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Abstract. We investigate weak perturbations of the continuum massless
Gaussian measure by a class of approximately local analytic functionals and
use our general results to give a new proof that the pressure of the dilute dipole
gas is analytic in the activity.

1. Introduction, Notation, Results

The classical dipole gas at equilibrium is a difficult system. Many foundational
results have been obtained [1-5] but for the purposes of this paper the work of
Gawedzki-Kupiainen [4, 5] is most relevant. This was the first paper in which the
renormalization group was explicitly used on this problem and this paper is an
attempt to improve on their methods and results as a step on the way to other
problems. For example we expect these methods to be effective in the analysis of
self-repelling walk in four dimensions, screening or its absence in quantum
statistical Coulomb systems and the ¢} massless lattice quantum field theory.

Our results are designed to provide a framework for the renormalization group
in the context of perturbations of the (continuum) massless Gaussian random field.
We will use the dipole gas for motivation.

We will first describe the results and proof omitting some technical aspects and
then return to give the definitions and state the results carefully.

The Dipole Gas

We consider N dipoles in a periodic box A CIR% d > 1. Each dipole is described by a
position coordinate x and a unit polarization vector p. We unite these degrees of
freedom into & =(x, p) and let do(&) =dxdS(p), where dS is the normalized Lebesgue
measure on the surface of the unit ball. The fundamental objects to study are all
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derived from the partition function,
Z(4,z,p)= Z 5 doexp[— BV (91,
V=3 ¥ y (€, &))-

Lj=1,

v(&, &) is the potential energy of two dipoles in a periodic box,

(¢, él) =(ﬁ : ax) (ﬁ, : 6x’) v(x '—xl) >
where v(x —x')=“|x —x'|>~*" is the Coulomb potential energy of two charges in a
periodic box. We have put in the quotes because we will have to modify the
Coulomb potential to resolve the ambiguities connected with periodic boundary
conditions and stability.
An old question for this system is whether the pressure, which is defined by,
pP= L1m P(4,z,p),

I—’w

P(4,2, )= - LogZ(4,z, )

||
is analytic in the activity z, near the origin. If v (without periodic boundary
conditions) had integrable decay as |x — x'| — 0o, this would be a standard result in
the theory of the Mayer expansion [7, 11]. However |v(&, £')| behaves like |x — x| ¢
when |x —x'| is large. Nevertheless, as we shall prove in Corollary C, the pressure is
analytic.

Results on the analyticity of the pressure for a dipole gas were first obtained in
[4]. They considered a lattice dipole gas instead. We are studying the continuum
problem. There are some advantages to the continuum: scaling is more convenient
and estimates on covariances are immediate. A related continuum problem was
studied in [6].

The first step is to rewrite the partition function as a functional integral using
the Sine-Gordon transformation.

The Sine-Gordon Transformation

If v(x, x') is positive semi-definite and sufficiently regular at the origin then there
exists a Gaussian Borel measure du, defined on a space of continuously
differentiable functions ¢(x) on the torus A4 such that

e VO = [du,(¢)exp [i ; ¢(§j)] ’

where ¢(&)=¢(x, p)=(p- 0)¢(x). Upon substituting this into the partition func-
tion, we obtain

Z(4,z,p)= [ du(P)Z(4, ¢),
Z(A, ¢)=exp[2z [do(&) cos[B*$(£)1] .- (1.1)

Formulas of this type are called Sine Gordon Transformations. They were invented
by Siegert [12] and Kac [13].
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Wilson’s Renormalization Group

The idea is to evaluate the functional integral (1.1) by a sequence of integrals
(Fubini’s Theorem), which are associated with increasing length scales, L/,
j=1,2,..., and to examine the evolution of the perturbation under these
integrations. To do this we split the covariance v into two pieces v=1v"+ C’, where

o'(k)=L*0(Lk), C'(k)=0—1". 1.2)

At k=0 the Fourier transform 6(k) has a 1/k? singularity. This singularity is
cancelled in €’ and therefore C'(x) will have good decay properties characterized
by the length L. Furthermore

Z(4,z, )= [duA9) [ duc(f)Z(4, ¢+ f)

because ¢+ f is a Gaussian random variable with covariance v and a gaussian
measure is characterized by its covariance. This way of splitting the integration
was used in [8]. Our objective is to describe the evolution of Z under the
transformation

Z(4, )~ [duc(f)Z(4, ¢+ ) =(uc * Z) (4, §). (1.3)

After this transformation it remains to carry out an integral with respect to du,,
but dy,. is related to the original measure du, by scale transformation. Thus it is
customary to perform a rescaling # to change du, back into du, A single
renormalization group step consists of (1.3) followed by £.

Wilson studied the transformation

V- —log(uc xe™") (1.4)

of Vinstead of Z. In perturbation theory Vchanges in a simple way compared with
Z.

The Large Field Problem

Gawedzki-Kupiainen managed to follow this route but they had to overcome a
serious difficulty: they constructed the logarithm in (1.4) not by perturbation
theory (which is an incomplete description because it diverges) but by convergent
Mayer expansions. Unfortunately not even Mayer expansions can be expected to
converge for all values of the field, so they had to resort to an ingenious hybrid
representation in which the Mayer expansion was used to construct V in those
regions of space where ¢(x) is small, but in other regions of space where ¢(x) is
permitted to be large, the perturbation is left in the form exp(— V).

Our method is different: we replace the role of exponential and logarithm by
two objects which we call &xp and Yog respectively. They are indeed an
exponential and a logarithm but they are defined by using a different algebraic
structure on the class of allowed functionals. They resemble the standard
exponential and logarithm sufficiently to allow us to use them in their place but
they are defined by power series which terminate after finitely many terms so that
convergence problems are absent: we do not have to resort to different procedures
depending on the size of ¢. The &xp is not as new as we have made it sound, it is
merely an efficient way of writing the “hard core polymer gas.”
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An Invariant Form for the Interaction

We will introduce the &xp using the dipole gas example. Let us decompose the
torus 4 into closed unit cubes 4 with disjoint interiors centered on an integral
simple cubic lattice. We will call these cubes 49 cubes. When we say a set is in A©
we shall mean that it is a union of A¥ cubes. For each A‘? cube 4 we set

P(4, ¢)=exp [22 ) dQ(é)COS[ﬁ”ZdJ(f)]] -1

Then the initial interaction for the dipole gas is given by

ZAP=T]PA+11=Tx; T TIPA). 19

In the sum the 4; are required to have disjoint interiors. P(4, ¢) is a functional of ¢
that, intuitively speaking, depends on ¢(x) for all x in an infinitesimal neighbor-
hood of 4. In view of this tendency of P(4) to spread out a little beyond 4 we glue
together any two cubes 4; and 4; in the above sum whenever they are not strictly

disjoint. This is done by defining

KO=Yq; % TIP4), (16)

41,...,ANe¥(X) i
where 4., ..., Aye4(X) iff

1. X=u4,
2. A4,,...,4y are distinct,
3. X is a connected set.

With K defined this way, it follows that

© 1
Z(A9¢)= m Z K(X19¢)K(Xm¢);
N=0 « X1,..,XNnCA
where the sets X; are in 4”2 and are disjoint. Since they are closed, disjointness
implies that they are separated by a distance of at least one. This type of formula is
often called a “polymer gas.” We will now show that it is also an exponential.
We define! a commutative product, denoted o. on functions F(X) of sets. For
the moment let the domain of our functions be the null set and sets in 4. The
product is
(FioF))(X)= ¥  Fi(Y)Fy(2), (1.7)

Y, Z:YOZ=X

where X=YUZ iff X=YuZ and YnZ=¢. This product is suggested by an
analogous product in [7]. The o Identity .# is

S(X)=1 if X=0

=0 otherwise.

! We would like to thank Giovanni Gallavotti for suggesting that this product is the correct
approach and Shelley Goldstein for suggesting we approach it correctly
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We set K(X)=0if X = @. If we define the - exponential &xp by the power series
Exp[K]=F+K+K-K/2!+...,then Z(4)= Y &xp[K](X). The sum over X is
Xca

not very attractive and we can remove it by defining a “space filling” function 7.
The space we wish to fill is 4 — X but this is not in the domain of our functions so
we have to enlarge the domain: define a cell to be an open block, face, edge, ..., a
single point at the corner of a block. Let the domain of our functions be all unions
of cells and the null set. We extend K by setting K(X)=0 whenever X is not a set in
A©. Define

OX)=1 if X is a cell

Now we have =0 otherwise.

Z(X, p)=éxp[0+K](X, ¢). (1.8)

The right-hand side is a form which will remain invariant under renormalization
group transformations. Notice that [] is the “zero” perturbation because
Sxp[d](X)=1 for all X.

The Renormalization Group Step

A single renormalization group step has four parts, changing the scale in &xp,
renormalization, rescaling, integrating out a fluctuation field. They will be
performed in this order but we will explain them in a different order.

Integrating out a fluctuation field. Given any function F(X) with the property
that F(®)=1, we can define the logarithm by its power series:

(FogF)(X)=(Log[F+F—SFN(X)=(F—F)—L(F-S)+....

Both the power series for Zog and &xp terminate after finitely many terms.
Integrating out a fluctuation field is the transformation

K—K', where [1+K'=Y%g[u*éxp[0+K]], (1.9)

where p is a Gaussian measure, (such as pc).

Changing the scale in &xp. The transformation (1.9) will have good properties
when the decay length of the covariance is comparable with the side of the cubes
used to define &xp. This condition is imposed because the analysis of this map
depends on fields in regions separated by more than the decay length being
approximately independent. Thus we have to supplement (1.9) with another
identity that changes the scale in &p because otherwise it will continue to be the
unit scale while successive integrations are characterized by scales I/ with
j=1,2,.... To this end we write the torus as a union of closed cubes on the next
scale. These are cubes with disjoint interiors and side L which are unions of the old
A® cubes. We call these new cubes AV cubes and repeat our previous
constructions on this scale.

We will produce a map which takes a functional K defined on sets in A9 to a
functional HK defined on sets in A", HK is a single symbol (not H times K). By
construction HK is related to K by an identity of the form

Exp[[0+ K] (A)= e 2E14I=3$:008> ey p 1+ HK] (A). (1.10)
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This identity is changing the scale in &xp. The type of the arguments K and HK
indicate that the left-hand side contains an &xp whose domain is the functionals on
sets in 49, while the right-hand side contains an &xp whose domain is the
functionals on sets in A"). The other exponential on the right-hand side is the
standard one. {¢, da¢) is a quadratic form in ¢. The construction (Sect. 2) of the
map K—HK is one of the principal contributions of this paper.

Renormalization. Before integrating out a fluctuation field the
exp{—0E|A|—3{¢,da¢)} in (1.10) will be removed by absorbing it into a shift in
the covariance v’ of the Gaussian measure du,,.

Rescaling is a trivial but confusing transformation where all lengths are scaled
by Lso that the A" cubes return to being 4‘” cubes and the interaction is back in
the invariant form.

The Class of Functionals K

We will need K to have derivatives with respect to ¢. If we calculate the second
variational derivatives with respect to ¢(x) of the K(X, ¢) given in (1.6) we obtain
derivatives of delta functions. It is easier to regard K as a functional of the
derivatives of ¢, i.e. ¢(&)=d(x,p). We go a little further and allow K to be a
functional of higher derivatives as well. If we take this view then any variational
derivative of K at worst involves delta functions. Therefore we allow complex
functionals whose variational derivatives exist as complex Borel measures. Our
class of functionals K =K(X, ¢) obey three conditions:

Smoothness. Variational derivatives with respect to the gradient of ¢ exist as Borel
measures.

