E, and satisfying (1) ω\p

o(Pp)* = idg and
(2) ω\gp°(Lg)^ = Ad(g)ω\p for every peE and geG, where Lg is the left-action of g
on E: Lg(p) = gp and pp:G^>E takes g to gp.

Write ξ/H as (πH:E/H->B\ and let Π.E^E/H be the quotient map. The
associated connection ωH will take values in the tangent space to the fibers of E/H:
at qeE/H, with πHq = b, we have ωH\q(w):Tq(E/H)^Tq(E/H\b). It is defined by

where p and v are chosen so that Π(p) = q and Π^(v) = w. One checks that this
value is independent of the choice of p and v, and that ωH is the identity on vectors
tangent to the fibres.

3. Lattice Definition of an "as Horizontal as Possible" Section

To go from a connection ω in a principal 5C/2-bundle ξ over a manifold triangulated
as a simplical complex A to a lattice gauge field u on A we need to choose a gauge
at each vertex <ί> of Λ, i.e. an identification of the fiber over </> with the group
SU2. Then parallel transport by ω takes the identity element in the fiber over <j>
to an element over the adjacent vertex <ΐ> which we may label Uψ assigning this
element to the oriented 1-simplex <(/> defines u. The same choice of gauges at
each vertex identifies the fibers of ξ/H with SU2/U1 = S2, and thus a (unit) lattice
Higgs field, i.e. a collection e = {et} of elements of S2, one for each vertex <i>>
becomes a family of basepoints in ξ/H.

Our lattice implementation of the scheme mentioned in the last section will
involve extending a lattice Higgs field e to a section X = Xue in ξ/H defined over
the entire 2-skeleton of Λ9 which is "as horizontal as possible" with respect to u,
and then calculating the resulting winding number on the boundary of each
3-simplex.

For notational simplicity we assume that the local ordering of the vertices of
A has been extended to a global ordering, with the fth vertex labelled simply i. We
will also abbreviate utjujk to uijk9 etc.

Note on general position: The definition [11] of an SΊ/2-bundle ξ from u involves
the construction of a set of transition functions vij:CinCj-^>SU2, where Q is the
cell dual to vertex i, etc. Suppose this has been done. Note that this procedure
only works for u not belonging to a certain measure-zero set in the space of all
SU2- valued lattice gauge fields on A. The definition of an "as horizontal as possible"
section X in ξ/H, using the lattice Higgs field e as a family of basepoints, will
require eliminating in addition those lattice gauge fields that fail a set of
measure-zero general-position conditions with respect to e.

To define the section X we consider the 3-simplexes of A one by one. A typical
3-simplex is A — OΌh^^X w ^ h vertices so ordered; we relabel them <0123> to
lighten the notation. We give A the orientation of the frame (01, 02, 03).

For f = 0,1,2,3 set Cf = AnCi. A point in xeA has barycentric coordinates
to,tut2,t3 which express it as a positive linear combination of the vertices. If
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xeΔnCh then ^g maxί,- and x acquires modified barycentric coordinates [11]

Sj = tj/ti9 for j φ i. These run from 0 to 1 and exhibit Cf as a 3-cube.
For i = 3,2,1,0 in turn we define a map Xf:Cf-+S2 in such a way that

Xf(ί) = eh

Xf(x) = Xf(x) if

Xf(x) = Vij(x)*X%x) if

where as before * represents the adjoint action of SU2 on S2, except that there
may be an obstruction to extending X^ over the interior of CQ. These maps clearly
form a section in ξ/H whenever they are defined.

The lattice implementation of "as horizontal as possible" is to keep each of the
Xf as constant as possible, subject to these constraints, doing the necessary
interpolations along geodesies in S2 (and rejecting as non-generic any u for which
unique interpolating geodesies do not exist). This involves a mix of geodesic
interpolations in SU2 (used in defining the ϋi7 ) and in S2.

On C 3, define Xj(sθis1,s2) = e3.
Along C 3 n C 2 the sections X3 and X\ must be related by the action of v23 = u 2 3 ,

i.e. X\ (so,s1,s3 = 1) = M 2 3 * X 3 (so,sl9s2 = I) = u 2 3 * e 3 ; to keep X\ as constant as
possible, we let y2 3:[0, 1] -•S2 be a parametrization of the shortest geodesic on S2

from e2 to w 2 3*e 3, proportionally to arclength, and let

This part of the construction does not work for the measure-zero set of lattice
gauge fields for which u 2 3 * e 3 = — e2.

