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Abstract. We propose a super Lax type equation based on a certain class of Lie
superalgebra as a supersymmetric extension of generalized (modified) KdV
hierarchy. We are able to construct an infinite set of conservation laws and the
consistent time evolution generators for generalized modified super KdV equations.
The first few of the conserved currents, the (modified) super KdV equation and
the super Miura transformation are worked out explicitly in the case of twisted
affine Lie superalgebra OSp(2\2)i2).

1. Introduction

Of integrable nonlinear systems generalized Korteweg-de Vries (KdV) equations
and Toda lattice equations are particularly interesting classes in connection with
conformal field theories. The Virasoro algebra can be extended to Wn algebra [1]
by incorporating conserved currents of higher spin. The Wn algebra is known to
arise from the Hamiltonian structure of the generalized KdV equation [2,3]. It
has recently been shown [4] that perturbation of conformal field theories by certain
types of interaction is described effectively by affine Toda lattice theories [5]. Some
time ago Drinfeld and Sokolov developed a Lie algebraic method [2] to derive
generalized KdV equations and relate them to affine Toda lattice equations. This
method is also related to the method of coadjointbrbit and Hamiltonian reduction
of current algebras.

In this paper we extend the Lie algebraic method of Drinfeld and Sokolov to
the sypersymmetric case and develop a Lie superalgebraic method for generalized
super KdV and super Toda lattice equations. Drinfeld and Sokolov introduced a
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differential operator of first order

j? = d + q(x) + Λ (1.1)

which takes values in an affine Lie algebra g. Here q(x) is a field taking values in
the Borel subalgebra fa of g0 (0-th component in the standard gradation of g) and
A is the sum of generators in the simple root system (SRS) of g. They showed that
the Lax type equation

c) 9> — Γ α/ SPΛ (i 2)

gives a generalization of modified KdV (mKdV) hierarchy and constructed the
time flow generator s&.

We will consider as a super symmetric extension of the bosonic operator (1.1)
the fermionic differential operator

which takes values in an affine Lie superalgebra g. Here D = d/dθ + θd/δx is the
superderivative, q(x, θ) is a superfield taking values in the Borel subalgebra fa of
g0, and A is the sum of generators of fermionic (Grassmann odd) SRS. Only special
types of affine Lie superalgebra have a fermionic SRS of which the generators are
all Grassmann odd (see Sect. 3) [6]. We propose the Lax type equations (1.2) and
(1.3) as a generalization of the modified super KdV (msKdV) hierarchy. We are
able to construct the conservation laws and the time evolution for generalized
msKdV equations. Our construction relies on the assumption that g admits a
direct sum decomposition in terms of ad/I 2 (see Eq. (5.3)). Presently we are not
able to prove this assumption for an arbitrary affme Lie superalgebra possessing
a fermionic SRS.

In Sect. 2 we introduce the basic notions of the Lie algebraic method for Toda
lattice and generalized KdV equations. Those readers who are familiar with this
method should skip this section. In Sect. 3, after recalling the basic notions of Lie
superalgebras, we summarize super Toda lattice equations and propose generalized
msKdV equations. In Sect. 4 we demonstrate that the super sine-Gordon equation,
the super KdV equation and the super Miura transformation are obtained by
considering the super Lax operator (1.3) associated with OSp(2\2)(2). We construct
the conservation laws in Sect. 5 and the operator jtf used in the super Lax type
equation (1.2) in Sect. 6.

2. Lie Algebraic Approach to Generalized Modified KdV Equations

In this section, we recapitulate the Lie algebraic method for the Toda lattice [7]
and the generalized KdV equations [2]. For definiteness we consider the case of
the affine Lie algebra g = SL(r+l) ( 1 ) associated with a simple Lie algebra
G = SL(r+l). Extension to other classes of affine Lie algebra requires slight
modification of the method reviewed below.

The affine Lie algebra g is the tensor product of the simple Lie algebra
G and the Laurent polynomial C[λ9λ~1']. Let {Ea,Fa,Ha}

r

a = 1 be the set of
generators of G in the Chevalley basis and {Ea,Fa,Ha}

r

a = 0 that of g. Note that
E0:=λEψ(F0:=λ~1Fψ), where Eψ(Fψ) is the lowest (highest) root of G. The g is
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equipped with Z gradation [8]. The canonical gradation1

9 = 0 9 * , [β*,9']eg*+l (2.1)
keZ

is defined by assigning degree + 1(— 1) to Ea(Fa). The standard gradation1 referring
to the vertex c0 of the Dynkin graph 2 of g,

® (2.2)
keZ

is defined by assigning degree +1(—1) to E0(F0). The g0 is a semi-simple Lie
algebra obtained by deleting the vertex c0 from the Qι. g0 = G in the present case
of g = SL(r + 1)(1). The Borel, Cartan and nilpotent subalgebras of g0 are defined by

08* =ί)θn,
/

(2-3)0 g*
k<0

respectively. The same definition as (2.3) will be used for Lie superalgebras in Sect. 3.

A. Affine Toda Lattice. Let Φa(x, t) be an (r + l)-component field (of which only r
are independent) and set

Φ= Σ *.Ha (2-4)
α = 0

Define

& = d + (dΦ) + Λ,

& = dt + e-φΛeφ, ( '

where d = d/dx and d, = δ/dt, and

Λ= Σ Ea, Λ=£Fa. (2.6)
α=0 α=0

The zero curvature condition is written as

0 = [if, Si = - ί \wΦa - exp

and it leads to the affine Toda lattice equation

3t3Φβ-expf X «***) = 0, (2.8)

where Kab is the Cartan matrix of g.

B. Generalized Modified KdV Hierarchy. Consider the differential operator

JS? = δ + ήf + Λ (2.9)

1 The canonical and standard gradations are also called principal and homogeneous gradations,
respectively
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where g(x,t)eC°°(i?2,b)2. A satisfies

Λr+1=λE, (2.10)

where E is the identity.

