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Abstract. We show that there exists a one-parameter family of infinite-
dimensional algebras that includes the bosonic d=3 Fradkin—Vasiliev
higher-spin algebra and the non-Euclidean version of the algebra of
area-preserving diffeomorphisms of the two-sphere S? as two distinct members.
The non-Euclidean version of the area preserving algebra corresponds to the
algebra of area-preserving diffeomorphisms of the hyperbolic space S*:!, and

can be rewritten as lim su(N, N). As an application of our results, we formulate
N—-ow

a new d =2+ 1 massless higher-spin field theory as the gauge theory of the

area-preserving diffeomorphisms of S*-1.

1. Introduction

Infinite-dimensional Lie algebras play an increasingly important role in the
development of theoretical physics. One of the best-known examples is the Virasoro
algebra, which underlies the physics of two-dimensional conformal field theories.
As such, they are important for string theories and for critical phenomena in
certain statistical-mechanical models.

Recently, two new types of infinite-dimensional Lie algebras have become
relevant. One of them is the algebra of volume-preserving diffcomorphisms of a
manifold .#, which we denote by sdiff (/). This algebra is a subalgebra of the
general diffeomorphism algebra of .# and corresponds to the residual symmetry
of an extended object in the light-cone gauge. A basic examble of such an algebra
is s diff (S). This algebra occurs in the description of a spherical membrane, which
can be viewed as a gauge theory of sdiff(S2). An interesting feature of the algebra
sdiff (S2) is that it can be obtained by taking the limit as N— oo of the
finite-dimensional Lie algebra su(N), i.e., sdiff(S2) = lim su(N) [1]. Replacing the

N-o
gauge theory of sdiff(S?) by a gauge theory of su(N) then provides a form of
regularization. The original spherical membrane theory is reobtained in the limit

N - 0.
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The other type of infinite-dimensional Lie algebra that has recently emerged
is the set of (super-) higher-spin algebras of Fradkin and Vasiliev [2,3]. These
algebras may play an important role in the construction of interacting massless
higher-spin field theories in 3 + 1 dimensions. In [2, 3], a perturbative construction
of the higher-spin theories has been begun, in which the higher-spin algebra is the
gauge algebra that guarantees masslessness. An essential ingredient in this approach
is the introduction of an infinite number of massless higher-spin fields propagating
in a curved anti-de Sitter background. The actions constructed in this approach
are non-analytic in the cosmological constant. As a consequence, these higher-spin
theories do not admit expansions over a flat background.

Recently, one of the authors (M.P.B.) has used the approach of [2,3] to
construct a consistent interacting supersymmetric higher-spin theory in 2+ 1
dimensions, describing all integer and half-integer spins = 3/2 [4]. The algebra
corresponding to the symmetry of the vacuum in this theory is one of the
super-higher-spin algebras of [2,3]. We will denote it by shs(1|2)@shs(1|2). The
notation indicates the finite-dimensional subalgebra of shs(1]2), which is osp(1]2).
The action is given by the integral of the Chern—Simons 3-form associated to the
superalgebra shs(1|2)@shs(1]2). As in the four-dimensional case, the action
contains an infinite number of massless higher-spin fields in a curved anti-de Sitter
background. However, unlike the four-dimensional case, the action of [4] contains
only positive powers of the cosmological constant and hence the limit to a flat
background can be taken. A consistent truncation of the theory can be obtained
by omitting all the half-integer spins. In that case, the symmetry of the vacuum is
given by the bosonic subalgebra of shs(1]2)@shs(1]|2), which we denote by
hs(1,1)@hs(1, 1). The notation again indicates the finite-dimensional subalgebra,
which for hs(1,1) is su(l1, 1).

In Sect. 2 of this paper we show that the bosonic higher spin algebra hs(1, 1)
and the non-Euclidean version sdiff(S''!) of the spherical membrane algebra
sdiff (S?) are two distinct members of a one-parameter family %, of infinite-
dimensional algebras. Each member of this family could be used to construct an
interacting higher spin theory in 2 + 1 dimensions. In Sect. 3 we show that the
non-Euclidean non-compact algebra sdiff (S!'') can be rewritten as lim su(N, N).

N- o

The latter relation shows that the algebra sdiff (S!'!) considered as an alternative
bosonic infinite-dimensional higher-spin algebra in 2+ 1 dimensions admits
truncation to an arbitrary but finite number of higher spins s=2,3,...,2N. A
theory involving a finite number of spins in this way can be considered as a
gauge theory of the group su(N, N). In the limit N — co, one reobtains the infinite
higher-spin theory. A geometric construction of the sdiff(S"!) algebra as a
subalgebra of the area-preserving diffeomorphisms of the hyperbolic space S*'*
can also be made. In such a formulation the algebra sdiff(S'') is defined on a
basis of real analytic functions on S'-.

In Sect. 4 of this paper, we apply our results in formulating a geometric bosonic
higher-spin theory in 2+ 1 dimensions as the gauge theory of the algebra
sdiff (S*!) @ s diff (S*'*). More precisely, we formulate the higher-spin theory in
terms of gauge fields taking their values in the algebra of functions on S x S*1,
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The advantage of such a geometrically formulated higher-spin theory lies in
the fact that certain calculations which are very difficult in a non-geometric
infinite-component formulation become almost trivial for a geometric theory that
is formulated in terms of a finite set of fields defined on an extended manifold.
For example, the Jacobi identities for the higher-spin algebras sdiff(S'') are
manifest in this geometric formulation, in contrast to the lengthy algebraic
calculations of [2,3].

