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Abstract. The use of intertwining operators to solve both ordinary and partial
differential equations is developed. Classes of intertwining operators are
constructed which transform between Laplacians which are self-adjoint with
respect to different non-trivial measures. In the two-dimensional case, the
intertwining operator transforms a non-separable partial differential operator
to a separable one. As an application, the heat kernels on the rank 1 and rank
2 symmetric spaces are constructed.

It has long been appreciated that one of the nice properties of the special functions
is that there exist differential operators which transform between functions of the
same type, changing the indices of the functions by integral amounts. This property
is the source of formulae which provide a compact expression for certain special
functions in terms of powers of a differential operator applied to elementary
functions. It has also been known for some time that the use of fractional differential
operators, or pseudo-differential operators, extends the set of transformations
between functions, allowing the indices to be changed by non-integral amounts.

Most of this common knowledge is for orthogonal polynomials and other
special functions in one dimension. Similar results have been found for orthogonal
polynomials in two dimensions [1,2]. For particular coefficients, these two-
dimensional orthogonal polynomials correspond to eigenfunctions of the radial
part of the Laplace-Beltrami operator on certain rank 2 symmetric spaces. We
present here a new approach to the construction and transformation among
eigenfunctions of differential equations based on the construction of intertwining
operators. This approach generalizes the classical operator transformations among
special functions and is naturally applied in higher dimensions.

The intertwining operator approach to eigenfunctions was motivated by the
method used by Dowker [3] to find the heat kernel for a free particle propagating
on a Lie group manifold. It was developed by one of the authors [4] to find the
heat kernel of a free-particle propagating on an n-dimensional sphere. Intertwining
operators have also been used to solve non-linear integrable systems [5], The
intent here is to construct a few general classes of intertwining operators for one
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and two-dimensional Laplace operators. To illustrate the usefulness of the results,
the heat kernel on the rank 1 and rank 2 symmetric spaces will be calculated.

The quantum problem of a free particle propagating on a symmetric space is
important as an exactly soluble model of quantum field theory in curved space
and because it arises in a heat kernel approach to the Kaluza-Klein program of
particle physics. Furthermore, the problem of a free particle on a symmetric space
is equivalent [6] to the integrable quantum problem of n particles on a line
interacting through certain potentials, e.g. sin~2(xi — xj). To understand each of
these more fully, it would be useful to have a general procedure through which
the heat kernel and eigenfunctions on any symmetric space could be derived. This
problem has been studied independently from a different perspective by others
[7-10].

Using the intertwining operator construction, it is found that the radial
Laplacian of a symmetric space can be transformed to the ordinary Laplacian on
its maximal torus. Let each set of roots in the reduced root space which are
connected by the action of the Weyl group be called a Weyl set. To have Weyl
invariance, the multiplicity of each root in a Weyl set must be the same, though
multiplicities in disjoint Weyl sets can differ. The transformation from the radial
Laplacian of a symmetric space to the ordinary Laplacian takes the form of
multiplicity reduction, in which a differential intertwining operator reduces
the multiplicity of the roots in a Weyl set by two in each transformation. The multi-
plicities of restricted roots in a symmetric space are not all even, except in the
special cases that the space is split rank or a Lie group. Pseudodifferential operators
are needed to reduce the multiplicity of the roots in a Weyl set by one. Explicit
integral representations of these operators are available in one-dimension. In the
higher rank case, if only one simple restricted root has odd multiplicity, after the
multiplicity of the other roots is fully reduced, the problem separates into a product
of rank one problems which can then be solved. At this time, we are still working
on the cases in which more than one restricted root has odd multiplicity.

The outline of this paper will be to consider first some general properties of
intertwining operators and their application. This will serve to give some insight
into their usefulness. Next, transformations in one-dimensional problems will be
treated and two general classes of first order differential intertwining operators
constructed. Following a brief remark on pseudo-differential operators in one
dimension, this formal result will be applied to find the heat kernel on all of the
rank one symmetric spaces. Two-dimensional problems will then be considered
formally and a class of differential intertwining operators constructed. These will
be used to find the heat kernel on the rank 2 symmetric space whose Dynkin
diagram has a double link. The heat kernel on the rank 2 symmetric spaces whose
Dynkin diagram has a single link will be found after constructing the intertwining
operator specific to that problem. In the final section, the extension of these results
to arbitrary rank symmetric spaces will be discussed briefly.

1. Intertwining Operators and Formal Applications

An operator D is said to be an intertwining operator if it relates operators, L and
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L,by
LD = D(L + c\ (1)

where c is a constant removed from L for convenience. By applying this relation
to the eigenfunctions of L, one obtains the following proposition:

Proposition 1.1. // φn is an eigenfunction of L with eigenvalue Iw, then φn = Dφn is
an (unnormalized) eigenfunction of L with eigenvalue λn = ~λn + c.

This simple fact is at the heart of the usefulness of intertwining operators. If an
operator L can be reduced to an operator L with known spectrum, its spectrum
is then known as well.

To show the connection to the classical operator transformations among special
functions, consider two examples. The Hermite polynomials are eigenfunctions of
L = d2 — 2xd, where d = d/dx. Taking D = d, one has

LD = D(L+2).

