Communications in
Mathematical
Physics

© Springer-Verlag 1990

Commun. Math. Phys. 131, 571-603 (1990)

Zonal Schriodinger Operators on the n-Sphere:
Inverse Spectral Problem and Rigidity

David Gurarie
Department of Mathematics and Statistics, Case Western University, Cleveland, OH 44106, USA

Abstract. We study the Direct and Inverse Spectral Problems for a class of
Schrodinger operators H = — A + V on S, with zonal (axisymmetric) potentials.
Spectrum of H is known to consist of clusters of eigenvalues {4,,, = k(k +n—1)+
Wem: m < k}. The main result of the work is to derive asymptotic expansion of
spectral shifts {u,,,} in powers of k™%, and to link coefficients of the expansion
to certain transforms of V. As a corollary we solve the Inverse Problem, get
explicit formulae for the Weinstein band-invariants of cluster distribution
measures, and establish local spectral rigidity for zonal potential. The latter
provides a partial answer to a long standing Spectral Rigidity Hypothesis of
V. Guillemin.

The Direct/Inverse Spectral Problems for differential operators ask for connections
between the “geometric/dynamical” data (like coefficients of the operator,
Riemannian metric, potential, or geometry of the region) on one hand, and its
“spectral data” (eigenvalues/eigenfunctions) on the other. The well known examples
include

i) M. Kac: “shape of the drum” problem determination (modulo rigid motions)
of the boundary of a region from eigenvalues of the Laplacian.

i) The “shape of the metric” problem ([MS]), which poses a similar question for
the Riemannian metric of manifold and the Laplace—Beltrami operator.

iii) Potential (perturbation) problem for Schrodinger operators H = — A4 + V(x).
Here the manifold and metric (hence the Laplacian) are fixed, and one studies the
connection between spec(H) and the potential function V.

Our work belongs to the third type.

The classical and best studied example of perturbation problems are the regular
Sturm-Liouville (S-L) operators H = — 8 + V(x) on [0; 1], with various types of
boundary conditions: 2-point; periodic Floquet, etc. Such operators have simple
(multiplicity free) spectrum {4}, and their asymptotics were known since the old
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work of G. Borg (see also [Le]),
A=@k?+by+k ‘b, + -+, as k— oo, 0.1

where b, = | Vdx, and higher b; being expressed in terms of the Fourier coefficients
of V.

Formula (0.1) solves the Direct Problem. Solution of the Inverse Problem
requires first to determine uniqueness or nonuniqueness of the map: V — spec(H,),
and to find the ensuing characterization of the isospectral classes of potentials,
Iso (V)= {V':spec(Hy ) = spec(Hy), or ~spec(Hy)}.

It turns out that S—-L problems have typically large (co—D) isospectral classes
both in the periodic/Floquet ([La]; [No]; [MM]) and the “2-point boundary”
case ([(IMT]; [PT)). So a unique determination of ¥ requires an additional infinite
set of data, which, depending on a particular set up, may be the “KdV-flow
parameters,” “norming constants,” etc.

The multidimensional analogue of the periodic S—L Problem is the Schrédinger
operator H= — A+ V on a compact Riemannian manifold £2. Multi-D Problems
are less studied and understood, since they apparently lack some essential structures
of the 1-D theory (e.g. the Hamiltonian/Poisson structure).

Furthermore, they often exhibit very different qualitative features. For instance,
it is believed that multi-D Schrodinger operators are spectrally rigid, in the sense
that their isospectral classes, Iso (V), consist of finite dimensional families obtained
by natural (geometric) symmetries of the Laplacian (i.e. isometries of £2), rather
than hidden KdV-type symmetries.

This conjecture, known as Spectral Rigidity hypothesis, was posed by V.
Guillemin, and confirmed in a number of cases. The foremost is the case of
negatively curved manifolds, where under some additional assumptions it was
shown that V is uniquely determined by spec(H,), i.e. Iso(V)={V} (see [GK]).
Of course, negatively curved manifolds have typically no continuous internal
(geometric) symmetry groups.

Another case is the flat torus T". Its symmetries consist of all translations and
reflections of T". It was shown that generic potentials’ ¥ on T" are also spectrally
rigid ((ERT)).

The case of the positively curved (and highly symmetric) n-sphere turned out
to be the most difficult. So far only partial results were obtained ([We]; [Gui];
[Co]; [Ur]; [Wi]; [Gur4-S5]). The present paper continues this line of research,
so let us describe the basic results and ideas of the n-sphere spectral theory.

The dominant feature of the n-sphere Laplacian is the regular distributed and
highly degenerate set of eigenvalues, spec(— A4)={A =k(k+n—1)}, the
multiplicity of A, d, = O(k"~!). Both features result, of course, from the underlying
rotational symmetry group SO(n + 1).

Consequently, spectrum of the Schrodinger operator H on S, breaks into
clusters Ay = {Agm = A + thm:m = 1;...d;} of simple (less degenerate) eigenvalues,

! Obviously, special potentials, like ¥ = ¥;(x;) + -+ + V,(x,), the sum of 1-variable functions, may still
possess “large” (infinite) Iso-classes, obtained by the hierarchy of KdV-flows applied to each 1-D
constituent {V(x;)}
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and one is interested in associated spectral invariants. Such invariants can be
introduced, by analogy with (0.1), as asymptotic coefficients in the expansion of
cluster-distribution measures,

1
dvk = d_ Z 5(X - .ukm)‘
Kk m

Namely, A. Weinstein [We] showed that sequence {dv,} can be expanded in
powers of k™2,

dvk~ﬂ0+k_1ﬁ1+“' (0.2)

and called the resulting coefficients { f; f; ...} (distributions on R) band-invariants.
He was able to calculate the first invariant B, = “distribution density” of the
so-called Radon transform V of potential V. The higher band-invariants are much
harder to calculate explicitly (cf. [Ur1-2]).

Turning to the Inverse Problem and Rigidity, the Weinstein band-invariants
provide some valuable information about potential V, but by themselves are
insufficient to resolve it. One of the difficulties comes from the fact that knowing
the “distribution function of ¥,” does not determine V itself, even in the one-variable
case, whereas the S,-Radon transform will generally depend on 2(n—1)
parameters. Of course, if we knew ¥, the Inverse problem would be easily resolved
by the Radon inversion.

Nevertheless V. Guillemin [Guil] successfully applied f, and the known
classical heat-invariants to prove spectral rigidity for special classes of potentials:
low degree spherical harmonics on S,.

In our recent works [Gur4-5] we initiated the study of a different class, so-called
zonal potentials V. The latter refers to axisymmetric functions {V}, ie. functions
invariant under the group SO(n) of rotations about the “north pole.” The
corresponding Schrodinger operators possess an additional symmetry: on S, they
commute with an angular momentum operator M = id,, while on S, the role of
M is played by the angular momentum algebra .# ~ so(n). Hence one can talk
about the joint spectrum of H and M. In other words spectral shifts {x,,} of the
k™ cluster acquire an additional bigraded structure, with index m labeling the
angular momentum of the (km)™ eigenfunction.

In this context we made in [Gur4] an important improvement over the
Weinstein formula (0.2), by replacing asymptotics of cluster-measures {dv,} by
asymptotics of spectral shifts { .},

fm = ?(%) + Ok ). 0.3)
The main advantage of (0.3) is that it yields the Radon transform V, as a
[0; 1]-function? (rather than distribution function of its values), and thus directly

leads to solution of the Inverse Problem. Then we applied (0.3) to prove the Rigidity
hypothesis for generic zonal potentials on S,.

2 Let us remark that for zonal functions ¥ the Radon transform ¥ is also zonal (1-variable) function
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The first of two papers [Gurd] proved these results in the even potential case,
while [Gur5] treated the more difficult odd case.

The purpose of the current work is two-fold, on one hand to extend the
S,-results of [Gur4-5] to higher dimensions, but more significantly to treat the
general “even + odd” case.

Let us examine in more detail some difficulties of the S,-Schrodinger theory.

A general guiding principle in Spectral Theory of differential operators goes
under the name of Correspondence Principle. It roughly asserts that high energy
levels (large eigenvalue) of the Quantum mechanical system (differential operator
H) are related to certain geometric/dynamical data of the corresponding classical
mechanical system determined by the symbol of H.

In our case the “Quantum object” is the Laplacian A, or the Schodinger
operator H on a manifold 2, and the relevant “classical system” consists of the
geodesic/Hamiltonian flow on the phase-space T*(£2).

The Correspondence Principle has many specific manifestations from the very
general (crude) estimates, like Weyl’s “volume counting” principle3, to fine relations
between “asymptotics of large eigenvalue” and “closed geodesics/bicharacteristics
of the relevant classical system” (see for instance [Ch], [DG]). The foremost
example of the latter is given by the celebrated Selberg trace formula, which in
spectral terms provides a link between the eigenvalues of the Laplacian on a
hyperbolic surface and the length spectrum (the set of length of closed geodesics)
of the corresponding geodesic flow.

In the context of Schrodinger theory one usually takes the basic (geodesic)
flow of the Laplacian, and then studies the effects of perturbation on both the
classical and the quantum levels.

Thus for hyperbolic (negatively curved) manifolds it was shown ([Gui3]; [GK])
that spec(H, ) yields, among other, the average values of V over all closed geodesics
{y}, ie. the Radon transform V(y)= { Vds. This data by itself is often enough to

establish rigidity (cf. [GK]). !

