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Abstract. The paper deals with the integrable massive models of quantum field
theory. It is shown that generalized statistics of physical particles is closely
connected with the invariance under quantum groups. This invariance
provides the possibility to construct quasi-local operators (parafermions)
possessing generalized statistics which interpolates the physical particles. For
the particular examples of SG, RSG models and scaling 3-state Potts model the
parafermions are described completely (all their matrix elements in the space of
states are presented). '

Introduction

In two-dimensional space-time the quantum fields can satisfy the commutation
relations which generalize the usual bosonic and fermionic ones [1, 2]. The most
general form of these relations is

0{(x) 0{y)=04y) Ox)R, 0.1)
x<y

where x, y are space coordinates. The matrix R should be a constant solution of the
Yang-Baxter equation:

R12R13R23 =R23R13R12 .

Here we used usual tensor notations (R;; acts nontrivially in the tensor product of
i'"™ and j™ spaces). Even diagonal matrices R are of interest in this context; they
correspond, for example, to kinks in the Gross-Neveu Model [2] or parafermions
in Zy models [3]. The commutation relations (0.1) with nontrivial R-matrices
appeared originally in the framework of conformal field theory [4-6].

In the present paper we show how to realize the relations (0.1) for massive
completely integrable models and explain the connection between generalized
statistics and symmetries associated with quantum groups. The S-matrix in the
completely integrable model is factorizable. The two-particle S-matrix should
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satisfy the equation of factorization [7] (Yang-Baxter equation [8, 9]):
SIZ(BI _ﬂZ)SIL’»(ﬂI _B3) S23(ﬁ2—ﬁ3)=s23(ﬁ2_ﬂ3)sl3(ﬁl _ﬂ3)S12(ﬂl _iBZ)a

where f,, B, B3 are the rapidities of particles. The matrix S(f) is analytical function
of B. For many interesting models the S-matrix possesses nontrivial asymptotics
for -+ c0:

Sll(ﬂ)WRlz, Slz(ﬂ)m’(Rn)_ls 0.2)
where R,, =PR,,P, P is the operator of permutation, R is a constant solution of
Yang-Baxter equations. This behaviour contradicts a certain physical intuition
which requires that the amplitude of elastic scattering should tend to 1 when the
corresponding S-variable tends to infinity. This problem was discussed in the
papers [1, 2] where it was proposed to introduce instead of the particles with the
S-matrix S(f) which are considered as auxiliary ones, the physical particles
possessing generalized statistics,

aiz"(ﬁl) aﬁtj(ﬂz) = aﬁt,(ﬂz) aﬁlk(ﬂﬂRﬁ'(, Bi<B,. 0.3)

The S-matrix of the physical particles is not analytical:
§12(B)=S12(B) (R7,0(B)+ R,,0(— B)),
but it satisfies the condition

S.8)-1, p-+ow.

It is very easy to pass from the base of auxiliary particles to the base of physical
ones. Technically the auxiliary particles are more suitable. However the principal
statement is that if S-matrices possess nontrivial asymptotics we actually deal with
physical particles satisfying generalized statistics.

Evidently Egs. (0.1) and (0.3) are closely connected. The interpolating fields of
the particles satisfying (0.3) should satisfy (0.1). Here a crucial difference with usual
bosonic or fermionic statistics appears: the fields satisfying (0.1) cannot be
expressed via the Fourier transform through the creation-annihilation operators
satisfying (0.2). That is why the theories for which the relations (0.1), (0.3) hold
should be nonlinear, i.e. they necessarily contain nontrivial interaction. In the
present paper it will be shown that the relations (0.1), (0.3) can be realized in
integrable models. Evidently, integrable models are the simplest ones for which it
can be done, so, they play the same role for the relations (0.1), (0.2) as the free fields
play for usual bosonic and fermionic relations.

From another point of view the relations (0.3) should be connected with
invariance of the theory under the action of quantum group associated with the
matrix R [10-12]. An example of the phenomenon is considered in the paper [13].
We shall suppose that the models under consideration do possess quantum group
invariance. For particular models it can be checked using the explicit formulas for
S-matrices and form factors of local operators [14-16].

We shall show that for the models with S-matrices possessing asymptotics (0.2)
it is possible to construct the parafermionic operators i,  (to construct the
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means to present all their matrix elements in the space of states) which satisfy the
following commutation relations and asymptotic conditions:

Pi(Xo, X1) wj(XO’ X1)=P4xo, X7) Yi(xos xl)R?j( s
X, <XY;

PiXos X1) U—’;(xw X1) =P X0, X1) Pi(Xo, xl)R:’fi‘ s
Xy >X1;

Pixos X1) U_’J{xo, X1)=Px0, X7) Yi(Xos xl)R{"j{ s

Vxy, X415 0.4)
PilxosX1) 5omgzr [ €™ atn () + €~ P agu (B)dB, (po, p1) = M(ch ,sh )

xo—* t o0
w . .
Pilxos X)) somz J ¢ e adu (B) + e P e aou (B)) dP,
m mn

where 4 is “spin” of the parafermion. In the scaling limit vy, p give parafermionic
currents in CFT [17].

The paper is organized as follows. In Sect. 1 we give an introduction to
quantum groups. In Sect. 2 we summarize necessary facts about integrable models,
mainly about the construction of local operators in terms of physical particles. In
Sect. 3 we consider the quantum group invariance and present the general
construction of ,p. Sections4 and 5 are devoted to the consideration of
particular examples. In Sect. 4 we construct the operators y, P in SG model which
is invariant under SL(2),, and in RSG models which are reductions of SG [13, 18].
The models RSG coincide [13, 18] with the perturbation of minimal models of
CFT by the operator ¢, 3 [19-21]. In Sect. 5 we consider the scaling 3-state Potts
model which is the perturbation of CFT M by the operator ¢,, [21]. In Sect. 6 we
give some additional remarks concerning the subject of the paper.

1. Quantum Groups

Quantum groups defined in the papers [10-12] give examples of noncommutative
and noncocommutative Hopf algebras. The most important property of Hopf
algebras is the possibility to construct the tensor products of their representations.
This property allows to use quantum groups as generalizations of isotopic groups
in QFT (see for example the paper [13] where the invariance of SG under SL(2), is
established). In this section we give an introduction to quantum groups.