If Hn is an eigenfunction of L with eigenvalue In = — 2n, then DHn = dHn is an
eigenfunction of L with eigenvalue λn = — 2(n — 1). This is the unnormalized
expression of the relation

lW. (2)
dx

The Bessel function φa = xy Jy(ooc) is an eigenfunction of

(3)

with (continuous) eigenvalue Iα = — α2. Taking D = x-13, one has

LD = DLΓ

where L=Ly_ί and, consequently, the familiar formula

Note that in this case the entire spectrum has been transformed to solve a new
differential equation while, in the previous case, one eigenfunction was transformed
to another of the same operator.

One way of understanding the existence of these transformations is in terms
of the factorization of the operator L into a product of "raising" and "lowering"
operators. This approach is developed in detail by Infeld and Hull [11] for a
wide collection of the classical special functions. The operators for the Hermite
polynomials and the Bessel functions factor as

L = (d-2x)d
and
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Infeld and Hull transform all operators to potential-form,

L = d2-V(x) (4)

before factoring. The approach here is to work with operators in measure-form

(5),
μ(x)

where the prime indicates differentiation with respect to x. This operator is
self-adjoint in the measure μ(x)dx, hence the name. Using the measure density,
one can transform from L to L by

μ1 / 2Lμ-1 / 2=L. (6)

Transforming the other direction is more difficult a priori because it requires an
eigenfunction of L. The square of this eigenfunction becomes the measure density.
The higher dimensional analogs of the measure- and potential-forms are obvious.

The significance of using the measure-form of the differential equation is that
the intertwining operator acts to transform the measure density. Let

D = f~lD (7)

be the ansatz for the form of a differential intertwining operator, where D is an
operator whose leading term has constant coefficient and / is a function to be
determined. It will be found that this operator intertwines two measure-form
operators whose measure densities are related by

μ = κ/2μ, (8)

where K is a possible constant normalizing the measure densities. It should be
emphasized that /is not arbitrary, but will be constructed later (see Theorems 2.1,
2.2, 4.1 and 6.1).

Since many problems are more familiar in their potential-forms (4), it is useful
to give the transformation of the potential that a differential intertwining operator
(7) induces. This result will hold in arbitrary dimension.

Proposition 1.2. If D = f~ 1D intertwines two measure-form operators L and L, then
D = κ1 / 2μ1 / 2Z)μ~1 / 2 intertwines their potential-forms. The potentials are related by

V = jLf+V. (9)

Proof. From (6), one finds that

L = μ~1/2Lμ1/2.

Substituting this in the definition of the intertwining operator (1), one finds
D = μ1/2f~1Dμ~1/2 intertwines the potential forms. The desired form of D follows
from using (8). Using (8) again in evaluating the transformation from L to L gives
the transformation of the potential.

Using factorization to construct the intertwining operators is special to one-
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dimension, but the nature of factorization and its generalization to higher
dimensions can be understood from the following proposition.

Proposition 1.3. The operator M = μ~1D^μD commutes with L.

Proof. From Proposition 1.1, let the normalized eigenfunctions of L be
φn = NnDφn, where Nn is an as yet undetermined normalization constant. From
the orthonormality of the eigenfunctions of L, we have

λmδm = NΛfφm(x)(LDφm(x))μ(X)dx

= Nn$φm(x)(D(L + λn- λn)φn(x))μ(x)dx.

Integrating by parts, respectively, to form the adjoint,

φn(x)μ(x)dx.

From this, using orthonormality of the eigenfunctions of L, one concludes that

~DΪμL = (L + λn-λn)-_DΪμ.
μ μ

Acting on this equation from the right by D, one has

λn- λn)
μ μ

from which one concludes that M = μ~ lD^μD commutes with L.

In one-dimension, the_only operators which commute with L are the identity
operator and powers of L. If one takes M = L, this leads to the factorization of
Infeld and Hull [11]. In higher dimensions, there are independent operators of
higher order which commute with L. In the example of symmetric spaces, one
knows that the rank of the symmetric space corresponds to the number of
independent commuting Casimir operators, of which the Laplace-Beltrami
operator is one. M will in general be formed from a combination of these operators.

Using M, one can normalize the eigenfunctions of L produced by Proposition 1.1.
Since M commutes with L, they have the same eigenfunctions though in general
different eigenvalues. Denoting the eigenvalues of M by vn, one finds

Proposition 1.4. The normalized eigenfunctions of L are φn = NnDφn, where

Nn = (vnΓ
ll2

Proof. Assume orthonormality of the φn and express this in terms of the φn,
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Integrate by parts to obtain the result from

Similarly, one can obtain the normalized eigenfunctions of the potential form
θf the operator. Denote the eigenfunctions of the potential form operator L by
φn = μΐ/2φn. Using Proposition 1.2 and Proposition 1.4, one finds

Proposition 1.5. The normalized eigenfunctions of L are

/kΛ 1 / 2

Φn= - μll2Dμ-^φn. (10)

Using Proposition 1.4 one can go partway to relating the heat kernel of idt + L
to that of idt -f L. Assume for convenience a compact manifold so that the spectrum
is discrete. An analogous argument holds in the non-compact case. From the
eigenfunction expansion of the heat kernel, one finds

K(x,y;f)= £ Φn(x)Φn(y)eiλnt

= D(x)D(y)
n = 0 Vn

If an operator Θ(t) can be found such that

eΐλnt
t

9 (11)

for all n, then the heat kernels of idt -h L and idt + L will be related by

K(x, y; ί) = D(x)D(y)(9(t)K(x, y, t). (12)

In one-dimension, this is straightforward (see Proposition 2.1). In higher
dimensions, it is_not clear that in general there will be any functional relation
between vn and In.