In the conclusion, we briefly consider superextensions of the higher-spin
algebras. These superalgebras might be relevant to the description of spinning
membranes, i.€., membranes with world-volume supersymmetry. In the Appendix
we give some technical details concerning the proof of the Jacobi identities for the
Fradkin—Vasiliev higher-spin algebra hs(1, 1).

2. The Algebras sdiff S*'! and hs(1,1)

We will first describe and compare the constructions of the algebras sdiff S**! and
hs(1, 1) as well as their Euclidean versions, s diff S? and hs (2) respectively. We shall
specify an algebra by giving the commutators [&,,&,]* = f5.E5E5, where the &4
are the generators and the fj. are the structure constants of the algebra. The
hs(1, 1) algebra is then given by!

n=0, even
p.g,s21, odd
2.1)

3 - n! s)a
[fhfz]a(") = Z (— l)s/z 1/2@501 —p— q)é“{‘,,”(’s,é’i‘ )a(q)

p.q,s=1

where d(-) is the usual Kronecker delta. The spinorial index « (¢ = 1,2) is an su(l1, 1)
index, corresponding to the finite-dimensional subalgebra of hs(1, 1) generated by
the n =2 generators &2

[C1, 8,072 = 285,85 (2.2)

The spinorial indices are raised and lowered with the aid of the symplectic form

0 i
Q= ( . 0), (2.3)

e.g A"‘=.Q“‘3Aﬂ, A, = APQy,. Covariant conjugation of the fundamental su(1, 1)
representation A, =(A4,, A,) is given by A% = (4}, — A%). For su(1, 1), it is possible
to define real spinors satisfying A% = 4% Note that the n = 0 generator £ commutes
with itself and the rest of the algebra. Henceforth, we consider only the n=>2
generators.

The su(1, 1) spin content of a generator £ is given by | = n/2. One can easily

! Our conventions are those of [4]. In particular, upper or lower indices denoted by one symbol are
symmetrized with strength 1, i.e. i(a‘% + a,a,). For a given superscript or subscript a(n), the n denotes
the number of symmetrized « indices. Symmetrization is performed before contraction between upper
and lower indices
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check that the structure constants f%332), ,,  differ from zero only if
=L+ 1< <l +1,—1, with I+l +1; odd. 2.4)

The Euclidean version hs(2) of hs(1,1) is given by the same equation (2.1).
However, the spinor indices in this case refer to su(2), which is now the
finite-dimensional subalgebra generated by the &*?. Convariant conjugation is
now given by A% = (AT, A%). It is not possible to define an su(2)-covariant reality
condition for a single spinor. However, the bosonic algebra (2.1) contains only
generators carrying even numbers of spinor indices. For these representations,
reality conditions can be defined, e.g. A% = A*.

The explicit forms of the structure constants of s diff (S2), which involve products
of 3 — j symbols, have been given in [1,5]. From them one can immediately derive
the structure constants of sdiff S1. Since the expressions are rather involved we
will not give them here. General relations between the structure constants of the
area-preserving algebra in a convenient basis have been given in [6] and we will
make use of them below (see (2.22-24)).

In order to compare the algebras hs(2) and sdiff(S?) (as well as their
non-Euclidean versions), it is instructive to first consider the ways in which these
algebras are constructed. Consider first the s diff (S?) algebra. Let S? be a two-sphere
of radius r and let x; (i = 1, 2, 3) be three Cartesian coordinates,

xx;=Xxi+x;+x3=r (2.5

Then consider the set of all symmetric traceless homogeneous polynomials of the
form

x 1

A(X):-‘ Z 7al'1“'inxil...xi", (26)
n=0 n!
where the coefficients @' " are symmetric and traceless. A polynomial A(x) is said
to be of degree [ if the only nonzero coefficient is a”* “. One can introduce the
following Lie bracket of x; and x;:
{xi x5} = &3 % 2.7

This induces the Lie bracket of a pair of polynomials:

{A(x), B(x)} = ¢,;,x;0;40,B, (2.8)

which is the sdiff(S?) algebra. Given two polynomials A(x) and B(x), of degrees
I, and [, respectively, the right-hand side of (2.8) is equal to the product of three
polynomials, x;, 0,4 and 0, B, which are of degree 1, (/; — 1) and (I, — 1) respectively.
This can be rewritten as a finite sum of polynomials of degree I;. One can verify
that the Lie bracket (2.8) differs from zero only if the degrees [,, [, and [; satisfy
(2.4) [7]. For I, =1,=13=1, we recover the finite dimensional so(3) ~ su(2)
subalgebra (2.7) of s diff (S?). The constant polynomial A(x) = 1 commutes with the
rest of the algebra and will henceforth be omitted.

Although the two-sphere used in the construction of sdiff(S?) has been taken
to be of radius r, taking different values of r does not change the resulting algebra.
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To see this, one can make a rescaling of the basis polynomials AV(x) = a' x; -+ x;,
AD S (212112 40, 2.9)

After this rescaling, the structure constants of the algebra in the new basis become
identical to those in the original basis, but now for a sphere with radius r = 1.