The simplest example of a Hopf algebra is the algebra of functions on Lie
group. Consider for example the group SL(2). Let A be the algebra of functions on
G:feA, f:G—C. The algebra A has a natural set of generators gi (i,j = 1, 2) which
are the functions whose values on arbitrary he G give matrix elements of & in two-
dimensional representation: ) )
gih)=hi.

The multiplication in A is the usual point-wise multiplication of functions. There is
also an operation of comultiplication 4: 4: 4A—>A® A, 4 is homomorphism. On
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generators comultiplication is defined as follows:
A(gh=2ei®s!.
The counit is the homomorphism 4— € defined on generators as
elgh=0].

An important requirement is in existence of the antipode s: A—A4 which is an
antiautomorphism of algebras in the particular case under consideration

s(g)=0"g'o?,
where g/ are combined into a 2 x 2 matrix g. This formula gives an inverse element
to g considered as a matrix from SL(2). One has
s(g)g=gs(g)=1.

We can reformulate all the theory of Lie groups in these terms. This way seems to
be exotic but it appears to be very useful for generalization. Notice in particular
that the representations of the group SL(2) is in one-to-one correspondence with
corepresentations of the algebra A. Corepresentation is matrix ¢ whose matrix
elements belong to A4, and for which the formula of comultiplication is

A =t®t,

where - means matrix multiplication. The matrix g itself is the simplest example of
corepresentation (the two-dimensional one).

Let us now consider the noncommutative generalization of this construction.
Suppose we have noncommutative algebra A whose generators can be combined
into the matrix g which satisfy the following properties:

1. The algebra A is a noncommutative algebra with unit 1. The (N x N) matrix of
generators g satisfies the relation

R,,818,=828:1R,, (1.1)
where the right-hand side and left-hand side are operators in the tensor square of
C", g, =g®I, g,=I®g. The matrix R,, is invertible N> x N? C-number matrix
acting in C"@C".

2. There is the homomorphism 4: 4—A® A which is defined on generators as
Ag=g®g.
3. The counit ¢ is the homomorphism 4— €, defined on generators as follows:
eg)=1I.

4. There is an antiautomorphism of 4 which is called antipode s. For generators
one has

gs(g)=s(g)g=1I.

Suppose we are provided with the Hopf algebra which satisfies these requirements,
then we say that we deal with the quantum group. However, one should not
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identify the quantum group with algebra 4. The quantum group itself is an object
which cannot be described in inner terms. The algebra A is “the algebra of
functions on the quantum group” [12]. The representation of the quantum group
is the corepresentation of A, i.e. matrix ¢t with elements from A4 for which the
comultiplication is of form .

At=t®t.

In what follows two special representations of A will be important. The
associativity and independence of cubic monomes requires that R satisfies the

Yang-Baxter equation,
g q R{,R13R;3=R;3R3Ry;. (1.2)
Define the homomorphism of algebras ¢* : 4—»Maty(C):
(" (E)i=RE. (1.3)

The formula (1.3) means that we divide R, into blocks with respect to the first
space which correspond to g} under the homomorphism ¢ *. We shall write (1.3) as
follows: .
02 (8)=Ry;.

From (1.1) and (1.2) it follows that ¢ * is really a homomorphism of algebras. In the
relation (1.1) R is defined up to a normalization. In all the particular cases the
normalization can be fixed in order that ¢ *(g) satisfies requirement 4. Then ¢ * isa
homomorphism of Hopf algebras. Similarly we define the homomorphism ¢ ~(g):

0 (8) =R, .

We would like to emphasize that ¢* are representations of Hopf algebra 4, but
they are not representations of the quantum group which are corepresentations
of A.

Let us consider particular examples which will be used in this paper.

Example 1. The group Z,. This is a trivial example which demonstrates the
general character of the above construction. The matrix of generators g is 1 x 1
matrix; i.e. we deal with the algebra with one generator. Evidently R can be chosen
as an arbitrary constant. We prefer R =exp(2xi/3). The antipode s(g) is given by

s(g)=g>.

The representations ¢* are

0 (g)=exp (?) Q‘(g)=exp(— g?)

Example 2. The quantum group SL(2),. The generators g/ are combined into a
2 x 2 matrix g. The matrix R is equal to

1/2
q/

1
Ri@=q " q¢'2—q7"* 1 : (14)

1/2
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q is the parameter. The antipode is given by

s(g)=og'a,

(e
__q1/4

It is easy to check that ¢* do realize the representations of A. The representation
theory of SL(2), for generic q (¢" # 1) is absolutely similar to that of SL(2). For g"=1
certain modifications arise [13]; we shall consider them partly in Sect. 4.

where

2. Local Operators in Massive Integrable Models

Consider some massive integrable model. For the sake of simplicity we suppose
that the spectrum of the model contains only one particle which possesses isotopic
degrees of freedom. Another assumption is that this particle is not a bound state of
two particles, ie. the theory does not contain a “@>-type interaction.” So, we
concentrate our attention on the models with one particle and no bound states.
The generalization to the theory with bound states will be considered in Sect. 5 for
the particular example of the Scaling Potts model.

The two-particle S-matrix can be considered as an operator acting in the tensor
product of two isotopic spaces S, ,(f). The matrix S(f) is analytical, it satisfies the
requirements:

S12(B1—B2)S13(B1—B3)S23(B2— B3)=S23(B2— B3)S13(B1 — B3)S12(B1 — B2),
Slz(ﬁ)Szl(_ﬂ)=I:
S12(mi—B)=c,8%(B)ca,

where S,, =P,,S,,P,,, P,, permutes the isotopic spaces, c, is the matrix of the
charge conjugation c acting in the second space. We require that ¢*=1. Let us
notice that we do not require here the unitarity of the S-matrix: the equation
S12(B)S,:(—B)=1I does not necessarily correspond to unitarity. Generally, it is
useful to delay the discussion of Hermitian conjugation and related problems.
Now we present the formal construction considering the space of states and
conjugated space as dual linear spaces.

