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X — Y Model with a Random Transverse Field
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Abstract. We consider the ground-state of the quantum spin model H =
-JΣ<ljy[σx(i)σx(j) + oy(i)ay(j)~\ + ΓI./zl σz(0 in one-dimension, where {hh ieZ}
are independent identically distributed random variables. By means of a
Jordan-Wigner transformation the model is mapped into a free Fermi gas in
the presence of a random external potential. We then use exponential
localization of the one particle states to prove exponential decay for the
spin-spin correlation functions.

1. Introduction

The Hamiltonian for the quantum x — y model in the presence of a random
transverse field is given by

H = -JΣ^lσ^σ^y) + σ2(x)σ2(y)] + Σxh(x)σ3(x),

where σ1,σ2,σ3, are the usual Pauli spin matrices, xeZd, <x,y> denotes a pair of
nearest neighbors in Zd, and the h(x\ xeZd, are independent identically distributed
random variables whose common probability distribution we will denote by μ.

The quantum x — y model in the presence of a random transverse field was
shown by Ma, Halperin and Lee [1] to be relevant when studying the effect of
disorder upon superfluidity. It was argued there that at high disorder localization
should take place destroying the longrange order of the x — y components of the
spin system.

In this paper we consider the ground state of the one-dimensional model and
show that, for any non-zero disorder, the elementary excitations of the system are
localized and the correlation functions decay exponentially. This is to be compared
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with the polynomial decay obtained by Lieb, Schultz and Mattis [2] for zero
transverse field.

As in [2] we "solve" the model by means of a Jordan-Wigner transformation
[3] which maps the system into a free Fermi gas in the presence of a random
external potential. In one dimensional the one particle states are localized [4-7, 10]
for any non-zero disorder and this entails exponential decay for the one-particle
Green's function with probability one.

Since the spin operators are non-local functions of the Fermi creation and
annihilation operators, the study of the spin-spin correlations is much subtler than
determining the ground state energy and the excitation spectrum [2, 8, 9]. However,
using Wick's Theorem and convenient resummations we are able to show that the
exponential fall-off of the one-particle Green's function yields exponential decay
of the spin-spin correlation functions.

Given a positive integer L, we denote by HL the model Hamiltonian restricted
to the box Λ L = Zn[ — L,L], with free boundary conditions. The corresponding
ground state, which we will show to be unique with probability one, will by denoted
by \I/L. ('yL = (ψL,'ψL) is the ground state expectation. We will also use σ+ =
iK ± ΐσ2).

Our result is

Theorem. Let d=l. Suppose the support of μ is not concentrated on a single-point
and §\h\η dμ(h) < oo for some η > 0. Then for any J there exists nij > 0 such that for
almost every choice of the random transverse field h we have

for some Ch < oo and all x, yeZ.
Notice that we allow μ to have a delta function at zero, e.g., we can have h(x)

taking only the values 0 and 1 with nonzero probability.
This paper is organized as follows. In Sect. 2 we describe the model and review

the Jordan-Wigner transformation. In Sect. 3 we discuss the properties of the
one-particle Green's function and prove a folk theorem showing that exponential
localization of states around the Fermi level implies exponential decay of correlation
functions. In Sect. 4 we prove the theorem.

2. The Model and its Ground State

At each lattice site xeZ we have a two dimensional space C2 = Jjfx and the Pauli
spin matrices

Q\ ^ ί l

o) σ'wHo -
For LeZ, L > 0, we consider the finite system in Λ L = Z n [ — L, + L]. In the Hubert
space J^L = (X) JVX9 the Pauli space operators defined in the usual way satisfy

x e Λ L

the commutation rules

Lσ3(X),σ±(y)]=±2σ±(X)δxy9
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We shall also make use of the operator

1 + σ3(x)
n(x) = - ̂ - = σ + Mσ - M

The Hamiltonian in Λ L with free boundary conditions is given (up to an energy
shift) by:

HL = ΣL

X = -Lh(x)n(x) - JΣL

xlLL[_σ + (x)σ_(x + 1) + σ_ (x)σ+(x + 1)].

The external transverse fields {h(x\ xeZ} are independent identically distributed
random variables with common distribution dμ(h), which we will always assume
to satisfy the hypotheses of the Theorem.