We next consider the construction of the hs(2) algebra. Following [3], we
introduce operators g, (x = 1,2) where a is a spinor index of su(2). We then take
the set of all symmetric traceless homogeneous polynomials F(g) of 4, of the form

F(é) = Z _'ba(")qal qAa,p (2.10)
n=0HN.
where the c-number coefficients b*™ are totally symmetric multispinors. A
polynomial F(4) is said to be of degree [ if the only non-zero coefficient is b*?",
The operators g, satisfy the following commutation relations:

[q::’ q[]] = Qa/}' (21 1)

From the commutation relation (2.11), one can derive the commutators of pairs
of basis polynomials. These commutators define the supersymmetric extension
shs (2, C) of the complexification hs(2; C) of hs(2).

A useful alternative way of describing the shs(2; C) algebra is to use commuting
variables g, instead of the operators 4,. One then takes the set of all symmetric
traceless homogeneous polynomials F(q) of g, which, except for the substitution
4, 4, are identical in form to the polynomials F(g) given in (2.10). One can then
define the following composition law for two polynomials F(q) & G(q):

(2.12)

o 0
(F*G)(q) =exp (Qa a—~>F(ql)F(qz)

0 q2p q1=q2=¢q

The shs(2; C) algebra is then given by the Lie bracket
[F(q), G(g)] = (FxG)(q) — (G*F)(g). (2.13)

In order to construct the bosonic hs(2) algebra, it is sufficient to consider only
polynomials of even degree, i.e., b*™ = 0 for n odd. In this case, one can introduce
a real form of the algebra. Equivalently, instead of the operators 4,, one can use
the vectorial operators S ~{qudp (i=1,2,3). From (2.11), one finds that the
operators S; satisfy the commutation relations

[S,, S 1= SU,‘ (2.14)
and the constraint?
§8,=2. @.15)

Using the S, instead of (2.10) we consider the set of all symmetric traceless

2 Note that the value of Casimir operator SS; in (2.15) does not correspond to any finite-dimensional
unitary representation of su(2). This is also obvious from the construction of the S; from the Heisenberg
algebra (2.11)
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polynomials of the form
PO R I SN
F§)= Y —b S, .S, (2.16)
n=0 n!
where the coefficients b"* " are symmetric and traceless. The polynomial F () is
of degree I if the only nonzero coefficient is b'* .

From the commutation relation (2.14) we can derive the commutator of a pair
of polynomials. These commutators define the hs (2) algebra. Given the polynomials
F(S) & G(S), of degrees I, and I, respectively, their commutator can be written as
a finite series of terms, each containing a single commutator [S.S ;] Each of these
terms consists of the product of three polynomials of degree 1, l1 land [, — 1.
These products can then be decomposed by repeated use of (2.14) and (2.15) into
a finite number of irreducible (i.e., homogeneous symmetric traceless) polynomials
of degrees [;. As in the case of the s diff (S?) algebra, the resulting structure constants
differ from zero only if the degrees [, I, and I, satisfy (2.4). For I, =1, =13 =1, we
recover the so(3) algebra (2.14). The constant polynomial commutes with every
polynomial and can be omitted from the algebra.

Although the above constructions of sdiff(S*) and hs(2) are similar, they are
not identical. The difference lies in the fact that the x; are commuting while the
S, are non-commuting operators. This affects the values of the non-zero structure
constants, even though the pattern of zero and non-zero structure constants agrees
for the two cases. As we have seen above, when calculating the Lie bracket or
commutator of two polynomials of degrees I; and I,, in either algebra one ends
up with a product of three polynomials 2, 2, and 2; of degrees 1, [, — 1 and
I, — 1. This product has to be decomposed into a finite number of irreducible
polynomials of degrees [5 ranging from |/; —[,| + 1 to I; + [, — 1. The polynomial
of highest degree is obtained by completely symmetrizing the indices of the
polynomials #2,, #, and 2, and removing all the traces. In the sdiff(S?)
construction, the polynomials of lower degree are given by the various repeated
traces excluded from the highest degree polynomial. In taking these traces, x;x; is
replaced by 1 using (2.5) (where r has been set to 1 here without loss of generality,
as we have diseussed). In the case of the hs(2) construction, exactly the same
manipulations are performed using S.S;= 1. However, in the hs(2) case there are
additional contributions to the non-leading structure constants due to the fact
that, in the process of decomposition into irreducible polynomials of the operators
S,, the commutation relations (2.14) must be used. The commutators [S,, S J] give
additional contributions to the non-leading structure constants that have no
analogues in the sdiff(S?) construction, where the x; are commuting. Thus, the
above constructions of the two algebras s diff (S?) and hs(2) do not give the same
values for the non-leading non-zero structure constants.

Despite the fact that the structure constants for sdiff(S?) and hs(2) are not
exactly the same, one can not a priori exclude the possibility that the two algebras
are isomorphic. This is possible because the basis polynomials for the hs (2) algebra
can be rescaled in a similar fashion to that we used in discussing the sdiff(S?)
algebra itself, where different values of r in the equation for the sphere (2.5)
nonetheless yield the same algebra. Of course, a priori, there are many more
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non-zero non-leading structure constants than there are basis polynomials, so it
is not obvious that such rescalings of the basis for the hs (2) algebra will be sufficient.
In fact, we will now show that despite the possibility to make rescalings of the
basis polynomials the structure constants of sdiff (S?) and hs(2) can not be made
the same and therefore the two algebras are not isomorphic. In the proof we will
apply some of the results of [6].