Another illustration of the role of geodesics and the Radon transform is the
flat (n-torus) case. Here once again spec(H,) was shown to determine spectra of
certain reduced (1-D) operators, consequently, a version of the Radon transform
on T".

Not surprisingly closed geodesics and the Radon transform play the crucial
role in the n-sphere theory, although the structure of space O is very different
now*. Indeed, the basic methods employed in the n-sphere Schrodinger theory, so
called averaging techniques, rely heavily on spherical symmetries and the ensuing

3 The Weyl principle states that the number of eigenstates of a quantum hamiltonian H (e.g.
H=—1A+V) below the given energy level A, N(1;H)=#{k:4, <A}, is asymptotically equal
(estimated) by the phase-space volume Vol {(x; p):h(x; p) < A}, where h(x; p) denotes the corresponding
classical hamiltonian/energy function on T°(£2), or symbol of H (e.g. h = $p* + V(x),for Schrodinger H)

* Instead of a discrete family of geodesics/classes {;} of increasing length as in a typical hyperbolic
setting, space () consists of a single 2(n — 1)-parameter cell of the fixed length (]y| = 2r), and possesses
many other nice structures due to the SO(n + 1)-symmetry
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2n-periodicity on both the classical system, geodesic flow, and the quantum
Laplacian.

The basic idea of averaging is to replace perturbation B = V(x), that does not
commute with A, by an average operator B, that does commute, and such that
the pair H= — A+ B and H = — A+ B are almost unitary equivalent.

The simplest procedure, due to Weinstein [We], consists in averaging the
conjugates B(t)=e “4Be"4, with A =./— A, over the period [0;2n]. Unfortu-
nately, Weinstein averaging applies only in the even-potential case. The odd case
requires substantial modifications, the so-called 2™ averaging due to Guillemin
([Gui]), and yet further refinement is needed in the general (even + odd) case [Ur2].

Averaging me “od provides one ingredient of the n-sphere theory, the second
involves a suitable form of Symbolic (pseudodifferential) Calculus on S,. Let us
remark that in each case (“even” or “odd”) separately, it suffices to work with the
standard principal symbols, well defined on any (Riemannian) manifold.

The main difficulty in the general (even + odd) case results from the different
orders of the “even” and “odd” contributions to spectral shifts, which do not
combine. Hence one needs a complete symbolic Calculus on S, (at least to order — 3).

There were several attempts to introduce such calculi ([Be]; [Wi]; [Url]). The
best suited for our purpose (in fact, designed to this end) is the calculus due to A.
Uribe [Url]. It heavily exploits the representation theory of the group SO(n + 1),
the notion of Wick-Berezin symbols and coherent states on S,. We shall give a
brief account of the Uribe calculus in Sect. 2 (step 2°).

The main contribution of the present work is to combine the Averaging
techniques, the Uribe Calculus, along with the author’s Zonal Reduction Method,
the Arithmetic Rigidity Principle and some explicit calculations, in the context of
the n-sphere Schrodinger theory with general type potentials.

Let us describe the content of the work. The main result (Theorem 1) gives an
asymptotic expansion in k~! of spectral shifts {u,,,} of a zonal Schrodinger
operator H on §,, analogous to (0.1) and (0.2),

ukm~a<%>+k“1b<%>+k‘2c<%>+---, 0.4)

with function-coefficients a(x); b(x); c(x), which represent certain transforms of
potential V, more precisely, its even and odd parts V., V4.

As a corollary we obtain a unique and explicit solution of the Inverse Problem
for the joint spectrum of H and the angular momentum algebra. Furthermore, for
spec(H) alone we establish local spectral rigidity for generic zonal potential on S,,,
generalizing our earlier results [Gur4-5] on S,, and providing a partial answer to
the Rigidity Hypothesis of V. Guillemin.

Finally, we apply (0.4) to obtain in a straightforward way explicit formulae of
the first 3 Weinstein band-invariants for zonal Schrodinger operators.

The paper is divided into 3 parts. In Sect. | we introduce the basic concepts
and state the main result. Section 2 provides the details of the proof, including
Averaging procedures, Symbolic calculi and Zonal reduction. The last section
contains applications of Theorem 1.
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In conclusion let us remark that all results of the paper extend from S, to other
rank 1 symmetric spaces. The problem of extending them to higher ranks seems
quite interesting and challenging, but it would require, among other, a new and
better understanding of multivariable averaging procedures and the role of
symmetries.

Another closely related Problem involves the semiclassical analysis of the
S,-Schrodinger operators with small Plank constant, H = — (h2/2)A + V (cf. [CD];
[Ka]; [KM]). Many of the techniques, developed in our paper, could be adopted
here. We plan to return to this subject elsewhere.

1. The Main Result

We consider the Euclidean space R"*!>5S,, equipped with coordinates
{x=(xy;;x) x€R, X =(xj;...x,4,)€R"}. Respectively, polar coordinates
(¢;6,;...0,_,) on S, will be chosen so that ¢» measures the angle between vector x
and the x,-axis. By zonal potential we mean functions on S, invariant under all
SO(n)-rotations about x,-axis, i.e. V' = V(x,) or V(cos ¢).

In this section we shall state the main result of the paper on asymptotics of
the joint spectrum of the zonal Schrdodinger operator H = — A + V, and so-called
angular momentum algebra M, the Lie algebra so(n) of the axisymmetric group
SO(n).

The eigenvalues of the unperturbed Laplacian —A|[S, are well known:
{A =k(k+n—1)},, and the corresponding eigenspaces #, = H#,(S,) consist of
spherical harmonics of degree k on S,. The dimension of #{"*!) = multiplicity of

(A}, is equal to d(k) = d,(k) = ("+ k) - (" - 2) =0(k" ).
n n

Perturbation V destroys the underlying rotational symmetry of A, so each
multiple eigen A, splits into a cluster of simple (or less degenerate) eigens
{Am=k(k+n—1)+ p,,,m=1;...d(k)}. We are interested in asymptotics of
spectral shifts {yx,,,} at large k.

To describe the structure of clusters and the multiplicities of spectral shifts
{m} for zonal Schrodinger operators, we consider the full orthogonal group
G = SO(n + 1) acting on S, and the isotropy subgroup SO(n) of the “northern pole”
x; =1, i.e. rotations about the x,-axis.

The action of SO(n) on the “equatorial” (n — 1)-sphere breaks the function

space L*(S,_,;d0) into the direct sum of irreducible components (—B H ., €ach
m=0
H g = H (S,— 1) built of spherical harmonics of degree m on S, _;.

Accordingly the whole space L*(S,), on the n-sphere, breaks into the direct
sum of subspaces

L8)= & 2, (1.1

the m'® component %, ~ L*[sin"" ! ¢ dp]® # ,, being identified with a subspace
of functions f(¢;8) on S,, that transform according to an irreducible representation
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7™ of SO(n) on #,, (see e.g. [Vi]). Of course, on S, this would correspond to the
m'™® eigensubspace of the angular momentum operator M = id,— the infinitesimal
generator of the SO(2)-action. On the n-sphere, the role of “angular momentum”
is played by the Lie algebra .# = so(n), but subspaces .#,, can also be characterized
as eigenspaces of the S,_,-Laplacian 4, _, (so-called Casimir element of .#),

Ln={feLS,):4,_1(f)= —m(m+n-2)f}.

Let us observe that zonal Schrodinger operators commute with SO(n). So by
analogy with the 2-sphere ([Gur3-4]) we can talk about the joint eigenfunction
expansion of the pair {H; .# }. This means a decomposition of L*(S,) into the direct
sum of eigenspaces E,, of H, invariant under .#, so that H|E,, = 4,,,, and ./
(respectively SO(n)) acts on E,, by an irreducible representation n™. Equivalently,
{E.m} can be characterized as joint eigenspaces of H and 4, _;.

So the spectrum of a zonal Schrodinger operator H consists of clusters of
eigenvalues: A, = {4, = k(k +n — 1) + pt, } ,u < 4> the multiplicity d,(m) of 4, being
equal to the degree d(n™) = dim 5 ,,(S,_ ;). The angular momentum algebra .# (or
its Casimir element) provides the natural labeling of the eigenvalues/spectral shifts
{ttim } in the k™ cluster.

To state the result we shall introduce an important notion of the Radon
transform R on S,. The Radon transform maps functions f(x) on S, into functions
(symbols) f(x, &) on the cosphere bundle S*(S,), or more precisely, on the space
0O of all closed geodesics (great circles) C = C,.. Here £ denotes a unit cotangent
vector at point xeS,, and C,; a unique geodesics through {x} in the direction £.
So f will be considered either as a function of (x; &), or of C = Cie.

By definition [ is obtained by averaging f over great circles C = C,,,

def 1

R:f > flx é)——jfds (1.2)

Obviously, the Radon transform takes even functions into even and odd into
zero. For zonal functions f, f also turns out to be “zonal,” in the sense that f"‘
depends on a single variable. We shall demonstrate it below and find explicit
formula of the reduced Radon transform on zonal functions.

The cosphere bundle S*(S,) consists of all pairs of unit orthogonal vectors
(x; &) in R**!, equivalently complex vectors z = x + iéeC"*?, satisfying z-z =0,
|z|* =2. Space O of closed geodesics {C=C,,=C,} is obtained by taking the
quotient of $*(S,) modulo the natural SO(2)-action.

&

We denote the components of (x;¢&) by (xll ¢
X

x', &eR". Then
xi & +xE=0; and x2+4|x|*=¢24(E)P=1.