Locality. The variational derivatives of K(X, ¢) have support within a small
neighborhood of the set X. The neighborhoods are sufficiently small that
neighborhoods of disjoint sets in 4 do not overlap.

Analyticity and Bounds. K(X, ¢) is bounded by a Gaussian functional of ¢. If K
were allowed to grow more rapidly than a Gaussian for ¢ large then we could not
define the convolution by uc. in the transformation (1.9). We also require that
K(X, ¢) as a function of the set X becomes small when X is a large set. Finally we
impose an analyticity condition which is roughly equivalent to demanding that,
for any ¢ and any real continuous function f(£) bounded uniformly by one,
K(X, ¢+ Af) is analytic in 4 in a disc of radius h >0 which is independent of f and

On this class of functionals we will define a class of norms | K|, ., Which
measure these properties: G quantifies the rate of growth in ¢, I' quantifies the rate
of growth in sets X and h is the radius of analyticity.

Outline of Results

We will prove two theorems, Theorems A and B, that together control a
renormalization group step, if Lis chosen sufficiently large and K is small enough.
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Theorem A. Given suitable G, I, h there exists G, I, h such that
IHK ||g,r,5< o(L) | Kllg,r,»» where the || - ||g, r, s norm is stronger than || - ||g,r,nin T,
weaker in G and h. The deterioration in G becomes arbitrarily small as |K| g, .5
tends to zero.

Theorem B. Given suitable G, I', h there exists G', I, W such that |K'| ¢ . w
S|IKllg,r,wwherethe | - ||lg. ., normis weaker than || - || r., K’ is defined in(1.9).
The deterioration in I' and h become arbitrarily small as | K|| 1, tends to zero.

The rescaling # reverses the deterioration in h and almost reverses the
deterioration in G allowing these theorems to be combined to prove that a
renormalization group step improves h and I'. The deterioration in G slows down
as the norm of K tends to zero which permits the renormalization group to be
applied indefinitely.

Conclusion. We choose L sufficiently large and we choose a norm | - ||¢. r,, such
that (1) G prescribes a sufficiently small Gaussian growth in ¢, (2) I prescribes a
sufficiently rapid decay in X, (3) h prescribes a sufficiently large radius of
analyticity. If |K| ¢ r,<1 then each successive renormalization group step
rewrites the partition function in terms of a slightly shifted Gaussian measure
perturbed by an interaction whose norm is down by a factor o(L™ ") but the norm
weakens its growth condition on ¢ slightly. Since each step also rescales A,
A—-R(A)=L"4, we eventually rescale 4 into a unit block. From this we can
deduce that the (L") finite volume pressures of the dipole gas are analytic uniformly
in the volume and consequently any infinite volume limit point of these pressures is
analytic in the activity.
Now we will fill in the missing details of the preceding outline.

The Coulomb Potential on the Torus

A dipole gas without additional short range forces or alternatively a modified
Coulomb potential is not stable. Therefore we smooth the Coulomb potential at
the origin. Let v be given by

1 A ik x
U()C)= m k;() U(k)e k ,
t(k)=[k-kP(k-k)y+k-ck]™ 1, (1.11)

where k is summed over the dual lattice. The omission of k =0 removes an infra-red
divergence without affecting the Dipole-Dipole interaction. For the moment we
set g, which will be a constant d x d complex matrix, to zero. P(t) is a monotone
positive €® function with P(t)=1 for t in a compact neighborhood of zero. It is
chosen so that 6(k) =0, [ dk|6(k)|(1 + k*)* < oo for some s >d/2 + 2, and vis a pseudo-
differential operator. The inclusion of P smooths the singularity of v at x=0
without changing the asymptotics of v as |x| tends to infinity. Under the
renormalization group ¢ will change but P is invariant.
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The Massless Gaussian Measure

Let A be a d-dimensional torus, d= 1. On the Sobolev space H(4)/{constants},
§>d/2+2, there exists a unique Gaussian Borel measure dy, defined by

[dp (@) i#DIWix— =< on2 ey
Lof )= [dxdyf (x)o(x—y) f ().
The existence of du,, for ¢ small, is discussed in Appendix A.
We set ¢(x)=d(x,1)=0,¢(x), ¢;1(x)=P(x,i,j)=0,0;¢(x). We use ¢ to denote
(x,1) or (x,1,j); #(£) is any one of these fields and v(¢, &) is the covariance for ¢(&)
= ((]5,'(3(5), ¢ij(x)), 1 é l’]é d For example U(x: l, y’]) = jdll'vqbl(x) ¢j(y) =(aiajv) (X —y)

Definition. A complex valued functional K(¢), defined for any continuous function
(&), is said to be infinitely differentiable, if for each n there exists a regular complex
Borel signed measure K,(¢,d") such that

0K(¢+ ¥ 4:f)
0Ay...04, |i=0
for all real continuous functions, fi, ..., f,- The functions f; are defined on the index

space (position space x discrete space for indices) and the integration includes
summation over indices.

= [ K¢, d"0) [1(£1) - fE0)

Distances in A will be measured in the norm

=Ixlo= Sup |xj.
i=1,....d

The distance | X — Y| between two sets X and Y is the shortest distance between
centers of blocks. We define for a set X in A9, i=0 or 1.

Xx{y:|x—y|/L'<4, for some xe X}. (1.12)

The = means that the corners are to be rounded so that dX is smooth. The
smoothing depends on the type of corner but not its location and is such that X
d{y:|x—y|/L'< %, for some xe X}.

Perturbations

Let the integrand be denoted by Z(A4,¢). We shall require that there exist
functionals K(X, ¢), X CA, with K(X =®)=0, such that

1. Z(4, ¢)=éxp[0+ K](4, §).

2. Smoothness: K(X, ¥)=K(X,(¥), (¥})) is an infinitely differentiable functional
whose arguments ¥;, ¥, 1 <i,j, k < n, are arbitrary real continuous functions. The
derivatives of K(X, ¥) will be denoted K (X, ¥, d"¢), where n=(n,, n,) denotes that
n, of the derivatives are with respect to ¥(x) and n, are with respect to ¥ (x). We
let [n|=n,+n,. K (X,$)=K, (X, ¥P) with ¥;=¢,=0,¢, ¥, =¢;;=0,0;¢.

3. Locality: KX, ,d"¢) has support, as a measure, in X, (more correctly X
x discrete space for indices).

4. Analyticity and Bounds: We will specify a function I'(X) (called a large set
regulator) by which the decay of K(X, ¢) as a function of the set X is measured. We
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will also specify a functional G(X, ¢), (called a large field regulator) which will
bound the growth of K(X, ¢). Define the norms

IKAX)le= 2 Sgp GH(X, ) | IKLX, ¢, d"C)
(= Sup [K(X, )G~ (X, §)lif n=0>,
¢

where for n=(n,,n,)4=(4,, ..., 4;,) is a set of A* cubes which are the ranges of
integration for the x components of ¢, ..., &, respectively,

IKallg,r="Sup ¥ I'(X)IKu(X)lg,
A4 Xnd+®

n

h
IKllg,rn=2 1 1 Kallg,r (1.13)
K*=h1hy and nl=ng!n,!.
Condition (4) is that for some h, and G, I' as specified below, | K||¢. r,, < 0.

Definition. K is a Local analytic functional iffK satisfies conditions (2) to (4), for
some choice of G, T.

Different locally analytic functionals K(¥) can restrict to the same function
K(¢) because ¢; and ¢ are not independent variables. To avoid confusion we
make the following

Definition. Let K; and K, be locally analytic functionals, K, = K, means that
K(¥)=K,(¥)when ¥;= 0,4, ¥;;=0,0;¢. K, = K, means they are equal as locally
analytic functionals, i.e., for all ¥.

The Large Field Regulator. Let |¢|; x be a Sobolev norm (of d¢),
Il x= E'l [ dx|gal®. (1.14

a:laf<s X
a0

« is a multi-index and ¢, is the distributional « derivative. X is X together with a
“collar” with smooth boundary to be specified later. Let x be a (small) positive
number and set

G(X,$)=G(X, p)=exp[5x [l 5] (1.15)

We choose s>d/2+2 so that by the Sobolev lemma, e.g., p.276 in [9], ~G
dominates ¢(x, i) and @(x, i,j) pointwise; there exists a constant ¢ such that if x e X,
for all i, j,

(GO) |(x, DI 1(x, L, )I* < (c/x) G (X, ¢).

G also has the following properties,
(G1) G(X,¢p=0)=1, G is p. integrable and measurable with respect to
~{Y(U):U>X, U open}, where ¥ (U)=0 algebra generated by {¢(x):xe U}.
(G2) G(XOY)=G(X)G(Y).

When X =X, which will be the standard choice, we write G instead of G. In
Appendix A we show that G is pc integrable.
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Definition. If g(X, @) satisfies (G0){G?2) it is said to be a large field regulator. We
shall use g for a general large field regulator. G and G are the specific regulators
mentioned above. (1.16)

Large Set Regulator. For A sufficiently large (=2L**!) and X a set in 49, let
I(X)=A% Inf T[] 6(b).

Ton X beT

|X| is the number of A cubes in X. The infimum over T runs over all tree graphs
whose vertices are the centers of cubes in X. b runs over lines in T and 6(b) is a
(sufficiently) increasing function of the length of b. We will see in Sect. 3 that a
sufficient rate of increase is a power law dependent on L.

Relevant Parts and Small Sets. A set X in A? is Small, X e ¥, if diam(X)
=Sup{|x—y|:x,y centers of A® cubes in X} <1, (i.e., single cubes, nearest
neighbor dimers, trimers, quadrimers in d=2).

Given K(X) the relevant part F(X) of K(X) is given by

F(X,¢$)=0 if X¢&
=KX, $=0)+1/2 3 | dxd(x,)Qyd(x.J) (1.17)
]
where Q;;is a constant d x d matrix obtained from K differentiated with respect to
¢; and ¢; at ¢ =0,

1
0= ixy

[K,,o(X;dx, i;dy,j; =0). (1.18)
{ does not include summation over i, j. In terms of F we define 6E and do by
L FX,¢)=—0E|A4|—1/2[dx¢(x,1)00;,(x.])
= —0E|A]|—1/2{0¢,500¢) . (1.19)
For y>0 define
h=h(y)=(L/y)™"*hy,(Lfy)" "> hy),
hpin=Min(hy, h,). (1.20)

Theorem A. Let L be sufficiently large. Then for any even local analytic functional
K defined on sets in A9, there exists an even local analytic functional
HK =HK(X, ¢) defined on sets X in A such that

Exp[TI+K] ()=~ FII= 46328 gxp[ 1] + HK] (),
(with a formula (2.9) for HK) and:
1. There exists C>0 such that
IOEISC|Klg,r.n 00 =ClIKllg,r,u/hi-

2. Given C>0 there exist C,, C5, C4>0 such that for all L, AZ2L***, all k, h, ,
and K with

ihain2 C1, 1Sy L/2, | Kllg,, raS CoLT Y, (1.21)
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the following bound holds
”HK”G;¢+6MT,TI§C3B”K”G,¢,r,ha
where B=y**Y/L if d=2, =y3?/L'? if d=1, and
ok=C, ”K”G,ﬁr,h/hf .
G is defined by setting X = X u( Collar of width 3 ) and I is obtained by replacing
Aby A=2%A with 6=2"4"3inT.

The proof of Theorem A is mostly in Sect. 2. Sections 3—7 provide technical
details.