In order to make use of the results of [6], it is convenient to represent the
structure constants f}" of hs(2) in a particular basis as follows:

(2m) ra(Zn)] — Boap B ra(m—=n+k)f(n—m+k)
[éa m’éa n]__gf;‘nnaa eab ... g éam n n—m+k) (217)

m+n—k
In general we can obtain different values for the structure constants by making a
rescaling of the basis of the algebra,
g g = Wp)Eam  p >0, even, (2.18)

where ¥(n) is an arbitrary function of the non-negative integers n satisfying the
conditions

Y(n)#0 Vn=0, even

(2.19)
Y(m)=0 VYn=1, odd.

This freedom leads to the following arbitrariness for the structure constants F}™
in an arbitrary basis:
Y (2k
F" = ;""—rr——(ﬂlr- (2.20)
¥ (2m) ¥ (2n)
From (2.1) we deduce that the structure constants ;™ of hs(2) in a particular basis
are given by

(2k)!
(m—n+k)(n—m+k)!(m+n—k)\

mn _

k

(2.21)

A similar closed expression for the structure constants of the s diff (S?) algebra is
not known. For our purposes however, it is sufficient to use the following relations
between the structure constants of s diff(S2) [6]:

a" =g, (2.22)

gm._y = —8umn, (2.23)
— ])

m2 _ _ 3 mm=1) 2.24

Im-1 T omt 1 (2.24)

Here we have indicated the structure constants of sdiff (S by g™ in order to
distinguish them for those of hs(2) given in (2.21). The question now is whether
there exists a function ¥(m) such that

mn __ £mn .{I(Zk)

I =Ju& W (2.25)
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for some choice of ¥(2m). We will now show that Eq. (2.25) is inconsistent with
the relations (2.22-2.24). Clearly, substituting (2.25) into (2.22) does not lead to
any restriction on ¥(2m). The second relation (2.20) restricts ¥'(2m) to be

¥(2m) = 2i ((22:"”)) : (2.26)
with
g2(m + n — 1)) = g(2m)g(2n). (2.27)
The third relation leads to the following additional restriction on g(2m):
g2(m + 1)) =(2m + 1)2m — 1)g(2(m — 1)). (2.28)

One can easily convince oneself that there is no function g(2m) that satisfies both
(2.27) and (2.28). For instance, from (2.27) taken at n=3 and for m—»m—1 it
follows that g(2(m + 1)) = g(6)g(2(m — 1)). It would then follow from (2.28) that
g(6) = (2m + 1)(2m — 1) Ym which is inconsistent. Our conclusion therefore is that
the algebras hs(2) and sdiff S? are not isomorphic. From the above proof it is
immediately clear that also the non-Euclidean algebras hs(1, 1) and sdiff (S!'!) are
not isomorphic.

We will now show that in fact the algebras hs(2) and s diff(S?) are two distinct
members of a one-parameter family &/, of infinite-dimensional algebras with
different values of A leading to inequivalent algebras®. To keep the discussion
simple we will only consider positive values of 4,i.e. 1 = 0. To describe the algebras
o, we introduce operators S{i = 1,2, 3) which satisfy the commutation relations
1=12e,;S, (2.29)

[S i S J
and the constraint

SS,=1. (2.30)

We next consider the set of all symmetric traceless polynomials F(S) like in (2.16).
The algebra of commutators between these polynomials define the algebra <.
Clearly, by construction </, , ~hs(2), as can be seen by comparing with (2.15).
We observe that we also can consider the limit of the algebra ./, as 1 —0. In this
limit the operators S effectively behave like commuting variables and the algebra
is given by s diff (S2). This particular limiting procedure has been described in more
detail in [8]. Hence we have

lim o/ ; ~ sdiff(S*) and o 43 =hs(2). (2.31)
A—0
In order to show that different values of A always lead to inequivalent algebras

it is sufficient to consider the commutation relations between the polynomials of
degree 1,2,3 and 4:

3 The discussion that now follows is due to a conversation with M. Vasiliev who pointed out to us
the existence of the one-parameter family of algebras </,
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Fi=y(8,
F,-,- =yY@){S:S)— 39}
= ‘/’(6){8(15 Sk) - ‘(12 + 3)5(ijSk)}s

Fiu=y(8 {S(,S SkS,, 522 + 6)0;SiS)y + (247 + 1004} (2.32)
Hence ¥(2), Y(4), Y(6) and (8) are arbitrary functions of A which reflect the freedom
we have in the choice of normalization of the basis polynomials (see the discussion
around (2.19)). Using the basic operator relations (2.29) and (2.30) one can now
calculate commutation relations between the F’s. In particular, we find

[F,F]1= als,Jka

[Fij F] = aeq*F )" + aze " 00 F, (2.33)

1
[Fijks qu] - a48(i(pstk)q)S + a58(,(ps{5?)Fk)s - ‘géjk)Fq)s},

with a,,...,as given by

_ L (W(4)?
a, -’1‘//(2)’ a, =44 ‘11(6) y
=124 gAY YaNE) (2.34)
° v ot we)

as =12A24% + 1)y(6).