An n-valued field S defines a gauge transformation

/?2,b). (2.11)

There exists a gauge transformation such that

JS?-> JS?O = eadυ{^) = d + qo + Λ, (2.12)

where q0 takes the form

qo=Σ j y r ' e K e r a d Λ = 2£. (2.13)
i O

Here adΛ g ^ g 7 ^ 1 by M->[\Λ,U].
Consider a time evolution equation

3fJS? = [^,JSP], (2.14)

where j ^ is to be determined by demanding consistent time evolution, i.e., that
the right-hand side of Eq. (2.14) should belong to b. To construct the matrix srf
we define the centralizer of if, Z ^ = {MeC°°(#, g)| [M, i f ] = 0}. Here g = g + 0 g",
where g+ = (J) g' and g~ = \\ g'. By observing that for

ί^O i<0

/?2,b), (2.15)

we see that Eq. (2.14) with si = M + is consistent. Noting Z ^ = e~ a d C / (#), we find
that srf is given by

^ = (e-
adu{u)) + , ue&. (2.16)

In the present case of g = SL(r + 1){1) we have

m

stf=Σci{e-aduΛi) + , έeR. (2.17)
i = 0

Equation (2.14) leads to the same equation for the gauge equivalent class and
it is called generalized KdV hierarchy associated with (g,c0). We consider two
typical gauge fixed operators ifcan and ifdiag defined by j£? in which q takes the
form

qcan(x,t) = u1eUr+1 +u2e2,r+1 + •• + w r e r ? r + 1 (2.18)

and

<?d i β B(x,ί)= Σ υαHα = dmg(qu...9qr+1)Eί) (2.19)
α= 1

respectively. Here we have taken the (r + 1) x (r -f 1) matrix representation in which

2 We sometimes write C°°(R,b) instead of C°°(R2,b) when we are only interested in the x
dependence
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the Chevalley generators are given by Ea = ea+la,Fa = ea>a+1(a^0% where eOfb

denotes the matrix having unity at the (a, b) site and zeros elsewhere. gcan satisfies
the equation

dqcan/dt = F(qc™, dqc™/dx,...), (2.20)

where F is a differential polynomial in qcan. Equation (2.20) is a coordinate
realization of the generalized KdV hierarchy. Expand e~adU(u) as

m

( Γ a d » = £ A1, A'etf. (2.21)
i= — oo

qdiag satisfies the equation

dqdia*/et=-dA°, (2.22)

where A0 is a differential polynomial in <?diag. Equation (2.22) is called generalized
modified KdV equation. The map relating to each operator j£?dias its gauge
equivalent class J&?can is called generalized Miura transformation.

C. Scalar Lax Equation and Generalized Miura Transformation. We introduce a
S((δ"1))-module structure on Bdλ'1))^1 as follows. We use the notation
B\=CCO{R,C) (ignoring the ί-independence) and

attf\ateB9neZy (2.23)

Elements of B((d~*)) are called pseudodifferential symbols. For ηeB((λ~ι))r+ι and

P=Σ bid
ieBld\ (2.24)

we define the action of P on η by

Pη:= £ bt&to). (2.25)
i = 0

Let ψ1 = (1,0,..., 0)'e£[TΓ+ *. We can show that each element of B[λJ+1 can be
uniquely represented in the form P\l/1. To each g-valued Lax operator i f of the
form (2.9) we assign a scalar Lax operator L of the form

r - l

L = d + y, ^ί^» (2.26)
i = 0

by setting

r-ί

i. (2-27)

Note that to the gauge equivalent set of operators 3? corresponds the same scalar
Lax operator L.

The generalized Miura transformation can be derived by referring to the matrix
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representation in which we have

/ 0 0 0 ... 0 λ"

1 0 0 ••• 0 0

0 1 0 ••. 0 0
Λ =

0 0 .- 1 0 0

o o ... o l o ;

(228)

Take the standard basis {ψί9...,ψr+i} m B[λ]r+1. In the canonical reduction
(2.18), noting

Λtyi = ^ i + i ( i<r), (2.29)

we find that l/f = — wf. In the diagonal reduction (2.19) we have (if — q^φi = φi+1

and hence

= ^ Ί , (2.30)

which implies the generalized Miura transformation

L = (d-qr)...(d-q2)(d-qi). (2.31)

The equation (2.14) for the gauge equivalence class coincides with the scalar
Lax equation

dtL=lALl (2.32)

where A is given by

m

A=-Σci(Li>γ. (2.33)
ί = 0

D. Conservation Laws. Write Eq. (2.14) in the form [dt — srf, i f ] = 0. Then

[δ f-j2/,Jί?o] = 0, (2.34)

where jtf = eΆάυ{srf - d/dt) + d/dt. This equation is written in the form

dqo/dt + dJ=0. (2.35)

Equation (2.35) implies that the coefficients ft in Eq. (2.13) are densities of
conservation laws for Eq. (2.14).

3. Super Toda Lattice and Generalized Super KdV Equations

Toda lattice equations with spacetime supersymmetry were constructed by several
authors [6,9] employing the notion of super principal embedding OSp(ί |2) c_> G,
where G is a Lie superalgebra. Manin and Radul suggested that a generalization
of super KdV equation can be obtained as a reduction of a super KP hierarchy
[10]. Lie algebraic aspects of generalized super KdV equations are unclear in their
derivation using scalar super Lax operators. We will propose a Lie superalgebraic
method for generalized (modified) super KdV equations in which they are related
to super Toda lattice equations.
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We first give a brief summary of the Lie superalgebraic method for super Toda
lattice equations introducing basic notions of Lie superalgebras [11].