Definition of #.1f x is a point #x =x/L. If X is a set Z(X)= L~ ' X. Collars rescale
in the same way. If ¢ is a field (2¢) (Zx) = L*~ ' ¢(x), (R ¢,) (Bx) = L> ¢ (), (R ;)
(#x)=L"**1¢,(x). If W is a covariance (W) (#x, Ry)=L*~*W(x, y). The scaling
for covariances and fields are designed so that

RV'(X)=0(x); dpgw(RP)=dpp($).

If K(X, ¢) is a functional defined on sets in AV then (ZK) (2X, Z¢)=K(X, })
defines the functional ZK on sets in A9, It follows that (2K),(ZX, ¢, d"(#E))
=L7YmMK (X, $,d"E), where dim(n)=n,d/2+n,(d/2+1). If we require that
h=(hy, h,) scale according to #h=(LY*h,, L“**1h,), then

”ﬂK”m,r,ah: “K”g,l',h' (1-22)

I’ is unchanged in form by rescaling and g scales like K.
Changing the scale in &p by Theorem A we obtain

§ ooy EXp[O + K1 (A) = [dp,iy e~ 24204 ~2E gxp[ [+ HK](4).

Renormalization. The Gaussian factor from Theorem A is cancelled by a shift in ¢
in the covariance of ¢. Set N = [du, exp[ —0E|4| — {p, da¢ /2], then we continue
with

Idﬂv(a) e_%<¢,6a¢>_6E'A' &P[D + HK] (A)= deﬂv(o'+6o') épo[D +HK] (A) .

Rescaling. We split‘the integration over ¢ into two subintegrals, as described
above, and rescale:

=Nj.diuv'(a+5a')(¢)jdﬂc’(a+6a)(f) éaxp[D +HK] (A9 ¢ +f)
=N [dtyo+50(P) § Apico+50(f) Exp[O + RHK) (R4, ¢+ f),  (1.23)

where C=4%C'. By Theorem A, with y=16, and (1.22),
|2HK || 2¢,. ., .1, 25= |1 HK |5, ,..,r. i = (L) | K., 1,1 (1249

and #h=>4h and ¢(L)—0 as L— co.

The integration over f is accomplished by Theorem B given below or
Theorem B’ in Sect. 10. Theorem B requires the covariance to be real, which in
turn means that the functional K must be real, because otherwise the shift d¢ in the
covariance would be complex. We have separated out the real covariance case for
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this Introduction because Theorem B is simpler than Theorem B’. Theorem B is
proved in Sect. 8. Theorem B’ is stated and proved in Sect. 10.
Define

ICIl=Sup Y. C(4-4")0(dist[4,4]), (1.25)
4 A
C4,4)= Sup |C( ),
ted,Eed’
where 4, A’ are in A® and ¢ e 4 means that the position coordinate of ¢ 4. If
C=2C', C asin (1.2), then |C|| <o by Lemma A5 in Appendix A.

Theorem B2. Let C:L,—L, be a real positive definite operator whose square root
C'2 has a kernel C''*(x, y)in H(A x A). Let g, g’ be Large Field Regulators such that
there exists a “homotopy” g(u, X, §), 0Su =1, of Large Field Regulators between
g=gw=0) and g'=g(u=1) with the property

(G3) py-wc*gw)=gt) for 0=Zu=<t.

Let W'=(K,h) and h=(h, h) with 0<h'<h be given and let K be a local analytic
functional small enough that,

(h—h)?
16]Cll
Then there is a local analytic functional K’ such that
Sogluc*Exp(O0+K)]=0+K,
IK g, r,n = 1K llg,r,n-

There is an explicit finite series for K'(X)=K(t=1, X) in terms of derivatives of
K(Y), YCX, obtained by iterating

”K“y,l",hé

t
K@) =pc*K+73 i‘; dsp—gc*(Kgo Ky)(s).

(The notation is defined in Sect. 8.)

Integrating out a Fluctuation Field
By Theorem B we continue (1.23) with

=N [dpye+50(@) Exp [0+ [R(HK)]1(RA, ¢+ f).

We apply Theorem B to Z(HK), with ' =h/2, in such a way that we return to
essentially the same norm we started with on K. To do this we need g(u=0)
=AG, ;5 and gu=1)=G, , ;. Therefore let

8, X) =[2G, 1 5(X)]' "“[Gic4 5 X)2°PT". (1.26)

2 This theorem is related to the Glimm-Jaffe-Spencer Cluster Expansion in [10]
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The y4(X)=2°%! is allowed because we have a slightly stronger Large Set
Regulator I'(X) as a result of Theorem A, so we can absorb y(X) into I by,

ILRHEK)] llg,... srs, 7,0 = ILRHK)] 6, s 5, o,
2 [[2HK)] N6, s, - (1.27)

In Sect. 9 we prove (Proposition 9.1) that there exists k,,>0 such that for
K+ 0K S K., this choice of g(u) satisfies the hypothesis G3 in Theorem B. In
general x,,,, depends on the covariance C but if C is the (rescaled) fluctuation
covariance of (1.2) and ||écl| =1/2 then «,,,, is a constant.

When we combine (1.27), the bound of Theorem B and (1.24), we find that if
IKllg,.r,» is small then

[ ['%(HK)]’”GK“;,‘,I‘, awm=c(l) |IK”G,<,I',h (1.28)
with ¢(L)—0 as L—co.

Comment. The homotopy g(u) is between two regulators with the same value of k. It
is surprising that this is possible: if exp(3xx?) is convolved by exp(— x?/2) the result
is bounded by C exp(3x’'x?) but k' > k. It would be a disaster if x had to increase in
the Large Field Regulator when convolved by p,_  because C is essentially the
same for each scale, so x would have to increase by the same increment each time
we iterate. Instead of an increase in k we get an increase in the width of the collar
around X which we can afford because rescaling reduces the width back again. A
similar issue arises in [4]. Both proofs are relying on more than the behaviour of
the basic field ¢(x, i) under scaling. The fact that ¢(x, i) is a gradient is also needed.

Conclusion. Theorems A and B (B’ if K complex), imply that L and A can be chosen
large so that if g, k, | K ||, ., are small enough and h=(h, h) is large enough, then

[ dptoo) Exp [+ K] (A) = B [ dity(o + 50 Exp [+ [Z(HK)]1(24),

B=e¢ FMI[[dp, e H#0], (1.29)
I[REK) g, , oo, 20 S 21K G110 (1.30)
50, 01=O(IKI13,, r,u/h?). (1.31)

This means that we can continue iterating the two theorems until 4 is rescaled to a
unit block, provided the torus 4 has all dimensions equal to L" for some integer N.
At the end, the interaction has decreased in norm by 27V and k and ¢ have
increased by less than (Y, 27 %) ||K ||, ., with K and G being the initial K and Large
Field Regulator. We can choose the norm of the initial K small enough so that at
no point in the iteration are the smallness hypotheses on ¢ and « violated, no
matter how large A is. It is also possible to arrange that I becomes stronger in each
iteration.

Corollary C. Let L be a sufficiently large integer and let § be any real number. Then
there exists a disc D, whose center is the origin, and a constant B such that, as a
function of z in D, P(4,z, B) is analytic and bounded by B, for any torus A whose
dimensions are powers of L.
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Proof. We have shown in (1.6)«1.8) that the initial perturbation
Z(A, ¢p)=exp [22 i do(&)cos (e 2<l>(f)]

is of the form &xp[[]+ K] (A). By Lemmas 4.2 and 5.1 we can prove that K is a
local analytic functional. K is analytic in z for z in a (sufficiently small) disk
D={z:|z|]<¢} for all ¢ in H, and all sets X. Also Lim Sup IKllg,r,.»=0,for any x,
h, and A. e>0 zeD
The formulas (see (2.9) and Lemma 8.2) for HK and K’ show that K’ is analytic
inzfor ze D for X and ¢ fixed and Sup |[K'|lg, . ,.r.n=? Sup IKllg,,rsWithy<1,
zeD

provided k, h, and I' are as described in the preceding summary Furthermore do
defined in (1.19) is also analytic in zeD and bounded by O(||K|/h?). Thus
analyticity is retained under iteration of Theorems A and B. After sufficiently many
(N) iterations 4 becomes a unit cube 4 and then &xp[[]+ K] (4)=1+ K(4) with
|K(4)|£27NG(4). By the results on complex measures in Appendix A it is clear that
fdp, +55(1+K(4)) has an analytic logarithm. Furthermore the logarithm of B in
(1.29) is analytic in ze D (Appendix A).
End of Proof.

Open Problem. The pressure for the dipole gas is established to be analytic, but the
proofs are lengthy and indirect. The discussion of the regulator after Proposition C
suggests that the dipole gas is well behaved because of cancellations of the same
type as are exploited in the theory of singular integral operators; the dipole —
dipole potential is a singular integral operator, its fourier transform is kk;/k - k
near k=0. Is it possible to improve the standard estimates for the coefficients of the
Mayer Expansion (the expansion of the pressure in z) to obtain a direct proof that
this expansion is convergent? Progress in this direction has been made in [14].

2. A Formula for HK. The Proof of Theorem A

In this section we start the proof of Theorem A by deriving a formula (2.9) for HK.
At the end of this section we will explain why one should expect to be able to prove
Theorem A using this formula. The details appear in Sects. 3-7.

Recall that F, (the relevant parts) was defined in (1.17). Define

R(X)=exp[F(X,¢)] -1,
I=K—R,
QX)= Y F(Y). (2.1)
Ycx
I=K — R leaves us with the freedom to choose I to be any local analytic functional
which as a function of ¢ equals K — R. We postpone the choice of I to (4.5) and (4.6)

in Sect. 4.
The underlying idea is that &xp(CJ+ R)=exp(£2). Observe that

220 — Yl:[X (1+R(Y))=Z% . ZY XR(YI)"'R(YN)‘ (2.2

1,-- ¥YNC
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If the sets Y; were disjoint then this would equal &xp([J + R). Although the sets do
not have to be disjoint, they are constrained by the condition that no two of them
may be the same set. We obtain an éxponential by rewriting this expression in
terms of sets that do have to be disjoint by grouping Y;’s that intersect into new sets.
Define a “grouping” relation %(Z) on Y, ..., Yy by (Y3, ..., Ya) e 9(2) iff

1. VY, =Z.
2. Z is connected.
.Y #Y, if i#j. (2.3)
Define ® 1
R'2)=Y 37 ¥ R(%)..R(%), (24)

2 NI yy,.. ., Yne9(2)
then

e?=6&xp((0+R+RY). 2.5
Therefore P ) 23)

Z=6xp(O0+K)=&xp(O+R+1)=6éxp(I—R*)oe?.
Evaluate both sides on the set 4,
Z(H= ¥y &xp(I—R*)(X)e™
1

X, Y: XO0Y=
=e?® 3 &xp(I—-R*)(X)H(X), (2:6)

where Xed
H(X)=exp[—Y.Yan*¢F(Y)]. 2.7

Do not confuse H(X) with HK which is a single symbol. Note that H(X) is not a
local analytic functional, because it does not depend only on fields ¢ (&) within X.
We shall see that this problem goes away if we pass to the A" scale. We set

X={y:|ly—x|<3 for some xe X},
and note that H has a factorisation property:
H(X)=H(Y)H(Z) if X=YuZ with YnZ=9.
We will now rewrite Z as a local analytic functional on the next scale, A".
For any X in A® let
X =the smallest set in A that contains X .
Given U in A" define the reblocking relation #4% by X4, ..., Xy ZB(U) iff

1. U == UX,' .

2. The graph G, whose vertices are 1, ..., N and whose lines are those pairs ij such
that X;nX;+ &, is connected.

3. Xi('\XJ=¢. (2.8)

Define

HK(U)= % —

N
N1 o HOX)[TI-RT)X), (2.9)
N=1I¥: XeRR(U) 1
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then, using the factorisation of H mentioned above, we have, provided L is large

enough,
Z(A)=e"D gxp(0+HK)(A), (2.10)

where HK is defined on sets in A" and &xp is now defined using the - product for
sets in AV, By definition HK(U) depends on ¢(x) with xe U ={y:|y—x|<3 for
some x in U}. We assume L9 so that U C U, where the “is now being applied to a
setin AV, i.e, U={y:|y—x|/L<1/3 for some x e U}. This gives a representation,
which lives on A and has properties in exact analogy to the starting
representation on 4@,

Recall from the introduction the definitions of JE and do. Let |da| be the
operator norm of the matrix do considered as an operator on a d — dimensional
vector space. The proof of the following lemma is left to the reader.