Following the papers [14-16] we introduce the set of vectors in the space of
states and the dual space

@.1)

Ba--- B1>:<B1 - Bl - 22

If the theory possesses isotopic degrees of freedom these vectors lie in tensor
product of isotopic spaces. The vectors (2.2) satisfy the equations

lﬁn’ "'ﬂi+1’ﬂi "‘ﬂl)Sii+1(ﬂi_ﬂi+1)='ﬂm "'ﬁi’ﬂi+1 "'ﬂl>Pii+1>
Si+1i(ﬁi+1_ﬁi)<ﬂla~"ﬂi:ﬂi+1 "'ﬂn(=Pii+1<ﬁ1a---ﬁi+15ﬂi"'ﬂn|'
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For ,>...> B, (B.< ... <B,) the vectors (2.2) coincide with “in” (“out”) states.
The following pairings take place:

oy oo Ol By oo B1) = O [10(0; — B,
0> .. >0, B,> ... >,

where I is the tensor which has the following index form: I~ 6} ... 6% (i} ... i, and
i,...1i, are isotopic indices corresponding to the particles a, ... «, and f,... B,).
Consider the matrix elements of some local operator 0(0,0):

<a1 amIO(O’O)Iﬂn“'B1>=f(am"‘allﬂ1 ﬂn)+ ey

where dots mean the terms containing é-functions d(a;— B;) [15]. These matrix
elements can be expressed in terms of formfactors

according to the formula
SO0ty |By e B)=Cq oo Cf (ot — Ty .. 0ty — T, By .. B)s 2.3)

where c; is the matrix of charge conjugation acting in the isotopic space associated
with the particle «;, t; means transposing with respect to this space.

According to the results of the papers [15] the locality of the operator O is
equivalent to the following properties of formfactors:

Lo fBy - BiBivs--B)Siiws(Bi=Biv V=SB ... Biv 1, Bi - Br) Piir - 24

2. f(By ... B,) is an analytical function of all its arguments which satisfies the
requirement:

SBy - Bae1s Bt 270)=f(Brs By - Ba-1)P12P23 ... PpyCycy. 2.5

3. f(B, ... B,) has simple poles at the points f;= B;+ i for j>i. The residue at the
point f,=p,_, +xi is given by
5 =ﬁfes +m.f(ﬂl v Ba-1sB)=S(By - Bu-2)® Su-1,n

X(I=8u—1,1Buz1—B1) -+ Su-1,n-2(Bn—1—Bu-2)), (2.6)

where s;, =c"?¢; @e,, (e;, is the base in k™ space). The form factor f(B, ... B,) has
no other singularities in the strip 0 <Im 8, < 2= if there are no bound states in the
theory.

Consider two operators O,, O, with form factors f,, f,. Let us recall the crucial
point of the proof of locality [15]. Consider the commutator [0,(x), 0,(y)] for
x<y (x,y are space variables). The vanishing of the commutator is equivalent
essentially to the following fact. The product of form factors

f1(4;|CB,) fo(CA;|B,) 27

(4, A,,B,, B, are some sets of rapidities) can be continued analytically with
respect to the variable 6= Y y by —mi giving as a result the following product:
yeC

f2(42|B,C) f1(4,C|B,). 23)
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This fact follows from the relations (2.4)—(2.6). Really, using (2.4)—(2.6) one can
show that the representation (2.3) is equivalent to the following:

SOy e 0q By B)=C ool 1 (B - Py Oy + T, ... 0y + 7). (2.9)

Usingthe formula (2.3) for f; and the formula (2.9) for f, one easily proves that (2.7)
is the result of analytic continuation of (2.8).

In this paper we concentrate our attention on the energy momentum tensor 7,,,
and parafermions which are closely connected with T,,,. It is convenient to use light
cone components of the energy momentum tensor: T, (o, 7= %). Evidently the
formfactors of T, can be presented as follows:

SolBs - Bo)= (z Me“ﬂf) (z Me’ﬂl) 8By --- B, (210)

where M is the mass of the particle. Due to T, being a (1, 1) Lorenz tensor the
function g satisfies the equation:

8B1+0,.... 0, +0)=g(By ... B (2.11)

If the theory under consideration leads to some conformal field theory in scaling
limit the function g should satisfy the requirements:

1. The integral
I,= § dp; ... dB,lgBy --- B (212)
ﬂn>ﬂn-l>--~>ﬂl

is convergent.

2. The series
Y I,=c (2.13)
n=0

are convergent. The constant ¢ coincide with the central charge of the limit

conformal field theory.
Consider a more general situation. Suppose the form factors of some local or
quasilocal operator can be presented in a form

f(ﬂl "'ﬂn)=(ZMeﬂj)A h(ﬂl "'ﬂn):

where h satisfies the requirements similar to (2.12)—(2.13). Then the formfactors f
define some parafermion operator v which becomes parafermion current [17]
with dimensions (4, 0) in the scaling limit. This statement is quite obvious.

This is all the necessary general information in this paper about local operators
in massive integrable models.

3. Quantum Group Invariance and Parafermions

In this section we shall show that quantum group invariance of integrable models
implies the existence of parafermion operators which possess generalized statistics.
Quantum group here is understood as it has been explained in Sect. 1. Usual
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groups can be considered as particular examples of quantum ones. We still
consider the models with one particle and no bound states.
Suppose the S-matrix of the model has the asymptotics:

S12(8) =5 Ri2s SlZ(ﬂ)'——"(RZI)_l’

B B -

where R, is a certain constant solution of Yang-Baxter equations. As it has been
said in the Introduction if R,, is not equal to 1 we deal really with particles
possessing generalized statistics.

Suppose that it is possible to associate some quantum groups G with the

matrix R:
Ry,818,=8281R12-

Suppose now that not only R,, and (R,;)”! but §,,(B) for arbitrary B
intertwine g,,g,:

S12(P)g182=2281512(8)- (3.1)

IfEq. (3.1) holds we say that the S-matrix is invariant under the quantum group G.
Evidently Eq. (3.1) generalizes the invariance under the usual isotopic group.
We suppose also that the antipode in G is given by

s(g)=cg'c, 3.2)

where c is the matrix of charge conjugation associated with the S-matrix. The
properties (2.1) of the S-matrix mean that

Ry =c;Riy,. (33)

Together with (1.2) Eq. (3.3) shows that the matrix is correctly normalized for the
representations

0;(8)=Ryz  05(g8)=(Ry)7"

being true representations of Hopf algebra A.