Along C3 n C\ the sections X\ and X\ must be related by the action of the
transition function t?13 which is itself determined by geodesic interpolation
(in SU2) between u 1 3 and u12u23, following [11]: ι;13(so,s2) = g 1 2 3(s 2). This gives
Xi(so>S2>s3 = 1) = gi23(s2)*^3 Note that a geodesic in SU2 acts on S2 by rotations
about some fixed axis, and applied to a point on S2 will move it along the
corresponding circle of latitude.

Along C\nX*, since ι>12 = w12, we must have Xi(so,s2 = I,s3) = u 1 2 *
^i(^o,s1 = 1,53) = ui2*y23(s3). Let ηi23(s2,s3) parametrize the geodesic cone in S2

from e1 tO gi23(S2)*^3^Wl2* ') ;23(S3)J

This part of the construction does not work for the measure-zero set of lattice
gauge fields for which —eί lies in the image of the two curves gi23*^3 and ul2*γ23.

Finally we get to C*. On C 3 n C o , we must have XQ(S19S2,S3 = l) = ι;0 3*e3,
since X3 = e3. Now, following [11], vO3(sus2) = ho l2 3(5 1,s 2) is the geodesic para-
metrization of two geodesic triangles in SU2. As before, we have SQ(S1 , s2, s3 = 1) =

On C 2 n C o , we must have XQ(S19S2 = I,s3) = vO2(sl9s3)*X*(so — l ,s l J s 3 ) =

On C\ΠCQ, we must have X%(sx = I,s2,s3) = uol*η123(s2,s3).
The map X* is thus determined on the "far sides" of CQ, i.e. those where at

least one of the coordinates equals 1. The next step would be to set XQ(0>0>0) = eol
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U023 * e 3 = α 6 UQ2 * e 2 = α 7

* e 2 ="03 * e 3 = α 5 L \:

= α4

Fig. 1. The monopole number μue(Δ) of the oriented 3-simplex <0123> is the algebraic number
of times this piece of surface on S2 covers — e0. Note that u0ί2 = u0ίu12, etc.

since CQ is affinely a cone from (0,0,0) onto the far sides, one would try to extend
Xo to a continuous map defined on the rest of the cube by geodesic coning from
e0 onto the image of the far sides. But this may not be possible, because — e0 may
belong to that image. In fact it is easy to see that the obstruction to extending this
map, (i.e. the monopole number μue(Δ) of the oriented simplex Δ\ is generically
equal to the algebraic number of times that — e0 is covered by the piece of surface
shown in Fig. 1. In this figure, solid lines are geodesies in S2, dashed lines are
circles of latitude with respect to an axis determined by the algorithm and the *
refers to the adjoint action of SU2 on S2 a R3.

The gauge invariance of μu e(4) is now clear. For suppose we change gauge on
the lattice using the family g = {gj of SC/2-elements. Then utj transforms to
u'ij = Qi^ijθiι (and uijk to giUijkg^, etc.), while ei transforms to e[ = g^et = Q^QJ X

in quaternionic notation. The triangle A, for example, transforms to the spherical
triangle A' with vertices ι/Oi*e'i, u'0χ2*e'2, u'0l23*ef

3, i.e. {goU^^g^^1 =
go*(uoi*ei)> e t c > s o the pair A\e'o differs from A,e0 by the rotation x^>go*x; and
the intersection numbers will be the same.

4. Computation of Local Monopole Numbers

This section treats the computation of the number of times that — e0 is covered
by the piece of surface shown in Fig. 1; this is the monopole number μue(Δ) of the
lattice gauge field u and the lattice Higgs field e in the oriented 3-simplex

The piece of surface in question is naturally divided into five parts, labelled A
through E in Fig. 1, and the computation is divided accordingly. The notation
u012, etc. is short for u01u12, etc.