There is another approach to finding the heat kernel which works when one
endpoint is at zero and the measure density vanishes there. This is the case for
the symmetric spaces because the reduction from the full Laplacian to the radial
Laplacian is made by translating one endpoint to the identity and then recognizing
that since all maximal tori are conjugate under the action of the isotropy group,
the heat kernel depends only on distance in a chosen maximal tours (i.e. the heat
kernel is a class function). If the intertwining operator D in (1)_ relates the delta
functions defined with respect to the measures in which L and Lare self-adjoint,

δ(x,0) = NDδ(x,Q), (13)

where N is a normalization constant, then one has

Proposition 1.6. The heat kernels K(x, 0; ί) and K(x, 0; ί) of the heat operators, iBt + L
and idt + L, are related by

K(x9 0; t) = eίctNDK(x, 0; ί). (14)
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The relation (13) between the delta functions can be verified by substituting
into the defining equation

(15)

and integrating by parts. One can also use the formal definition of the delta function
in terms of the eigenfunction expansion to derive a general condition for the
relation to hold. One finds

Proposition 1.7. A necessary and sufficient condition for <5(x,0) = NDδ(xβ) is that

independent of n.

Proof. From the eigenfunction expansion of the heat kernel at t = 0 in terms of
both φn and φn,

δ(x,0)= £ φn(x)φn(0)

= ΣγDφJix)DφM

(Note that the normalization factor N for D cancels out in the result for the
normalized eigenfunctions of L given in Proposition 1.4. This is because changing
D to ND changes vn to N2vn.) Requiring δ = NDδ implies

<5(x,0)= £ NDφn(x)φM

Comparing these expressions gives

independent of n. The converse follows by using this expression to substitute for
Dφn(0) in the eigenfunction expansion above of δ(x, 0) in terms of φn.

Since simple computations of the eigenvalues vn and of the value of Dφn(ΰ) are
not known at this time, it is generally easiest to verify the relationship between
the delta functions directly.

This completes the list of results that can be obtained without reference to the
structure of the intertwining operator. The next step is to consider intertwining
operators in one-dimension.

2. One-Dimension

Two classes of differential intertwining operators can be constructed in
one-dimension. The approach is to propose an ansatz for D and to require that
it intertwine two measure-form operators by

. (16)
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The general ansatz for D is D =f~1D, where D is an operator to be determined
whose leading term has constant coefficient. Let L and L be operators of
measure-form

2

where m = μ'/μ_and m = μ'/μ. Let φn and Iπ be the (normalized) eigenfunctions and
eigenvalues of L.

The first class of one-dimensional intertwining operators is given by

Theorem 2.1. D=f~1Dis_an intertwining operator of the first class between L and
L when D commutes with L and f is an eigenfunction of L with eigenvalue λk. Then
μ = κf2μ (K a constant) and c = — λk.

Proof. Substituting the ansatz D =f~lD in (16) and allowing the operators in L
to act on /"*, one obtains three equations

(18)

where the first equation has been used in obtaining the second two. The theorem
follows from the solution of these three equations. Since m = μ'/μ, a constant K
normalizing the measure density μ relative to μ may be present in the solution of
the first equation.

In one-dimension, the only operators which commute with L are the identity
operator and powers of L. Without loss of generality, in intertwining operators
of the first class, one can take D = 1 (other choices merely change the coefficient
of the unnormalized eigenfunctions of L). Then M = μ~1/~2μ = κ with eigenvalues
vn — K. The normalized eigenfunctions of L are

φa=f-lκ-ll2φa. (19)

The second class of differential intertwining operators takes the form D—f~ld.

Theorem 2.2. D — f~^d is an intertwining operator of the second class relating the
measure-form operator L to the measure-form^ operator L, with measure density
μ = κf2μ (K a constant) whenf = φ'k and c = — λk, or whenf — μ~ 1 jμ dx and c = 0.

Proof. Let D=f~1d and L have measure density μ. Write out LD — D(L-h c) with
all of the (unevaluated) differential operators on the right. Collecting like powers
of δ, one obtains two equations

=/- !m' + cf~ !.

The first may be solved to find μ = κ/2μ, where K is a possible overall constant
normalizing the measures. This can be used in the second to obtain

f" + mf + m'f=- cf.
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Letting F = d2 + m<9 + w', this equation is F/ = - cf. But it is clear that 3L = Fd,
so if φfc is an eigenfunction of L with eigenvalue λk, then one has f = φ'k with
c = — λfc. On the other hand, if Lg = a where a is constant, then / = dg satisfies
Ff = 0. Writing L = μ~ ldμd and taking a—\,Lg=\ can be solved by integration
to give/ = μ ~ 1 μ d x .

One finds M = - κL9 so vn = - κλn. This can be used in (1 1) and (12) to prove

Proposition 2.1. In one-dimension for intertwining operators of the second class,jhe
heat kernel K(x, y\ t) ofidt -f L is given in terms of the heat kernel K(x, y\ t) ofidt + Lby

K(x9 y t) = */c-y'cί' j" dtD(x)D(y)K(x9 y t).
t

An application of Theorem 2.2 to the Bessel equation (3) with μ = x1 ~2y in the
case c = 0 gives/ = x (up to a constant which will be determined by normalization).
After normalization, this gives the classical transformation x y~ 1J y_ 1(αx) =

This completes the general construction of intertwining operators in one
dimension. These results may now be used to find the eigenfunctions and heat
kernel for a particle propagating on a rank one symmetric space.