Now, let us define the action of quantum group G in the space of states of the
model. More precisely, we define the mapping T,: H-H®A (H is the space of
states):

T1Bn-- B> =1Bn--- B1D8n--- 81
$Brow-Bal Ty=81 - 8By - Bl

as usual g; denotes g acting in i™ isotopic space. Equation (3.1) means that
scattering commutes with T;:

TY=%T,, (34

where & is the full S-matrix defined as an operator in the space of states. Thus we
have a symmetry of the theory. Certainly this symmetry is unusual and it is not
clear that we shall be able to get something from it. Really, the operator T, does not
act in the space of states but maps it into the tensor product of H with some
mysterious 4. However, the reasonings of Sect. 1 show that it is possible to
describe in that way the action of the usual isotopic group identifying A4 with the
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algebra of functions on the group. So, one can hope that noncommutative
generalization of A4 also can be useful. As it has been shown in the paper [13] for
SG model that is the case and the quantum group invariance may be even more
restrictive than the usual one.

Let us turn now to the local operators. The symmetry with respect to the
quantum group is really interesting if it can be spread to off-shell objects, otherwise
it can be regarded as an occasional on-shell property. In particular it is important
to understand if the energy-momentum tensor is invariant under the action of the
quantum group. The invariance of T,, means that

LT,x)=T,(x)T;.
This equation is equivalent to the following properties of matrix elements:

gy ... ay|By - Br)=5(8m+1) - S(8m+1) 8Ok - X1 |B1 - Br)Gm--- 81> (3.5)

where the spaces associated with «, ... o, have the numbers m+1, ... m+k. Using
(3.2, 2.3) one easily makes sure that Egs. (3.5) follow from the following one:

gBy---B)=2B:1.. . Bu)En---81- (3.6)

Let us discuss this condition. Its left-hand side is a vector in the tensor product of
isotopic spaces, while the right-hand side is the vector in the tensor product whose
components lie in A. Thus Eq. (3.6) seems strange. Recall, however, the condition

s(g)g=gs(g)=1I. (3.7

The consistency of this condition with another Hopf algebra conditions means
that s(g)g = gs(g) belongs to the center of the Hopf algebra 4, and we fix the value of
the central element by (3.7). The bilinear center element s(g)g generates many
center elements which are homogeneous functions of g of n'® degree. Equation (3.6)
means that all the components of the right-hand side vector belong to the center of
A, their values are identified with C-numbers due to (3.7), and these €C-number
components coincide with the components of the left-hand side. It is instructive to
consider the usual isotopic group from this point of view. We suppose that the
theory contains no bound states. In this case only even particle formfactors T,
differ from zero. This fact is in agreement with Eq. (3.7) because the center of A
generated by s(g)g can contain only homogeneous in g functions of even degree.

Suppose that Eq. (3.6) does take place. Then the theory is called quantum
group invariant. Our next goal is to show that if some additional assumptions are
made then the quantum group invariance implies the existence of parafermion
operators possessing generalized statistics.

The convergence of the integral

means that g(8, ... B,) decreases when f,—co. We suppose that it decreases
exponentially: -
P d 8By By e (B o B (38)

Bn— 0

where A is a certain positive number, f belongs to the tensor product of the
isotopic spaces associated with S, ... 8,. The function f(B;...B,—,) does not
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depend on f,, that is why it is convenient to extract explicitly the isotopic index
corresponding to the n'® space: f{(B, ... B,- ). The functions f; can be considered as
matrix elements of vector operator y,(x):

019i0,0)(Bu-1 .- B> =SBy - Bu-1)
Relation (2.11) implies that
f(By - BY=(Z M"Y h(B, ... By),
where
h(Bi+0,....8+0)=h{(By ... By).
The convergence of the integral (2.12) implies the convergence of

[ 1hBy ... BII* dB; ... dBy.

Thus the operator v; is a parafermionic operator and we have to investigate its
locality.
We define the general matrix elements of y; by the formula similar to (2.3):

flog ..oy |By o B)=Cp-e €y S Mo — iy ... 00 —7i, By .. B). (39)
For local operators the definition (2.3) is equivalent to the following one (2.9):

o ...ag|By e B)=Cho.. & 5By o B O+ 0y .. 0y +1i)  (3.10)

due to Eq. (2.5). In our case the functions f and f differ. Using Egs. (2.5) and the
definition (3.8) one gets

Zz(“k"'allﬁl Ba)= S .-y | By - Ba)Rys ... Ryg, (3.11)

where R, act in isotopic spaces associated with f;, the functions f; are combined
into the covector f, from the space with “number” a

So we have two operators y,, {, with the form factors f,, ;. These operators are
related by

Pa¥)=x) T () - (3.12)

Consider the commutator [y (x), p,(y)] for x<y (x,y are space variables). The

form factors of y, and ), are constructed from f using the formulas (3.9) and (3.10)

respectively. This fact implies that the commutator [,(x), {,(y)] for x <y is equal

to zero (see the explanations given in Sect. 2 concerning the proof of the locality).
Thus

VX)) D) =PV walx),  x<y.
Now using Eq. (3.11) and the equation
Twa=v.8.1;,

which follows from the definition (3.8) one gets

Y0 ws(0) = (1) Wa(X) 05 () =WV Wa(X)Rsp, X<y
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In indices this relation can be rewritten as

l(x) w,(y) IP{(y) 1pk(x) RU ’ x< y.

Thus the operator yp does possess generalized statistics.
In the same fashion one can consider the operator {; whose matrix elements
are defined by (3.10) through the functions f;:

g, ... ﬁn)medﬁ"f(ﬂl oo Baz1)-
It can be shown that , satisfies the relation
PA) P =P PR, x>y,
The commutation relation of y(x) and {{y) does not depend on the position of x
and Vi) BAY)=BAY) Px)RY
Certainly the operators y;, 9; are local with respect to T,,:

[wix), T,,(»)]=[wix), T,,(y)]=0.

Thus we have shown that the quantum group invariance together with some
additional requirements implies the existence of parafermion operators satisfying
the generalized statistics. In the next two sections examples will be considered.

4. Parafermions in SG and RSG(r) Model

Let us dgscribe briefly the results of the paper [13]. Consider SG model with the
Lagrangian L= [(5(0,0)*+m*cos(}/7 ¢))dx.