Lemma 2.1. There exists a constant C such that for any large field regulator g, any
h=(hy,hy), A21,

PEIS K llg,r, w100 SCIKIg,r,n/hi-

This lemma proves the claim in Theorem A part (1). The proof of part (2) will be
Lemma 7.2.

Discussion. We shall omit all the subscripts G, I', h in this discussion. Let us review
the construction of HK. First K is split into the “irrelevant part” I and the
“relevant part” R. R is essentially the quadratic part of K(X) with X € & and I is the
remainder of K. If X ¢ % then I(X)=K(X). We then define R* from R by the
grouping relation (2.3). Finally HK is defined from I —R* and H (2.8, 2.9) with H
~exp[O(| K| k1 ) (0¢)*].

Roughly speaking Theorem A says that, after rescaling, HK is smaller than K
in || - | norm, provided we allow a small deterioration k—x+ O(||K|//h?) in the
large field behaviour measured by G. The key to proving Theorem A is to show
that I and R* have smaller norm than K. The deterioration in large field behaviour
is due to the H(X) factor in (2.9) which is bounded by exp(||da| |#|2 x/2) and by
Lemma 2.1 ||§¢|| S C|K||/h}.

The factor R*. From its definition we see that R* is a sum of products of K(X)’s
where the sets X must intersect. Since at least two K’s with overlapping sets must
be present we expect R* to be bounded by O(||K||?) which is much smaller than
| K]l. By (3) of the relation %(Z) in (2.3), Z is a union of small sets X; of which no two
are the same as sets. Therefore the number of factors R(X) that can overlap at a
given block 4 € A is less than some number t depending only on the dimension.
Each R(X) has an exp(C || K| [|$]12 x/h?) large field behaviour, so the worst growth
that can arise in any given block is less than exp(Ct||K | [|¢|2 x/h}) < G (4, ¢),if K
is such that ||K||/h? <k.

The factor I: R has a large field behavior exp[O(||K||/h?) | $]|2 ), so for | K|
small enough I = K — R has large field behavior no worse than that of K and hence
controllable by G. I has a small set part and a large set part. The large set part
becomes smaller under 24 because if 4 is large (> L** ') then a large set X has the
property that I'(X)< L™~ 'I'(X). See Fig. 1 below. The small set part of I increases
by a factor of L¢ under #4 because up to L different small sets X have the same
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X%
u
~

IxI=5

1
Fig. 1. [x|=5 and [x|=4=T(X)< ZF(x)

image in A?) under the map X —X. However these parts of I are 0(0¢°) or
0(0¢ 00¢). To see this note that =K — R~ K — F. F has been chosen to cancel the
quadratic part of the Taylor series for K so that the leading terms are 0(d¢?) or
0(0¢ 00¢). Upon rescaling each factor of d¢ contributes a small factor of L™ %2 and
each factor of 0d¢ contributes L™%2~!. These factors more than compensate for
the L increase.

Summary. The mechanisms which make I smaller are: (1) large sets are irrelevant
due to our choice of regulator, (2) for small sets the subtraction of R ensures that we
only have higher order terms which scale down in size faster than L™¢ under
rescaling. In the physics literature, the second mechanism has been emphasized
since Wilson and the first one is implicit in the calculations that assume only the
local terms are important. In fact, terms corresponding to large sets and/or large
fields are always present but the goal of this paper is to show that neglecting them
gives qualitatively correct answers.

3. Large Sets

In this section we show that the important parts of the perturbation are local. We
assess the decay of K(X) as a function of X by multiplying it with the large set
regulator I'(X). If by reblocking we pass to the next scale so that X becomes X,
which is the smallest set in 4*) containing X, then the appropriate regulator is
I'(X). We remind the reader that if the regulator I' is evaluated on a set in AV, then
distance and volume are measured in units appropriate to AV, For example | X| is
the number of A" blocks in X. We will show that if X is not a small set, X ¢ &, then
I'(X) is much smaller than I'(X). This change in the value of I will cause the large
set part of K to look smaller when K is transferred from A to 4D,
The large set regulator is

F(X)=A™ Inf T[] 6(bl), A=2L*!. (3.1)
T

on X beT
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0 is called the Line Regulator. |b| is the length of line b connecting centers of blocks
in X. 6 is chosen to be an increasing function with the property,

6) 01)=1, 6({s/LY<LL4"10(s) for s=2,

where {r} =smallest integer >r. Functions satisfying (6) with equality grow as a
power of s for s large.
For J a local annalytic functional on 4, define

h" _
IGra=% = Sup ¥ [IJX)leI(X). (32
n N AeAM) X:XnA+®

Notice that 4 is a cube in A*) and the large set regulator is being evaluated on a
A set. This norm is technically useful in the passage from A4 to A" because it
estimates a 4? functional as if it were a A*) functional. We summarise the main
properties in Lemma 3.1 below.

Definition. y(X) is a Large Set Regulator iff
(ro)y y(xX)=1all X,
(I'1) yXuY)=y(X)y(Y)6(dist(X, Y)). (3.3)

Lemma 3.1. Let I be defined as described above and let I’ be obtained from I' by
replacing A by A', where

LM SAS A L2079,
If J(X,¢)=0 when X €& then for any large field regulator g

2
19182395 1,
If J(X,9)#+0 for X€% then
105 n=<2BLY [T llg, r,n-

Proof. Immediate consequence of Lemma 3.2 below. Note that a factor of (3L)*
comes from bounding Y  with 4eAD by 3L)? ¥  with 4e 4.

X:Xnd4+® X:XnA+®

Lemma 3.2. Suppose L=2. Let A, A', T, I'" be defined as in Lemma 3.1, then
(r2) rxX)2L°'r(x) if X¢<
L2r(X) for Xes.
Proof. TI'2 is clear for Xe&, because I'(X)=A"XI<4'XI< X122 91Xl
=TI(X)2@ 9% and Max{|X|: Xe ¥} <2%
Now assume I'2" holds for sets X €%, which are connected. These, by

definition, are sets X such that the minimal tree T(X) on X only has lines of length
one.

Reduction to Connected Case. Let X be a set not in & which has at least one line of
length =2 in its minimal tree graph, T'(X). By erasing all lines of length =2 in T'(X)
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we split T(X) into connected subtrees T, ..., Ty with T; consisting of lines of length
one which link a connected component X; of X. Since 6(1)=1,

rX)=A"  Inf [T 60D,

T on {Xy,...,XN} ijeT
where |ij|=dist(X;, X ;=2 by construction. By relabelling, if necessary we may
suppose that X, has coordination number one in a minimising 7. By induction on
N we may assume I'2’ for X ; and Y =X — X ,. Therefore I'(X,) <2I'(X ;) and I"(Y)
<2r(Y). By I'l and () in (3.1),
rX)<r&X)ry)odist(x,, )
<4r(X,)r(Y)LL™471o(dist(X,, Y)) 2L I(X).

This reduces I'2' to the connected case.

Case X ¢ & and X Connected. Since X is connected I'(X)= A'*! and I'"(X)=A4"X.
We proceed by induction on | X|. X notin & and connected implies that there exists
a block 4in AV such that |[ X nA4] =2, where X N4 is a set in A'?. Therefore we can
choose two 4¥ blocks 6, and J, in X "4 and divide X into two connected subsets,
X, containing 6, and X, =X — X, containing é,. Then

r'X)=A™<r(X )I(X,)/4

because 4 is counted both in X, and X ,. The inductive assumption together with
A'Z2L*1 allows us to continue with

S4AI(X)I(X,)/A' S2L7 71 T(X).

End of Proof of Lemma.

4. A Bound on /

The main result in this section is Lemma 4.4, a bound on the factor I which appears
in our formula (2.9) for HK.

Lemma 4.1. Let G, be the large field regulator in (1.16) and let
m(X)= [|K,(X,$=0,d*¢),
e(X)=K(X,$=0).

Then there exists C >0 such that

1 ||FN(X,¢)||GE§C[e(X)+%mm] f N=0

1/2
g(%) m(X) N=1
=m(X) N=2
<0 N=3
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2. There exists C>0 such that for any large field regulator g,

1
IFllg, rh<C(1+ )”K”grh

The proof is left to the reader. (1) is an immediate consequence of GO in (1.16). (2)
follows from (1) and the bounds

. eI X)=Klgrw X m(X)L(X)< Ky, r,u/h3 -

XnA

Lemma 4.2. There exist C,, C,, C5>0 such that for any large field regulator g, for
all >0, h, >0 and K such that

1Ky rn< <C,eh3/[1+¢hi],
the following bounds hold
exf — e, ra=Csl1+ 1/enD] 1Ky 1.0
lleF —1—=Flg, rn=[C;5[1 +1/(eh})] 1Kllg, r, MR
Proof. Let G=G,. It is not difficult to check that for n=1,2, ...,
1F" 6, r.s S WFG1m, rn- (4.1)

Note that 1/n appears in the exponent of G. From the definitions

+F 1 < > 1 F" < > 1 Fl»
le="— ||G,r,h= Y —,” ||G,r,h= )y —,” ”Gl/n,r,lr
n: n=1 N.

By Lemma 4.1, we continue with

Z —C"< ) K2 f S Z Const”<1+ h2> I KI|G, r,n-

Now we sum this geometric series to get the result. The proof of the second claim
follows by exactly the same reasoning with n =1 replaced by n=2 as the lower limit
of the sums. [J

Let p=0 be an integer or half integer. For n=(ny,n,), define
. d d
dim(n)= M + (5 + 1) n,,
T g, 7,5, dim=p= dlmz(:n)>p ”Jn”g r-
Note that ¢}'¢7 has rescaling dimension dim(n).