Let G be a finite dimensional Lie superalgebra of rank r and

{Ea,Fa,Haγa=ί (3.1)

the generators in its Chevalley basis. We consider the super principal embedding
OSp(l\2) <=->G, where the Chevalley generators {J,J9H} of OSp(l\2) are given by

(3-2)
J = Σ d a E a , J = Σ d.Fa,

a=l α = l

with

ca = dada= Σ (K-1)*' ( 3 3 )
b=l

The super principal embedding OSp(l |2) CL+ G exists only when one can choose a
purely fermionic (Grassmann odd) simple root system (SRS) for G. This is possible
only for limited classes of Lie superalgebra. To each super principal embedding
specified by the Cartan matrix Kab corresponds a non-affine Toda lattice with
spacetime supersymmetry (super Toda lattice in short) [6,9].

The argument given above can be extended to the case of infinite-dimensional
Lie superalgebra (affine Lie superalgebra). An afϊϊne super Toda lattice corresponds
to an affine Lie superalgebra having an SRS which leads to a sum of Lie
superalgebras admitting super-principal embedding after deleting any of the vertices
of its Dynkin graph.

The simple and affine Lie superalgebras which possess a purely fermionic SRS
have been listed by Leites, Saveliev and Serganova [6]:
Finite-dimensional:

SL(n ± 11 n); OSp(m | In) (m = 2n, In + 292n± 1); D(211; α), (3.4)

Infinite-dimensional:

SL(n|n)(1); OSp(2n + 2\2n)(1); Z)(2|l;α)(1)

5β(2n+l) ( 2 ) ; SL(n\n)i2); OSp(2n\2ήf2). (3.5)

In general several inequivalent SRS's correspond to a Lie superalgebra3, as
illustrated in Fig. 1. An affine super Toda lattice equation is obtained by using the
purely fermionic SRS of one of the affine Lie superalgebras listed in (3.5). We use
the same fermionic SRS's to construct generalized modified super KdV equations
associated with an affine Lie superalgebra.

Let g be one of the affine Lie superalgebras listed in (3.5). We take the Chevalley
generators of its purely fermionic SRS

{Ea9Fa9Ha)U0. (3.6)

3 A fairly complete list of Dynkin graphs of simple and affine Lie superalgebras is given in refs.
[6] and [12]
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(a) (b)
Fig. 1. Two inequivalent Dynkin graphs of the simple Lie superalgebra OSp(2 \ 2). We have
followed the convention of ref. [6]

We introduce Z gradation in Q in the same way as the bosonic case (2.1) and (2.2).
We assign degree +1(— 1) to Em(Fm) in the standard gradation (2.2) referring to
the vertex cm. Note that in the canonical gradation (2.1), elements of even (odd)
degree are Grassmann even (odd). The Borel, Cartan and nilpotent subalgebras
b,ί) and n are defined in the same way as the bosonic case, Eq. (2.3).

Let Φα(x, θ; ί, θt) be an (r + l)-component scalar superfield (of which only r are
independent), and set

Φ=t ΦaHae\). (3.7)
α = 0

Consider a pair of super-differential operators

X = D + φΦ) + Λ,

& = Dt + e-φΛeφ, K '

where

, Dt:=d/dθt + θtd/dt, (3.9)

and

Λ:= Σ Ea, λ:= £ Fa. (3.10)
α=0 α=0

The operators if and if are Grassmann odd and hence A and A must also be so.
This means that the SRS (3.6) must be purely fermionic, as remarked above.

Given the pair of super Lax operators (3.8), we now write down the
zero-curvature condition in the Zakharov-Shabat scheme [13]

[JS?,J?]+=O. (3.11)

This condition yields super Toda lattice equations,

DtDΦa=-exp( £ Kbaφ\ (3.12)
\fc = 0 /

This equation is written in terms of superfields and superderivatives and hence it
is manifestly supersymmetric.

We now turn to the construction of generalized modified super KdV (msKdV)
equations. This can be made by extending Drinfeld and Sokolov's method to the
case of affine Lie superalgebras cj.

We consider as a supersymmetric extension of the differential operator (2.9)
the super-differential operator

& = D + q(x9θ;t) + Λ. (3.13)
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Here D is defined in Eq. (3.9). q(x, θ; t) is a fermionic superfϊeld taking values in
the Borel subalgebra b of go Λ is gi γ e n precisely by Eq. (3.10). In order that the
super Lax operator (3.13) makes sense A has to be Grassmann odd, and hence all
Ea must be so. This is possible only when g is one of those affine Lie superalgebras
having a purely fermionic SRS considered above. Recall that the Lax operator $£
of the bosonic mKdV equation and that of the bosonic affine Toda lattice are
related by diagonal reduction [2]. The same relation holds for the super Lax
operator (3.13) and that of the affine super Toda lattice.

We propose that the super Lax type equation

dt& = ls/9£T\ (3.14)

gives a generalization of the msKdV equation. We have to show that Eq. (3.14) is
a sensible nonlinear equation having the same desirable properties as generalized
mKdV equations. To this end we will construct in Sects. 5 and 6 the conservation
laws and the time flow generator s/ which gives a consistent time evolution.

4. OSp(2\2)(2) and Super Sine-Gordon and Super (Modified) KdV Equations

Before proceeding to the formal arguments in Sects. 5 and 6, we consider in this
section the simplest case of g = OSp(2|2)(2) and demonstrate that the super
sine-Gordon [14,15] and super KdV equations [10,16]4 derived previously in
non-Lie algebraic methods are obtainable by considering the super Lax operators
(3.8) and (3.13).

The simple Lie superalgebra G = OSp(2\2)9 Lie algebra of N = 2 super Mόbius
transformations, is (4,4)-dimensional and has rank 2. It has two inequivalent SRS's
(the associated Dynkin graphs are shown in Fig. 1). We take the purely fermionic
SRS (Fig. lb) and denote its Chevalley generators by {ea,fa,ha}l=1. We will use
the Cartan matrix of the form

o)
The commutation relations of the generators are given in Appendix A.