We shall use the renormalized coupling constant &= 87:)—_)) For ¢>m the

spectrum of the model contains only one two-component particle (soliton) [22].
Let us consider the following base in the space of states and the conjugated space:

|ﬂn--'ﬂ1>=|ﬂn-~ﬂ1>sceXP< 60113 )...exp(—%aiﬂn),
4.1)

<ﬁ1 ﬂnl exp< alﬂ ) CXp( 3ﬁn> <ﬁ1 BnlSG:

where | B, ... B s are normalized n-soliton states, o7 is the Pauli matrix ¢ acting
in the isotopic space associated with the i'® soliton. Ev1dent1y the bases |8, ... B;)
{B; ... B,| are dual bases:

<(Z1 "'amlﬁn"'ﬁ1>=5mnné(ai_ﬂi)19
0> ... >0y, B> ... >,

but they are not conjugated with respect to SG conjugation:

|.Bn ﬁ1>§c=<ﬁ1 "'ﬂnISG'
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The two-particle S-matrix written in the base |, ... B,), {B; ... Bl is

shg(ﬂ—ni)
T n%i Zp
—sh—pB, —sh—e°¢
5. p=_ Sob) ¢ ¢
12 2. T
sh%(ﬂ—m‘) —sh%e_fﬂ,—shgﬂ
shg(ﬁ—ni)
wsinﬂksh<”2;é>k
So(B)=exp | —i| dk
0 kchg—ksh%

Rewrite the S-matrix in the form:

So(B)

n (egﬂq_1/4R12(Q)—6_Eﬂql/4(R21(Q))_l>’
sh— (B —mi)
¢

S12(B)=

.. 2n%\ ., n2i )
where R, ,(g) is given by (1.4), g=exp N ,q'*= —exp T . Let us introduce

the quantum groflpi'SL(Z)q. The S-matrix is evidently SL(2), invariant:
S12(B)g182=2281512(B)-

The S-matrix possesses the asymptotics
Slz(ﬁ)—ﬂ:c?’ Ry,, S12(ﬂ)m (R

Thus the scattering in SG satisfies all the requirements of Sect. 3.

The form factors of local operators for SG were calculated in [14]. Using the
explicit formulas for the form factors it has been shown in [13] that the modified
energy-momentum tensor

Tl'tv = Tﬁ'lv + 2 32 4 8#M'va’ an’ av’(p

is invariant under the action of quantum group. Trace of ’Tuv is equal to
mexp(il/)_zgo). The central charge of T;W in the scaling limit is equal to

c=1—6(l+§5—2>.
8ty

We would not like to write down the explicit formulas for the form factors of T,,
which can be found in [14] (certainly, one has to rewrite these formulas in the base
|B, ... B1> which differs from |, ... B, Dsg (4.1)]. The important point concerning
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these form factors is that the functions g associated with them (4.1) satisfies the
following asymptotics:

g(ﬁl ﬁn)mexp(_Aﬂn)f(ﬂl ﬂn—l),
8By - Bo) gr==2exp(4B,) F(By .. Bu-1),

where

1 3z

4.2)
The explicit formulas for f and f which can be obtained from the explicit formulas
for g will be presented later. Before doing that we would like to discuss some
principal points.

The functions f, f define two parafermionic operators %,y as it has been
explained in Sect. 3. The operators y, {p are two-component ones, they satisfy the
following equal time commutation relations:

VX)W =v ) )R, x<y;
P{x) P {0)=PAy) Pi(x) Rff » X>Y;
) BAY) =P W) RY, Vx,y.
The operators y,p are local with respect to 7;”. It is necessary to emphasize,
however, that the operators vy, are very bad with respect to those operators
whose transformation properties under the action of SL(2), are not property
defined. For example, the SG energy-momentum tensor (not modified) T,,, is an
infinite sum of nonlocal operators which transform under different irreducible
representations os SL(2),. That is why the commutation relations of y, ¢, and T,,
cannot be written in closed form.
The space of states and the dual space can be decomposed into direct sums:

H=@® H;,, H= 0 H

j=0 j=0
(j is half-integer). The subspaces H;, H’; are spin j subspaces with respect to SL(2),.
The bases in H;, H; can be constructed as follows:

'j:ﬂman—l’ﬂn-l "'al’ﬁ1>m=|ﬂn"'ﬂ1>i,....i1Erir':mil(iaan—l al)’
"(B1,a1,B5 ... Ay 1, Burl =i""i"<ﬁ1 oo Bal E?:...i,.(al e Gn_ 1)) 4.3)

Ep(j,ay—y, ..., a1)=E} (a1 ... Gy_1,))
1 . 1 4
_[an—l 2 ]] [an—Z 2 a"”‘] X
m,—y iy m g LMn—2 ey M-y 4

1 ’
X 0 7 a m;=i;+m
q

where [a, 2 a3] are g-analogs of Clebsch-Gordan coefficients (CGC) [23].
mg m; mMmsj,
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For a,=1 they are given by the formulas:

[j 3 j+3 '=q—§<m+f+1>
m 4 meil, !
. 1 17V
J 2 J—2 FU+m
= — —m 5
| m % m+%:|q L ]
] e
| m -% m—% q
[ 1 s 1) 1
J 2 J2 ZUtm
+m{,
| . m _% m_%]q 1 g ]
where
qn/2_q-n/2 _
["]-‘—‘Em, [0]=1,

the normalization of CGC differs from that used in [23] in order that they are
Laurent polynomials of g*/4. The following formula for the pairings of the vectors
(4.3) holds:

m/<ﬁ’1’ all’ ﬁ/2 ce ﬂ:l” jlljs ﬂm ap—1q --- alﬁl)m

m’ 1 nl r
= GO 05 mkll [2a,+1]11T6(B:— B, 4.4)

B> ...>Bu, B> ... > B

which follows from the formula:

Em(j’ apn—-1--- al) Emr(all a;l- 1 JI)

=08, [10aar [1 (20, +1] (4.5)

1
+mli—m]!"

Consider now the operators ;,p;,, ;,%;, which provide the block decomposition
of y,p with respect to the decomposition H= @ H;:

jz]'
. q’
jz]’
. q’

where dots under j,,j, correspond to indices m,,m, in the spaces H;,H;,. The

operators ;,;,, ;,¥;, satisfy the following same time commutation relations:

(S

2 J1
j¥ ji(x) = ig,l Wi(x)[ .

~.