A. This part is the simplest: a spherical triangle on S 2 with vertices wOi*^i = ^ i ,
Moi2*^2 = α25 woi23*^3 = α3? listed in positive order around the boundary. The
point — e0 will belong to the interior of triangle A iff it can be written as a positive
linear combination of the vertices: —eo = tιaι + t2a2 + ί 3 α 3 , with all tt > 0. So the
three numbers det( — eθ9a29a3)/dQt(a1,a2,a3\ etc. must all be positive (or equi-
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valently det( — eo,a2,a3)det(a1,a2,a3)>0, etc.). Furthermore this intersection, if
it exists, is counted positive if det(al9a29a3)>09 and negative otherwise.

B. This part is a triangle with vertices aί9a3, and uOί3*e3 = α4, listed in an order
that gives the correct orientation. More precisely, the edge a3a4 is an arc α of a
circle of latitude, α = uolg123(s2)*e3, 0 ^ s2 ^ 1; and B consists of the union of the
(unique) minimal geodesies in S2 from aί to each point of α. We call B the cone
from a1 on the oriented arc ~S and write B = a1 Λ Ϊ . Because of the doubling of
angles corresponding to the projection SU2->SO3, the arc α will be greater than
a semicircle in its circle of latitude if the length of g 1 2 3 is greater than π/2 in the
standard unit-sphere metric on SU2. However, a can never be more than a circle
of latitude.

It will be useful, here and in part £, to have an explicit form for the computation
of the axis of a circle of latitude of the form g*e, where g is a given geodesic in
SU2, and e a given point of S2. In the typical case g = u01g123, where this would
be the axis XB of the circle bearing the arc α, it goes as follows. The geodesic
woigi23 i n S^2 is the image under left translation by u01u13 of the 1-parameter
subgroup leading from the identity tow = w 3 1 2 3 . Let ReSO3 be the image of

/ x + ί y z + iw
u = \

\—z + iw x — iy

(where x2 + y2 + z2 + w2 = 1) under the adjoint representation. The entries in the
matrix R are the following well known quadratic functions of x,y,z,w:

/x2 -\-y2 — z2 — w2 2(yz — xw) 2(xz + yw)

2(yz + xw) x2 —y2 + z2 — w2 2(zw — xy)

2(yw — xz) 2(xy + zw) x2 — y2 — z2 + w2

 /

The 1-parameter subgroup containing u gets mapped to the 1-parameter
subgroup of SO 3 containing R. As do all such subgroups, this one consists of
rotations about some fixed axis X. In particular R itself is such a rotation and
maps the first basis vector εί to its own first column Ru and similarly ε2 to R2,
ε3 to R3. The three vectors R1 — ε l 5 R2 — ε2, R3 — ε3, at least two of which must
be nonzero if R is not the identity, are all perpendicular to the axis X\ so we may
take {Rx - εx) x (R2 — ε2) (substituting the third vector if necessary) as X. Finally
the translation by wOiwi3 wiU transform rotation about X to rotation about the
axis XB = uolu13*X.

The calculation of the intersection number of region B with the point — e0 is
not as straightforward as in the case of A. Because of angle-doubling the region
may fold back on itself, and in general the geometry depends subtly on the relative
position of ax and α. To avoid some of this delicate geometry we will substitute
for B a region B' which is the union of a geodesic-sided triangle and what we shall
call a lens (so membership in B' will be easy to establish) and justify the substitution
by an invariance principle for intersection numbers (see [8]), which for present
purposes can be expressed thus: Let B' be an oriented 2-chain on S 2 such that
dff = dB as oriented 1-cycles, and such that the 2-chain B — B' is null-homologous.
Then the intersection numbers are equal: B'. ( — eo) = B'( — eo).

Before we can describe the 2-chain B' that we shall use, we need some notation
(see Fig. 2).
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Fig. 2. Geometric set-up for part B of the calculation