The twisted affine Lie superalgebra g = OSp(212)(2) is defined referring to the
Z2 symmetry of the Dynkin graph lb of G, as explained in Appendix A. The
Chevalley generators are

£ 1 = e 1 + e2, E0 = λ(f1-f2)9

Fi=/i+/2, F0 = λ-ί(eί-e2),

H l = H o = hί + h2 = H. (4.2)

The Cartan matrix is

M 2 ~Λ (43)

4 Two types of "super" KdV equation are known. One has supersymmetry in space [16] and
the other does not [17]. We are concerned with the first one
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We introduce a single scalar superfield Φ and define

Λ:=EO + E19 Λ:=fΌ + f i . (4-4)

The super differential operators are

& = Dt + exp(- ΦH)Λexp(ΦH)

= Dt + Qxp2ΦF1 + e x p ( - 2 Φ ) F 0 . (4.5)

The zero curvature condition (3.11) gives the super sine-Gordon equation

£/),<£= 2 cosh (2Φ). (4.6)

We now turn to the derivation of the modified super KdV equation. This will
be made by relating the super Lax operator i f to a scalar super Lax operator L.
To this end we will introduce a super ^-module structure by using an explicit
matrix representation of OSp(2\2){2) (see Subsect. 2.C).

The Borel subalgebra b = ϊ)©n is 3-dimensional, ί) being spanned by H and n
by Fx and Fo. In the same fashion as the bosonic case (2.11), an n-valued superfield
S defines gauge transformation. The n is two dimensional and we have only one
dynamical degree of freedom. In parallel with the bosonic case we consider two
typical gauge fixed operators ifcan and ifdiag defined by (3.13) with q of the form

qGan=W{x9θ,tyFί

2, (4.7)

4 d i a g = Ψ(x,θ,t) H, (4.8)

respectively, and identify the super integrable non-linear equations corresponding
to these gauge fixed operators. This can be made by taking the 4 x 4 matrix
realization of the Chevalley generators given in Appendix A. We have

Λ = \

H = i 0 0 2 0

^0 0 0

A c c o r d i n g l y t h e s u p e r L a x o p e r a t o r s i f c a n a n d J£diag a r e a l s o 4 x 4 m a t r i c e s . W e
n o t e t h a t

Λ* = 4λ2E, (4.10)

where E is the 4 x 4 unit matrix.
Using the 4 x 4 matrix realization, we introduce a super ^-module structure

on ^((ΛΓ1))4, where ^ is the algebra of superfields, as follows. An element φ of
^{(λ~ι))A is four-component column vector φ = (φl9...,φ4)

t

9 where each com-
ponent is a superfield with a λ expansion of the form

φ.= £ φi

(k\x,θ)λ~k. (4.11)

0
0

1

λ

0

0

0
0

1

-λ

0 0
0 0

λ
-λ

0

0

0

0

1
1

0

0

\
\

0
0
0
0

0
0
0
0

0
0
0

- 2

0
0
0
0
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The super Lax operator JS? acts on ^((/Γ 1 )) 4 . For a super differential operator of
the form P = Dn + l/n_ jD1 1"1 + + Uθ9 we define an action of P on Λ((λ"*))4 by

It is easy to see that this action allows us to define a super ^-module structure
on &((λ~1))4 and that, given a gauge invariant "vacuum" state ^ o e ^((Λ" ^ί 4 , each
element of ^[Λ,]4 can be represented uniquely in the form P-φ0. Then we can
assign a scalar super Lax operator L corresponding to a gauge equivalence class
of the operator JS? by setting

L φo = μφo, (4.13)

where μ is a constant. The observation that Λ4 is proportional to the unit matrix
implies that L is fourth order. The vacuum state φ0 is a constant vector annihilated
by F1 (the generator of n). We have two alternative choices of φ0,

φB = (l-lA0)\ (4.14a)

^ = (0,0,0,1)'. (4.14b)

The two choices are related by J£φB = 2λφF.
We first consider the canonical gauge fixing

We have

(^can)4φB = (4λ\ - 4λ2,0, - SλW)\ (4.16a)

{&can)4φF = (4W,4W90,-4DW + 4λ2y. (4.16b)

Here we have taken into consideration the fact that A appearing in ifcan and W
are both Grassmann odd. We get from Eq. (4.16)

[(if c a n ) 4 + 4W(^can)^φB = 4λ2φB, (4.17a)

[(if c a n ) 4 - 4W(^CΛn) + 4{DW)~\φF = 4λ2φF. (4.17b)

The right-hand side of Eq. (4.17) are to be identified with LB-φB and LF-φF, where

LB = D* + 4WD, (4.18a)

LF = D4- 4WD + 4IW. (4.18b)

Manin and Radul constructed a possible form of super KP hierarchy and obtained
the scalar Lax operator L as a reduction of the hierarchy [10]. They found that
the Lax equation

^ = [(L 3 ' 2)+,L], (4.19)

gives a supersymmetric extension of the KdV equation. The scalar super Lax
operator LB constructed above coincides with their L and it yields the equation

dW 1
— = -D6W+ 3D2WDW + 3WD3W. (4.20)
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Equation (4.19) with L = LF gives the same equation.
Next we take the diagonal gauge fixing

J^diag = Z ) + ψ.jj + Λ. (4.21)

We note that by the identification Ψ = DΦ, J?dϊag coinsides with the operator ££
of (4.5) for the super sine-Gordon equation. Noting Eq. (4.14), we readily find that

*ψB = 4χ*φ βi (4.22a)

^ diag^diag _ 2 jf/^diag^diag + 2 ψ)φ p = ^ φ F . (4.22b)

Hence we have the super-differential operators of a factorized form,

LB = (D-2 Ψ)D(D + 2 Ψ)D, (4.23a)

LF = D(D-2 Ψ)D(D + 2 Ψ). (4.23b)

Since J^can and ifdiag are gauge equivalent, we should identify the operators LB

and LF of (4.18) with those of (4.23). This identification allows us to relate the
dynamical variable W in the canonical gauge fixing with the dynamical variable
Ψ'm. the diagonal gauge fixing as

W= -ΨDΨ + ̂ D2Ψ. (4.24)

This relation is known as the super Miura transformation [16-18]. The super KdV
equation (4.20) for W is now transformed into the modified super KdV (msKdV)
equation for Ψ,

dΨ 1
_ - = -D6 Ψ- 3(D Ψ)2D2 Ψ-3ΨD ΨD3 Ψ. (4.25)

In this section we have obtained the msKdV equation (4.25) from the scalar
super Lax equation (4.19). Later we will show that the diagonal reduction of the
super Lax type equation (3.14) with an appropriate choice of ja/5

[>/,J^d i a g], (4.26)[ > / , J ^ ] ,
at

yields the msKdV equation.