3. Rank-One Symmetric Spaces

The quantum problem of a free particle propagating on a rank-one symmetric
space is a straightforward application of the intertwining operators. The problem
on the n-dimensional spheres was discussed previously by one of the authors [4].
The result on the rank 1 spaces has also been obtained independently by Debiard
and Gaveau [8].

To be concrete, the compact (positive curvature) symmetric spaces will be
considered, but the solution on the non-compact (negative and zero curvature)
symmetric spaces follows directly. The first step is to recognize that the heat kernel
(propagator) for a particle on the symmetric space only depends on the separation
of the endpoints in a maximal torus. This is evident because without loss of
generality one endpoint can be taken at the identity of the symmetric space while
the other endpoint lies in a maximal torus. The action of the isotropy group
"rotates" the other endpoint about the identity. All maximal tori are conjugate
under the action of the isotropy group and one concludes that the propagator is
only a function of distance in the maximal torus. Restricting the full
Laplace-Beltrami operator on the symmetric space to the maximal torus gives
the radial part of the operator [13]. In a compact rank one space, this is a one
dimensional operator on the circle.

The rank one symmetric spaces have one root x of multiplicity 2m i and a half
root x/2 of multiplicity 2m2. The correspondences between the multiplicities and
the explicit quotient of Lie groups for the compact symmetric spaces is given in
Table 1.

The measure density is given by [13]

M*) = Ω2mι + 2m22
2m2 sin2"11 (x) sin2m2(x/2), (20)
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Table 1. Compact rank-one symmetric spaces (n ̂  2)
[12]

G/H 2m, 2m2

Sn = S0(n + l)/SO(n)
P2n(C) = SU(n + l)/S(Un x I/O
P4"(//) = S/Kn + l)/5p(π) x Sp(l)
P16(Cα>0 = F4/SO(9)

n-1
1
3
7

0
2(n-l)
4(π-l)
8

where
ί2N

is the surface area of the unit Λ/-sphere. One-half the sum of the positive roots is

(21)

The radial Laplacian is

+ m2cot-jd. (22)

By using a sequence of transformations based on eigenfunctions of the radial
Laplacian at each stage, Lmίni2 will be built up from the ordinary Laplacian on
the circle (the rank one torus) L0 0 = d2 using Theorem 2.2. After normalizing the
D operators so that they properly relate the delta functions on each space,
Theorem 1.6 will be used to relate the heat kernel Km^m2 on the rank one symmetric
space to the heat kernel of the ordinary Laplacian on the circle, KΓ(x,0;ί).

Proposition 3.1. D2 = (sin(x/2))~1δ intertwines L0m2 + l and L0 m 2 with c =
(2m2-

Proof. Observe that / = cos(x/2) is an eigenfunction of L0jm2 with eigenvalue
- (2m2 + l)/4 and apply Theorem 2.2.

Proposition 3.2. D± = (sinx)~ ίd intertwines Lmι + l f l l I2 and Lmit1Λ2 with c =
2mi +w2 + 1.

Proof. Observe that / = cos(x) + m2/(2m1 + m2 + 1) is an eigenfunction of LMl>m2

with eigenvalue —(2ml + m2 + 1) and apply Theorem 2.2.

In each of these propositions, the differential intertwining operator changes mt

by one and hence the multiplicity by two. To change the multiplicity by one, one
must use a pseudo-differential operator. Since the intertwining operator which
changes the multiplicity is independent of the multiplicity, the rcth power of Dt

changes w, by n. This makes it reasonable to propose that the 1/2 power of Dt

changes mf by 1/2. Care must be taken however because the integral representation
of a fractional derivative involves a boundary term [14]

ω = W +_L{ f'Wy (23)
(X) '/2 (23)
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Usually the boundary point is chosen so that the boundary term vanishes. A
fractional differential operator which differentiates with respect to a function can
also be defined [15]

π1/2 ,.m (g(x) -

Here, a fractional derivative will be applied to the differential operator Lmι m2

to intertwine to give £mι + 1/2,m2 Boundary terms will arise and these must vanish
for the intertwining to work.

Proposition 3.3. D\'2 = d^2

(x)+l intertwines Lmι + 1/2>m2 and Lmι>m2,

with c = mί-\- m2/2 -f 1/4 when applied to functions f which vanish at x = π.

Proof. It is easiest to change variables, y = cos(x) -f 1, in Lmι m2 and apply δ*/2 to
it. Using the identities [14],

1/2

~ n - (2k -I- 1 )/2 /

one verifies that <3^/2 performs the desired intertwining with c = ml+ m2/2 + 1/4.
A boundary term arises which must vanish at y = 0 or x = π.

The intertwining operators are normalized by requiring that they relate the
delta functions (with one endpoint at 0) on the spaces whose radial Laplacians
they intertwine.

Proposition 3.4. The intertwining operators transform between the delta functions
of each measure density

. D250>lll2(x,Oλ (27)

<5mι + 1,m2(*,0)= -(2πΓίD1δmιM(x,0). (28)

Proof. Integrate by parts in the defining integral for the delta function (15).

Proposition 3.5.
^/2,m2(^0) = (2π)-1/2Z)}/2

(50,m2(x,0). (29)

This is easily verified by using the properties of the Jacobi polynomials, but we
do not have a more direct proof.