Lemma 4.3. Let p be non-negative. Suppose J is an analytic functional with
JAX,$=0)=0 if dim(n)<p, then there exists C, depending on p such that for all
£>0, h,

16, rasCpl1+ 1/(ehzin))” 1 .., h dimz p>

where hy;, =min(h,, h,).
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Proof. For n with dim(n)<p,
JoX, ¢,d"0)= I dt ;S 1, d")

= g g; dthn-*-a(X’ t¢’ dn+aé)¢(6n+a)9

where a=(1,0) or (0,1). We rewrite the sum over « as a sum over m with the
conditions |[m|=|n|+1 and m = n, where m =n means m;=n; fori=1,2. Let G=G.,.
Then

1

n n
I Xle=—y Yide ¥ Sup Var[J,(X,t¢p,d"5)1,]
! nlm o A

Leeosdm

xG™(X,t¢) Sup I¢(€)I6XP[——(1—t2) IplI2 x]

edn+y

< Const(jn|+1)e™ " hyn, 3 |11, X)l| 6 H"/m! 4.2)

We have used GO in (1.16) to bound q&(é)exp[—g(l—tz) |,¢II§X:| by

Conste™ Y2(1—¢t?)~12, Now iterate this inequality until there is no m with
dim(m)<p. Note that we can also require that dim(m)<p-+d/2+1. Since d=1
each iteration increases the dim(m) by at least 1/2. Therefore we need at most 2p
iterations. We multiply the resulting inequality by I'(X) and sum over X,

IIJ Il r < Const(p) - Max{(eh2;,) " "?li=1,...,2p}

hm
X > ”Jm”GFW 4.3)

m:p<dim(m)<p+d/2+1

Clearly the maximum is bounded by Const(1+ 1/(¢h2;,))". Also the upper bound
on the summation can be removed to obtain a further bound. Hence the right-
hand side of (4.3) can be bounded by Const(p) - (1 +1/(eh2:))? 17 ll.r b dim> p-
Lemma 4.3 then follows from the inequality by summing over n with
dim(n)=p. O

In (2.1) I was defined to be any local analytic functional such that I = K — R. We
will now describe the choice for 1. The objective is to choose I to be a local analytic
functional such that I,(¢=0)=0 if dim(n)<d. Let Q;(X,dx,dy)=K, o(X; ¢ =0;
dx,i; dy,j) and

K?(X,¢)=K(X,$p=0)+} g [ i) Qif(X, dx, dy)§y)» (4.4)

i.e., K®is the Taylor series about ¢ =0 of K up to terms of dimension d in ¢. Next
we observe that

(KO=F)(X.0) =1 § o [ 42§ Q. dy) Wi 35 6),

ll]
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where F is defined in (1.17) and W(x,y,z, ¢)=d{x)p(y)—diz)p{z). Given
arbitrary continuous functions ¥;, ¥, i,j,k=1,...,d, let

“W”ifx,y,z ¥)= (}) ds ; [(x—2) Pilz+5(x—2) Pz +5(y—2))

+Pi(z+5(x—2)(y—2) P jlz+s(y—2)],
where (x — z), = the k' coordinate of x — z. By the fundamental theorem of calculus
“W”ix, 9,2, ¥ =) =W (x, y,2,¢), i.e., “W”=W. We define I as a local analytic
functional by

I(X)=(K—K®)X)+“KP-FY'(X)+(F-R)(X) if Xe& 4.5)
with
KO —FY (X, #)=4 3

and set I(X)=K(X) if X ¢ %. By construction I=K—R and if X €%, then by
construction and Lemma 4.2 I,(X)=0(| K% r.;) for dim(n)<d.

Recall the definition of the | - [|{'}, , norm from Sect. 3. Let y and h(y) be as in
Theorem A in the Introduction.

il [ dz[Qi{(X,dx,dy) - “W”(x,y,2,¥), (4.6)

Lemma 4.4. Let L be sufficiently large and let C, >0 be given, then there exist C,,
C; such that for all L, all A221**, x>0, h, y with 1 <y < L/2, and K such that

Khmin()> 2 Cy, 1KllGe,r.n= SC,L71,
the following bound holds
111G r 2= C3BlKlg,.r.n>

where B=y**!/L for d=2, =y*?%/L'* for d=1 and I’ is defined by replacing A by
A'=22"94inT.

Proof. Let G=G,. First

1 x¢ 16, hS3" IKle,r,n

where we have used Lemma 3.1 and h<h. This bound reduces the proof to
considering =11y, 4. By (4.5) T has three terms but the last term contains F—R
and, by Lemmas 3.1 and 4.2, is already small enough to satisfy the conclusion of
Lemma 4.4. Thus we will drop this term from I in the rest of this proof.

By construction (with F— R dropped) I(¢ =0)=0 if dim(n) < d, therefore by
Lemma 3.1 and Lemma 4.3,

”I“(GI)F 7;52(3L)d ”T”G,r,ﬁéconSt AL ”T”G,I',fz,dim>d'

Recall the definition of & (1.20); by changing h to h in the dim>d norm we can
extract a factor of (y/L)?, where q is the lowest dimension with dim >d. If d=1 then
q=d+1/2, corresponding to (9¢)>. If d>2 then the lowest dimension is d+1,
corresponding to (8¢) (00¢). By the definition of B we continue the inequality with

<Const - B "I”(;,r,h,dim>d~
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By the triangle inequality and definition (4.5) of I it is sufficient to bound
”(K_K(Z))1Xe.9’”G,F,h,dim>d and [|“(K®—F)"1x.gllg,r,h aim>a The first term is
equalto | K1y, ol g, . aim>qsand then bounded by | K|, - By a short calculation
which resembles Lemma4.1 the second term is also bounded by
Const - |[Kllg,r,» O

5. Bound on R*

The main result of this section is Lemma 5.2, which states that the || ||*) norm of
R* is smaller than || K|| by a factor of Lif | K || is sufficiently small. The definition of
R™ suggests that |R™ | is of order | K||? so this is not surprising. The proof in this
section is just an exercise in techniques that are quite standard in the practice of
cluster expansions. See, for example, [15].
Let
! Y R(Y,)...R(Yy), (5.1)

¥Z2 N! Ye9(X,N)
where Y=(Y, ..., Yy)e%(X, N) implies
%) xX= |\ Y.

i=1,N
(¢92) X is connected. .
(¢93) For any box A there are at most 7 sets Y, ..., Yy such that AnY;+®.(5.2)

Clearly the condition (3) of (2.3) implies (¥¢3).
Let

R*(X)=

I (X)=I(X)27%X, (5.3)
Lemma 5.1. There exists C>0 such that for any large field regulator g, and any

0>0, ©
IR lger_an= X (C/o)" " IIRllg.r.h>

where g1(X, §)=(g(X, P))".
Proof.

1 M! N
[T Ru(Y)-

Ri0= § PRI
N2 N my,.oMysmi=m M. My yedx,m i=1

X is connected, therefore, if G is the graph on vertices 1, ..., N whose lines ij are
those pairs such that Y;nY;+®, then G is connected. G contains a maximal
connected tree graph, so the contribution of lines in G to the line regulator part of
I'_; equals one. Property (¢1) then implies that

T_(X)ST_(Y)) ... [_(Yy) =27 ().
Property (%43) implies g(X) =[] g(Y;), therefore
® 1 M!
+
IRidlgr oS 587 %37 a e

N= M
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where

IN,M=S'jp > ) H I Ra (YT~ o(Y))

XnA*® Ye¥%(X,N) i=1

Insert the following consequence of (42), which says that if X is connected then
there is a tree graph as described in the remark above,

1(Ye®)s ¥

Tonl,...,N ijeT 4;,4;:dist(4;,4;)=1

x1(Yind;#9)1(Y,n4;+ D),
followed by 1(Xn4=+®)< ) 1(Y;n4+ ®). For each T we estimate the sums over
X, Y’s, and A’s. The result fs
IV M) < Const¥ ™ 5 T1Sup . |RucV)lol™-o)
i
x| Y|"eD1(Ynd+ (15)] ,

where #(i, T)=d(i, T) —1 for i=1,...,j,...,N and n(j, T)=d(j, T). d(i, T)=co-
ordination of T at vertex i. This estimate is not difficult and is left to the reader.
Details can be found on p. 180 of [15]. By Cayley’s Theorem on the number of tree
graphs,

(N-2)!
YO= L AT =) TE(‘}‘)’:d(')’

and |Y|"< 25'Y|(log2) " followed by n(j, T)<(N —1) [d(1, T)—1]!, we arrive at
I(N,M)gN!COnstN_lé‘lZ[‘[[d“"" Supy
d i 4T

% |Ry V)], I(Y)1(Y4 4=<1>)].

For a tree graph on 1,...,N there are N—1 lines and Y (d;—1)=N—2. Thus
[16" ~%=6%"" and the bracket inside the summantions d is independent of d. Use

z 1 =2N—2 Z 2—2(dt—1)§2N—22N’
d d
I(N,M)<N!Const” " 16' V] [Sup Y IRy (V) I(Y) 1(Yn A =|=<D)].
i 4 Y

Thus

—_
@)
Q
=]
@

=
=2

N

2
~:!

[Sup LRy ML (N 1Y+ 45)]
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Finally we multiply by #/M! and sum over M
© hM
IRlge,r_pns ¥ (Const/5)" " [Z 271 SuP Y [IRyu(Y)l
N=2 M - 4 Y
N @
xI'(Y)1(Yn4 *45)] = Y (Const/S)" ' |R|J 1.4,
N=2

which is the conclusion of the lemma. [

Lemma 5.2. There exist C,, C, such that for any large field regulator g, A=2L**?,

>0, h, and K with 2P
C &
1K lg.r.S s [——1 - e‘hJ ’

the following bound holds:
C
IR*IG) 0 < f IKllg,r,n>

where I" is defined by replacing A by A'=2?"94 in T as in Lemma 4.4.
Proof. By Lemma 3.1, followed by Lemma 5.1,
IRIG r s =2BLY IR llg,,r,n

<ConstL? ¥ (Const/6)"~"|RI|§, .1,
N=2

<ConstL? ¥ (Const/6)""'[2*)|R|, ol
N=2

where we have used I}(X) < 2?“YTI'(X) because R vanishes off sets not in . Choose
6=2"4 By Lemma 4.2 we continue with

<ConstL! ¥ (Const)" ™! |K|Y ,<ConstL™' K|, r,. O
N=2

6. Lemmas on H

For K a local analytic functional on A© define

w KN

h -
IKIG)r,n= Lt Sup TN [Ky(Ylle- (6.1)

For any large field regulators g and g’ and any large set regulators (3.3) y, 7', it is
not difficult to check that

TIN5, v S IG5, - (62)
Let N
X={y:ly—x|<3 for some xe X}, (6.3)

75(X)=201%1, 6.4
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Recall from the introduction that G, is defined by using X in the place of X in the
definition of G,. For the following Lemma h is defined as in Theorem A in the
Introduction.

Lemma 6.1. There exists C; such that for ¢>0, 1=6>0, h, any large field
regulator g, and K such that

2
1Kl T 0 T
the following bound holds:
HIG,),_,ns4.
Proof. Let ozi=71—i/hi, n=(ng,n,),
— ||H(Y)n”c;5_0¢ ZN' Ak [e "™y, >

where N=(Ny) with each Ny=(N, x,N, x), a multi-index. N!=[]Ny! and
AN =] hVx,
=o Z N1 &, Xﬂ Ile™ " ®In,llg, .

because at most 7 sets in & can overlap, i.c.,

1=Sup |{XeZ:xCX}|=o" []H Z——ll[e_F(X)]m”Ga/,
=qo 1+Y — [e”F®—1],llc :|,
X:Xlr:IY¢d>|: %m! It Il
<e* 1 [+le " —1lg,.rul
X:XnY+®

<a"exp[tlY¥| e "1, rnl,

because the number of terms in the product is at most 7|Y|. Now use Lemma 4.2
and choose C, so that,

sa"exp[0]Y].

The conclusion of the Lemma follows by multiplying through by y_4Y)=2
taking the supremum over Y and summing over n. []

—slY]
b

7. Conclusion of Proof of Theorem A

We have proved in Lemmas 4.4 and 5.2 that the norms of I and R* are smaller than
| K |l/L, (roughly speaking). Also, the norm of H is bounded in Lemma 6.1. We now
put these results together to prove Theorem A.

Let J be an analytic functional defined for sets in 4‘®. Define J, an analytic
functional defined on the next scale, i.e., on sets in AV, by

TO=5 57 T I I, (1)

XeRB(X,N,
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where X =(X4, ..., Xy) e Z%B(X, N) iff

1. X=

2. The graph G, whose vertices are 1, ..., N and whose lines ij are those pairs such
that X;nX;+ &, is connected.

3. XinX;=¢@ forallij. (7.2)

Note that we have defined 2% on sets in 4'?, whereas in Sect. 2 it was defined only
for sets in 4, Conditions (2) and (3) of (7.2) and (2.8) are the same. Condition (1) is
different.