), where x;;¢,€eR and

By definition (1.2),

f(x,6)=iff(xc059+ 6sin0)d9=ijf(xlcos(9+ &, sin)d6,
2n 2n
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X4

X2

Fig. 1. The “highest-point” and the “polar-sphere” parameters: p = p(C) and r = r(C)

and the latter reduces to

f(P)——ff(Pt) —If() (1.3)

where parameter

p=/x2+¢> (1.4)

measures the highest (relative to the x,-axis) point of the great circle C,, (Fig. 1).
It will be often convenient to consider f as a function of another parameter:

r=/1-p*=1-x2-¢2, (1.5)

the x,-coordinate of the “polar sphere” of C,, (Fig. 1). In terms of the r-parameter
the Reduced Radon transform takes the form

2
dt
R:f ()= I f(t)——z——z-, (L6)
1—t>—r
as defined in [Gur4-5].
Two other differential operators on [0;1] will appear in the formulation of
Theorem 1 along with R: the Gegenbauer/Legendre operator

d nd ax \? ) n—2
dx(l X )dx+(l —x2> o, with « S (1.7)
and the operator x(d/dx). Operator £ typically arises in the reduction of the
n-sphere Laplacian A, on the subspace of zonal functions ([Sz], ch. 4).

Now we can state our main result. Let H = — A + V be a Schrodinger operator
on S, with a zonal potential V = V(cos ¢), (“quantum spherical pendulum” in the
terminology of [CD]). We decompose V into the even and odd parts: V =V, + V4,
and denote by .# the angular momentum algebra so(n), acting on L*(S,,).
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Theorem 1. Spectral shifts {p,} of the joint eigenvalue Problem of H and M (or
H and A, _ ,) admit the following asymptotic expansion in powers of k™ *,as k — co,

ukm=a(%>+k"‘b(%>+k'zc(%>+0(k'3), (1.8)

uniformly in |m| < k. The function-coefficients {a; b;c} of (1.8) are expressed in terms
of the reduced Radon transform R (1.6), the Gegenbauer/Legendre operator £ (1.7)
and the operator x(d/dx), applied to potential V, its even and odd parts V,,, V4, as
Sunctions on [0;1]. Namely,

a(r)=R(V,,) = V.,r);
b(r)= —1RQ(V,,);
c(r)= 5‘591{22 +2(n+ 1)2}(Vev)
+ %{“R(chz + Vodz) - (“RVev)z}

—Lm(xi(v 24y, 2)) (1.9)
21— \dx ™ ) '

Special cases of Theorem 1 for even and odd zonal potentials ¥ on S, were
established in our earlier works [Gur4-5], namely

i = V(%) +0(k™1), for even V,

uk,,,=k‘2U<%)+0(k‘3), for odd ¥,

with U(x) obtained from V2 by the transform J = 1(R — (r*/1 — r*)Rx(d/dx)).

Theorem 1 has numerous applications. On one hand it exhibits a multiscale
structure of spec(H) with 3 levels: the highest = O(k?), measuring the location of
clusters, intermediate = O(1), measuring the cluster size, and the lowest = O(k™ 1)
(or O(k™3)), which shows individual spectral shifts within clusters. Each spectral
shift is in turn expanded into the power series of k™*.

Theorem 1 confirms the well known results on the cluster size of A, ([We],
[Gui2]): pym = O(1) for even/generic V, and ,,, = O(k~2) for odd V.

In Sect. 3 we shall use Theorem 1 to prove a variety of spectral results for
zonal Schrodinger operators on S,, including solution of the Inverse Problem for
the joint (H; .#)-spectrum; explicit formulae for the Weinstein band invariants of
cluster distribution measures (cf. [We], [Gui], [Ur]), and local Spectral rigidity
for generic zonal potentials on S,,.

2. Proof of the Main Result
The proof will consists of three major steps:

1° Averaging methods.
2° Symbolic Calculi on S, estimates and asymptotics of spectral shifts.
3° Zonal reduction procedure.
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The key idea of the 3™ step is to transform the multidimensional Schrddinger
eigenvalue Problem into a series of 1-D associated Gegenbauer—Legendre
Problems.

Step 1°. Averaging Methods. 1t is convenient to write the Schrodinger operator
as H= — A+ a? + V, with a = (n— 1/2). By a proper scalar adjustment, V-V +
Const, one can always assume H to be positive. Then \/17 exists and is equal to
the sum of two pseudodifferential operators (yDO’s) A + B of orders 1 and —1

respectively,
A=/—A+a* B=/H—-AxiA"'V+..

A Ydo B can in turn be expanded into a series of decreasing order terms
B, + B, + B3 + ---5. To compute the lower order terms of B we write

H=—-A+V=(A+B)>=A2+24B+[B;A] + B>
Assuming B= B, + B, + B; + --- and inserting this expansion in H = (4 + B)?,
one gets
(A+B)Y?=A>+24AB+(B;A]1+B*=A4*+V; and B?’=B,>+2B,B,+ .
2.1)

Dividing both sides of (2.1) by 24 on the left, and introducing operations
ady(...)=[...;A] and T=14""ad,, we rewrite the latter as

A+(I+T)[B;+B,+-]1+347'(B,>+2B,B,+ - )=A+347'V. (22

It follows by the standard Product/Commutator rules of ¥ DO Calculus (to be
explained below), that operation T lowers the order by 1. So all terms of (2.2) can
be arranged in decreasing orders and the first few of them are computed explicitly:

B, =347V (order —1),
By=—TB,=—%4"%ad (V) (order —2),
By=%A"3ad2(V)—A"2VA~'V) (order —3).

Now we shall outline three averaging methods for perturbations A + B, known
in the literature (see [We], [Gui2], [Ur2]).

Let us observe that operator (A — ) has integral spectrum {0; 1;...k;...}, hence
generates a periodic unitary group {e"4: 0 <t < 2xn}.

We want to replace potential V of H, or perturbation B of A4, by an operator
W, that commutes (or almost commutes) with A, and such that spec(4 + W)
approximates spec(A + B).

1° Weinstein’s average is defined as

B—B=— [ B@)dt, 2.3)

5 Let us remark that B ~ZBJ’ is not a standard expansion of the ydo calculus. In fact, expansions
to lower orders are generally not well defined on manifolds. In the next section we shall introduce a
form of “nonstandard calculus” on S, due to A. Uribe, that will allow such expansions
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where B(t) denotes the conjugates of B by the unitary group of 4, B(t) =e 4 Be™™,

It is easy to see that B commutes with 4. Weinstein [We] has shown that
operators A+ B and A + B are “almost unitarily equivalent,” modulo “small
remainder.” Precisely, there exists a skew symmetric operator Q and unitary U = €2,
so that

A+B=U"YA+B)U+R, (2.4)

where the remainder R is of lower order than B.

This allowed to reduce spectral asymptotics of operator A + B (respectively H)
to those of 4 4+ B, and consequently to get the leading asymptotics of the cluster
distribution measures,

1
dv () = 1 20— thyem), as k- oo,
Kk m

the so-called Weinstein’s band-invariant f, [We].

Furthermore, in case of zonal potentials on S, [Gurd] we use the Weinstein
average to get the leading asymptotics of spectral shifts {u,,}, which eventually
led to solution of the Inverse Problem and the proof of Spectral Rigidity for even
zonal potentials.

Unfortunately, Weinstein’s averaging applies only in the even case.
2° In the odd case V. Guillemin [Gui2] developed the so-called Return operator
approach. The return operator W defined as

W = e2n(A+B) _ I,
can be expanded into the series®
W, + Wy + Wy + - =21iB — 212 B% + 2miB + ---. 2.5)

The first 3 terms of (2.5) are expressed by the 1® (Weinstein) average B and the
2™ (Guillemin) average

B—B=-1 T [ (B B dsdr. 2.6)
4ni 00

¢ Expansion (2.5) with operators (2.3), (2.6) are derived from the standard time-ordered perturbation
series for the unitary group e"“*8),

t t s
eu(A+B) — eltA + lj' e:(t—s)ABelsA ds — j‘dsj‘dTel(l—s)ABel(s—r)ABeltA 4 e,
V] 0 ]

The first two terms of the series can be recast in the form
t ts
eltAth — e‘“{l +if B(s)ds — | | B(s)B(r)drds + }
0 00
Then rewriting the double integral as
1/ 2 qrs
-\ [B(s)ds | —= [ [[B(s) B(r)]duds,
2 0 2 oo

and substituting ¢ = 27 (using 2n-periodicity of {e™4}), we get (2.5)
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Let us note that the eigenvalues of W are simply related to spectral shifts { s, }
of A + B, namely

Do W) = e2itiem 1,

As in the even case it can be shown that operator B commutes with 4, modulo
lLo.t., and the pair A + B and A4 + B are almost unitary equivalent. Thus one gets
the leading asymptotics of cluster distribution measures for odd potentials (band-
invariant f,, [Gui2]; [Ur2]). Furthermore, using the 2™ averaging method, we
derived the leading asymptotics of individual spectral shifts {yu,,,}, and applied
them to the Inverse Problem and spectral rigidity for odd zonal potentials on S,
[GurSs].
3° In the general (even + odd) case A. Uribe [ Ur2] refined further the Weinstein
averaging by subsequent application of (2.3) to remainders R (2.4). We shall adopt
this procedure in our derivation, so let us briefly outline the basic steps.