—~—. NP

W= 3wl

Wi, (X) w5 ()= ;B(I'aaj 1J202) ;W) Wi (x), x<y;
2
J'slpiz(x) izu_’jl(y)= Z B(is:jlajzaflz) j31/-)j’2(y) jéq—)j‘(x), xX>y; (46)
A

j;'sz(x) jz'«l_’j,(y) = Z B(j3:j15J2:J72) j,'#_’j'z(}’) j’zu’jl(x)a Vx,y,
J2
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where the coefficients B are connected with g-analogs of 6j-symbols [23]:
1 . Y]
B(j3,j15j2sJo) =g i e2 0 {i ].1 ]2} )
2 J3 J2)q
For the normalization of CGC accepted in this paper the 6j symbols are equal to:
}' _ [ {% j j+%}’ _ [j+2]
[2j+11 3 7 i3, [2j+11°
S
a [2j+11" 3 j j+3), [2+11°
j j+%}’ _ {% ii- } 4
i+ j+3, 3 i-t -3,

Consider now the case of rational coupling constants: €=7:—r. For these
1
coupling constants ¢"=1. From the formula (4.4) it follows that

E.G,a,-1,..-a;)E™a, ...a,_1,j)=0

—~A—
[STENNNTEN

S oo

S~ S
N = D= D=

—~A—
(S S
N N

—~A—
[SIENTEN

r—

. . . . r—2 .. .
ifj< 5 but some of intermediate spins a; exceed — This is very important

point which was recognized in the paper [13]. This fact provides the possibility of
reduction of SG to RSG(r/r,) for &= 7:—: [13].
Consider the Green function of the kind:
0w, (%) .. ;o(x1)[0 . 47)

By the definition this Green function can be presented as follows

€014 (%) - P (3103 E§ (0,1, Ju—2 .- j1,0).
Due to the equations

T,10> =105, <0]7;=<0],
Tp{x) =y (x)glT,

the vector {<0|y; (x,) ... w; (x,)|0>} belongs to the singlet with respect to SL(2),
subspace of (C2)®". Hence it can be decomposed with respect to the base
{E? .(0,ay,...a,_1,0)}. Now from Eq.(4.4) it follows that only those Green

i1...in

. . . -2
functions (4.7) differ from zero for which j, < r_2_ Vk. Thus ;,i;, are equal to zero

in a weak sense if the Green functions of the type (4.7) are considered for j, or

,>r—2
]2 2 .
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Generally, consider local or quasilocal operators which transform under the
actions of SL(2), via finite dimensional irreducible representations (the operators
7;,,, y, P are particular examples). Evidently, these operators constitute, closed
operator algebra. An operator O transforming with respect to spin j representa-
tion can be decomposed into blocks which act from H;, to H;, (|j; — jI = j2 <ji+i)

Consider the Green function of these operators. Then the blocks ;,0%, with j,,j,
-2 )

> rT are effectively qual to zero.
What kind of intermediate states can appear in the Green functions (4.7) for

r—2 . . .
B T? Evidently, the intermediate states are
Iam ﬂm ap-1--- ﬂ1>’ <ﬂ1: a, ﬂ2’ cee Q15 ﬂm anl

. -2 . oo .
with a, < Z—2— [we combined the vectors (4.3) with different into one vector]. The

formula (4.4) for the scalar products implies that

<B’1’ a,1 . ﬂ:v a;nlam ﬁn ala ﬂ1> 5nn n 5a‘a, H [2(1 + 1] (48)

[2a ..]'

-2 -

It follows from (4.8) that for ¢ = 7;[5 anda,=< r_2__ the vectors (4.3) with a, > % for
1

some k are “orthogonal to everything.” That is why the space of states H and the

dual space H’' can be effectively restricted to those generated by the vectors (4.3)

-2
with a; < r__2_ (we denote the subspaces by H,, H,). The reduced theories which are

denoted by RSG (r/r;) coincide with the perturbations of the CFT M, , ., by the
operator ¢, ;. As it has been explained in [ 13] for the physical interpretation of the
reduced models we have to introduce new Hermitian conjugation because SG one
is not suitable. The natural receipt is to require

|amﬂman—-1 ﬁ1> _<ﬂ1 ay - laﬂm n|Sgn<H [2a+1][2 ]'> (49)

The S-matrix of RSG (r/r,)is SG S-matrix rewritten in the base (4.3), it is effectively
RSOS S-matrix [13, 24]. The S-matrix is unitary with respect to the conjugation
4.9) for &= E’%, r=>3,k=0;r<3, k=21, (= —+—— 3k > k=0. The algebra of local
operators is closed with respect to the conjugation only for {=nr [13]. These
values of coupling constant are of greatest interest because the corresponding
reduced models (RSG(r)) coincide with the perturbations of the CFT models M,
by the operator qSl 3. The above construction gives for RSG(r) the operators ; y; ,

-2
W, with j,, ]2_ > with generalized statistics (4.6). The operators ;,v;,, ;,%;,
are parafermionic operators which give in scaling limit the parafermionic

currents with dimensions (4, 0), (0, 4), 4= 7 + 41 (4.2). This dimensions coincides
with the dimension 4,, for M,.
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Now we give explicit formulas for the form factors of y, . They are obtained
from the formfactors of T,, [14]. The form factors

SBy1 - Bans )=X019(0,0)|B1ps1 ... B1,
f(ﬂl ﬁ2n+ 1)=<O|V-’(0a0)|ﬁ2n+1 ﬂ1>

are vectors from the tensor product of the isotopic spaces (C*)®2"*!. From the
symmetry property

f(ﬁ1 "'ﬁi’ﬂi-i-l "'ﬁ2n+1)Sii+1(ﬂi_ﬁi+1)
=f(ﬁ1 "'ﬂi+1’ﬂi"'ﬂ2n+1)Pii+1

and the form of S-matrix it follows that it is sufficient to point out two components
of the form factors:

f(ﬂ1 ﬂ2n+1)&\;_1,&;,-_2/9

n+1l n

f(:BI ﬂ2n+ 1)@},&\/_&

n+1l n
(the same is valid for f). These components appear to be connected by the relation:

SBy - Bans 1)&;_1,&«,£,=‘1"+1f(ﬂ1 ﬂz..+1lg,-3\:;_5

n+1 n n+1 n

(the same for f). The explicit formulas for f 1.12..2 and fL,-l/ 2..2.are

n+1
f(ﬂl"'ﬁ2n+l)u&;_2,=q 2 C"J;[.C(ﬂi_ﬁj)
1 n 2n+1
Xov1 2n+1 ’f’ doy .. ”f' do, H H o(;—B)
T I sh%6-f—m) " -

x [] sh(o;— J)exp{ B g<n~§>]ia,
1 = 3\ |n+1 1\7] 2n+1
P ] PR P (] e
x P, (exp <%7E a1>, ...€Xp (ggoz,,> exp <2?nﬂ1>,