Using these propositions, one can apply Theorem 1.6 to construct the heat
kernel of idt -f LOTι m2 in terms of the heat kernel of idt -f d2 on the circle.

Theorem 3.1. The heat kernel of ifl t + Lmι>m2 on the rank one symmetric spaces is
given by

~ T- T ' (Λ ~1 n 7~T Kτ(x> 0; f)'dxJ \4πsmx/2dxJ
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where KΓ(x,0;ί) is the heat kernel of idt 4- d2 on the circle (with periodic boundary
conditions when pmι>m2 is an integer and with antiperiodic boundary conditions when
it is a half integer). When m1 is a half-integer,

"_ί-rί-
\2πsmxdxJ \2πsinxdx

Proof. If m1 is an integer (and w2 = 0), apply Proposition 3.2 repeatedly to
intertwine Lmι 0 and L0 0 with

7 = 0

From (21), c1 = ρ2

nι 0. If m t is a half-integer, apply Proposition 3.1 repeatedly to
intertwine L0jlll2 and L0 0 with

From (21), c2 = Pom 2 Apply Proposition 3.3 to intertwine L1 / 2 f l Π 2 and L 0 m 2 with
c1/2 = w2/2 + 1/4. Ήere, C 1 / 2 4 c2 = pj / 2 f ϊ l l 2. Now apply Proposition 3.2 to
intertwine Lmι m2 and L1/2fM2 with

ι= Σ
7 = 0

(where [mλ] is the integral part of mj. Here, c1/2 + Cj + c2 = p^1>m2 Combining
these results with Proposition 3.4, Proposition 3.5 and Theorem 1.6, one finds for
integral w2 and for integral or half-integral m1 the desired result for the heat kernel

.

The heat kernel on the circle can be expressed in geometric form using the
method of images to project the heat kernel from the universal covering space to
the circle. Boundary conditions on the symmetric space require

Kτ(x 4- 2πn, 0; ί) = exp (2πiρn)Kτ(x, 0; ί).

Starting from the geometric form, the heat kernel can be written as a Jacobi theta
function

- (4πiί)" l/2ef2/4tθ3(xπ/2t - πp, π/ί). (31)

Using the inversion formula for Jacobi theta functions,

03(z,ί) = (- itrll2e-**ez(-z/f, - 1/ί),

Xτ(x,0;ί) can be rewritten as an eigenfunction expansion

Kτ(x,0; t) = e-io2t+ioχθ3(x/2 - pi, - ί/π)
2π
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= JL V ei(p-λ)x-i(λ-P)2t (32)

2π A = - Q O

If p is an integer, the index of the sum can be shifted and the expression simplifies to

KΓ(x,0;t) = — ( 2 £ cos(λx)e-iλ2t+i\ (33)
2π\ A = I /

If p is a half-integer, the index of the sum can be shifted and the expression
simplifies to

KΓ(x,0;ί) = - £ cos(μ+l/2)x)<r ί(λ+1/2)2r. (34)
π A = O

It is important to emphasize that the intertwining operators relate the eigen-
functions of the operators (22) even when the values of ml and m2 are not consistent
with the existence of a symmetric space. In this more general case, it is not as
useful to have the heat kernel, but it is the eigenfunctions themselves which are
of interest. These are the Jacobi polynomials P("'b\ where a = m^ + w2 — 1/2,
b = m1 — 1/2. The intertwining operators are the shift operators which change the
indices of the Jacobi polynomials. By reducing the indices down to zero, one
obtains the Mehler-Dirichlet representation.

Proposition 3.6. For a and b positive integer or half-integer, a>b, p = (a + b+ l)/2,

2 - 1 - 2

where

If c"(cos(x/2)) are the Gegenbauer polynomials, then one also has

Proposition 3.7. For a arbitrary and b integer or half-integer, a — b not a negative
integer or zero,

P™\cos(x)) = Nd£ft+lc£lu+l(coa(x/2)), (36)
where

The above has concentrated on the compact case. The results in the noncompact
case follow by repeating the same arguments after one replaces sin (x) in the measure
density by either x or sinh(x). One finds that / = x or / = cosh(x) are the
appropriate eigenfunctions to apply Theorem 2.2. The intertwining operator is
then either D = doτD = (sinh x)~ld. The fractional differential operator is modified
with the endpoint a becoming infinity which eliminates the boundary term and
the cos(x) changing as one would expect. Theorem 2.1 then follows with these
simple changes when the heat kernel on the circle is replaced by the heat kernel
on the line. This kind of modification to obtain the non-compact results works in
higher rank as well and will not be repeated.
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4. Two-Dimensional Intertwining Operators

Intertwining operators for partial differential operators in two dimensions can be
constructed by similar means to those in one dimension. The first observation is
that Theorem 2Λ applies equally in any dimension, so that D = /~1Z), where D
commutes with L and / is an eigenfunction of L in the first class of 2-d intertwining
operators. The higher the dimension, the larger the space of operators which
commute with L. In the symmetric space case, these will always be formed from
linear combinations of the independent G-invariant differential operators.

To go further, we begin with two soluble one-dimensional measure-form
operators. _Let Lx = d2

x + mdx and Ly = dy + ndy denote these. The operator
LO = Lx + Ly is separable and has two kinds of eigenfunctions. The first kind are
separable products of the eigenfunctions ψm(x) and χn(y) of Lx and Ly,

) (37)

The second kind are formed from linear combinations of eigenfunctions each
having the same eigenvalue, e.g.