5. Conservation Laws

In this section we derive the conservation laws for the generalized modified super
KdV equation (3.14) proposed in Sect. 3. We begin by noting that in the bosonic
case the conservation laws for Eq. (2.14) are derived by utilizing the adjoint action
ofΛ;

adΛ(u) = [Λ,u] for uetf. (5.1)

The map adΛ has the following remarkable properties [19,2]:
(i) g admits a direct sum decomposition

g = KeradΛθImadΛ. (5.2)
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(ii) The subalgebra ^ = Ker ad A is commutative.
These two properties are indispensable in constructing the conservation laws for
the Lax type equation (2.14). The decomposition (5.2) allows us to separate the
gauge degrees of freedom related to the gauge transformation (2.10) from the
physical conservation laws. The conservation laws are elements of Ker ad A.

To construct the conservation laws in the supersymmetric case we need a map
which yields a direct sum decomposition of the afϊine Lie superalgebra g analogous
to Eq. (5.2). A is a Grassmann odd element of g and we readily see that neither
of the two properties (i) and (ii) holds; the element A1 = \ [Λ, Λ] + belongs to both
Ker ad A and ImadΛ. Regarding (ii), in general the anti-commutator of two odd
elements of Ker ad A is a non-vanishing element of Ker ad A. After some exercise
we have found that for a wide class of afϊine Lie superalgebra, adΛ2 has the
property (i); adΛ 2 gives the direct sum decomposition

g = Ker ad A2 0 Im ad A 2. (5.3)

We have proved the relation (5.3) for OSp(2\2)(2) by explicit computation. For
SL(n\ή)(1) the proof can be made by reducing the problem to that of proving the
relation (5.2) for bosonic afϊine Lie algebras [20]. In this paper we will deal with
the super Lax type equation (3.14) associated with those afϊine Lie superalgebras
which admit the direct sum decomposition (5.3) in terms of ad A2.

In accordance with the decomposition (5.3) using ad A2 in place of ad/i, we
are led to consider the square of the original super Lax operator $£ of (3.13),

^=^- + Dq+l-ίq,q]+ + lA,q]++A2. (5.4)

Note that the time evolution of j£?2 is governed by the same operator si that is
used in (3.14);

W,JS?2]. (5.5)|W,JS?].

Thanks to the decomposition (5.3), we can prove the following proposition.

Proposition 5.1. There exists an element U = £ Ul with L/'eg1, such that the gauge
transformation by U takes if2 into the form i<0

JS?0

2:=exp(ad V\<£2 = ̂  + Qo + A2. (5.6)

Here β 0 = Σ Qok a n c* e a c h component Qo

k belongs to g k nKerad/1 2 .

Proof By taking the gk-component of (5.6), we see that QQ

k + \_A2,Uk~2] is
expressed as a differential polynomial in Qo

ι (k<ΐ), Uj (k-2<j) and the
components of q. Using the decomposition (5.3), we can determine U and Qo

inductively as differential polynomials in the components of q.
The gauge transformation by U takes the time evolution equation (5.5) into

the form

% %MW1 (5.7,
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where s$ is the gauge transform of J/ ,

d/dt - J = exp ad U(d/dt -s/\ (5.8)

Lemma 5.2. stf belongs to Ker ad/i2.

Proof. Let us set J / = £ Λk with ,4fcecjfc. The cjfc-component of (5.7) gives

dt dx i+

ΛI ( 5 < 9 )

Suppose A1 (k—l^i^ri) belongs to Ker ad A2. Then the left-hand side of (5.9) is
in Ker ad Λ2, while the right-hand side is in Imad/12. By the assumption (5.3),
both side of (5.9) must vanish. Hence, by induction, [/I2,**/] = 0.

Corollary 5.3.

01 OX i+j=k

In the bosonic case the right-hand side of the equation corresponding to
Eq. (5.10) vanishes, because the subalgebra Ker ad A is abelian, implying that each
component Qo

k is a conserved current. In the present case the right-hand side of
(5.10) does not vanish in general. To obtain conservation laws from Eq. (5.10) we
need the following trick of "abelianization" of Jf = Ker ad A2. Let [Jf, Jf] denote
the commutant of JΓ, subalgebra generated by elements of the form [fc, /] (/c,
In terms of a certain Killing form we define the orthogonal complement of [jf,
in Jf denoted by 5t. cfr is isomorphic to the quotient algebra Jf/[jf, j f ] , Jf is
decomposed as

X = | X , J Π Θ J Γ . (5.11)

Since the right-hand side of (5.10) is an element of [X, Jf], the X-component of
(5.10) vanishes and hence it gives a conservation law. Therefore, if J n g ^ is
non-trivial we have a conserved current of grade k. Note that the set $:= {keZ;
JΓng f c Φ 0} is determined from the commutation relations and that there exists a
period n such that S + n = $. This implies the existence of infinitely many conserved
quantities. In the bosonic case the period is called (dual) Coxeter number.