Let Q be the great circle in S2 through a3 and a4. Let L be the circle of latitude
carrying α, and 1= ±XB the unique unit vector such that L has equation (x,/) = r
with r > 0, using (,) for the euclidean inner product. (Note that generically L
will not be a great circle.) Let P be the polar cap P = {x:(x, /) ̂  r}; also let — L =
{x:(x,Z)= — r} and — P = {x:(x,Z)^ — r} be antipodal to L and P respectively.
Generically, a3 and α4 are not antipodal in L, so there is a unique decomposition
of Q into the union of a mα/or arc /?+ and a minor arcj?~, each oriented from a3

to α 4. Let β denote one of β+ and β~. Let F x = aγ A β be the cone from flx on
the arc β, with the orientation given by the order aί9a39a4 of its vertices. Let B2

be the unique portion of S2 such that, in the standard orientation, dB'2 = α — /?,
and the interior of 2?'2 ^s o n e component of S2 — (Lug) . We call B'2 a Zens, and
write #2 = if (α/?). Finally set B' = B\ 4- B 2 as an oriented 2-chain. Then

dBr = dB\ + 3JB'2

^ ^ +<x- β

We shall show how to choose β = β+ ov β~ so that also

where as usual |B | is the point-set underlying the chain B, etc. Then B-B' is
null-homologous, so, by the invariance principle, B ( — e0) = B\ ( — e0) + B2'( — e0)
and it will remain only to show how to compute the two terms on the right.

Choice of β.
(a) β = β-iίaγφ-P
(b) β = β+ iϊa^-P.
Note that the vertex aι is in —P if (α l 9 Z) < — r.
Verification of(*). (See Fig. 3, in which case (a) has been subdivided into (a') if

«! and α are on the same side of Q and (a") if they are on opposite sides.)
Since \B\ and \B\\ are made up of shortest geodesies from aί9 we have that
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Q

(a1)

Q

L

α

, (α")

Fig. 3. B,B\ and B'2 in cases (a'), (a"), and (b), as seen in stereographic projection from —aί. In
these pictures, α is drawn as the major arc of L

generically -a1φ\B\v\B\\. So it remains to check that —a1φ\B'2\. Note that in
general β~ lies inside the polar cap P, and β+ lies outside it.

(a) I f α ^ - P , then -axφP. By our choice B'2 = ^((x,β~)^P, so -a^\B2\.
(b) If a1 e — P, then — αx eP. By our choice F 2 = t£(α, jS+) is in the complement

of P. So -axφ\B'2\.

Computation of B'x ( — e0). We think of vectors in R 3 as column vectors; three of
these can be grouped to make a 3 x 3 matrix {vl9v2,v3). In case this matrix is
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Fig. 4. The computation of B'2(—e0)

non-singular, set ε(vί9v29v3) = + 1 or — 1 according as the matrix has positive or
negative determinant. If β = β~9 then B\ is a triangle of minimal geodesies on S2

and B\'{-eQ) is computed as in (A): if ε(-eo,ai9aj) = ε(ak,ai9aj) for every cyclic
permutation i9j9k of 1,3,4 then

BΆ-eo) = ε(al9a39a4);

otherwise, B'1-( — eo) = 0.
If β = β+

9 then |BΊ | is in the hemisphere of S2 determined by Q and_αl9 and is
the complement in this hemisphere of the minimal geodesic triangle OL1 A β ~. Hence
BΊ'( — eo) = Q unless

(i) ε(-eo,a3,a4) = ε(aua3,a4) and
(ii) at least one of these two equations fails:

ε(-eθ9al9a4) = ε(a39al9a4)9

ε{-eθ9al9a3) = ε{a49al9a3).

In this case,

B\'(-eo)= -ε{aί9a39a4).

Computation of B'2'( — e0). The point — e0 is in the lens \B'2\ if it is on the same
side of β as α and on the same side of L as β. The calculation depends on the
relative position of a1 and a with respect to Q. (See Fig. 4, where αx and α2 represent
the two possibilities for α: being on the same or opposite sides of Q as q9 respectively.)

1. Set m = wOi8i23(2)*^3» s o m *s the midpoint of α. (In practice we may substitute
m ' = (2Moi3 + 2Mio23)*^35 which is a positive scalar multiple of m)

2. The great circle Q has equation (x,q) = 0, where q = a3x α 4. So a1 and α are
on the same or opposite sides of Q according as (aί9q) and (m,q) have the same
or opposite signs.

3. Finally, eoe\B'2\ if
(i) ( — eo,q) and (m,q) have the same sign and

(ii) ( — eoj) >r or <r according as j? = j?~ or β+.
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If (i) and (ii) hold, then

where ε(m) = ± 1 is the sign of (m, q) and where ε{β) = 1 if β = β+ and = - 1 if β = β~.
Otherwise, B'2'( — e0) = 0.