The question we would like to address now is the following. Is it possible that
for different values of the parameter 4 we can obtain the same value for all structure
constants a,,...,as by means of a suitable choice of the arbitrary functions ¥(2),
Y(4), Y(6) and ¥(8)? To answer this question we first set a;, =a,=a;=a,=1 to
fix the values of Y/(2), ¥(4), Y(6) and ¥(8). In particular we find for y(6):

20
6)= oo, 2.35
Y(6) W62+ 4) (2.35)
We next substitute this value of /(6) into the expression for the structure constant
as. We thus find that the condition for two algebras o7, and .o/ ;, (; # 4,5 4,,4, 2 0)
to yield identical structure constants requires that the expression

240242 + 1

7 31%+4
take the same value for 4, and 4,, i.e. as(4,) = as(4,). Clearly this is not the case.
We therefore conclude that different values of 4 always lead to inequivalent algebras
oA ,.

Summarizing, we have found that hs(2) and s diff(S?) are two distinct members
of a one-parameter family ., of infinite-dimensional algebras, with different values
of A4 always leading to inequivalent algebras. It is clear also that the non-Euclidean
algebras hs(1,1) and sdiff(S"') belong to a one-parameter family %, of
infinite-dimensional algebras where every 4, is the obvious non-compact version
of o/,. At first sight one might be surprised by the existence of the algebras 4, in

as(d) = (2.36)
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view of the uniqueness theorem of [2]. In [2], the Jacobi identity of the higher
spin algebra was used to prove, subject to certain assumptions, a uniqueness
theorem for the infinite-dimensional extension of so(3) whose generators decompose
under so(3) into a sequence of representations where each symmetric traceless so(3)
representation occurs just once. Clearly, both sdiff(S*:!) and hs(1,1) share this
property. We would like to point out that our result does not contradict this
uniqueness theorem. In particular one of the assumptions on which the derivation
of the uniqueness theorem in [2] was based is that no Fierz identity need by used
in the verification of the Jacobi identities. This is indeed the case for the higher
spin algebra hs(1,1). However, one can easily convince oneself that for all other
algebras 4,(A # 1) the verification of the Jacobi identities does require the use of
Fierz identities. In the Appendix we will rederive the uniqueness theorem of [2]
for the case of 2 + 1 dimensions and will point out at which point one makes the
assumption that no Fierz identities need be used.

In principle, each 4, could be used to construct an interacting higher spin
theory in 2 + 1 dimensions. This has already been done in the case of the algebra
A, 5=hs(1,1) [4]. In the remaining part of this paper we will consider
lim 4, = s diff (S!'!) as an alternative candidate for a consistent higher spin theory
A—=0
in 2 4+ 1 dimensions.

3. Geometric Formulation of d =2 + 1 Higher-Spin Theory

First we will show that the infinite-dimensional algebra s diff (S') can be rewritten

as lim SU(M, M). This is a non-compact version of the theorem in ref. [1] that
M- ©
the infinite dimensional algebra sdiff(S?) can be rewritten as lim su(N). To be

N-w
more precise, it has been shown recently that s diff (S?) ~ su (c0) [9].

Let J; (i—l 2,3) be the three generators of su(l,1). We take the compact
generator 7 5 to be hermitian and the two non-compact ones 7 ; and 7, to be
antihermitian. The matrix representations of these generators are related to those
of the three hermitian generators %; of su(2Q) by 7, =i, 7 , =iU,and I 3 =U,.
Using these relations, one can verify that when the value of the su(2) Casimir
operator %% + % + %% is N> — 1/4, then the value of the su(1, 1) Casimir operator
Ti+T2—T2is given by —(N?—1/4). Thus, the 7, satisfy the commutation
relations

T 9_,'] =3ijk<7k (3.1

and the constraint

NZ—-1
T T =9+5i-T3= ( a )1]. (3.2)
The sdiff (S?) algebra was constructed in [1] by taking commutators between
all irreducible, i.e., homogeneous symmetric traceless, polynomials in the %; of
degrees 1 <1< N — 1, decomposing the results into irreducible polynomials and
then taking the limit as N — co. For any finite value of N, the set of irreducible
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polynomials of degrees 1 <! < N — 1 in the %, forms the set of hermitian generators
of su(N) in the adjoint representation. We now perform the same construction
with the J; instead of the ;. In this case, the set of irreducible polynomials of
degrees 1 <1< N — 1 form the set of (hermitian and antihermitian) generators of
a non-compact version of su(N). To identify the particular non-compact version,
recall that the non-compact su(P, Q) algebras has P? + Q% — 1 compact hermitian
generators and 2PQ non-compact antihermitian generators. Now, a homogeneous
symmetric traceless polynomial of degree [ gives | hermitian and / + 1 antihermitian
matrices if [ is odd; if / is even, it gives [ + 1 hermitian and [/ antihermitian matrices.
Thus, the set of all irreducible polynomials of degrees 1 </ < N — 1 contains the
following numbers of hermitian and antihermitian matrices:

hermitian matrices antihermitian matrices

Neven IN?2 -1 iN? (3.3)

N odd iN2-3 IN?2+ 1
For even N, these matrices form the generators of the adjoint representation of
the non-compact algebra su(M, M) with N = 2M; for odd N, they form the adjoint
representation generators of su(M + 1,M) with N =2M + 1. Thus, the non-
compact version of s diff (S%) can be obtained as the limit of the finite-dimensional
Lie algebra su(M, M) as M — co. Note that we have not been specific about the
particular real form that one gets and our counting of hermitian and antihermitian
generators corresponds either to SL(N, R) or SU(N, N).