An intertwining operator Q in (2.4) can be constructed explicitly

Q-——Tjﬂﬂ@ﬁ (2.6)
and is shown to satisfy the commutation relation
[4;0]1=B-B. (2.8)
Exponentiating (2.8) one finds (see [We]; [Url])
e%(A + B)=(A + B)e? + R,
where the remainder R is expanded into the series
R=1[B+B;0]+ -

If perturbation B had order —m, then order (R)= —2m — 1. Successive
application of the Weinstein averaging (2.3) to remainders, R —» R = R, yields a
Ydo W=B+1[B+ B;Q]* + ---, which commutes with 4, and such that 4 + W
is unitary equivalent to 4 + B, modulo co-smoothing operators.

For our purposes we shall need only the first correction R* to B. A straight-
forward calculation by means of (2.8) then gives’

_i[B+ Q1" =[B; Q]+ - | | [B():B(s)]dsdr. 29)
411’ 00

Notice that each of two terms in the right-hand side of (2.10) by itself does not
commute with A, but their sum R?* does.

7 To check (2.10) we use the dxfferentlauon formula for Q(t) = e~*4Qe"4:Q'(t) = i[Q; A] = i(B — B)(¢t),
whence follows Q(t)= Q+tj(B B)(s)ds. Then subsntutmg Q(t) into the average commutator

[B,Q]“: j [B(t); Q(t)]dt yields [B; Q1" = 2[B; 0] +— j ;[B(t), B(s)]dsdt, while Q** = — inB,
implies [B; Q]“—o
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Thus the average operator to be studied is

j 2wt

W=B+[B;Q]+— [ [[B(t);B(s)]dsdr. (2.10)
4 00

Let us observe that W incorporates both the Weinstein average B (of order
—1) and Guillemin’s B (of order —3).

In what follows it will be more convenient to replace operators {B(t)}, as well
as their averages B, Q, etc., by conjugates and averages of the multiplication
operator V. Remembering, that B=3A4"'V and 4 commutes with the averaging,
it follows

B(n)=3A"'V(t;B=34"'V;0=347"0,
where 0 is defined similar to Q (2.6), with ¥(t) in place of B(z),

2n t

~ 1
Q=% (j) (j)V(t)dsdt.

After a somewhat tedious calculation involving the differentiation formulae:
(d/dt)V(t)=i[V(t); A], commutation relations [4~!;Q]=A4"3(V — V), and inte-
gration by parts we end up with the following expression of the complete (Uribe)
average,

W=%A“I7+%A‘3(V2-I72)+%A‘2([I7;Q] +%H[V(t); V(s)] dsdt). (2.11)
Tl

We need to show that the spectrum of operator 4 + B is approximated by the
spectrum of its average A + W. The following results will play the crucial role
here.

Lemma 1. Operators A+ B and A+ W are almost unitary equivalent, i.e.
U~ YA+ W)U = A+ B+ Ry, with the remainder R, of order —4. The remainder
R, is estimated in terms of A as

|R|=(R*R)"* < Const 4%, (2.12)

in the sense of comparison of selfadjoint operators.

The proof is essentially outlined above and consists of applying twice the
Weinstein average, first to perturbation B, then to remainder R = 1[B + B; Q] + -+
(see [Ur2], for details). Estimate (2.12) follows from the general properties of ¥/do’s
of order —4, in fact any yydo B of oder —m on S, satisfies, | B| < Const A™™ (see
[Wel).

As a consequence we can approximate shifts {y,,,} of operator A + B by the
shifts { i} of 4 + W, to order —4,

| Hom — aom| < Const k™%,
Our goal now is to expand p,, (respectively fi,,,) into the power seriesin k™2,
ﬂkm~k—l(akm+bkmk_1+ckmk-2+"'), (213)

and to compute the first 3 coefficients {a,,; bm; Cim } - This goal will be accomplished
via Symbolic Calculi on S, to be described in the next step.
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Step 2°: Symbolic Calculi on S,; Estimates and Asymptotics of Spectral Shifts. We
shall start with the standard Symbolic Calculus on S, and find the principal symbols
of operators A, B, as well as their averages: B, B, 0 and W, introduced in step 1°.

Given any ydo B of order m on S, one can associate to B its principal symbol
og(x; &), a function on the phase space (cotangent bundle) T°(S,), homogeneous
of degree m in the momentum variable ¢&.

Thus symbol of operator 4=./—A4 is ,=|&| (norm of ¢ in the natural
Riemannian metric on S,). Symbol of perturbation B = \/—ﬁ —A3ATWV + s
obtained by the basic Product Rule of the Yy do calculus: 6,5 = 0 405 (for principal
symbols!). So a5 =(V/2|¢]).

To find symbols of averages we shall use two other basic Rules of Symbolic
calculus.

(i) Conjugation with a unitary group {"*}, generated by a self adjoint ydo A (known
as Egorov’s Theorem): symbol of a Ydo B(t) = e~ "4 Be"“ is obtained by composing
oy with the Hamiltonian flow of 6, = a(x; &),

Ope = 0p°eXp(tE),

where £ = 5, = 0,a'0; — 0.a-0,—the Hamiltonian vector field of 4.
(i) Commutator Rule: the commutator [A4; B] of two ydo’s has symbol 04,5 =
i{o 4;05}—the Poisson bracket of two symbols®.

In our case, symbol a=|¢|, generates the geodesic flow on T*(S,). If V(t)
denotes Voexp(tZ), i.e. V evaluated along the geodesics (great circle) C = C, ;, as
a function of the flow parameter, then

1
Opw = m V(t);

0= j (t t;

2l€| — [@r—0)V(t)ds.

0= Zél

We denote symbol of the operator § = — j 2n — t)V(t)dt, by (V) to indicate
its dependence on V,

(V)= 51; [ @r—)V(t)dt. 2.14)

By some abuse of notation here and henceforth we use V(t) for 3 differpnt (but
closely related) objects: the conjugate of the multiplication operator, e~ "4V ¢4,
its symbol, function ¥ composed with the geodesic flow; and finally V evaluated

8 Two rules are obviously related: (ii) essentially means that the map 4 —¢ , is a homomorphism of
the Lie algebra of operators on L2(S,) into the Poisson algebra of functions on T*(S,), while (i) is
obtained by exponentiating the Lie derivatives of operators/symbols: ad,(B)=[4; B] (respectively
i{o4;05}), to the corresponding Lie group of inner automorphisms, B— e *4Be"# (respectively
ogg—agoexptE,), generated by hermitian elements A
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along the circle C,, (as a function of the flow parameter t). We hope that in each
case the meaning of “V(t)” would be clear from the context.

Finally, to get symbol of R* (a ydo of order —3), we apply the above Rules
of symbolic manipulation to (2.11). This yields ([ Ur2]):

2n t

1
orev = 3((V2)" = (V™)) + 2 {1(V); V“}—gg g g{V(t); Vis)}dsdt. (2.15)

In special cases of even or odd V, spectral shifts {4, } of the operator A + B
are reduced to eigenvalues of an appropriate average ydo, B or B.

The main difficulty of the general (even + odd) case is that the “even” and
“odd” contributions do not combine, because of different orders of two averages.
As the reader might have noticed the 1 average B, represents a ydo of order — 1,
so spectral shifts {4, } of the even Schrddinger operator H = (4 + B)* are O(1).
On the other hand for odd V, the 2" average B has order —3, hence
tim(H) = O(k™2).

In each case (even or odd) separately the leading asymptotics of spectral shifts
(and the related band-invariants) can be deduced from the appropriate principal
symbols of operators B and B (cf. [Gur4-5]).

In general case, however, we need a complete symbolic expansion to order — 3.
The standard Symbolic calculus (see, e.g. [Ta]) does not provide such expansions
on manifolds, different from IR”, as lower order symbols are ill defined. Several
attempts were made in the literature to construct Complete Symbolic Calculi (cf.
[Wi]; [Be]; [Url]).

Here we shall adopt the form of Symbolic Calculus on S, introduced by A.
Uribe [Url1], and based on the representation theory of the Lie group SO(n + 1).
So let us briefly review the basic concepts and results of the Uribe calculus, referring
to [Url] for more details.

The Uribe calculus was specifically tailored for the algebra U of operators {B},

that commute with the Laplacian (or 4 = ./ — A4), and can be formally expanded
into powers of 47 1:

B~B,+ A 'B; + A" ?B, + ---, with operator-coefficients [B;; A]=0. (2.16)

Symbols of operators B in U will be defined on the manifold O of closed
bicharacteristics, trajectories of the Hamiltonian flow {exp(tZ)} of 6, =|¢| on the
cosphere bundle $*(S,). As we mentioned in Sect. 1 the cosphere bundle is identified
with the set of complex vectors {z = x + iye@"*'}, satisfying

zz=|xP = |yP+2ix-y=0; |z]* =[x +|y* =2,

equivalently, the set of pairs {x;y} of orthogonal unit vectors in R"*?, with x
running over the sphere, and y representing a unit covector at {x}.

The Hamiltonian flow, {exp(t£)}, then amounts to multiplication of complex
vectors z with complex scalars: z— e'z; (0 <t <2n). So O represents a quotient
space S*(S,)/T, or, phrased differently, the space of complex rays (projective variety)
of the algebraic set {z:z-z = 0}.

We would like to associate to each operator-coefficient B = B; its symbol, a
function y = y5(z) on 0.
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The key element in the construction is the notion of a coherent system (or
coherent states [Be]) on a homogeneous space X of the Lie group G. We denote
the action of G on X by g:x — x?, and assume that X has a G-invariant measure
dx. In our case group G =SO0(n+ 1) acts by orthogonal rotations, z—z% on
0 =S*/T.