Recall the definitions of | - |{'}. , in (3.2), 7, in (6.4) and I;=TI"y; in (5.3).

Lemma 7.1. There exists C, >0 such that for any large field regulator g and 6>0,
IT1G T h= Z ((OF72) A (R 45s A A

Proof. Exactly the same as the proof of Lemma 5.1.

Let 6=2"%"3 and recall the definitions of G,, I, and h(y) from Theorem A in
the Introduction. Recall the definition of I'” in Lemmas 4.4 and 5.2. I' and I" are
related by I;=1"

Proof of Theorem A. Set J(X)=I—R™*. Let U be in AV, then

HK{U)= Y HX)J(X), (7.3)

X:X=U

where J was defined above Lemma 7.1,

h _
IHK g,y g1 5= 2 ) II(HK)..(U)II@,M,CF(U)
v nl 4 Am U:Unas
IT - _
Z 0 Z IMMHX)I(X)]al 6, 0L (U)
n: AEA(” U:Und+®d X: X
h - _
— Sup 3 ll [HX)J(X)].l g, . (X)
n N AeAD) X:Xnd*
=|HJ|G). .., ;.SIH|% D er-oi IT1GL rot (7.4)
where we haveused Y = Y  inthesecond equality and (6.2) in

. . U:Und+® X:X=U X:XnA%x®
the last inequality. We make it bigger by replacing G by G and use Lemmas 6.1 and

7.1,
<Const 5 (Const/&)" (JJ|% 1., .
N=1

Note that I,;<TI" which appears in Lemma 4.4. By Lemma 4.4 we estimate the
norm of J,

<Const Z Const" 'BIK|g..r.0"-
N=1

We sum the series using the small K hypothesis and obtain the result. [
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8. Integration with Real Covariances. The Proof of Theorem B
The strategy of the proof is as follows: If we set Z(t)=p,c* Z,, then Z solves a

) . .
functional heat equation a—f =4Z,4, Where Z,, is a functional Laplacian of Z.
Since Z(®, ¢)=1, Z is in the domain of Fog, which is defined by the (finite) power

series

Pog(Z)=(Z—~F)—2HZ—~F)o(Z—F)+.... 8.1)
Since []+ K =%og(Z) the heat equation for Z is equivalent to
oK
o =%(K¢¢+K¢0K¢); O+K(t=0)=%gZ,. 8.2)

K, is a functional gradient of K. This equation is equivalent to the integral
equation

t
K(t)= e * K(0)+3 Jdspa—gc* (KyoKy).

By taking the || - ||, , , norm of this equation we learn that it has an iterative
solution such that |K(t)| .., is dominated by a function k(t, h) which solves
ok ok\?* . . . . .. .
i ICll (%) , l.e, a one dimensional version of the original flow equation
without the Laplacian. The bounds in the theorem are obtained by studying the
explicit solution to this hamilton-Jacobi equation. This approach is a method in
[11], except that products have been replaced by - products. It is a simple method
for generating and studying a cluster expansion originally due to Glimm, Jaffe, and
Spencer [10].

The Functional Laplacian

Let u, be the gaussian measure on H(A) with fluctuation covariance tC, where C is
positive definite. Let F(¥)=F(4, ¢) be a functional whose domain is all P(¢)
=(P(x), (), i,j,k=1,...,d, where ¥, ¥, are arbitrary continuous functions
on A. We assume that F is infinitely differentiable and for some >0 and >0,

n

h
1Fll6n= 25 IFulg,<o0. (8.3)

If F has these properties we shall say that F is analytic in ¢.
We define the functional Laplacian F,, of an analytic functional F by

1
3F 4= 1;,11(1)1? (u,* F—F). (8.9

The limit exists and is given by
Fye=[F5(d*9)C( ). (8.5)

F, denotes a second order derivative, specified by the indices inside & and &. We
omit the easy proof which consists of expanding the F in u * F in a Taylor series to



Grad ¢ Perturbations of Massless Gaussian Fields 379

second order in ¢ and using a Chebycheff inequality to show that the remainder
gives no contribution as t—0. The bound on the remainder uses GO of (1.16) and
(8.3). The Chebycheff inequality is based on the p, integrability of G,, for 6
sufficiently small.

Lemma 8.1. If Z(t, )= (u, * Z,) (¢), where Z (V) is analytic, then,

0z

§=%Z¢¢‘

Moreover, if Z(t,$) is any other solution to this heat equation and the same initial
data, which is continuously differentiable in t as a map fromt to the space of analytic
functionals, then Z=Z2.

Proof. It is clear from the definition of the Laplacian that Z(t) satisfies the equation.
To prove uniqueness: let y, = i, c and consider

20—+ 20)= | ds > i 206),
o O0s

(where the integral is a Riemann integral).

t s 0Z
= gds{_:uts*%zdtdi(s)'i‘.uts* 6.:3)} =0. O

Lemma 8.2. If Z(t)=p, * &xp((d+ K,), where K=K (X, ¢) is analytic, then Z(t)
= &xp([J+ K(t)), where K(t, X, ¢) is the finite series obtained by iterating

t
K(t)=p,* Ko+ 7 [ dsp* (Kyo Ky) (s, 9),
where 0

Kyo Ky(@)= [ C(C, K (,dS) K (¢, dn).

Proof. The iterative solution to the integral equation is a finite series because
eventually one builds up terms containing Ko ... o K, with more factors than
there are blocks in 4 and such terms are zero. It is easy to check that the iterative
solution is a continuously differentiable map from ¢ into analytic functions of ¢
which solves (8.2). As remarked earlier (8.2) is equivalent to the heat equation for
&xp(C0+ K (1), so Lemma 8.1 implies Z(t)=&xp(C1+K(t). [

Proposition 8.3. Let g and y obey conditions GO-G3 of Theorem B and I'0, I'1 of
(3.3). Let h=(h,h) and set

k(t, )= | K)oy, y, 1>
then k(t, h), as a power series in h, is term by term majorised by the solution of

ok*(s, h)\ 2
oh

K*(t, ) =k(0, k) + | C| I ds ( 8.6)

or equivalently,

ok*

ak* 2 .
E~=IICII [%] ; k*t=0)=k(=0).
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Proof. .
K,(t, X)=p* K0, X)+ 3 [ dsp, * (K, 0 K, )u(s, X),
0

where, (K © Kp)als, X)

n!
= T o Y (K %A CE O)K, (5 Z, ).
ab:atb=n alb! v,z:¥32=x
K, . 1(d%) denotes a derivative of K, with respect to the variable specified by d¢.
Take the || ||, norm. Condition (G3) in Theorem B implies ||u,,* Al g = |4 4¢s)s
where A=A(X, ¢) or A=A,(X, ¢,d"). Therefore

1Kz Xy = 1 K,(0, X)),

+3 jds Z 'b' Z C(4,,45) Z [Kar1(s, ,E€ A, 1Ky 4 1(s, Z,E € 4))l45

where
C(d,,4)= Sup |C(&, &)

§EA1 ‘€da

X | Kas (s, Y;€EA1)“g=A Y ”VarKa+1(Y)141 ,,,,, Aa+1”g'

25 da+1

Multiply both sides by y(X) and sum over X such that XnA+®,
1K ®)llg,, < KO, ,

+ de Z Sup z CG(AI’AZ) z ® “Ka+1(sa XéEAl)lng(Y)

N4, A, %

X Z [Kp+1(s,Z,& € 4,)l,9(Z).

Zndr D

We have used I'1 of (3.3) and have set
Col4,4,)=C(4,,4,)0(dist(4,, 4,)).
Now we use Y Kypii(s, Z, 8 €)1 9(2)S 1Ky + 1)y, ,, followed by

Zndr D

AZCe(Al,Az)éllcll, followed by 3 [[K,ii(s, Yyed )l y(N)=I1Kos 1l

; Yn4,4;, %@
The result is
(|K Dl = 1K),

+1ds 3 1CHIK Ol KOl
0 a,

Multiply both sides by h"/n! and sum over n.
IK®llg, s = IKO)g,y,n
t 0 0
+ (_‘;ds ”C” % HK(S)”g,y,h% ”K(s)”g,y,h'

This inequality and the one before show that when equation (8.6) is iterated, a
power series in h is generated which term by term majorises [|K(s),, ;.5 [



Grad ¢ Perturbations of Massless Gaussian Fields 381

Proof of Theorem B. The proof is to combine Proposition 8.3 with the following
lemma.

Lemma 8.4. Suppose kq(h) is a power series with positive coefficients in a single
variable h and it is convergent for |h| < h,. Then there is a unique function k(t, h),
analytic in t and h near the origin, which solves

ok ok |?
5 —ICll [%] 5 k(t=0,h)=k(h), 8.7)
and if ky(hg)< T#CH— (ho—h,)?* for some h;,0<h, <hy, then

k(1> hl)é k(oa hO) .

Proof of Lemma 8.4. The solution of the Hamilton Jacobi equation in the lemma is
unique within the class of functions of ¢ and h which are analytic near the origin
and have the same initial data because the differential equation determines a
formal power series solution. Such a solution is easily verified to be given by

k(t, ) =k(0, h.) — 3t CI) ™" (h—he)?, 8.8)

provided h,=h_(t, h) is analytic in ¢ and h near the origin and is a stationary point
for the right-hand side, i.e., satisfies

Jlhg—h)=0;  flz)= -2t |C|k'(0,z+h)—z, (8.9)
Lim h,=h,
t—0

where k' =0k/0h. We will now show that h, exists and is unique. For |h|<h, let
B={z||z| <(ho—h)/2). By Cauchy’s representation of analytic functions and the
assumption on k we have, for zedB, |k'(0,z+ h)<2k(0,hy)/(hg—hy)
<(ho—hy)/B|Cl)<|zl/(4|C|). Hence f,(z) +0forze Bfor 0=t <1. Since f;(z)=0
has a unique solution (z=0) in B for t=0, it follows by Rouché’s theorem that
fu(2)=0 has a unique solution in B for 0=t <1. Furthermore since k, has real
coefficients the intermediate value theorem implies h,, is real if h is real. Hence
k(t, h,) < k(0, h,) Zko(ho) by (9.2) followed by the maximum principle. []

9. The Large Field Regulator

We consider complex Gaussian measure with covariances C: L,— L, that can be
written in the form C = C1/*(1 +iV)C}/?, where C, is a positive definite operator on
L, whose square root C1/? has a kernel C}/?(x, y) which belongs to H(4 x A). Visa
real symmetric trace class operator on L, with operator norm less than one half.
We assume that there exists a constant A such that

[Cills xxa=AIX], XCA,
C,:H_,—H has norm less than 4, 9.1)
VI3 xxx<A4lXl, XcA,

[ Vllo,x x x is the L, norm of the kernel of V as a function on X x X.
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Given a set X, let X (1) be X with a (smooth boundary) collar of width z. Given
1, and 1, satisfying 0=t,<7,<1/3 and 7, —19=1/12 we let
Xo=X(19), X;=X(7y),

go(X. $)=cxp B u¢u§,xo],
9.2)

gl(X,¢)=exp[§n¢n§,xl n¢||sx1+6|X|}

2.=g "gi, O0=u=t,

llpll:2 xu) is defined in the same way as ||¢ |2 x(x) but with the Y | |¢;|? term omitted.
Let 6=274973,

Proposition 9.1. Let g, be as defined above. Under the above assumptions on C there
eXIStS Kpay >0 such that

1. If V=0 then for all k <x,,, and 0Su=st<1,
p‘(t-—u)C * gu(X)égt(X) .
2. If V40 and C**(x,y)=0 if |x—y|=1/12, then for all K <K, 0Su<t<1,
t—u>1/4,
uzlf -l * 2X) S 8X).
In (2) |c| is the absolute value of uc restricted to the Borel a-algebra of H(X(1/3)).