The algebra sdiff(S''!) can be given a more geometrical interpretation by
considering its relation to the algebra of area-preserving diffeomorphisms of the
hyperbolic space S':!. First, note that the Lie bracket (2.7,2.8) may equally well
be defined in a d =2 + 1 “internal” Minkowski space M?3. It then turns the space
of all functions on M? into a Lie algebra. A proper subalgebra of this is the algebra
of polynomials in the coordinates of M3, which is isomorphic to s diff (S'!).

One may then restrict attention to functions defined on the hyperboloid S!'!
defined by (x°)? — (x')? — (x?)? = a~ 2. It is convenient to choose coordinates g, T,
_ p in M? such that 9, and 9, are tangent to S and 4, is normal to it. In terms
of these coordinates, (2.8) reduces to

{4, B} ~3,A49,B — 3,40,B. (34)

Thus, sdiff(S*'!) is isomorphic to a subalgebra of the area-preserving
~ diffeomorphisms on S!'!,

A given function on S™! belongs to the subalgebra isomorphic to sdiff (S!'!)
if it can be continued to a polynomial defined on the rest of M3. The simplest
formulation of this condition is to consider only real analytic functions on S!'1.
These form a subalgebra of the algebra of general functions since (3.4) preserves
analyticity. The analytic continuations of these to the rest of M3 are power series
in the x/, so they belong to sdiff (S!'!). Moreover, the generators of s diff (S!'!) are
the traceless homogeneous symmetric polynomials, and hence are analytic. So the
algebra s diff (S*'!) is isomorphic to the algebra of real analytic functions on S*1.

It would be interesting to relate s diff (S*'!) to other spaces of functions defined
on S*1, such as the bounded-energy scalar wavefunctions considered in [10]. These
wavefunctions of the massive scalar wave equation on S''! also form a discrete
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basis of functions on M3. However, it is not immediately clear what relation, if
any, this has to sdiff (S*'!), for one may see by inspection that the polynomial
basis functions that we have considered above do not satisfy the conserved
positive-energy boundary conditions of [10].

We now proceed to formulate an alternative d = 2 + 1 higher-spin theory as a
Chern-Simons gauge theory associated to s diff (S*'!) @ s diff (S''!). In the Euclidean
case, the d =3 higher spin theory is a Chern—Simons theory associated to
s diff (S?) @ s diff(S?). One may call these “geometric” formulations to distinguish
them from the usual “algebraic,” or component, formulation of a theory such as
that of ref. [4].

Since we have two copies of the algebra sdiff(S!:!), we consider the manifold
St1 x S, We choose an identical coordinate system on each S*'! and denote the
coordinates by (6%, 6°) a,b = 1,2. sdiff (') @ s diff (S''!) is then given by the set of
all real analytic functions that depend only on ¢ or on G, i.e., A = A(a) or C = C(§),
with Lie brackets

{A,B} =g~ '¢"0,A40,B,
{C,D} =~ 1£*3,Cd,D, (3.5)
{4,C} =0,
where 0, = 8/(06®) and g = ./ — det g,,,, with g, the usual metric on S,
_ We denote gauge fields taking their values in the above algebra by I',(x, ),
I' (x,6), where x*, u=1,2, are the coordinates on the (arbitrary) spacetime
manifold .#3. Thus, we see that in geometrical formulation, all higher-spin fields
are combined into a single field on the extended manifold .43 x S''! x S''!. This
is to be contrasted with the component formulation, where we have an infinite
number of fields on .43,
Now define
{I, T} =g"'¢®,I" A o,T, (3.6)
where I'(x,0)=T,(x,0))dx*. The higher-spin gauge transformations and
curvatures can then be rewritten in the compact form
6, =dIr—{e, T},
R(I')=dI -{I, T},
6. =dIr — (T},
RI)=dl -4{{T,T}. 3.7)
Note that the exterior derivative d acts on the spacetime coordinates only.
The d =2 + 1 higher-spin equations of motion are [4]
R(I')=R(IN) =0. (3.8)
These can be obtained from the sdiff (S!'!) A sdiff(S*'!) Chern—Simons action

I=0Q | (TAdl+4{Lryan+E | (TAdl+Y{I,TIAD),
M3Ix S M3 xS 3 9)
3.
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where
d*ayg(0)

[ = | & { . 2} (3.10)
MIXSLT g3 St respectively d“Gg(G)
and Q2 and = are arbitrary (at the classical level) non-zero constants. In order for
the spin-two sector of the action (3.9) to contain just the standard Einstein kinetic
term, we must have &= — Q [11].

In order to express the higher-spin theory in terms of the more usual e and w
gauge fields, one may write the algebra s diff (S*-*) @ s diff (S**!) in the following way:

{4, B}'(0) = g~ '(0)6"°0,A4(0)0,B(0),
{4, BY(6) = §~(6)e™3,A(6)0,B(5), (3.11)
{4, BY(0) = 12g™ '(0)e""0,A(0)2,B(0),
with 4 # 0, where we have used the fact that, given any C(0), there is a corresponding
C(6) defined by C(6) = C(0)|, ;-
The algebras (3.5) and (3.11) are easily shown to be isomorphic by considering
the 11 map given by

T(A) = 1A + 471 4),

T() = 44— "1, 612
which is an isomorphism because
T({- ) ={TC)t ()} (3.13)

We denote gauge fields taking their values in the algebra (3.11) by w,(x,0) and
e,(x,6). In order to have the canonical normalization of the Einstein kinetic term
when the action is written out in terms of e, and w,, we must pick 4 =1/(4Q)
[11]. Thed = 2 + 1 equations of motion for e, and w,, following from (3.9) are then

R(e)=de + {, e} =0, (3.14)
R(w) = do + 1H{o,0) + {e, e} =0. (3.15)

The last term in (3.15) is a cosmological term with cosmological constant — A2,
as can be seen from (3.11). Equation (3.14) is the torsion constraint. One way to
solve this constraint is first to “regularize” the theory by considering the
finite-dimensional su(N, N) @ su(N, N) higher-spin theory. Since there are the same
number of w component fields as there are torsion-constraint equations, there is
an algebraic solution to the su(N, N)@® su(N, N) torsion constraint. The solution
to (3.14) can then be given as the N — oo limit of the finite-component solution.