C. This part and the next are the images under the map f:SU2-+S2 taking u to
u*e3 of the two spherical triangles Tί and T2 making up the image of h 0 1 2 3 ,
continuing with the notation of [11]. Since any or all of the sides of Tx and T2

may have length > π/2 it is simpler because of angle doubling to substitute for the
calculation of the intersection number oif{Tx) with the point -e0 the equivalent
calculation of the intersection of 7\ itself with the great circle S = / " ι{ — e0\ and
similarly for T2.

We first consider the special case e0 = e3 = e = (1,0,0).
With this choice, S is the set Se of SU2 matrices whose SO2 projections take

e to - e , i.e. have the form

- 1 0 0

0 cos θ sin θ

0 sin0 —

for some angle θ. Comparing with the explicit form of the adjoint representation
given above shows that Se is exactly the set oϊSU2 matrices lying in the (z, w)-plane.

The vertices of triangle 7\ are w03, M 0 1 3 , wOi23 w ^ h quaternionic coordinates
we will call (puP2>P3>P4% (Qu^Qs^Λ (ri>r 2,r 3,r 4) respectively. This spherical
triangle will intersect the (z, w)-plane if and only if the triangle in the (x, y)-plane,
with vertices (Pi,p2)> (^1^2)? (ri>r2)> contains the origin, i.e. if

\Pi r2j \q2 r2

and

\ Pi

The sign of the intersection may be calculated as follows. The matrix

mapped to -e by / . The tangent vectors —
j

and ^~
dy

give

a basis for the normal space of Se at J. The differential of / takes these vectors to
the vectors (0,0, —2) and (0,2,0) in the tangent space to S2 at e\ so the basis is
mapped to a negatively oriented basis on S2. On the other hand, projection into the
(x, j/)-plane maps them to the standard positive basis. It follows that the sign of the
intersection will be positive if the projected triangle wraps negatively around the
origin, and vice-versa. The vertices were listed above in positive order, so a negative

wrapping (and a positive sign) correspond, for example, to det ( x x ) < 0.

Now we turn to the case of a general e0 and e3. Suppose h is an SU2 matrix
such that h*e = e0, and k is one with k*e = e3. If a matrix g belongs to Se9 then
the product hgk'1 will belong to S, and vice-versa, i.e. Se^S under the isometry
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g-+hgk~x. So the intersection number of S with Tί9 say, is the same as that of Se

with the triangle h~1T1k, and can be calculated as above. It remains to find the
matrices h and k.

Let us find h. The point e has quaternionic coordinates (0,1,0,0). Suppose
e0 = (0,α,b,c) and h = (x,y,z,w). Then writing heh~1=e0 leads to the three
equations

x2 + y 2 — z2 — w2 = a,

2(yz + xw) = b,

2(y w — xz) = c,

to which we may add

Considering (x, y, 0) = Vγ and (w, z, 0) = V2 as vectors in R3, with standard basis
i,j,k, this set of equations may be rewritten as

K, K 2 = bβ =\V1\\V2\cosθ,

( K 2 x K 1 ) k = cβ = |K 1 | |F 2 | s inέ>.

As long as we avoid the degenerate cases a = + 1 , this can be solved for | Vt\, | V2\,
and the angle θ from V2 to Vt. One can then choose Vt to lie along the x-axis,

/ b —c
i.e. x = x /( l + α)/2, v = 0, and then w = — , z = ——.v 2x 2x

D. This is another triangle made up of circles of latitude, and can be analyzed in
precisely the same way. Here the vertices in positive order are wO 3*e3 = α3,
W 0123*^3 = α5> a n d M 023*^3 = a6'

E. This part is the quadrilateral Xo(CinCo). The vertices are a6,a3,a2 and
"02*^2 = aΊ9 listed positively. The map is defined by XQ(S19S3) = gOi2(si)*723(s3)
This is a kind of ruled surface: when s1 is fixed the image describes geodesies in
S2 (the sides a3a2 and aΊaβ are of this type), whereas when s3 is fixed the image
describes circles of latitude about a common axis XE.