We illustrate our construction of conservation laws in the case of 0iSp(2|2)(2),
the example discussed in Sect. 4. As worked out in Appendix B, Jf is spanned by

and the subspace X is spanned by

A2 'A2eg-2 + 4 ' . (5.13)

Hence j f π gk / 0 if and only if k = 2 (mod.4, corresponding to period n = 4). This
means that the conservation laws belong to QQ 2 + 4 J .

We have computed the first few terms of Qo

k (k S 0) by taking the diagonal
reduction

qάiΛ* = DΦ H (5.14)
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corresponding to the super Lax operator (4.5) for the super sine-Gordon equation.
The operator if2 is given by

^2 = ̂  + Q° + Q1+Λ2, (5.15)

where
Q° = D2ΦH,

Q^DΦ-^-Eo). (5.16)

The components Qo

k and Uk are obtained inductively as differential polynomials
in Φ by solving the relation (5.6). The first few terms are given in Appendix C.
The first two conservation laws are obtained as the coefficients of QQ2 and QQ 6

and are found to be

(5.17)

J2= -^DldΦD5Φ-DΦ{dΦ)3l (5.18)

Their integrations

ρ(3/2)= -±$dχJ1(χ)= -±$dxdθ(dΦDΦ), (5.19)

ρ(7/2)= -Λ_μxp{χ)= -±μxdθ(dΦD5Φ-DΦ{dΦ)3l (5.20)

reproduce the conserved charges obtained earlier in non-Lie algebraic methods
[15, 21].

6. Consistent Time Flow Generators

In the super Lax type equation (3.14), the dynamical variable q in if is assumed
to be b-valued. A consistent time evolution requires that the commutator [sf, i f]
be also b-valued. We will show how to construct generators s/ such that [si, i f ]
is b-valued.

Let us start with the following lemma.

Lemma 6.1. Let M = £ Mk (Mke$k) be an (even) superfield. If [M, if] = 0, then

IM+

9£Ί is b-valued, where M+ = Y Mk.
k = 0

Proof. [M, if] = 0 implies

IM+,<?1=-IM-9J?1 (6.1)

where M " = M - M + . W e must prove that [M+

9&] belongs to both g0 and 0 $k

kίO

(see Eq. (2.3)). We see that because of the property [gk, g*] c qk+ι of the principal
(canonical) gradation [M~\£?~\ does not have components with a positive grade.
To be convinced that [M+, ̂ £~\ belongs to g0, one notes that there exists a positive
integer n such that © Qk a g0 cz @ gfc.

Because of this lemma the problem is reduced to constructing superfields M
which commute with S£. A family of such superfields can be obtained from elements
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of Z(Jf), the center of Ker ad/I2, by means of the inverse gauge transformation
by U = £ U* which appeared in the last section (see (5.6)).

;<o

Proposition 6.2. Let M(c) = exp( — ad U) c, where c is an (even) element of Z(jf),
then lM{c\ i f ] = 0.

Proof. It is sufficient to show [c, i? 0 ] = 0, where we have defined if 0 by

JSfo:=exp(adt/)J2\ (6.2)

Write if 0 in the form

if o = D + R + A (6.3)

Since Λ belongs to Ker ad/I2, the proof is completed by proving the following
lemma.

Lemma 6.3. R belongs to Ker ad/I2.

Proof Since U does not contain components with positive grade, the odd superfield
R has no positively graded components, hence R = £ Rk. Comparing (6.3) with
(5.6), we obtain the relation of R and Qo,

 fc = °

[ΛΛ] + . (6.4)

Let us first show that R° = 0. The defining relation (6.2) gives

R° = q° + tU-\Λl (6.5)

On the other hand, g1-component of Eq. (5.6) tells

[i/-\yl2] + [/U 0 ]=0. (6.6)

Hence we have

[Λ,K°]=0. (6.7)

This holds if and only if R° is proportional to the central element, which we can
set zero. Then g~fc-component of (6.4) is

Q0-
k = DR-" + lΛ,R-k-1]++± Σ ίR-',R-^ + . (6-8)

i + j = k

To use induction, suppose all R~ι (ί = 0,1,...,k) are in KeradΛ 2 , then we easily
see that all terms in (6.8) except [Λ, R~k~x] belong to Ker ad A1. Hence [/ί, R~k~ x ]e
Ker ad A2. From the Jacobi identity we have

[Λ, Ker ad Λ 2 ]c : Kerad/i2,

[Λ, Im ad /I 2] c Im ad Λ2. (6.9)

Since Kerad/l 2 nlmadyi 2 = {0},[Λ,^" f e"1]eKeradΛ2 implies ^ " ^ ^ K e r a d y l 2 .
Thus we have proved that # belongs to Ker ad A2.

Combining Lemma 6.1 and Proposition 6.2, we see that

— =[M(c) + , ^ ] (ceZ(Jf)) (6.10)

defines a family of consistent time evolution equations. We note that A2 = ̂ [Λ, A] +
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is a non-trivial element of Z(jf) and hence Eq. (6.10) is not empty. In parallel
with our derivation of conserved currents in the previous section, the set
$':= {/ceZ;Z(fc)ngfc#0} has the period n. (Presumably $' coincides with $ in
Sect. 5.) Therefore, Eq. (6.10) gives an infinite series of the time evolution equation.
In the OSp(2|2)(2) case to be discussed below, ΛAk+2 = (2λ)2kΛ2(keZ) span Zpf).
We can also check the hierarchy structure in the case of SUn\n){1\ By taking the
standard (2ή) x (2ή) matrix representation, it is easy to show that Z(jf) is spanned
by Λ2k(k ψ Omod.n)), Λ2n being proportional to the identity.