Φn(χ,y) = *Ψn(χ) + βχΛ(y) (38)

Letting a comma indicate differentiation with respect to the subscripts which
follow, the second class of 2-d intertwining operator is given by

Theorem 4.1. Given an operator L = Lx + Ly + m1dx + n1dy whose coefficients
satisfy

Ήι,* = nι f J,» (39)

= 0, (41)

= 0, (42)

then D = f~1(Lx — Ly) intertwines Land L = L + m2dx + n2dy with constant c where

«2 = , (44)

and f satisfies

Lf + 2mltXf=-cf. (45)

Proof. Insert the ansatz for D in the intertwining equation (1) and collect like
powers of derivatives. Using (39) and (40), one shows that wι l t JCX = m1>yy and
nι,xx = nι,yy an(^ these are used with the fact that m and n are independent of y
and x, respectively, to obtain (41) and (42).

A useful example is when m^ = aftX/f and nl = α/>y//, where a is a constant. In
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this instance, (40) is trivial and (39) simplifies to

(46)
fJ,x \f

If /is taken to be an eigenfunction of Lx + Ly with eigenvalue fc, then the condition
(45) on / becomes

)=-(' + *)/• (47)

So, / must also be an eigenfunction of the ordinary Laplacian.
Using eigenfunctions of Lx + Ly of the first kind (37) only generates transform-

ations on Lx and Ly separately. This is evident because the measure remains
separable in terms of x and y. These transformations are essentially one-
dimensional. To generate measures which are not separable in x and y, one must
use eigenfunctions of the second kind (38). The rank two symmetric spaces with
Dynkin diagram o => o provide an example of this.

5. Rank 2 o=>o

There are essentially two types of rank-two symmetric spaces with at most one
restricted root of odd multiplicity. These have the three Dynkin diagrams [12]
o — o, o => o and o <= o. (The arrow points to the shorter root.) The latter two
differ in whether double roots are present.

Again we will consider the compact case. The noncompact case follows
immediately. Some of the non-compact rank 2 spaces have been considered
previously by other authors [7,9,10].

Let xί and x2 be unit basis vectors on the maximal torus.
In the examples with the Dynkin diagrams o=>o and o<=o, there are six

positive roots which may be labelled α2 = x2/2, a2 = (xl— x2)/2, α 1 = α 2 + 02,
«! = 2α2 4- α2, 2α1? and 2α2. The root pairs ULI and (x.2,al and a2, and 2cnl and 2α2

each form Weyl sets. The multiplicity of roots within a Weyl set must be the same,
but different sets can have different multiplicities. The multiplicities of the roots
in these sets will be denoted, respectively, 2mα, 2ma and 2w2α. The allowed (compact)
symmetric spaces are classified by the multiplicities of the restricted roots and
these are given in Table 2.

Table 2. Rank 2 symmetric spaces o => o with at most one
restricted root of odd multiplicity [12]

G/H 2ma 2mΛ 2m2ct

SU(n + 3)/S(l7(n + 1) x 17(2))
Sp(n + 2)/Sp(n) x Sp(2)
S0(2n + 2)/SO(2n) x 50(2)
S0(8)/17(4)
SO(10)/17(5)
E6/SO(1Q) x R

2
4
1
4
4
6

2(n-l)
4(n - 2)

2(n - 1)

0
4
8

1
3
0
1
1
1
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The density is given by

Vma,m^=v

ma,m^ Π (sin(yx))2m>,
yeR +

where R + is the set of positive roots. One-half the sum of the positive roots is

1 _ „
Pma,my,m2, = ~ Σ 2myV

± γeR +

X X
= (mα -f 2m2α + 2mfl) Y -h (mα + 2m2α)y .

The radial Laplacian for these symmetric spaces is

m2«cot(2α/ x))αί 3, (48)
i

where s runs from 1 to 2 and i from 1 to 2. The notation αt d means to form the
scalar product of the a v root with the gradient operator, so for example,

•̂3 = (^+32)72.
The approach will be to eliminate the Weyl set of roots al and a2 by reducing

the multiplicity 2ma to zero using Theorem 4.1. This will leave a separable product
of rank one problems involving α l 9 2αx and α2, 2α2. The results of Sect. 3 can then
be used to complete the reduction.

Let

! = 3* + K cot (αx x) + 2m2α cot (2αx -x))δl9

'x) -1- 2m2acot(2a2 x))52

be the operators for the rank one problems. The intertwining operator used in
reducing the rank 2 radial Laplacian to the sum of these two operators is given by

Theorem 5.1. The operator D = f~l(Ll — L2) intertwines Lma + 1>mα>m2a and Lma mam^

with constant c = \Pma + 1^mJ2 - IPmβ,mα,mJ2 ^hen f = cos(xj'-cos(x2).

Proof. One identifies

_ — 2wαsin(x1)m^ = ,
'c^ —cos(x2)

n α ,ςmn1 = , (50)
j) —cos(x2)

so that

Lmα,mα,m2α = ^1 + ̂ 2 + 2mβCθt(flί χ)fl i 3

The conditions of Theorem 4.1 are satisfied and it may be applied. The function
/ = cos(x1) — cos(x2) is both an eigenfunction of L1 — L2 with eigenvalue
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— (wα -f 2w2α 4-1) and of the ordinary Laplacian with eigenvalue — 1. Using this,
one finds c = 3 + mα + 2m2α + 2ma which equals \pma + ι,mα,m2J

2 — IPmα,mα m2J2 The
shift in measure density produced from/increments ma by 1, and the desired result
is obtained.