To calculate E-( — e0) we shall again use the invariance principle for intersection
numbers that we used to compute B-(-e0). That is, we shall find an oriented
2-chain E such that dE = dE as oriented 1-cycles, and E — E is null-homologous
in S2. Let E\ be the cone a2 A a6a3 from a2 on the oriented arc a6a3 of
dE; and let E2 be the cone a6 A a2al9 where again a2aη is part of dE. Set
E = E\ + E2. Then dE = d{E\ + E2) = dE.

It remains to show that E — E is null-homologous. The next lemma will show
that, provided the circles of latitude Lx and L 2, bearing a6a3 and a2aΊ respectively,
are not antipodal (this is a generic condition) then | £ | u | £ ' | fails to contain one
or the other unit vector along the axis XE. It follows that E — E is null^homologous.
Hence £ (-e o ) = £ / ( - e o ) = F 1 ( - e o ) - h F 2 (-β o ) . Since E\ and E2 are both
geodesic cones on arcs of latitude, the last two values can be computed by the
algorithm used to find B-( — e0).
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Lemma. Let Lγ and L2 be parallel circles of latitude which are not antipodal Let
lx and /2 = — ίx be the unit vectors on the axis X of symmetry ofLx and L 2, chosen
so that for x1eL1, x2eL2 we have (/i,Xi)>(/i,x2). Let OL(XUX2) be the (unique)
minimal geodesic from x x to x2. Then there is one oflγ and l2-call it I-such that
for every pair x1eL1, x2eL2 we have l$oc(aux2).

Proof Suppose, to the contrary, that α = α(x 1,x 2) passes through lί9 and α' =
α(xΊ,x2) passes through l2. Let R be a rotation about axis X that carries x\ to
xx\ set x 3 = R(xr

2). Since l2 is invariant under R, it follows that α" = α(x 1 ?x 3) also
passes through l2. Now αuα" is a broken geodesic that passes through antipodal
points lx and l2. Therefore αuα" must in fact be unbroken, that is, part of a single
great circle. But now, since α u α" is more than a semi-circle, the only way for its
endpoints x 2 and x 3 to be on L 2 (which is perpendicular to axis X) is if x 2 = x 3 .
But this would imply that α' and α" are both minimal geodesies from xx to x2; in
other words, that xx and x 2 are antipodal, which is contrary to hypothesis.

5. An Example

There are various arbitrary elements in our algorithm. One is the local vertex
ordering, another our interpretation of "as horizontal as possible." There is one
global constraint on our monopole numbers: for any 3-cycle Σ c Λ, say Σ = YjεiΔh

with εf = ± 1 so that dΣ = 0, the sum

Σ *ιμJAι)

must equal zero. This sum is in fact a characteristic invariant of ξ/Uu where ξ is
the SL/2-bundle corresponding to u; since ξ, as an 5L/2-bundle on a 3-complex,
must be trivial, so must ξ/Uί.

In general the assignment of monopole numbers to individual simplexes will
depend on the relative position of u, e, and the particulars of the algorithm. In this
section, however, we show that for a particular, smooth configuration, a modified
version of the Prasad-Sommerfield solution of the 'tHooft-Polyakov monopole
on R3, our algorithm gives the expected individual monopole numbers: 1 for the
simplex enclosing the origin, and 0 for all the others.

Following [13] we consider the gauge field A on R 3 described as follows. This
is a connection in the trivial Sl/2-bundle, i.e. an su2-valued 1-form, so for each
xeR 3 it gives a linear map Λ | x :ΓR 3 ->su 2 . Identifying both of these spaces with
R 3 as usual (in particular, using the imaginary quaternions i, j,k as a basis for su2),
we may write this map as

A \ / \ J \ /

where r = \\ x | |,/(r) is described just below, and x is the vector cross-product. In
the notation of Sect. 2, this expression would give ω|(xl)(v) at the point (x, l)e
R 3 x SU2. On vectors tangent to the fiber, ω | ( x l ) is the identity map.

For simplicity's sake we have replaced the cut-off function l-vr/sinh(vr) of [13]
by a C0 0 positive function f(r) which is identically zero for r ^ v~x and identically
one for r >2v~ 1 .