The generalized super KdV equations (6.10) can be put into a simpler form in
the diagonal gauge fixing. Set

< z d i a β = Σ
α = l

By taking the 0-th grade component on both sides of (6.10), we get

£(dQJdt)Ha=-D(M(c)f. (6.12)
a= 1

We apply the present method to the case of OSp (2|2)(2) and show that the
super KdV equation given by Manin and Radul arises in the hierarchy (6.10). We
see that Λ 4 k + 2 = (2λ)2kΛ2e$*k+2 and these elements span Z(Jf). We take the
diagonal gauge fixing

D+ΨH + Λ. (6.13)

The hierarchy (6.12) takes the form

H=-D(Mk)°, (6.14)

where Mk:= exp( —ad U) Λ4k+2(k ^ 0). Consider the case of k = 1. Mx is computed
in Appendix D.

= ID5Ψ- 2(DΨf + 3ΨDΨdΨ]H. (6.15)

Thus Eq. (6.14) for k = 1 gives

dΨ
= dΨ+3dΨ{DΨ) + 3ΨDΨDΨ, (6.16)

ot
which coincides with the modified super KdV equation (4.25) derived from the
scalar Lax equation.

7. Discussion

Our construction of an infinite series of conservation laws and the consistent time
evolution generators for the generalized modified super KdV hierarchy relies on
the direct sum decomposition (5.3) of the affine Lie superalgebra in terms of ad/12.
In the bosonic case the analogous construction relies on the decomposition (5.2)
in terms of ad Λ, which is proved to be true for an arbitrary affine Lie algebra



536 T. Inami and H, Kanno

[19,2]. We feel that the relation (5.3) is a basic property of those affine Lie
superalgebras which admit a superprincipal embedding of OSp(l\2\ and hence it
holds true for the affine Lie superalgebras listed in (3.5). Presently we have proved
(5.3) for SL(n|n)(1) and OSp(2\2)(2).

The generalized (modified) super KdV equations we have proposed are in a
Lax type representation. There is a folklore that those nonlinear differential
equations which have a Lax type representation are integrable. We believe that
our generalized (modified) super KdV equations give supersymmetric integrable
systems. The existence of an infinite series of conserved currents discussed in Sect. 5
lends a support to our belief. The integrability can be proved by showing further
that conserved currents are mutually commuting and that there exist sufficiently
many infinite series of conserved currents. To complete the proof we need better
understanding of the properties of the map ad A2 of Lie superalgebras.

The time coordinate which appears in the super Lax type equation (3.14) is
Grassmann even. Accordingly the time flow generators and the conservation laws
are all even. The physical meaning of conservation laws with respect to Grassmann
odd time is obscure to us and we have not considered the odd time evolution of
the super Lax operator i f in this paper. One may introduce odd time τ and the
associated superderivative Dτ\= δ/dτ + τd/dt with the property D2 = d/dt. The super
Lax type equation

DtJS? = [ ^ , J S f ] + (7.1)

will possibly allow us to study odd time evolution as well as even time evolution.
We should note that a reduction of the super KP hierarchy of Manin and Radul
yields both even and odd time evolution. Presumably the consistent time flow
generators for Eq. (7.1) can be constructed by extending the method given in Sect. 6.

A hierarchy of generalized KdV equations is known to be obtained as a
reduction of the KP hierarchy [22]. The latter hierarchy is related to the
deformation problem of the pseudo-differential operator J£ = d + uo + u1d~1 +
u2d~2 + -. In the Lie algebraic approach the KP hierarchy is obtained by
considering the Lax type equation associated with Gl^nf^^^- The Lie super-
algebraic method proposed in this paper applies to the super Lax type equation
associated with SL(n \ n){1\ It is an interesting problem whether a super KP hierarchy
is obtained by considering the n -» oo limit of the super Lax operator associated
with SL(«|n)(1). This approach will help clarify the connection between the different
schemes of super KP hierarchy recently proposed [10,23].

Wn algebras are known to be obtained from the second Hamiltonian structure
of the scalar Lax equation (2.32) or equivalently the Lax type equation (2.14) for
the gauge fixed Lax operator $£ [2,3]; they are contained in the second
GeΓfand-Dikii (G-D) brackets [24]. A supersymmetric generalization of the G - D
bracket for generalized super KdV equations will enable us to construct super Wn

algebras in an analogous way.
We briefly sketch how the super G - D bracket may be constructed starting from

a supersymmetric current algebra. Let Ψa(z, θ) = φa(z) + θja(z) be an rc-component
odd superfield of weight %Ja(z) being a bosonic current. We assume that Ψa satisfies
the following type of current algebra:

{Ψ'izuθJ, Ψb(z2,θ2)} = CabDίlδ(z1-z2)(θ1 - Θ2)l (7.2)
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where Cab is a constant determined from the structure of the Lie superalgebra
under consideration. We introduce superfields Uk of weight (n — k)/2 by assuming
a generalized super Miura transformation

Dn + Un_ίD
n~ί + ••• + 1^2) + U0 = (D- Ψι)(D- Ψ2)"(D- Ψn). (7.3)

The bracket structure of Uk induced from (7.2) defines the super G-D algebra.
The simplest example of this construction appears in connection with the super

Miura transformation discussed in Sect. 4,

D* + AWD = (D - 2 Ψ)D(D + 2 Ψ)D. (7.4)

Assume that ^satisfies the 1/(1) current algebra

{ΨizM Ψ(z2,θ2)} = D1lδ(zί-z2)(θί-Θ2)l (7.5)

The modified super KdV equation for Ψ, Eq. (4.25), is written as the Hamiltonian
equation using the Poisson bracket (7.5). The super G-D bracket for Wis obtained
from the bracket (7.5) and it gives the super Virasoro algebra of the super stress
tensor W, as previously pointed out [17].

Super Wn algebras can also be constructed by computing operator product
expansions of currents of higher spin and demanding associativity [25]. This
program is difficult to extend to a general case. The derivation of super Wn algebras
from the second Hamiltonian structure of generalized super KdV equations
sketched above appears to provide a more systematic way of constructing super
Wn algebras.