2 2 2
exp (%Igw 1) (244 <?nﬂn+z)a ... €Xp <?nﬂ2n+ 1>)§
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n+1

f(ﬂl --‘anu)g_;-_gg_;ﬁ— 2 H {(B:— ﬁ;
n+l1 n <j
1 © © n 2n+1
XoF1 2nt1 ’j;o . _{o do, il=_Il jI=_I1 o(o;—B;)

T I1 shg6—fi—m

x 1 shia,— )exp{ [’g (n— %) _ %];1 %

[t so A 413050

o (o (a). ..o
eXP<2?“ﬂn+1) eXP(%ﬁwz),-~-exP<2“g“ﬂ2n+1>>,

8 (sm ~(B+ mi)+sh? k>sh< 2ék>
(=shfexp | | &

where

kshﬁsh nk hﬁ
w(sinZ%Bk+sh27;—k>sh<n2£k>
of)=exp |2 5 k|,
ksh=—shnk
2
s h( = >
c=exp|— | ék p dk |,
Oksh shnkch

4 means special regularization of the integral [14];

Pyxy...X,001 ... @y qlby ... 0,), Qulxq ... XplA; ... Qpy1|by ... b,)

433

are determinants of n x n matrices ||A|, || B| with the following matrix elements:

Aif=Ai(xj|a1 ---an+1|b1 en bn)a
Bij=Bi(xj|a1 an+llb1 eee bn),

n+1
A{x]ay ... ay41]by ... by)= l__l (x+qllzaj)Qi—1(xlb1 . by)

+ H (x+q_”2b1)Q(x|a1 n+1),

j=1
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n+1
B(x|ay ...a,,,|by...b)= 'H1 (x+4g'%a;) Qfx|b; ... b,)
=

+qi 'I—[l (x+q_1/2bj)Qi(x‘al an+1)9
j=

i—1 . o
Qxlty ..ty = 3 (=g O)x 10ty .,

oty ... t,) is the elementary symmetric polynomial of degree k (g,(t; ... t,)=0 if
k<0 or k>p).

To finish this section we would like to notice that in the limit £— oo the group
SL(2), becomes the usual group SL(2) SG becomes SU(2) invariant Thirring
model. The operators p, § in this limit give spin  kinks.

5. Parafermions in Scaling Three-State Potts Model

Scaling three-state Potts model (SPM) is the perturbation of the CFT M by the
operator ¢,, with scaling dimensions (4,2) [21]. This model has two particles in its
spectrum: particle (p) and antiparticle (p). The p—p, p—p, p—p S-matrices are

1 27i 1 i
Sulf=——%,  SiuB)=——
Sh§<’3—7> Shz("‘?)

S—l—l(ﬂ)‘—‘Sll(ﬁ)-

The antiparticle is the bound state of two particles corresponding to the pole

p= 3;2 in the S-matrix.

We consider this model because of two reasons: first, SPM is very interesting
from a physical point of view; second, we want to show how can one generalize the
construction described in the paper to models with bound states and different
particles considering the simplest example.

The space of states is generated by the vectors

Iﬁn ﬁ1>a”4..51!

where ¢;= + 1 distinguishes particle and antiparticle. The group Z; generated by
the element g(g®=1) acts on the space of states as follows:

TiBn-- Bi>=8" . 8 Bu-e B Y-

Equations (2.4)—(2.6) on form factors of local operators can be easily
generalized to this situation. But there is an additional equation which reflects the
structure of bound states:

Ics i f(ﬂl “‘ﬁn—l’ﬁn)el...en—lsn

ﬂn=ﬁn—1+T

_ _ i
=2"134g 1/25£n€n—lf<ﬂl "'ﬁn—Z’ﬂn—l'i'?) .
€1...8n-2, "&n-1
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The form factors of physically important operators for SPM were calculated in the
preprint [25]. The form factors of T,, can be expressed in terms of the function g
(2.10) which is given by

g(ﬂl ﬁn)el...en=cn inCs,eJ(ﬁi—ﬂj)
X P({eXp(ﬂj)}j e,—ll{eXp(ﬁj)}j tej= —
xexp< ((2k+/ 6 T Bitg (2/+k 2 z_lﬁj)), (5.1)

JGJ

where k(/) is the number of particles (antiparticles),

shlﬁ
(uB)={_1-1(B)= -
el %)
<sm =(B+ mi)k + gshz%li> sh7~r3E
X exp 5(5) k(sh7k)? dk |

o i=C=endn (5= 3 e (4 5).

nk
1/3 h®—

c= 1 X 1 —3dk
“\2x) P\ 73 iGhrky

Z 4 symmetry of T,, require that )’ ¢;=0(mod 3). The function P(a, ... a;|b, ... b,)is
equal to (a; +b,) " ! for k=¢=1, for k+¢>2 it is given by the integral
1 k+¢—4
P(al...aklbl...b{)= (%) gdtl...gdtZk_’_;—

3
fduy ...Jdussy _ZHti—3iHui—3in(ti~aj)
¢ ¢ T3 2 i ij

X !—I(ui+bj)i13j(ui—uj)il:[j(ti_tj)ﬂ(ti_uj)’ (5.2)

where the contour ¢ surrounds zero, i.e. all the integrals are equal to the residues at
the points t;=0, u;=0. Actually, P(a, ... a|b, ... b,) is a polynomial and the
integral (5.2) presents the polynomial in a compact form. Another useful form of
P(a, ... a;,) (£=0)is given in [25]: P is equal to the determinant of m x m matrix
IM| with the following matrix elements:

M;;= ](xl - X3m) s

3pq

o is an elementary symmetric polynom1a1 of degree k.
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Now let us construct parafermions. We have two particles, that is why we
shall construct two parafermionic operators y,:

f;(ﬂl ﬂn—l)cl...a,,_ 1 = ﬂll_l}l edﬂng(ﬂl ﬂn—l’ ﬁn)sl.‘.an—x,c;

explicit calculation using (5.2) shows that 4 = 2. Similarly we have two operators {,
with form factors

f;(ﬂl '“ﬁn—l)el...en-;= limwe—dﬂ"g(ﬂl ﬁn—l’ﬂn)u...en_l,e'

Bn——

Returning to the formal procedure of Sect. 3 we realize that now we have two
representations g : g% associated with two particles

)= lim .9 =exp(Sex ).
Similarly there are two representations g_ :¢% :
¢ @)= i s.u)=owp( -~ 2er ).
The operators y,, P, satisfy the following equal time commutation relations:

o
P(x) P (y) =exp (% 88’) YY) wdx), x<y;

1[78()() tpe’(y) =e€Xp (‘2311 88,) ll_’e'(}’) u}a(x)’ x>y,

w.e(x) u_je'(y ) =¢exp <g31il‘ 58’) t:bt:’(y ) w;:(x)a Vx’ y.