Finally, we may take the contraction limit A—0 in (3.11). Note that in this
limit the last term in (3.5) vanishes. The resulting contracted algebra and equations
of motion describe a geometrical d =2 + 1 Poincaré higher-spin theory alternative
to the one given in [4]. Recently, also a d =2 + 1 Chern—Simons gauge theory
associated to the d = 3 + 1 higher spin algebra has been constructed [12]. It turns
out that this theory describes conformal higher spins.
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4. Conclusion

We have found that the three-dimensional higher-spin algebras and the
area-preserving diffecomorphisms are distinct members of one-parameter families
of algebras. This relation may have applications in several different areas. In the
context of the higher-spin theories, we have applied our results in formulating an
alternative higher-spin theory which has a more geometrical interpretation than
the original algebraic one. In particular, the geometrical basis may be useful in
solving some of the outstanding problems of the d = 3 + 1 higher-spin theory, such
as finding and solving constraints on the necessary non-dynamical “extra fields”
[2]. It also would be of interest to investigate whether alternative higher-spin
algebras analogous to the ones we have found in 2 + 1 dimensions exist in 3 + 1
dimensions as well. In the context of membrane theories, the relations found may
be of importance for the study of representations of the area preserving
difftomorphisms. This could be relevant for an investigation of the quantum
spectra. Although the area-preserving deffeomorphisms appear as a constraint
algebra, under which one might expect all the physical states to be singlets, quantum
anomalies could change this picture in a way similar to what happens to the
Virasoro algebra in string theory, where ghost and “physical” modes separately
must carry non-trivial representations, with the BRS-invariant states being
constructed as invariant products of ghost and physical mode creation operators.
Already a considerable amount is known about the representations of the
higher-spin algebras [13], and some of these results may be useful for the
construction of representations of the area preserving algebra.

Another area in which the connection between higher-spin and area-preserving
diffeomorphisms is suggestive is supersymmetry. Serious difficulties lie in the way
of constructing membrane theories with local world-volume supersymmetry [14]%,
although rigidly spacetime supersymmetric models certainly exist. On the other
hand, there are known supersymmetric extensions of the higher-spin algebras
[2-4]. Also, infinite-dimensional superalgebras corresponding to symplectic
superdifftomorphisms have been investigated recently [16]. It would be interesting
to see whether these algebras are again members of a one-parameter family of
infinite-dimensional superalgebras as in the bosonic case. We recall that both
hs(1,1) and its complexification hs(2; C) admit supersymmetric extensions [2—4].
The complex superalgebra is given by

S PP 1
[fl,fz]“(") = Z (— 1) I/ZW(;(n —p— q)é’{””,q(,)ﬁg"’“(’” {

p.gr=1

nz=0, even
p.q,r=1, odd

p=0, even

,07%™ = 3 1)y/2-1/2 5 — a(p) B(r)a(q)
601 = 3 (= 1y 8= p— )0 ¢ {n’q’rgl odd

qr=1
nr=0, even

a(n) — ’/2
(01, Q-] Z (=1) p,q=1, odd,

pql

,-g 5(n —p— q)Q«:(p)p(r)Qg(r)a(q) {

4.1)

* For a recent proposal of a spinning supermembrane action however, see [15]
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where the spinorial index a = 1,2 is an su(2) index. The algebra (4.1) contains a
finite-dimensional graded subalgebra su(2|1;C), which is generated by the
supercharges Q" and by the su(2) generators £*?. The bosonic subalgebra
s diff (S%; C) is obtained from (4.1) by the truncation Q*" = 0. Since this bosonic
subalgebra contains only generators with even numbers of spinorial indices, an
su(2)-covariant reality condition can be defined for them, e.g. &% = ¢*%. In this way,
we obtain the real form sdiff (S2) of sdiff (S%; C).

Another important issue is the nature of the area-preserving diffecomorphism
algebras for spaces with non-spherical topology. Interesting work on the structure
of the algebra on tori has been done in [17]. Furthermore, in [18], an interesting
relation has been found between the area-preserving diffeomorphisms of the
two-plane sdiff (R?) and the W algebras [19]. There also exists a general
classification of the area-preserving infinite-dimensional algebras [20]. Whether
choices of the sets of basis functions on spaces with different topologies do in fact
correspond to distinct algebras deserves more careful study.

Appendix

In this appendix we will give a simple rederivation of the uniqueness theorem of
[2] for the case of d =2+ 1 dimensions. The uniqueness theorem of [2] stated
that there exists just one infinite-dimensional extension of so(3) whose generators
decompose under so(3) into a sequence of representations where each symmetric
traceless so(3) representation occurs just once. We will point out at which point
one makes the assumption that no Fierz identities need be used and also which
further assumptions are needed in the proof of the theorem.