We take a representation A of G on an inner product space ¥ =%, of
dim¥";=d;, and define a coherent states as a continuous family of vectors
{v(x) = v*(x)} = ¥, labeled by points ze X, with the property:

A (v(2)) =v(z%); for all zeX and geG.
A coherent states defines a map of ¥~ into a function space on X,
F - (z) = (v;0(2) ),

and thus allows to embed 1 into the regular representation of G on L*(X;dz)°.
Furthermore, each operator 4 = 4* on ¥, is determined by its reproducing kernel,
K 4(z;y) = d;{ Av(z); v(y) ), so that

F:Av—> [ K 4(z; y)B(y) dy.
X

The Wick—Berezin symbol of A is obtained by restricting the reproducing kernel
on the diagonal,

def

04(2; A) = d; {AVH(2); vH(2) ) = K 4(z; 2).

One can show that each operator 4 on ¥ is uniquely determined by its Wick
symbol, and the usual trace formula of Symbolic calculus holds,

trA=[o,(z 1) dz

In applications to the n-sphere Calculus one does not fix any particular 4, but
considers a sequence of representations {4 = 1*}, and a sequence of operators {4, }
in spaces ¥, each equipped with an appropriate coherent states, based on a given
homogeneous space X. Then symbol of {A4,} is understood as a sequence of
functions {o(z; 1) =0, (2; 1)} on X x {A*}7.

In our case the family {4*} consists of all irreducible components of the regular
representation of SO(n + 1) on L*(S,). All of them are labeled by integers {k 2 0},
and each A* acts on the space #, of spherical harmonics of degree k on §,.

To define Wick—Berezin symbols we need a family of coherent states in each
space #,. The natural choice are complex spherical harmonics

{Y.(s) = Const(s-z); seS,, zeC"* ' },

properly normalized, || Y, |l zs,, = 1.
One easily verifies that polynomial functions Y,(s)=(s'z)} on R"*! are

9 Thus one can view a coherent state and the map & as a noncommutative version of the system of
exponentials {¢**:(€R"} and the related Fourier transform on R”
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harmonic!?, iff z-z = 0. We normalize z to be |z|?> =2, and thus obtain a coherent
states {Y,,} based on space X = S*(S,).

Each operator B of the commutator algebra U of 4 is well known to respect
the decomposition of L? into the sum of spherical harmonics. So we associate to
any such B a sequence of finite-D blocks {B, }, acting on irreducible subspaces {#, },
B, = B|#,. The corresponding Wick—Berezin symbols: ¢(z;k) = {By(Yy.); Yi. s
are then well defined functions on the set ¢ = S*(S,)/T.

The sequence of coherent states {Y,,}, has many interesting features relating
it to the averaging and the Radon transform’! on S,. Precisely, any ¥do B of
order m on S, after averaging, yields a ydo B in U, and the corresponding sequence
of Wick symbols converges as k— oo to the limiting symbol,

a5(z; k) = R(og)—the Radon transform of the classical principal symbol of B.

More generally, A. Uribe has shown that symbols of operators Bell admit an
expansion in powers of k™1,

op(z; k) ~ Xo(2) + 1 (@K™ + o+ (DK™ A+ - (2.17)

whose leading coefficient y, coincides with the classical principal symbol of B.
Here complex vector z = x + i representing an element C, in 0, is identified with
the orbit of point (x; £) in S*(S,) under the geodesic flow.

So lower order terms are well defined in the Uribe calculus, and we get a
complete asymptotic expansion!

Having established expansion (2.17) Uribe proceeds to derive some basic
properties of Symbolic calculi, like the Product Rule, i.e. complete expansion of
g 45(z; k), for a pair of operators 4, B.

Then he calculates some examples, among them

i) Operator A =,/ — A, and “functions of A” f(A). Here (2.17) takes the form
o4 =k (exact!), and o, 4~ fo+ f1k™ '+ - for f(x)=fo+ fix™ 1+

ii) The multiplication operator V:f — Vf, and its average V*". The coefficients
of V*" are given by the Radon transform of V¥ and certain polynomial differential
expressions in A, applied to V. The first 3 of them are

Oy~ R(V) = LR(AVIK™ ! + 5R(A2 + 20+ DA[VIK 2+ . (2.18)

Let us remark that (2.18) involves only the even part of V, as its odd part is
annihilated by ‘R.
The Uribe calculus enables us to combine the contribution of both (even and

1% Indeed, A[(s'z)*] = k(k — 1)(z-z)(s-z)~ 2, for the R"*!-Laplacian A

1 They are also interesting from the standpoint of the representation theory. Indeed, each circle C = C,
in S,, fixes a 2-plane ¥, = Span(C,) in R"*!, and the whole space R"*! can be decomposed into the
orthogonal sum of 2-planes, ¥, ® ¥, @ ---. With any such partition one associates a maximal abelian
(Cartan) subgroup T of SO(n + 1). Group T consists of all block-diagonal 2-D rotations {u = (u(6,);
u(@,); . . .)}, each u(@)) rotating ¥”; by an angle 6;. Then function Y,, gives the so called highest weight
vector of an irreducible representation A* of SO(n + 1) in space J#,, i.e. [ Y,,]=¢e*Y,,, for all ueT
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odd) parts of V to get an expansion to order — 3 of the average operator W of (2.10),
xw(zk)=RV) =k {ZR(AV)} + k7 2{HRA% + 2+ DA V] +0gar ), (2.19)

where 0., is given by (2.15).
The first 3 terms of (2.19) will provide the asymptotic coefficients {@y, bim> Cim }
of (2.13) for spectral shifts y,,, in the zonal case. But this will require yet another step.

Step 3°. Zonal Reduction. Zonal reduction means the restriction of axisymmetric
(SO(n)-invariant) operators from L*(S,) to eigensubspaces {.#,,} (1.1) of the angular
momentum algebra .#, or its invariant Laplacian A4, _,.

The S,-Laplacian in spherical coordinates {(¢; 0;;...6,_,)} has the form

A= Ogsin" "1 0y + ——

sin" !¢ sin ¢

where A, is the S, _;-Laplacian.
We denote the #,-reduced Laplacian and Schrodinger operators by

L,=—A%,; and H,=H\|%,,
and use the same convention for all other axisymmetric operators, like
A=/-A-A4,=4%,; B=./H—A-B, et

Each operator L, is isomorphic to a d(m)-multiple (d(m) = dim #,,(S,-,)) of
an associated Gegenbauer/Legendre operator G,, ([Sz], ch. 4),

G,=Gy=— <6¢ +(n—1)cot¢6¢+ﬁ(m (f)) a?,
with
n—1

2

in the standard L?(sin"~ ! ¢ d¢)-realization of the subspace #,,, or

6= (a B~ ﬂ)) -
sin? ¢

in the L?[d¢]-realization.
The eigenfunctions of G, in the form (2.20) are given in terms of the well known
Gegenbauer (ultraspherical) polynomials

Y, =C& M (cosd), or Y, =sin*""1HCL ™ (cos ),

and the corresponding eigenvalues are {4, = (k + B)* —a?; k=0;1;...}.
Remembering the exact values of o and f (2.20), we see that Spec(L,)=
{hi=k+m)k+m+n—1)}2,, coincides, as expected, with the m™ tail
{A:k 2 m}, of spec(4,), and has a uniform multiplicity d,, = dim #,,.
The reduced Schrodinger operator H,, then becomes a perturbation of G,, with
potential V = V(cos ¢),

, B=o+m, (2.20)

o=

H,~(G,+V)®I,.



Inverse Spectral Problem and Rigidity 589

The zonal reduction procedure of our previous work [Gur4-5] exploited the
underlying SO(n)-symmetry of the Problem, both on the classical and on the
Quantum (operator) level, and combined it with symbolic calculations that involved
principal symbols (cf. [Ka]; [KM]). The key observation made in [Gur4] was to
show that all the above (averaging) constructions, expansions and estimates of
axisymmetric operators, can be transferred from S, to % ,-reduced operators on
[0; 1].

The reduced (1-D) yDO’s had principal symbols defined on the (x; £)-phase
plane of the type:

m? |4
aAm=a=\/(1 —x2)€2+(1—_x—2); 03~£+ -+, ete.

Consequently, all symbolic manipulations, and the ensuing formulae for eigen-
values and spectral shifts, were reduced to a one-variable “singular-degenerate”
symbolic calculus on [0;1].

The reduction procedure of the present work is somewhat different and leads
more directly to our goal, formulae for the spectral shifts. As we shall see in the
present scheme the .#,,-reduction is paramount to “quantizing” (in the sense of

“discretizing” in the “joint eigenbasis”) a commuting pair of operators: A = ./ — A4,
and P=./—4,_,.

Precisely, let us introduce the algebra .o/ of axisymmetric (zonal) operators { B}
on L%(S,), ie. the commutator of the angular momentum .# ~ so(n). Restricted
on S,_, all such B are given by certain “functions of A,_, (or P)”, B= f(P).

So the intersection of two algebras .« N U represents the joint commutator of
A and P. Furthermore, any B in & n U is expanded into a power series (2.16) with
coefficients (B;} given by certain functions of P

B=Y AT/fyP) (2.21)

jz0
From (2.21) one immediately reads off the eigenvalues of B,

tim(B) = Y k™I f(m).
jzo

Our goal is to link such expansions to symbolic expansions of the preceding
step 2°.