These operators have spins (4,0), (0,%) and give in the scaling limit the
parafermionic currents considered in [17].
From the formula (5.1) one easily gets the formulas for the form factors of v, .

fl(ﬂl ﬂn)sl...€n=cn i];[j Cziej(ﬁi_ﬂj)
xPl({exp(ﬁj)}jzs,:lI{exp(ﬂj)}j:s,:-1)
xexp(— (é(2k+(—2) ¥ ) ,3,-+%(2{’+k—4)j.8§_1 ﬂj»,

f-l(ﬂl Bn)al...s,,'__cn il:[jCEi&j(ﬁi—ﬁj)

XPl({eXP(ﬁj)}j:ej=1|{exp(ﬁj)}j:s,:-1)
xexp<—(%(2k+/—6)_ ) 1/3,.+%(2f+k—6)j:£§_1ﬁ,.)), (53)

S-1(By - Badey...oa=S1(By oo Br)=e,... ~ 2>
f— l(ﬂl Bn)el...e,,:]rl(ﬂl ﬂn)—sl... —&n?
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where
1

k+¢-3
Pl(al...ak|b1...b,)=<%> jdtl...jdt2k+;—4

fduy ...[duze+k=5[1¢7 3 [Tu; *T](t;—a)
¢ c 3 i ij
X [T0+b) [T wi—u) [T C:— )1 (i —uy),
i<j i<j i,j
_ 1 \k+¢-3
Pi(a,...a]by...b)= (575) jc"dtl ...!dt2k+3!—4
fduy ... fduzi+i=s [1t;7 > TTu7 ¥ T](t;—a)
¢ c 3 i i ij
X H(ui+bi) ,H.(ui"'uj) .H_(ti_tj)n(ti_uj)-
i i<j i<j ij

The last two lines in (5.3) follow from the equations

Wi(X)=Cp_(x)C, P(x)=C_,(x)C,

where C is the operator of charge conjugation which changes particles to
antiparticles.

6. Additional Remarks

We have shown that the generalized statistics of physical particles leads to the
generalized statistics of local operators and have presented the explicit construc-
tion of these operators. Let us return to the construction. What we have really
done is test the energy-momentum tensor by the particle with large momentum
(which is becoming light-like). Let us denote the result of the testing by
{T)4(B— + ). We have shown that for the models considered

(T, 1(0)) o 2= D8(0).

It is interesting to study the result of the testing for other models. Here several
possibilities arise.

For a pure bosonic model (for example sh-Gordon model [26]) one gets using
the formulas for form factors,

(T4 + 0, L (VB

where ¢ is the Bose field.

There are models with bosonic spectra containing the interaction of ¢? type
(for example RSG (2/2n+1) [18], Eg-model [27]). For these models we have

(T4 (0> e conste?? 4+ e A4(0), 6.1)

but the operator A appears to be nonlocal (its two-particle form factor has a pole).
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Actually, the operator 4 can be expressed in terms of T, ,:
¢
A m= | Ti(&,mdE.

Certainly it is very natural that we cannot obtain a local operator by means of (6.1)
for this kind of model. Otherwise we have an operator which gives spin 1 current in
the scaling limit and the theory cannot be a perturbation of minimal models
of CFT which is supposed about RSG (2/2n+ 1), Eg model. Generally it is clear
from these reasonings that the perturbations of the minimal models of CFT
should either have generalized statistics physical particles or contain the
interaction of ¢3-type.

Finally, there are models which contain logarithms in the leading terms of
ultraviolet asymptotics. For example for the O(3) nonlinear o-model one gets [16]:

e?f
<T+ + > B 8 _":Oo *B- n

where n is an n-field.

Another point is that the construction presented in the paper can be used for
getting parafermionic fields with higher spins. For example in SG model one can
consider the limit of the energy momentum tensor form factors when the rapidities
of (2j + 1) particles become much greater than the rest of rapidities and project onto
SL(2), a spin j representation with respect to these particles. Then one gets a spin j
[with respect to SL(2),] parafermion whose Lorenz spin can be calculated and

2j+1 2ji—1
appears to be equal to 2j( j+ 1) +(2—1)¢

7 .Foré= T:—r these dimensions coincide
1
with the dimensions 4,;,, ; in M, .

It is possible also to consider the limit when the rapidities of (2j, + 1) particles
go to plus infinity while the rapidities of (2, + 1) particles go to minus infinity and
project onto SL(2), spin j; and spin j, representations respectively. Then one gets
the operator 04}z (x) which transforms under the tensor product of spin j; and
spin j, representations. This is the most general situation (parafermions corre-
spond to j; or j, equal to zero). Unfortunately it is difficult to calculate the scaling
dimensions of these operators for general j,,j,: they are not parafermionic ones
and the investigation of short distance behaviour of Green functions becomes a
complicated problem. It is possible, however, to generalize the reasonings of Sect. 3
and to calculate the equal time commutative relations of these operators:

. Z” O %) ONZE(y) (R (R7202,
= X Ox) O ) (R (RO, (62)

x<y.

The relations (0.4) are particular cases of the relation (6.2). The operators 07172
generate local spinless operators

. iz y
0')=_¥ q"On-m(x).
m="jj2
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These operators for RSG model should give spinless operators ¢,;.;,; in the
scaling limit.

Finally, let us notice that every invariant under the action of the quantum
group operator generates the associated operators via the same procedure. In
particular the disorder operator in SPM being Z; invariant generates the order

operator. The operators exp (@), k=1 in SG model which give for the

reduced model the operators having ¢, , , ; asscaling limits generate the operators
giving in the scaling limit ¢,;,; ;4.
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