The intertwining operator also shifts the covariant delta function having one
endpoint at the identity.

Proposition 5.1.

δma ma W2αC*, 0) = NDδma _ i ma m2Λ(x, 0), (52)

where

-2V i
\7 — mα- l,m g,m2g (53)

Proof. Integrate the defining expression (15) for the delta function by parts.

Using this, one can use Theorem 1.6 to relate the heat kernel on the rank 2
symmetric space to the separable product of heat kernels of rank 1 spaces.

Theorem 5.2. The heat kernel of idt + Lmα mα (ma an integer) is given in terms of

those of ίdt + L1 and idt + L2 by

Π
j=l

'Dma(κ^m2^ °; 0*TO(*2,0; 0). (54)
In the case of S0(2n + 2)/SO(2n) x 50(2) in which ma = 1/2, one merely reduces

the α roots first. This is equivalent to rotating the root diagram so that the roles
of the a and α roots are reversed.

The eigenfunctions of the Laplacian (48) are obtained by the intertwining
operator from a product of eigenfunctions of one-dimensional Laplacians (22) even
when the multiplicities do not correspond to symmetric spaces. These are
two-dimensional orthogonal polynomials [1,2].

6. Rank 2 o — o

A second class of rank 2 symmetric spaces which can be solved are those with the
Dynkin diagram o — o. In this case, there are three positive roots which may be

labelled al=(xl~ ^/3x2)/2, α2 = (̂  + ̂ /3x2)/2, and α3 = α t + α2 = j^. All three

of these roots have the same multiplicity 2m and pm = \ £ 2mαf. The density
3 » = 1

appearing in the measure is μm(x)= Vm Y[ sin2m(αί x). The Lie group 5(7(3) has
i= 1

the same root structure with m = 1 but the density is scaled differently,
3

μ(x)= Vm Y\ 4sin2(at-x/2), so the volumes are different. To distinguish between
i = l

them, the re-sized Lie group here will be denoted 5£/'(3).
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Four values of m are consistent with (compact) symmetric spaces: m = 1/2
corresponds to Sί/(3)/SO(3), m = l is the re-sized Lie group St/'(3), m = 2
corresponds to SU(6)/Sp(3), and m = 4 corresponds to £6/F4 (where E6 is the
compact real form of E£). The space with m = 1/2 has two simple restricted roots
of unit multiplicity and we cannot handle this at this time. For the others, the
multiplicities 2m are all even so these symmetric spaces are of split rank. Since
there are no non-trivial Weyl sets, all of the root multiplicities must be reduced
together. This will result in a chain of reductions

E 6

F4 Sp(3)

The radial Laplacian for these symmetric spaces is

Lm = dsds + £ 2mcot(α£ x)<v3, (55)
i

where s runs from 1 to 2 and i from 1 to 3.

Theorem 6.1. The operator Dm intertwines Lm and Lm_1 with constant

c = \Pm\2-\Pm-\\2ι where Dm is given by

'd)3 + - - cot(α2 x)(α2 d)2 -- cot2(α2 x)α2 d

3 - - - cot (α3 x)(α3 d)2 -f — - cot2 (α3 x)α3 d (56)

(57)

with

i = ι

The proof of this is a long computation. An abstract form for this intertwining
operator can be derived, but it is more direct to simply compute Dm for this
particular case. Assume the following form for D:

Dm =/(α1 <3α2 δα3 d + G1α2 δα3 δ -f G2α1 δα3 5

^'d 4- #12α3 δ + H13a2'd + H23a1-d). (58)

Substituting into the intertwining relation and collecting like powers of derivatives
gives four non-trivial equations. The first three may be solved successively for /,
G, and H^ giving the desired result for / and

G2 =i(m- I)(cot(α1 x)-cot(α3 x)),

G3 = - i(m - l)(cot(αi x) -f cot(α2 χ)),
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4 4

m(m —
x) + cot2 (α2 x)),

(m-l)(3m-2) (m 2/i13 = - - -- 1 -- - - cot (α2 x;
4 4

m(m— 1), <, , x ? , v v
+ -±- — ~(cot2 (αι x) + cot2 (α3 x)),

+ (cot2 (α2 x) + cot2 (α3 x)) .
4

The fourth equation is a consistency condition. Rewriting this expression for D in
terms of powers of α, d gives the desired result. In solving the equations, the
following identity and derivatives of it are helpful:

-cot(α1 x)cot(α2 χ)-f cot(α1 x)cot(α3 x)-hcot(α2 x)cot(α3 x)= - 1.

This identity (and analogous ones for other problems) come from the property of
Lie groups [13] that

SsSs(μ\l2)=-\Pl\
2μ\12.

To obtain the heat kernel, one also needs to know how the delta function
transforms under Dm.

Proposition 6.1. Dm transforms the delta function δm_i(x9Q) defined with respect to
the density μm_l(x) to the delta function <5m(x,0) defined with respect to the density

where

— 2Vm~ 1 _ (59)_
2 - - - 2 'm 3Fm(2m-l)((2m-l)2-l-(m-l)2)

Proof. Integrate the defining expression for the delta function by parts.