The angular momentum algebra # ~so(n) is generated by infinitesimal
rotations about the x;-axis. Symbols of all infinitesimal rotations ne¥% = so(n + 1),
considered as 1* order differential operators on §,(vector fields) D, =id,, were
computed in [Url], in terms of the momentum map @:T"(s,)— % —dual space to
the Lie algebra'? 4. For any n€% symbol of operator D, is linear in k and equal to

x(z;:k) = k<n; D(2)), (2.22)

2 The momentum map arises whenever a Lie group G acts transitively by smooth transformations
on a manifold X. Indeed, the differential  of the mapy:g — x%, from G onto X, takes the Lie algebra
@ of G onto the tangent space T, at {x}, hence the dual map @ = (0y)* embeds the cotangent space
T* into g*.
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X4

xxy

X2

Fig. 2. Angle ¢ = ¢(x; y) between vector x x y and the x,-axis

where ;) denotes the natural pairing between the Lie algebra element 5 and the
point zeS*(S,) lifted to the dual g* by the momentum map @. Let us remark that
expansion (2.22) is exact, no Lo.t.!

To illustrate (2.22) we take the 2-sphere and the generator of rotations about
x,-axis, D =idy. Let z=x + iy, where xeS,, yeT*.

The peculiar feature of dim 3 is that the Lie algebra so(3) can be identified with
IR3 itself, so that the Lie bracket turns into the cross product, [x; y]—x A y. The
same holds for the dual space of so(3), g* ~ g ~IR? (via the Killing form or the
pairing {x; y) = tr(xy)!). It is easy to show that the momentum map on S, is also
given by the cross product,

D (y)=xAy.
Consequently, symbol of D, (2.22) becomes the triple product
Xz k) =kn-x Ay =kdet(n; x; y).
Specifying the latter for the field D, = id, (i.e. vector # = (1;0;0)), we find
X, X3
Y2 Y3

It remains to rewrite the formula in polar coordinates on S, and to observe
that (x A y); = cos ¢, in terms of the angle ¢ = ¢(x, y) between the orthogonal disk
(polar axis) of the great circle C,, and the x,-axis (see Fig.2). But

cos ¢ = /1 —x,% — y,?, in terms x,-coordinates of vectors x and y, so the resulting
expression for the symbol of id, on S, takes the form

Xe(z; k) =kcos p(x, y) = km*z'

On the n-sphere the role of 0, is played by the operator P=./—A4,_,. A
similar argument applies to show

xe(z: k) =kcos p(x, y) =k /1 —x,? =y 2 =k /1 - p?,

re(z; k) =k = k(x A y);—the 1 component of the cross product.
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where p=p(C) is the “highest point” parameter (1.4) of the great circle
c=¢C,, (Fig. 1.
Once the symbol of P is found we immediately get the symbol of any associated

“function of P,”
Xrpy = flky/1— p). (2.23)

Next we want to reduce (restrict) zonal operators on S, to eigensubspaces {.Z,, }
of operator P. Obviously, f(P)|.#,, = f(m)I, in other words the m™ reduction of
such operators amounts to evaluating (restricting!) function f to the set of integers

m}.

{ Naturally, symbols of scalar (reduced) operators are expected to be scalars
(constant functions). Therefore equating the right-hand side of (2.23) with the
“would-be” symbol of the reduced operator, ypy «,, = f(m), we get

flk /1 —=p*)=f(m), forall f, or m=k/1—p>

The latter explains the meaning of m™ reduction of zonal operators on the
level of symbols, it corresponds to quantizing the values of the parameter p = p(C,)
in the Uribe (principal) symbol to a discrete set of values,

2
p= 1—(%) ; k=0;1;....

Hence for any zonal operator B = f(4; P) with Uribe symbol yy(z; k), the m™
reduced operator B,, = B|.#,, has symbol

2
XB,,.=XB< 1~(%) ;k>. (2.24)

As we mentioned earlier reduced operators B,, are scalar multiples of the
(1-variable) Gegenbauer/Legendre type ydo’s on [—1;1], B,, = f(L,). Symbols
(2.24) acquire then particularly simple meaning: integer k represents the eigenvalue
parameter of the reduced Laplacian Am=@, so all operators {B,} are
simultaneously diagonalized in the eigenbasis of L,, and “symbol B,” means
“diagonal B,,.”

In particular, (2.24) yields eigenvalues of zonal operators B,, in terms of the

Uribe symbol of B,
t(B,) = xg(y/1 — (m/k)*; k). (2.25)

To complete the proof of Theorem 1 we apply (2.25) to the average
operator W restricted on the subspace Z,,. As we have shown operator W com-
mutes with 4 (modulo lLo.t.), and for zonal potential V it belongs to the zonal
algebra /.

Thus spectral shifts (eigenvalues) {,, } of W,,, are given in terms of its Uribe
symbol (2.19),

Him = Xwl(/1 = (M/K)?5 k) = Gy + k™ bp + k™ 2Cp + -+
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with coefficients,

G = Vo (/1 — (m/k)?);

bim = — HAV,,) (/1 — (m/k)?); (2.26)
Com = ﬁ‘.R(A2 +2(n+ 1)A)V,, + oRav}(1 /1 — (m/k)z).

It remains to find the principal symbol of the operator R*' (2.15) for zonal
potentials V. For the sake of presentation we carried out the calculation in the
Appendix. Here we shall only state the final result,

1—p? d
Trne = 3RV + Vod®) =~ (RVL)?) == 5 P m(x UM Vof)), (2.27)
P x

where R means the reduced Radon transform on [0;1].

Formulae (2.26) along with the explicitly computed symbol o .. (2.27) produce
the asymptotic coefficients {a;b;c} of spectral shifts (2.13). The first two of them
are equal to

A = a(%); with a=R(V,,),

mm=b<%> with b= —1R(EV.,).

The Gegenbauer operator €= (d/dx)(1 —x?)d/dx + (ax/1 — x*)* —a, here
arises from the Laplacian 4, in (2.18), reduced to the subspace of zonal functions.
Finally, the 3" coefficient

Com = c(%); where function ¢ = {5R(A% + 2(n + 1)A)V,, + ogav },

with symbol oga.. given by (2.27).
The completes the proof of Theorem 1.

3. Applications of Theorem 1: Inverse Problem, Band Invariants, Rigidity

In this section we shall apply Theorem 1 to various Problems in spectral theory
of zonal Schrédinger operators. These will include
(i) Inverse Problem: determination of V from asymptotics of the joint spectrum
of H and ./
(i) Spectral Rigidity for zonal potentials;
(i) Weinstein band-invariants of cluster distribution measures.

We shall outline the results in special cases of even/odd V as well as in the
general (even + odd) case.

1°. Even Case. In the even case asymptotics of Theorem 1 simplify to

mm=V<%>—k”2V(%>+om‘ﬂ. (3.1)
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(i) Inverse Problem. From the leading term of (3.1) we immediately recover function
V on interval [0; 1],
V(x)= lim g,
mjk—x
Solution of the Inverse Problem for the joint spectrum then amounts to
inverting the Radon transform, R~ !:¥ — V. Let us observe that after the change

of variables: x——>\/;, p—»ﬁ (in the p-representation (1.3) of R), the Radon
transform becomes a half line convolution kernel,

R:V(/x)~ 17(\/;)=%(X'I/ZV°\/;C)*>C‘”2. (32)

The inversion is easily completed via the standard Laplace transform.

This result extends an earlier 2-D version of [Gur4] to S,,.
(i) Spectral Rigidity. In this part we shall drop the assumption of the “bigraded
joint spectrum of H and .#,” and concentrate on spec(H) alone. In other words
spectral shifts {,,} of the k™ cluster will now represent a collection of reals,
labeled in an increasing order, rather than according to certain values of the
angular momentum.

The Problem is stated as follows: givén a collection of subsets I', = IR, each of
which consists of approximate values of an unknown function f = V(x) on all
k-partitions of [0,1], X, = {j/k:0<j <k},

sz{ykj=f(i)+k_lﬂf<i>+ ~->zf(2k), k=12...  (33)
we are asked to recover f, or rather to show that f is uniquely determined by
such asymptotic data.

This Problem was solved in [Gur4] (Theorem 2), which showed that a generic
Morse function f on [0;1] (i.e. a function with finitely many critical points) is
indeed locally uniquely determined from data (3.3).

Let us briefly sketch the argument.

First we show that the critical values of f along with their type (local min,
mayx, inflection) are determined by subset {1}, in fact by singularities of the limiting
distributon density dv,,

dv;= lim #{j:;—(e inly—gy+el }/k = “distribution function of f(x).”
k— o

It remains then to recover the slope-function of f(x) between any two
subsequent critical values, i.e. along any monotone branch of f.

The crucial part of the argument, which also reveals of the “source” of rigidity
of the n-sphere zonal Problem, lies in “almost arithmeticity” of subsets I}, localized
to a small vicinity of any noncritical value { y}. So the problem is then essentially
reduced to the following elementary statement:

Rigidity of Arithmetic Sequences. If a subset I" = R consists of a union of finitely
many arithmetic sequences I'; = {a; + jb;:1 < j < M}, with rationally independent
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differences {b,;...by}, then all numbers {b;} can be uniquely recovered from I,
i.e. the only arithmetic subsequences in I” are those of some I;!