Comments. We have summarised some useful facts about complex Gaussian
measures in Appendix A. In particular, in part (2) it is necessary to restrict yuc to a
small o algebra before taking the absolute value, otherwise |uc|
=~ O(exp[Const|A[]). By definition, u. restricted to Hy(X(1/3)) is the Gaussian
measure u, on H(X(1/3)) with covariance W(x, y)=1(x)C(x, y) 1(y), where 1 is the
indicator function of the set X(1/3). Let C be the covariance obtained from C by
setting V(x, y)=0 if either x or y lie outside X(1). By the short range hypothesis on
CY2 W(x,y)=1(x)C(x, ) 1(y) so that the restrictions of u. and y coincide and
therefore |uy| < |uel- We will obtain part (2) by estimating |ug|.

Proof. We will suppress the s indices on the norms. Repeated indices are to be
summed over. Let D=X; — X, t,= lhyc-

Part (1), Case V=0. g, can be rewritten in the form

g (X)=exp 5 [I¢t+u1¢2+[1+u]u¢n - 2ul| |72 +u5|XI]- 9.3)

Let Fu(¢)=exp|: [(14+u] |(¢[[x0], then for any p=1,

e * Fi=F {dp, (f)F)(f)exp[pc[1+ul {f, T$7],

where T:H,—~H_ is defined by (g Tg>=|gl¥, for all geH, By (9.1),
Corollary A4 and | T¢|* < | ¢|'?, we find that for x sufﬁmently small, depending

on p, po—u* FESFLE Xl exp [O(pr [t —ul)* [ 411%,]-
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We may summarise our progress so far by saying that given p =1 if we choose x
sufficiently small then for all u<t, u,te[0,1],

M-y * FE S FR X1

where t=[u+t]/2. The same argument can be applied to other terms in the
exponent of g, in (9.3) (all but the first) and then Holder’s inequality proves that

- * exp [pg[u [ 7+ [1+4] ||¢||s?o+2un¢n;§]]

<eM Xl exp [p S [F]ei+i+D u¢us§0+2’t‘u¢u;§ﬂ ©04)

for any p =1 and for k small depending on p. Thus the first term in the exponent of
g, is the only dangerous one and we will now show how to bound it.

For p=1 we let E(¢)=exp |:g~ Xj qb,z] so that
Hi—u* EP=EP{dp,_ (f)E"(f)exp [Pkif d%ﬁ]-
By integration by parts we rewrite the exponent,
[ @fi=— [ duf+ | &if
Xo Xo 0Xo
= _xj buf— [I) i fx)
= _xj ¢iif_l§)¢iin_If)¢iXif—lf)¢ini,

where y is smooth and y=10n X,,00ff X, |x| £1, 0,2/ £ O(l, — ;) '. We can now
use Corollary A4 and the same arguments we have just used to obtain (9.3) to show

that
He—* EP SEP ™1 exp [O(Et—u] p*x?) {f o7+ lpl%,+ H¢|Ib2}]
D

9.5)

We estimate g, by the Holder inequality using (9.5) and (9.4). We obtain the result
claimed in part (1) of the Proposition.

Part (2), V+0. We repeat the argument above with ¥ 40 using Corollary A4. The
TrV? term in Corollary A4 is O(|X|) as opposed to O(|4|) because, as discussed in
the comment just before this proof, we may set V(x, y)=0 if either x or y is not in
X (1). The hypothesis t —u=1/4 is needed because the Tr V2 term does not tend to
zero as t—u. [

10. Integration with Complex Covariances

In this section the main result is Theorem B’ which replaces Theorem B in the
Introduction when the covariance is complex. The method of Sect. 8 requires
estimates on convolution by a Gaussian measure p,_yc. If C is complex the
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absolute value of y, _ . is not well normalized (cf. Lemma A2) and the method of
Sect. 8 fails. Nevertheless results analogous to the basic lemmas of Sect. 8 can be
found. We begin with the analogue to Proposition 8.3.

Proposition 8.3. Let C=C}/*(I+iV)C}/? satisfy the assumptions set out at the
beginning of Sect. 9 and suppose C1*(x,y)=0 if |x—y|=1/12. Let g(u)=g, be the
large field regulator of (9.2). Let y be a large set regulator satisfying I'0, I'1 of (3.3).
Let h=(h,h) and set

k(t, h)= 1 KOl g¢ey, 3, 1>

where K(t) is defined by p,c * 6xp(K)=EXp(K(t)). Then for t =1/4, k(t, h) as a power
series in h is term by term majorised by the solution k*(t,h) of
ok* [6k*

2 — Il

The assumption t > 1/4 is made for the convenience of the proof. We can always
scale t—at by changing C—C/a.

]Z; k*(t=0)=k(t=0).

Theorem B’. Let C=Cg+iC; be a convolution operator on L, whose Fourier
transform satisfies

A1 +k2) "< Crlk) S A,(1+k2)™™,
§dk(1+ k)" C k) S A,

where A, A,, and A5 are strictly positive. A5 is sufficiently small depending on A,
and A, and m>d+2s. Let g=g, and g =g, be the large field regulators of (9.2) and
let h=(h,h),h =W, W) withO<Hh <h. Then if K is any local analytic functional with

1 N2
1Kllg,r,n< m(h—h) ,

then
1K g, S 1Ky, -

Proof of Theorem B'. (Assuming Proposition 8.3'). We write the covariance in the
form C=C 4+ C,, where C, obeys the hypotheses of Proposition 8.3 and C, is real.
We shall prove that such a decomposition is possible later. By using the identity
pc * Exp(K)= pc, * puc, * 6xp(K) and applying Proposition 8.3 (with C replaced by
2C, and te[0,1/2]) followed by Proposition 8.3 (with C replaced by 2C, and
te[1/2,1]) we find that |K'[, r,<k(t=1,k), where k(t,h) solves 0k/ot
=2Max(|C;l, [C,l) (0k/0h)* with k(t =0, h)=| K|, r.,- Lemma 8.4 completes the
proof.

Choice of C: let ¥ be a smooth positive definite function such that y(x)=0 if
Ix|=1/12, x(0)=1,and 1= x = 0. Let R(x — y) denote the kernel of C&'? and let D be
the operator on L, with kernel R(x — y)x(x — y). The Fourier transform of D is a
multiplication operator with D(k)=(£ * R) (k). The rapid decay and positivity of §
imply that D? satisfies the same bounds as C with different constants replacing 4,
and A,. Therefore we can choose ¢>0 small so that if we let C;=¢D?+iC,, then
C,=C—C; is a positive operator on L, and C,(k) decays like (14+k%)~™ []
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The proof of Proposition 8.3 is closely related to the method in Sect. 8. The
integral equation of Proposition 8.3 continues to hold for a complex covariance by
the same argument as in Sect. 8. It is

KO = KO+ ] dsti- o+ (Ky K (5.9, (10.1)

By iterating (10.1) we obtain a finite series for K’ = K(t). We estimate the series term
by term. In the proof of Proposition 8.3 we were carrying out this program using

the bound
i —s* F(X)|l,, S I F (XN,

which is implied by part (1) of Proposition 9.1. In part (2) of Proposition 9.1 there is
a similar bound but it does not hold when t is arbitrarily close to s and the proof of
Proposition 8.3 fails.

We illustrate the main idea in the proof of Proposition 8.3’ by considering as an
example one of the terms that result when the integral equation is iterated. The
series contains the term

IX,$)=3 N (I; dspt—s* [(ps* KG(Y)) o (s * KYZ))], (10.2)

where K°=K(t=0). Consider a single term in the Y, Z sum and set
F(¢)=K3(Y)K$(Z). Given any set U, let U= U be U with a smooth collar of width
1/3. Given any function f(x,y), in particular C(x, y), define
fi%,y)=f(x,y) if x,y in (YOZY
=0 otherwise,
falx,y)= f(x,y) if x,y both in ¥ or both in Z
=0 otherwise,
f(t,s,x,y)=(t—s)f1(x,y)+sf2(x,y). (103)
(We shall say that f; and f, are obtained from f by compression. More generally,
given X, ..., Xy disjoint we define the compression f by: fy(x, y)=0 unless both x

and y belong to the same X, = f(x,y) otherwise.) C(t,s)=C(t,s, x,y) has been
defined so that

pu—s * [ * KQ(Y)) o (s * KYZ)] = peg, ) * F()- (10.4)

By hypothesis C = Ci/*(I+iV)C}/? and C1/? has range less than 1/12. This together
with dist(Y,Z)=1 implies that C(t,s,x,y) equals the kernel of

tCi? (I+£V(t,s)> Cl? if x,ye(YUZ). By Proposition 9.1, for t>1/4 and

se[0,t],
[ tice,s)* F( D)l gy S I1F [l o) - (10.5)

.. 1
To check the hypotheses of Proposition 9.1 note that the operator norm of n Vit,s)

. 1 . .
as an operator on L, is less than 1/2 because n V(t,s) is a convex combination of
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compressions V; and V,, and compressions inherit this property from V. The
hypothesis on the L, norm of V(t,s) is valid for the same reason.
From (10.5) and (10.4) we conclude that

Nt Lot * KQY)) o (pts * KYZD] g S 1 KG(Y)ll g0y | KS(Z)  g00)

which exemplifies the main idea in the proof of Proposition 8.3'.

The proof of Proposition 8.3’ requires a formula for the general term in the
series. This is Lemma 10.1 below.

Let T denote a tree graph on vertices 1, ..., N and let b=(j, j) denote a typical
bond in T. With each bond b is associated a variable s, and s =(s)pc 7, d"s = [] dS,.
Define P

D= 46 { HCCD 5305 5505

: H Db>
beT
s(x, y)=t if either x or y not in UX;,
=max{s,:b in path in T joining j to k if xe X, ye X,}
=0 if j=k.
Since T is a tree graph there is a unique path in T connecting any vertices [ and k.
Let C(t,s, x,y) be any covariance satisfying

C(t9,§a X, J’)EC(X’ J’) [t—S(X,y)] if X,yGX. (106)
Lemma 10.1. The results of iterating the integral equation is
K(X, )= pc* KOX)+ DY I d"spcq,* DT H K(X),

where n is summed over all partitions of X into subsets Xy, ..., Xy with X =X, and
summation over N is included.

Proof. The proofis to check that this expression for K(X, t) satisfies the differential
equation (8.2). We will omit this verification since a similar argument is given on
p- 30 of [11]. See also the simpler Lemma 10.2 below. Note that the integrand is
measurable relative to ¢ in HS(X ) and so the formula depends on C(t, s, x, y) only
through its restriction to x,ye X x X as claimed.

The following lemma will be required for combinatoric reasons. d;=d,(T)is the
number of lines in T meeting vertex i.

Lemma 10.2. Suppose k°(h) is a power series in h with positive coefficients,
convergent for |h| small. Then

tjcpHv* Yo"
keh= 5 U s () ko
N=1 Ton{f,...N} i | \Oh
is the unique solution, which is analytic in t and h near the origin, to

ok ok
2 %IICH[ ] k(t=0)=k°.
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Proof. We omit the details. The idea is that when the series is differentiated with
respect to t, the t derivative can be visualised as selecting a line in a tree graph T
and erasing it, i.e., the corresponding t factor is differentiated. The tree graph
without the line splits into two sub-tree graphs which contribute to the two dk/oh
factors on the right-hand side.