Applying Theorem 1.6, one has

Theorem 6.2. The heat kernel of idt + Lm is given by

Km(x, 0; ί) = e^2t(NmD m)(Nm _ ,Dm _ J - - (N^JK^x, 0; t\ (60)

where Kτ(x,Q;t) is the heat kernel of the idt + dsds on the 2 -dimensional torus with
periodic boundary conditions.



80 A. Anderson and R. Camporesi

The heat kernel on the torus of rank r can be expressed in geometric form
using the method of images to project the heat kernel from the universal covering
space to the torus. If R + is the set of positive roots, then the set of normalized
simple restricted roots {άj defined by

lV% ~α if 2a,iφR +

ί/2oc ί "α ί if 2αίeR +

from a basis for the torus. Boundary conditions on the symmetric space force
Kτ(~x, 0; t) to depend on ~p (one half the sum of the positive roots on the symmetric
space) through the relation:

Kτ(x + 2πn, 0; t) = exp ( 2 π ΐ p ' n ) K τ ( x , 0; ί), (62)

r

where ~n = £ nμ^Γ/2n, the unit lattice of the symmetric space.

Starting from the geometric form, the heat kernel can be written as a
(multidimensional) Jacobi theta function

Xr(x,0;ί) = (4πiί)"r/2 £ eχp[i(3c +2π7ί)2/4ί-2πip 7Γ|
2π7ίeΓ

= (4πίtΓrl2 exp (ϊx2/4t)θ3 ( A ~ l(xπ/2t - πp), - A 'ί Y (63)

where (A~ %• = ά, ά7. Define the dual basis {τc f } of fundamental spherical weights
by

Applying the inversion formula for (multidimensional) Jacobi theta functions

03(7,T) = (-0"r/2(detT)"1/2exp(-i7T-1T/π)θ3(-T-17, -T'1),

XΓ(3Γ,0;ί) can be rewritten as an eigenfunction expansion

Kτ(x, 0; t) = — exp (- ίp 2t + ίp-χ)θ3(x/2 - pt, - ί/πA)

= 77- Σ exp [iff + J>) x - i(Ί + J))2tl (64)
KTle/\

r

where T= J] w/Tϋfβyl , the lattice of spherical weights, and FΓ = (2π)r(det A-1)1/2

i = l

is the volume of the maximal torus. The inversion formula is a consequence of
the Poisson summation formula on the torus. In the split rank case, ~p is a spherical
weight. The phase exp(i2πp Jί)= 1 and KΓ(3?,0;ί) is the periodic heat kernel on
the torus.

The eigenfunctions of the Laplacian (55) for any integer m can be written in
terms of those on torus by applying Proposition 1.1.
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Proposition 6.2. The (unnormalized) Weyl invariant eίgenfunctions ofLm are given by

φζ(x) = DmDm_ ! - D! Σ exp [/w(l + p) x], (65)
\veW

where W is the Weyl group.

7. Conclusion

The extension of the intertwining operator approach to higher rank symmetric
spaces appears to be limited solely by computational detail. It is known from the
work of Dowker [3] that the operator which intertwines the radial Laplacian on
any compact Lie group with the ordinary Laplacian on its maximal torus is given
by

D = - - - H<X'd, (66)

where the products are over the positive roots. In the higher rank symmetric
spaces, the effort is directed at finding the lower order derivative terms which
modify this D.

In the case of the symmetric spaces of type A III [12], a natural generalization
of the rank 2 result of Sect. 5 exists. The spherical functions have been known for
some time [16] and more recent results have also appeared [7, 10]. The Dynkin
diagram for rank / spaces of type A III is either of the form o — o o => o or
o — o . . . o <= o, depending on the presence of double roots, where there are / circles
in the diagram. From the positive simple restricted roots of the space, identify the
Weyl set of / orthogonal single roots α of multiplicity 2mα (and possibly / double
roots 2α of multiplicity 2w2α) associated with the circle on the right end of the
Dynkin diagram. Let aeA denote the Weyl set of 1(1—1) remaining roots of
multiplicity 2ma = 2. The intertwining operator which reduces the multiplicity of
the A roots in the radial Laplacian on the A III space to leave a separable product
of / rank one operators is given by

D = - 1 - Π^-^ (67)
Πsin(α x) I < 7

A

where L, is the radial Laplacian for a rank one symmetric space,

Li = 3? + (mα cot (α(- x) + 2m2a cot (2αt x))di9 (68)

and i runs from 1 to /. The constant c in the intertwining relation is just the
difference in p2 between the A III space and the separable collection of rank one
spaces,

- - 1 „ \
τ— + m* + 2m2α . (69)

Using Proposition 1.1, one easily finds the spherical functions of the A III space
in terms of an antisymmetric product of the eigenfunctions on the rank one spaces.



82 A. Anderson and R. Camporesi

Using these ideas on multiplicity reduction, work is in progress to extend the
results here to the other higher rank symmetric spaces. Effort is also being directed
at understanding the fractional partial differential operators which will necessarily
appear if there is more than one simple restricted root of odd multiplicity.

The method of using intertwining operators to solve partial differential
equations appears to be very fruitful. It provides a natural generalization of the
operator transformations which exist between orthogonal polynomials and other
special functions in one dimension. Furthermore it allows the solution of problems
which do not separate in the standard collection of orthogonal coordinate systems.
The method has been used here to find the heat kernel on the rank one and rank
two symmetric spaces.
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