Appendix. OSp(2\2)(2} and Modified Super KdV Equation

A. Osp(2\2)(2). Two inequivalent Dynkin graphs, a and b of Fig. 1, correspond to
the Lie superalgebra G = OSp(2\2). We take the Dynkin graph lb corresponding
to a purely fermionic SRS. The Chevalley generators in this basis satisfy the
commutation relations

[*βA] = 0, Lea,fb-]+=δabhb, ( A I )

ίK> Cb] = Kabeb> iK> fb\ = - Kabfb>

where the Cartan matrix is

Ί o)
One can define a Z 2 automorphism of G associated with the Z 2 symmetry of

the Dynkin graph lb regarding the exchange {euf1}<^{e2,f2}. G is decomposed
into the even and odd part, G = G δ φ Gτ, under this involution. Gδ consists of the
fixed points in G. It is (3,2)-dimensional and isomorphic to OSp(i\2). Gτ satisfies
[GQ,GJ]C^GJ, i.e., Gτ is a G5-module of dimension (1,2), and it provides a
representation of G5^O5p(l|2). We define the twisted affine Lie superalgebra
g = OSp{2\2){2) to have the SRS given by adding the lowest weight of Gδ-module
Gτ to the SRS of Gδ.

Ei = *i + e29 Eo = λ(f1 - / 2 ) ,
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0 = λ-1(e1-e2),

2 = H. (A3)

The spectral parameter λ is introduced to realize OSp(2\2f2) as a subalgebra of
OSp(212) <g) C[A, λ ~ *]. The commutation relations of the generators {Ea, Fa, Ha}l=0

can be calculated from Eq. (A.I) and they are

[ H α , t f 6 ] = 0 , lEa,Fb]+=δabHb,

ίHa,Eb-]=KabEb, LHa,Fb] = -KabFb, (A.4)

where the Cartan matrix is

The corresponding Dynkin graph is shown in Fig. 2.
To introduce the super ^-module structure in Sect. 4 we need a matrix

representation of the generators of OSP(2\2)(2). We take the following 4 x 4 matrix
representation of OSp(2\2) in which we have

Ό 0 0 0

0 0 0 1

1 0 0 0

s o 0 0 0

'0 0 1 0

0 o o o
0 o o o

s o -100

_
e2~

Ί 0 0 0N

0 0 1 0

,0 0 0 - 1

Ό 0 0 Γ

0 0 0 0

0 1 0 0
.0 0 0 0,

0 0 0 0N

0 0 1 0

0 0 0 0

- 1 0 0

- 1 0 0 0N

0 1 0 0

0 0 1 0

0 0 0 - 1

( A 6 )

and hence

* -
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^ m z z ^ Fig. 2. Dynkin graph of the twisted afiϊne Lie superalgebra OSp(2|2)<2)

B. Kerad/1 2 . Define A and Ά as the sum of generators of positive and negative
SRSofOSp(2|2) ( 2 ).

Λ = EO + EU Λ = F0 + F1. (A.8)

We show the diagonal sum decomposition (5.3) of OSρ(2\2)(2) by explicit computa-
tion of

adΛ 2:g*-+g*+ 2. (A.9)

The J f := Kerad/12 is spanned by

The Jf1 = Imad/1 2 is spanned by

(A. 11)

We see from (A. 10) and (A.ll) that the direct sum decomposition

Qk = Jίrk®(Jίr1)k (A. 12)

holds.
The J f is further decomposed as

Here the commutant [Jf, JΓ] is spanned by

The orthogonal complement JίΓ is spanned by

λ2JΛ2€Q-2+4J, (A.15)

i.e., only 5t"2+4J are non-empty.

C. Conservation Laws. The gauge transformation by U and the term Qo in (J?2)0

are obtained by solving

d+i{Q0)-
l + A2 = e^v{^2)

> = 1

= δ + Q° + Q1 + A2 + [I/, δ + Q° + Qι + Λ2]

U,d + Q0 + Q1+A2B

U,lU,δ + Q° + Q1 +
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iteratively. Here Q° = DΨΉ and β 1 = Ψ(E1 -Eo). The first few terms of
I/"1" and (βo)"4 are

U~2 = -±DΨ(F2 - Fl) + DΨ(yΛ2 -zλ~2Λ2),

U-3=-HdΨ + (x + 2z)ΨDΨ^λ-2(E1-E0)

+ (udΨ+vΨDΨ)λ-2Λ9

z)(DΨ)2 - (x -

Q~2=- [d(yDΨ) + \{DΨ)2 - i

+ [d(zDΨ) + i(DΨ)2 - xΨd(xΨ)]λ-2Λ2,

Q- ̂  = [ i φ a ψ) + \d{v ΨD Ψ) + (i - xy)D{ Ψd Ψ)

+ (xdy - yδx)ΨDΨ+βx - y)Ψ(DΨ)2]λ-2Λ. (A. 18)

Here x,y,z,u,v are arbitrary functions of x (and ί). Note that QQ1 and the
Λ2 term in Q Q 2 a r e independent of the arbitrary functions modulo total
derivative whereas the other terms are not. The Λ2 belongs to Jf~~2 and
its coefficient

Jι=-\l(DΨ)2-ΨdΨ~\ (A.19)

gives a conservation law.
In the case of OSp(2\2)(2) we have βg = O. It follows that the right-hand

side of Eq. (5.10) vanishes and hence the coefficient J° in QQ1 is also a
conservation law. We find that J 1 = —%DJ°.

D. Hamίltonίan stf. The operator {Mk)° appearing in the time evolution equation
(6.14) is given by

Mk = e-adU(Λ*k + 2) (A.20)

and is expanded as

Mk= Σ A'> Λ'eg' (A.21)

We evaluate (Mk)
+ for k = 1.

,46 = Λ6 = 4A2/12,

A4= - [ t / ~ 2 , Λ 6 ] = 4/L2Q°,
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3 ]

(A.22)

After substituting the results in Appendix C into Eq. (A.22), we obtain

A0 = 132D Ψ - 2(D Ψf + 3ΨDΨΘ Ψ]H. (A.23)
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