Proof of Proposition 8.3'. In the formula in Lemma 10.1 we are at liberty to take
C(t,9)=Ci*I+iV(s 1) C12, (10.7)

. 1 .
where V(s, t, x, y)=[t —s(x, )] V(x, ). As in the example above n V(s,t)is a convex

combination of V and kernels obtained from V by compression, so the operator
norm and L, norms of V(s, t) are bounded for all sin [0, t] and t € [0, 1] by the same
norms of V. Let M =(M, ..., M) be a multi-index with M =}’ M. By differentiat-
ing the tree graph representation of Lemma 10.1,

M!: N
Ku(X, t)zl"tC*Kgl(X)_i- > ; ;4; M g dTSﬂC(t,;) *DT I;[ KI?'I,'(Xi)'

(We remind the reader that each M, is itself a multi-index specifying the number of
¢: ¢;; derivatives.)

To each bond b=(j, j), we associate A%, A, unit blocks that intersect X; and X i
respectively. The number of bonds in T that meet at i is d;=d(T) so there are d; unit
blocks {4?:b e T} intersecting X, Wetakethe || - | sy norm of each side of the Tree
Graph Formula using Proposition 9.1,

1K adt, Xl g0 < | KS((X)

llg

! N
FITTIDT I COh A T 1K eaKo Bl

b=(,j)eT

where 4; represents the d; blocks associated to X; and

||KM+d(t’X’4)Hg(t)= p _Zl . ||VarKM+d(X)1A1,..‘,AM+d“g(0)
i=1,

7

C(4,4)= sup IC(&, 0

ged,

We multiply both sides by I'(X), sum over XnA=+®, A fixed, set Cy4,4’)
=C(4, 4')0(dist(4, 4")) and use property I'1 in (3.3) of I'(X),

I K )l gy, r = ||K1?4||g(0),r

1 M!
_ . . tCy(A8, A°
+IEV:N!;Q24M‘ Z Z H 9( ir&j

X1,..,XN:UX; D4 4 b=(,j)eT

N
x .lz_I‘ ”Kgli‘*'di(Xi! éi)Hg(O)F(Xi).
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We sum over the sets X, i=1,..., N, and the blocks 4, working inwards from the
leaves of the tree. The argument is not difficult, some details may be found in [13,
p. 180]

<IK oyt Ty y Mv- sy o=t [ 1S Ll
= 9(0), 5 N! T M' =1 i+diing(0),I*

We multiply by h*/M! and sum over M,

0 N N-1yN-1 P hM
S IK g0y, ront 2 J—\TT : ;t ICll H Z N K+ aill g0y, r

=1

N
<||K°”g(0)rh+z ;tN Hiepv -t HI:( ) IK© ”y(O)Fh]

Use N <2V~ 1 and note that by Lemma 10.2 this series solves 0k/dt = || C|| (0k/oh)?

Appendix A (Covariances and Complex Gaussian Measures)

Gaussian Processes [16,p. 16]. Let H_, (-, -)_ be a real Hilbert space. According
to general theory there exists an abstract measure space (@2, du) and a linear map,
=<, f, from H_ into random variables (functions on Q), such that

jdueia<¢’f>=e_1/2“2‘f’f)— = V2XLCH - geC, (A1)
where C: H_ —H , is the canonical isomorphism between H _ and the dual Hilbert
space H ,. We shall refer to C as the covariance of du and write du. when necessary.
This collection of random variables is called a Gaussian Process indexed by H _. If
the o algebra of measurable subsets of Q is the smallest such that each (¢, f) is
measurable, (2, du) is unique up to measure preserving isomorphisms.

Let S: H, —H_ be symmetric (this means S=S’, where S’ is the operator dual
to S)and suppose SC: H _— H _ is a trace class self adjoint operator. It follows that
it has a complete set of eigenvectors f, and eigenvalues 4, such that
Sg=Y 4, f,{fn 2> (e.g, g=Ch with he H_). Define

O PEDWRE N LR (A2)
where the sum exists as a limit in L,(R, du).
Lemma Al. Let S:H, —H _ be symmetric with SC:H_—H _ trace class. Then

fdue=2<¢:5¢> = det~ (I +aSC),
[dv e D =g PRUUFSA N fey

where
dv=dy e~ H:59) )[ dy =o12(6:59)
for all complex  and all complex o such that I+zSC is invertible for |z| <|al.

Proof. Pages 29 and 30 of [16], combined with analytic continuation in « and f. A
good reference for determinants is [19], p. 44.
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Note that (f,[I+aSC] 'f)_=<f,[C ' +aS]"'f)> so dv is a (complex)
Gaussian measure with covariance [C ™! +aS] ™.

Lemma A2. Suppose H_ and H , are dual Hilbert spaces with canonical isomorph-
ism C,:H_—H,. Let C,:H_—H_, be symmetric with T=—C;{'C,:H_—H_
trace class and ||T||<1. Let C=C,+iC,, C=C,—iC, and define the complex
Gaussian measure duc by

duc(p)=det! (I +iT)dpc () e~ 12<H5®>
where Cx=CCy'C, S=—C™'C,C™ . Then

1. [dud@)e <> =e~12S-CL> for all feH_ .
2. dlucl(@)=e'? T duc,(¢)-

Proof. For (1) we apply Lemma A1. The result follows from C=(Cg ' +iS)~* and

dety (I+iSCg)=dety (I—iC™'C,CIC)
=dety (I—iCC™1C,Cr1CC™Y)
=detH+(I_lC2C1_ 1)=detH—(I—lC1_1C2).

We should be using H _ with the inner product { f, Crg), but this is equivalent to
the H_ inner product and the determinant is a similarity invariant.

For (2) we use |det(I+iT)|>=det(I+iT)(I —iT) and the estimate |det(I + X)|
<Trace norm of X. See [19, p.47]. [

Models for du and Regularity of Sample Points.

The pairing f, ¢ —{¢, f > makes it tempting to search for a model in which ¢ is a
random element of H ,, but this is not possible. Prohorov’s Theorem, [17] p. 29 or
[18] p. 67, describes how much H, must be enlarged to serve as a model for the
measure space in which ¢ lives. In this context it implies the following result.

Let H,=H /{constants}, where H, is the Sobolev space of index s of functions
on the torus 4 and s is an integer that will be specified below. From now on we will
omit to write the “/{constants}”.

Proposition A3. Let C: L,— L, be a positive definite operator such that C*'* has a
kernel C'*(x,y) in H{(A x A). Let H_ be the completion of L, with respect to the
inner product f, g—{ f, Cg>. Then there exists a unique Borel measure duc on H, such
that the measure space (Hg,duc) is a model for the Gaussian process (H _, ¢). The
random variable {¢, > is given by the canonical pairing between H, and H _;
whenever fe H_,. When fe H_ we set {¢, f>=Lim<{¢, f,>, where f,e H__, f,—>f
in H_. The limit exists in L,(H,dp).

Suppose S: H,— H __, then we can define (¢, S¢) either by using the model of
Proposition A3, so that ¢ € H,, or using the definition in Eq. (A2). (The hypothesis
on S implies that SC is a trace class operator on H __.) The two definitions coincide.

Corollary Ad. Let s be a non-negative integer and suppose C=Ci*(I+iV)C}/?,

where C, : L,— L, is a positive definite operator such that C1'* has a kernel that is a



390 D. Brydges and H.-T. Yau

functionin H(A x A). V: L,— L, is symmetric and trace class with | V| <1. Then for
any subset BC A with smooth boundary and any fe H _,

§dlucl (d)explr/2(1$112 p+<b5 D1,

K icizg2 1.4 0o
1—AK ”Cl ||S,B><A+2 1—KA ”f”—s-J,

<exp [Tr V2 4+

where A=2|Cillg_ -u,.

Proof. Let Df =(0*f), where o runs over all multi-indices such that |¢| <s and let y
be the characteristic function of B, so that f, g— {Df, yDg) =< f, D'yDg) is the inner
product on Hy(B). Let W=Cy*C; Y2 W is a bounded operator on L, and
| W*W | <2 by the hypothesis on V and Cx=Ci/*(1+ V?*)C}/%. The Corollary is
an application of Lemma A2 followed by Lemma A1 together (A.3) and (A.4),
below. To obtain (A.3):

det;; (I —kD'yDCg)=dety ([I—xD'yDCg]™ 1)
=det, ([[—kCY?*D'yDCY?]Y).
Let  X=CY?D'yDCY2.  Then  det([I—X] Y)=det(I+X+X>+..)
<exp(Tr(X +X?+...)) and we continue with
Sexp(Tr(X)/(1— ] X1]).

Since X=WC!2D'yDC?W* and |W|<]2, Tr(X)<2|CY?|2z.4 and
IX || <2[|CY2D'yDCL2| =2 | DCY2CY2D'| <24 we obtain

detz!(I—xD'yDCg) <exp (1 —2’j4x> (A.3)

The other estimate is

Ak
1—Axk

LCRI—KkD'DCR)™ )< (5= (A4)

which holds because by | W| < |2, the same Cy : H _;— H hasnorm less or equal to
A, D:H,—~L, and D': L,—~H _, have norm one. End of Proof.

Decay of the Fluctuation Covariance

In (1.2) we defined the fluctuation covariance C'. Let C=4%C’ be the rescaled
fluctuation covariance. It is defined on the rescaled torus L™ ! 4, but we will replace
L™ '4 by A because we are proving estimates which are uniform in 4 provided the
periods are greater than one. The Fourier transform of C is

1 1
k*P(k*/L*)+k-ok k*P(k*)+k-ok
=0 if k=0,

k takes values in A, the lattice dual to the torus A.

Ck)=
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Lemma AS. Let P(t) be a positive non-decreasing smooth function on R which
d
equals one near t=0 and is such that P(t)=Constt*, t>s+ 5 and for m=0,1, ...,
[P™(t)| £ C,(1+]t]}' =™ Then for each n=0,1, ..., there exists A, such that for all
multiindices o, || = 2s, all d x d complex matrices o with ||a|| £1/2, all L= 1 and any
torus A,
0°C ()| < A, L* (1 + |x) 7,
where |x| denotes distance on the torus A.
Proof. Define D(x)=2¢"2 Y. (1—cos(exy), where x;, j=1, ..., d, are the coordinates

J N
of x € A and ¢ is the dual lattice spacing, i.e., 4 =(¢Z)". There exists C such that for
all xin 4 and all 4, |x|*> < CD(x). By this remark and summation by parts it follows
that for any multi-index « and n=0,1, ...,

[x]2"6%C(x)| < Const [¢? ¥ (— 4)*[(ik)* C (k)] ™~
k

K gy K
KP(*/L?) k- ok K?P(k?) k- ok

<Conste’y |(—A)
k

9

where Const is independent of A4 and Land 4 is the finite difference Laplacian on A.
The integrand is vanishing near k=0 because P=1 near k=0. It decays as k— o0
better than integrably. By increasing Const we can replace the Riemann sum over k
by integration and the finite difference Laplacian by the continuum Laplacian. If
n=0 then we split the range of the integral into |k|=1 and |k|< 1. For |k| <1 the
integrand is bounded uniformly in L. For |k|=1 and L large, the integral is
dominated by

L3 Ll
—— 1 < d+|a| .
wier PO p(i2) =Constl

Similar arguments hold for n>0 by using |P™(¢)| < C,(1 +[t)"™™ O

<Lk
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