In order to make use of the results of [2], it is convenient to describe the
algebras in terms of generators ™ (with n even), where the « indices are spinorial
indices of su(2) ~ so(3). We assume that the commutation relations for the &*™
take the general form

[61, él]a(n)
® n! nz0 even
— —1)2-12 3(n—p— g ,q, S a(p) B(s)a(q) =
pgil( ) E@Q( P — 9P, 4, 5)¢T" 5 & szl odd
(A.1)

The factor (—1)“~12n!/(p!q!s!) has been introduced for convenience and o(p, g, s)
is an arbitrary function of the non-negative odd integers p, ¢ and s; a(p,q,s) =0
if p, ¢ or s is even. Antisymmetry of the commutator or Lie bracket
[€1,¢,]= —[&,,E] imposes the following symmetry property on ofp, g, s):

(p, g, s) = o(g, p, 5). (A2)
The Jacobi identities corresponding to the commutation relations (A.1) have
been calculated in [2]. They lead to the following equation for a(p, g, s):
op+s,q+v,uap+q,r,s+0)
+ (— 1ttt erstu@rutr+ sy (g v ur+s,0)q +1,p, U+ s)
+ (= 1ptotetstoabtstatigG 4 o p+u,s)dr + p,g,u+v)=0.  (A.3)
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It is in the derivation of (A.3) that one makes the assumption that it is never
necessary to use Fierz identities of the form

1282583 + 81,8585, — £1,62,83 =0 (A4)

is verifying the Jacobi identities [2].

The identity (A.3) depends on the six integers p, q, s, u, v & r. Using the fact
that the function ofp, g, s) vanishes if one of its entries is even, it follows that for
any choice of these integers, one of the terms on the left-hand side of (A.3) is zero.
The two terms are non-zero only if one takes two of the integers to be even and
the remaining four to be odd. Different choices of the two even parameters lead
to identical equations. We make the following choice:

p,u,v,r=1 odd
q,5=0 even. (A.S5)

With this choice, the identity (A.3) reduces to
oap+s,q+v,wp+q,r,s+v)—alqg+ur+svg+r,p,u+s)=0. (A.6)

The identity (A.6) does not allow us to solve for a(p, q,s) uniquely. This is due
to the freedom that one has to rescale the basis of the algebra, as has been explained
in the discussion around (2.18). This freedom leads to the following invariance of
the identity (A.3) under transformation of the basis:

¥(p+a)
a(p,q,8)—=a'(p,q,s) =——————ap,q, 5). A.7
(p.q,5) > (P, q,5) l{,([)H)q,(qﬂ)(pq) (A7)
Two solutions to the identity (A.3) that are related by the basis transformation
(A.7) for some choice of ¥(n) correspond to isomorphic algebras.

In trying to solve the identity (A.6), it is convenient to choose a definite basis
for the algebra, thus fixing the transformation freedom (A.7) completely. We now
assume that the structure constant a(p, g, 1), which corresponds to the coefficient
of the highest-degree polynomial in a given commutator, is always non-zero. This
allows one to partially fix the freedom (A.7) by imposing the conditions

wp,g,1)=1. (A.8)

These conditions restrict the function ¥ (m) occurring in the transformation (A.7)
so that it must satisfy

Yr+q9=¥Yp+1)¥Y@q+1). (A.9)

From (A.8) and (A.9), it follows that ¥(2) = 1. The values of ¥(4), ¥(6), etc. are
not yet determined.

Next, consider the identity (A.6) for ¢ = s = 0 and u = 1. Subject to the conditions
(A.8), (A.6) reduces for these values to

ap,r,v) = of1,7,0). (A.10)
Recalling the symmetry property (A.2), this implies
a(p,q,s) =afs), «l)=1. (A.11)
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In terms of «(s), the remaining unfixed basis-transformation freedom is given by

os)
as)od(s)=————, A.12
=00 = (A.12)
where ¥(m) satisfies (A.9). Substituting (A.11) back into the identity (A.6) leads to
the relation

a(u)a(s + v) — a(v)o(u + 5) =0, (A.13)

which is invariant under the remaining basis freedom (A.12). For u=1, (A.13)
reduces to

os + v) = av)s + 1). (A.14)

We now furthermore assume that the structure constant «(3), which corresponds
to the coefficient of the next to highest degree polynomial in a given commutator,
is always non-zero. This allows one to fix the remaining basis freedom by the
condition

a(3) = 1. (A.15)

From (A.12) it follows that this condition fixes ¥(4) = 1, and it then follows from
(A.9) that ¥(m) =1 for all m, so that the basis freedom is now fixed completely.
Substituting the gauge condition (A.15) into Eq. (A.14), we similarly find that
o(s) =1 for all odd s, and hence

«p,g,5)=1 Vp,q,s odd. (A.16)

This is the solution to the identity (A.6) in the basis fixed by (A.8, A.15). From it,
we see that, up to rescaling of the basis polynomials of the algebra, there is a
unique solution to (A.6). This concludes the proof of the uniqueness theorem.
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Note added. After submission of this paper, we received a preprint by Bordemann, Hoppe and Schaller
[21] in which the existence of the one-parameter family of algebras discussed in this paper is also
noted. These authors consider also the possibility of nonlinear changes on the bases of the family of
algebras in demonstrating the inequivalence of the algebras for distinct values of the parameter .
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