Algorithm for Detecting Abelian Monopoles 245

Together with A we consider the radial Higgs field defined on the complement
of 0 by φ(\) = x/r (continuing with the identification of R 3 with su2. Here we omit
the cutoff function which would make φ well defined at 0.)

We make this simplified continuum monopole into a lattice gauge-Higgs system
as follows. We triangulate R 3 as a simplicial complex A such that the origin is
contained in the interior of a simplex Δo and such that the simplexes intersecting
the spherical shell v" 1 5 ^ r ^ 2 v - 1 have their edge lengths bounded by a number
L we shall discuss presently. To apply our algorithm, we order the vertices of A;
we define an S U2-valued lattice gauge field u on A by setting uu to be the
path-ordered integral of A along the edge <(/>; and we extract from φ the lattice
Higgs field e with et = φ(i) for each vertex (i}eA.

We will show that for this combination of u and e the monopole number μue04)
is zero for every simplex A Φ Δo, while μue(Δ0) = 1.

There are four possibilities for Δ9 which we will consider separately:

1. Δ entirely contained in the region r ^ v " 1 , but Δ Φ Δo;
2. Δ = Δ0;
3. Δ intersecting the shell v~x < r < 2v *;
4. A entirely contained in the region r ^ 2V"1.

In the first two cases the gauge field is zero, so u is the identity lattice gauge
field; this makes Fig. 1 collapse down to the spherical triangle A with vertices
ei9e29e3.

1. Any linear simplex 4 = <0123> which does not contain the origin must lie
entirely in a half-space, and the same must be true for the four Higgs field values
eΌ9eue2 and e3. So the triangle A lies entirely in the same hemisphere as e0, and

2. Since Δo contains the origin 0, we can write 0 as a positive linear combination
of the vertices 0,1,2,3; and therefore also as a positive linear combination of
eo,e1,e2,e3. But this means that - e0 can be written as a positive linear combination
of el9e29e39 i.e. -e0 is covered exactly once by the triangle A. If j4 0Js given a
positive orientation by the vertex ordering, i.e. if the three vectors 01, 02, 03 form
a positively oriented frame, the same must hold for the three vertices 1,2,3 thought
of as vectors; then according to the algorithm μue(Δ0) = + 1 .

3. For A = <0123> in this case we will show that if L is sufficiently small all the
pieces of Fig. 1 lie in the open hemisphere about e0, so again the monopole number
must be zero. Here we can argue by continuity starting from case 1. The transporters
are path-ordered integrals of the connection from A along segments of length < L;
we first take L < v~ *; then these segments lie in the compact region v" 1 —L^r^
2v~x + L, on which the coefficients of A are bounded, so by further controlling L
we can make Fig. 1, for all Δ9s in this case, uniformly as close as we please to the
figure in case 1; in particular we can make each of these figures lie in the open
hemisphere about its e0. A calculation shows L < .34V"1 to be sufficient.

4. In this region, where A\Jy) = (l/2r2)x x v, we use the fact that φ is parallel with
respect to this connection. Very briefly, this is established as follows; we use notation
from the end of Sect. 2. The associated bundle is here E/Uί = R 3 x S2, with Π:E/U1

taking (x, g)eR3 x SU2 to (x, g"xig), and induced connection ω1. The tangent space
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to E/Uί at (x,h) is T R 3 | x 0 T 5 2 | h . If v e Γ S 2 | h then by definition ω1(v) = v, while

if V G T R 3 | X , a straightforward calculation leads to

ωll(x,h)(V) = ^ 2 h x ( X X V)>

identifying TS'2|hwith the set of vectors in R 3 perpendicular to h, as usual. In this

context, to say that φ is parallel means that the tangent 3-plane at (x, φ(\)) to the

graph of φ in E/U1 coincides with the kernel of ωx | ( x < p ( x ) ), i.e. that ωλ |(x(x/r))(v) = - φ^\,

for any veTR 3 | x .

Now

1 x

l ( ) ()
using the expression for ω x above, whereas one can easily check that

ψχ\ = ̂ -x x (x x v),

so φ is indeed parallel.

This fact means for us that u^ej, which is what we get when we parallel-

translate βj along <j/>, is precisely et. So if A = <0123> is in this region, the vertices

of Fig. 1, along with the surface they span, all coalesce at e0, and this surface has no

chance of covering — e0.
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