Of course, our setting is compounded by the obvious nonarithmeticity of subsets
Iy~ f(£)=\J T (index i labeling different branches of f), one reason being

higher order cjorrections to { em} (3.1), another the apparent global nonlinearity
of f(x)! However, the above “pure arithmetic argument” can be refined by localizing
I, to sufficiently small intervals, I ,n[y —¢; y + ¢] where ¢ and k are allowed to
change simultaneously so that ¢—0, as k— co. As a result one is able to recover
exact values of slopes {b;(y) = f’(x))} at all preimages {x;} of a given generic value
{y}, by a combination of the above “Arithmetic Rigidity” and a simple ergodic
argument (see [Gur4] for details).

Once all slope-functions of different branches of f are recovered, there remains
only a combinatorial (discrete) step in the reconstruction, hence the resulting
discrete ambiguity! This step involves a suitable ordering of critical points and
branches of f on [0; 1], whereon the exact distances between subsequent critical
points will be rigidly fixed by the values of the appropriate slope-function (see
Fig. 3).

(iii) Band invariants. The principal asymptotics (3.1) of spectral shifts yields the
well known Weinstein 1% band invariant in a straightforward manner. Namely, a
sequence of cluster distribution measures

1
) ,..é:k dp— 1 (M)O(X — Him), (G4

dv, =

has a continuous limit as k— oo, B, = lim dv, = “distribution density of ¥ on
S* ( S,,)-” k— o
The details will be omitted here, since later on we shall discuss the general case.

2°. 0dd Case. The leading asymptotics of ,,, is now O(k~?). Precisely,

2 d
=k~2 m o=k 2 R — ! QR( _)) V314 ...
Rim c<k)+ 2< l_rz xdx [ ]+

Transform T =R — (r*/1 — r>)R(x(d/dx))) appeared first in [Gur5] in the
2-sphere case. As in the even case it allows explicit reconstruction of function V2
from asymptotics on the joint spectrum. Namely,

(i) Inverse Problem: function (XV?) is found at all real points re[0;1], by

@V = lim Kk,

mjk—I"

To recover V2 itself it remains to invert transform T. Using the above the

p-parameter (1.4), and changing variables: x — f , p =/ p, transform T is reduced
to a psucdodifferential operation on [0;1],

TV /%) > (1 — x)|0]2 sgnd — 0] 2%~ [V /)], (3.5
applied to V2,
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Operation (3.5) is shown to be invertible!® on suitable classes of functions on
[0; 1], which allows to recover V2. Of course, V2 does not yet determine V itself.
But for generic V (e.g. functions with simple zeroes on [0;1]), V is uniquely
determined by the choice of its sign at any particular point x,€[0; 1]. Thus from
asymptotics of the joint spectrum we are able to recover + V.

Let us remark that the sign ambiguity + V is to be expected, since two
Schrédinger operators — A + V with odd V are obviously unitary equivalent.
(ii) Spectral Rigidity is established as in part 1° via Theorem 2 of [Gur4]. The
unknown function here is f = TV?2, and we are given its approximate values on
all k-partitions,

L= f(Z) = {K* tom = XV ?)(m/k) + ---;m S k}.

The rest of the argument proceeds as in the even case (see [Gur4]).

Thus we get local spectral rigidity for generic zonal odd potentials ¥ on S,,
which extends our previous S,-result [GurS].
(i) Band invariants. The sequence of cluster distribution measures (3.4) is
expanded now into the series,

dvk~(so +k_2B2 + -

since the leading asymptotics of { 4,,,} in the odd case is O(k ~ ?). The band-invariant
B, can be found from a modified sequence of measures,

1
T Zh dy— 1 (m)3(x — K2 ). (3.6)

As above the modified sequence (3.6) is shown to converge to a continuous
limit = “distribution function of I(V?)”, which confirms [Ur2].

dﬁk =

3°. General Even+ Odd Case. Now we shall use the complete expansion of

Theorem 1,
m m m
m=al — |+ k7' = )+ k%[ — |+ - 3.7
“*%J Q) {J G7

with function-coefficients {a; b;c} given by (1.9). Notice that V,, contributes to all
three terms of (3.7), whereas the contribution of V4 is limited to {c}. Let us also
remark that the 1% and 2™ coefficients are interdependent, since both represent
transforms of the same function V,,:a=R(V,,); b= — 1RL(V,)).
(i) Inverse Problem. From spectral data we recover the values of functions a; b; ¢
at all real points of [0; 1],

a(x)= lm s bE)= lim k(g — alm/k); ()= lm k*(ym— ).

mik—> T mik—=T mik—r

Having thus found {a;b;c} we proceed in two steps: first invert the Radon

13 In fact, the explicit form of two pseudodifferential operations (3.2) and (3.5) allows not only to
invert the transforms R and 3, but also to study suitable classes of input/output data {V'} for the
Inverse Problem, and stability of the inversion procedure: {asymptotics of y,,,} = {transformed data:
V;...} = {input data V}
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transform to find V,, = R~ !(a). Then we subsitute V,, into the 3" coefficient

o(r) =37R{L* + 2 + DL}(V.) + 3{&(V.D) — RV}

+L{m(v )m<xiv )}+z(v 2)
2(1‘7'2) ev. dX ev od />

write I(V,4%) in terms of V,,, and finaly invert transform ¥ in the resulting
expression,

I/od2 = I_l{c - '“(Vev)}‘

As above this would yield V,42, hence + V4, but two Schrédinger operators
with potentials V = (V,, + V,,) are obviously unitary equivalent.

Thus we get a unique (modulo + V) and explicit solution on the Inverse
Problem for the joint spectrum in the general (even + odd) case on S,.

2°. Spectral rigidity. The argument once again is based on a two step application
of Theorem 2 of [Gur4]. Namely, from the leading asymptotics of { y,,,} we recover
a generic Morse function a(x). Then the Gegenbauer/Legendre operator € yields
b(x) = —1€[a]. Finally the reconstruction procedure of Theorem 2 of [Gur4]
applies to a modified sequence

o) ()2

to recover function ¢(x).

Of course, all three coefficients {a;b;c} will be uniquely (rigidly) determined
within local deformations, by the asymptotics of spectral data. As a consequence
we get local spectral rigidity for generic zonal potentials on S,

3°. Band invariants. Asymptotic formula (3.7) for spectral shifts allows a
straightforward derivation of the first 3 of Weinstein band-invariants for zonal
potentials.

Let us recall the definition of band invariants. A sequence of cluster distribution
measures {dv,} on IR, admits an asymptotic expansion in powers of k™!

dvp~Bo+k B+ k2B, + -

with distributions f; f;; f, on R.

The 1% invariant B, is the well known distribution density of the Radon
transform R(V,,) [We], while higher order invariants are much harder to calculate
(see [Url]).

Using asymptotics of spectral shifts (3.7) and spectral multiplicities we will be
able to derive explicit formulae for {$;} in a straightforward manner. The multi-
plicites we have in mind are the dimension of the k™ cluster, d,(k) = dim #,(D,),
and the multiplicity of the m'™ spectral shift y,,, d,_(m)=dim #,(S_,).

Obviously, d, (k) and d,_,(m) are polynomial functions in variable k
(respectively m),

— 1
d"(k)=<n+k>_<n+k 2>=—(pk"—1+qk"_2+5k"_3+”‘),
n n n!
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with coefficients depending on n. The first 3 of them are found to be

p=py=2n—1);
q=4q,=(n—1)(n*—2n+2),
s=s,=5n—1)>(n—2)(n*>—2n+4).

Consequently, the weights w,(m) = (d, _ ;(m)/d (k)), that appear in (3.7), can also
be expanded in powers of k™1,

Wom) = k—l{wo(@ + k‘lwl(%> + k‘2w2<%> + } (3.8)

The 3 leading terms of (3.8) turn out to be polynomial functions with coefficients
depending on the coefficients { p; g; s} of d,(k), and coefficients {p'=p,_ ;¢ =q,_;
s'=s,_,} of d,_(m). Precisely,

’

wol) =0 x"
0= g8
p P
’ 2 _
wz(x)J{s’x""‘*-ﬂxH+p’—~*q zpsx"*}. (3.9)
p p p

Let us observe that the leading weight w, coincides with the density of the
induced measure r*(dS) defined on [0; 1] by the “polar-sphere” map r:(0 - [0; 1]
(1.5), where dS is the natural SO(n + 1)-invariant measure on the space ¢ ~ S*(S,)/T.
This, of course, corresponds to “zonal reduction” of functions and their transforms
from S, (respectively from S*(S,) and 0) to the interval [0; 1].

It remains to pair measures dv, = Y Wy,0(x — 44, to a test function f on R,
and to use asymptotic expansions (3.8) of weights {w,,,}, and (3.7) of spectral shifts

{:ukm}’
vy = (E S la+ kb k0o kb, kw7 ).

The right-hand side can be treated as “partial Riemann sums” on [0; 1], and
approximated by integrals. Namely, expanding f in the Taylor series, multiplying
2 series and collecting powers of k™!, we end up with the following expansion,

1 1
{Sidvy ~ ((f)(f"a)wodX) + k“<£ {wob(f"°a) + Wx(f°a)}dx)

1
+ k2 g%wobz(f”oa) + (Woc + wib)(f"oa) + w,(f ca)dx + O(k ™ 3).
(3.10)

The first 3 terms of (3.10) provide explicit formulae for band-invariants
{Bo;B1;B,}, in terms of 3 asymptotic coefficients {a;b;c} of spectral shifts (1.9),
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b(y)
Y2
F - - - —
yL______ I _
P4
' X
X4 p; X% \/ 1
¥4

Fig. 3. A generic Morse function f on [0; 1]. Near any noncritical value { y}, subsets I',n[y — &y + €]
consist of asymptotically “almost arithmetic” sequences with differences b; = f"(x;). After critical points
{p1; p,} are ordered, the branch-function x = f;~ (y), is rigidly determined by the slope-function b(y)

and 3 weights {wo; w;;w,} (3.9). In particular, the well known invariant f§, is the
distribution function of the Radon transform a = ¥,,, reduced on [0; 1]. Two higher
invariants B, and f8, represent certain distributions of order 1 and 2 on IR, which
depend on the R- and T-transforms of V (V,,, V,4), and on polynomial weights
{WO, Wy WZ}‘

Let us observe the following properties of distributions f; f,:
(i) singular support of {B;} coincides with critical values'* of the Radon transform
a=V,.

Furthermore, one can explicitly characterize the type of singularity of f; at
each critical value.
(il) at a critical value y, = a(x,), of degree m (i.e. a(x) = ag(x — xo)™), distribution f,,
localized to [y, — € yo + €], is equal to

d
Br=Co(y—yo)* Xt “regular part”;
y

where s = (m — 1/m), and y denotes the Heavy side function of the interval (...; yo]
or [yo;...). Similarly,
2

d2

The proof of both statements easily follows by truncating the [0; 1]-integration
in (3.10) into the sum of integrals over different monotone branches of a(x), which
connect subsequent critical values (Fig. 3).

- d w
B2=(y—yo) S{Cl +C,— }(x) + “regular part.”

Appendix. Principal Symbol of the Reduced Average Operator R*
Our goal here is to compute the principal symbol of the average operator R = R*"
given by (2.9) for zonal potentials V.

14 The role of critical values of ¥, as certain accumulation levels of spectral shifts (so-called “clustering
within bands”) was observed earlier by A. Uribe [Ur2]
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a) X
! C
X T~
.
N N b)
\\
3 N
S \\ Xn € ecost .
Dy \ t b C
U \ )
C
t
Hy n cos t
X
X2
esint C

t
u

Fig. 4. The derivative formulae (A2) are illustrated here: (b) infinitesimal rotation by an angle ¢ in the
direction perpendicular to C at {x} results in infinitesimal shift by ecos ¢ at the point {t}, whence follows
0. V(t)=ud,V + ncostd,V; (c) uses polar coordinates (r;60) in é-plane to write O V(t)=ud, V(rt) +
(1/r)nsinrtd, V|, |, whence follows the 2™ formula (42)

We recall the general formula (2.15) of Ox
1 2nt
or =3(VI)* —(V*)2) + sty vy — P J J{V@©; v(s)} dsd. (AD)
00

Here V(t); V(s) abbreviate symbol/function ¥ composed with the geodesic flow
exptZ (or expsZ), in other words V evaluated along the great circle C,; at two
points {t}, {s}, on the angular distance ¢ and s from {x}.

The 2° and the 3™ terms of oy, involve the Poisson Bracket of symbols V(t)
and V(s) on S*(S,), so we shall first derive the formula for {V(e); V(s)}.

Let us remark that both symbols are homogeneous of degree zero in the
¢-variable. So their bracket {V(1); V(s)} is homogeneous of degree — 1, hence equal
to |&] ™ h(x; &), where &' denotes a unit vector in the direction ¢ In formula (A1)
we dropped the homogeneous factor |£] ™1, so both Poisson brackets really mean
functions on S*(S,).

The calculation of { ¥(t); V(s)} is illustrated by Fig. 4. Namely, we take a great
circle C = C,,, fix two points {s;¢} on C, and denote by n=n,(n,) the unit normals
to C at {t;s}, and by u = u,(u)—unit tangent vectors at {t; s}.

Then we find the x- and ¢-derivatives of V(t),

0.V (t)=u(0,V)(t) + ncos t(3,V)(t);
V() = tu(d,V)(t) + nsin t(0,V)(t),'* (A.2)

'3 Note the subtle difference of the meaning of u,n in the above formulae. Whereas subscripts u, n in
the derivatives indicate unit tangent/normal at the point {t} (respectively {s}), the coefficients u, n refer
to the tangent/normal at the point {x} (i.e. t = 0). Of course, the former are parallel transported initial
vectors u, n, along the geodesics C
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and similar relations for ¥ (s). Then the Poisson bracket of two functions becomes,
{V(Ex V(9)} = (t — )0,V (1)0.V (s) + sin(t — 5)0,V (1)0,V (5).

Writing the tangent and normal derivatives as 3,V = (d/dt)V and 8,V =V,
we recast it in the form

(VIO V(9)} = 6 =)L VO VO + sin(e = Vil Vi) (A3)

_ We need to compute the 2°¢ and 3™ terms of (A.1). By the definition of averages
V and (V) (2.14) it follows
1 2n

{17; (V)} = - Zjn j Q2n— s)( t— s)i V(t)—d— V(s) + sin (¢t — s)V,(t) V,,(s))ds dt, (A4)
m°0 0 dt ds
while

[[{v@; Vis)}dsdt = [[(r— s)% V(t)di V() + sin (t — 5)V4(£) V(). (A3)
s

Both integrands (A4) and (A5) consist of two parts, one made of the tangent
derivatives of V(t), V(s), and the other of normal. Integrating the “tangential part”
of (A4) by parts, we get

1 d -~
ﬁ”(t - S)a Vyv(s)=V - Wy,
while the same term of (AS5) yields
d d _ = =
ff@—- S)E V(t)d—s V(s)=2rn(VV —V?).

Remembering the constant factors, accompanying two integrals ( for (A4) and
—(1/8r) for (A5)), products V'V cancel out, so the total contribution of two
tangential part becomes

Hoy~ -2y (A6)

Notice, that so far we did not use the assumption of zonal V. However, this
assumption will feature prominently in evaluating the “normal contributions” of
both integrals.

To find normal derivatives of zonal V, we introduce angle ¢ between the great
circle C,; and the x,-axis (see Fig. 5), and write

(0.V)(t) = sin ¢ V'(cos ¢ cos t), and similarly (0,V)(s). (A7)

Here V' means an ordinary derivatives (dV/dx,), as a function on [ — 1;1].

. . X =cos¢cost=pcost
Introducing new variables p = p(C)=cos ¢, and ¢ p ;
Y =Cos ¢ Ccoss=pcoss

(Fig. 5) we verify the following relations:

! i V(...t); and similarly for sins V'(...s).

cos ¢ dt

sintV'(cos ¢ cost) = —
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X4

AN X = cosdcost

AY T Xn

X2

Fig. 5

The latter upon substitution in (A3) with normal derivatives given by (A7)
yields the identity,

1 d d
sin(t —s)V'(...)V'(...s)= oos? ¢(cots —cot t);t[V(. . t)];i—s[V(. ..5)]. (A8)

Now we want to replace {t;s;¢} with new variables {p;x; y}. Let us observe
the relation between the old and new derivatives,

d d
cott—[V(...t)]= —x—V(x). (A9)
dt dx
Incorporating (A8) and (A9) in the “normal component” of (A3) we get

- =0 d 4 4,08
sin (t — s)V,(t)Va(s) = pz < dtV(...t)ydyV(y)+xde(x)dsV(...s)>. (A10)

The right-hand side of (A10) contains the mixture of the old and new variables,
which will be convenient to maintain for the subsequent integration.

Indeed, when (A10) is inserted in the “normal part” of (A4) the resulting double
integrals break into products of ordinary integrals, each accompanied by the factor

21— p?)/p?,
2 d dx 2r d 2rd
(Fon—gyiy Y
( —jp(27z S)ydyV o y2>.

The first factor of the 2™ product clearly vanishes (due to periodicity of V(...t)!),
while the second factor of the 1** product, upon integration by parts, yields
—2nV(p). So the resulting “normal contribution” of {V;t(V)} becomes
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e d dx d
— 8V —V———————= —8aV(p)R{ x—V All
O s e (xdx > (A1)

in terms of the reduced Radon transform R(1.3).
A similar calculation with the “normal part” of (AS5) yields

Sl i vom(=)
4 ;2 gxdx(V Jev g V(p)R xde . (A12)
2n

We write (V?),, in (A12), since integration, | ---dt, of functions f of the form

f(pcost) maintains only the even part of f.  °
Once again the coefficients of the product V(p)R(...V) in (All) and (A12)
perfectly match, so they cancel out, and the only surviving term of two normal

contributions is
1 2
__F &n(xi(vz)“)

2p? dx
Combining the latter with the 1* term of (A1) and (A6), we obtain
1o, . 1({1—p? d
= (V2-VH)—= Rl x— (V) Al3
Ok 2( ) 2( pE ) (xdx)( ev (A13)

Rewriting (A13) in terms of the even and odd parts of V we get the final result
needed in the proof of Theorem 1,

1~ ~ ~ 1/1—p? d
OR= E(Vevz + Vod2 - chz)_ _'( pzp >m(xE(Vevz + Vod2)>‘

2

Remark. Though we conducted the above argument in the case of the 2-sphere it
remains valid for all S,. The necessary modifications include replacing normal
derivatives in formulae (A2), (A3), etc. by the dot product of normal components
of oV (t), oV (s).

Then for zonal functions V we proceed by reducing the problem to the S,-case.
Indeed, any great circle on S, that does not pass through its North Pole, can be
rotated by the axisymmetric group SO(n) into a circle that lies in a “3-D slice of
S,” (a 2-sphere cut out by a subspace~IR%). In fact, a 3-D subspace
can be chosen as a span of coordinates {x,; x;x;}, where C is not orthogonal to
a (i, )™ coordinate plane of R"*!.
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