Following [2] we introduce fermion creation and annihilation operators by
the Jordan- Wigner [3] transformation. For — L < x ̂  L, let

α*(x) - ex

a(x) =

and,

The new operators satisfy canonical anticommutation relations (CAR):

Vx, ye Λ L. Here {A, B} = AB + BA.

The Hamiltonian HL can now be rewritten as:

HL = Σ-LίXίLh(x)a*(x)a(x) - J Σ$~l L[a*(x)a(x + 1) + 0*(x

which is the Hamiltonian for a gas of non-interacting spinless fermions in the
presence of a random external potential h(x).

We are thus led to consider the one-particle random Schrόdinger operator

in the Hubert space 12( Λ L), where

and h is the multiplication operator

(hφ)(x) = h(x)φ(x)

with φe/ 2 (Λ L ). The operator —ΔL9 apart from a trivial additive constant, is the
usual lattice Laplacian with Dirichlet boundary conditions.

Let now φt(x) and εh / = 1, . . . , 2L + 1 denote the normalized eigenfunctions and
respective eigenvalues of the Schrόdinger operator. Notice that without loss of
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generality φt(x) can be assumed to be real. We then introduce

a* = Σ

Xe Λ LΨι (x)<**(x), <*ι = Σxe Λ Lφ,(x)α(x)

for 1= 1,...,2L + 1, which also satisfy the CAR. The operator HL can now be
written as:

H^ΣΪ^εrfa,

so that its eigenvectors are

^ = Π«ι*Λ
ieί

with eigenvalues

Ej = Σlelεt

where / c= { 1, 2, . . . , 2L + 1} and ί2 is the Fock (bare) vacuum:

α(x)β = 0, V x e Λ L .

In particular the ground state is given by

(2.1)
/e/o

where /0 = {/: εt < 0}, with energy

More precisely, φ0tL given by (2.1) is the ground state of HL for all L large
enough, with probability one. For uniqueness of the ground state (and (2.1)) is
equivalent to ε/^0 / = 1,...,2L+ 1. It follows from Theorem 2.1 in [10], by an
application of the Borel Cantelli lemma, that, with probability one, zero is not in
the spectrum of H^υ for all L large enough.

More symmetrical expressions are obtained by introducing the usual "particle-
hole" operators;

bi = af if /e/o, bl = al if lφI0

which also satisfy CAR. For the new operators, the ground state is defined by the
equations

3. Exponential Decay of The Fermi Two-Point Function

The two point function of the Fermi operators in the ground state can be computed
to give

(ιAo, a*(x)a(y)ψ0) = Σ

where P/0 is the operator, in / 2(ΛL), projecting into the subspace generated by
{<pj,/e/0}, and P/0(x,>;) its kernel.
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Let now S denote the support of the single site probability distribution dμ(h).
The spectrum σ(H(^}) of the operator H(^ is contained in the set

{5 + 2J} u {S - 2J} = {EeR: dist (£, S) ̂  2J},

since — ΔL is a bounded operator with || —ΔL\\= 2.
Let us now assume that \h(x)\ >2J + a for some α>0. In this situation the

spectrum σ(H(^) is contained in the set

[-ML,-α]u[α,MJ

for some ML < oo, so that there is a gap of width 20 around zero.
Under these assumptions the operator P/0 is given by the contour integral

PIo = ̂ .§RL(z)dz, (3.1)

where

and C is a contour in the complex plane enclosing [ — ML, —a] while leaving
[α, ML] on the complement of its interior.

Let 0 < δ0 < a/2J be chosen, we will take the contour (we write z = u + ίv):

C = {0 + ίv; -J(i + δ0)^v^ 2J(l + δ0)}

u {u + i2J(l + <5J; u^0}u{u- i2J(l + δu\ u ̂  0},

where δu = δ0(l + u2). Notice that if z + iveC we have \z - h(x)\ ^ 2J(1 + δu).
For zeC, the expansion

ΛL(z) = (z-Λ)-12;ί0

=o[(-^ι3(^-A)"1]" (3-2)

is convergent in the operator norm. In particular (3.2) implies that for the Green's
function

we have the absolute convergent expansion

(3-3)

where the summation is taken over all walks w on Λ L going from x to y, i.e. w(n)e Λ L

for 0 ̂  n ̂  |w|, w(0) = x, w(|w|) = y, where |w | is any non-negative integer.
From (3.3), estimating the number of walks w with a fixed length |w| by 2 | v v |

we have
x~yl + 1

. (3.4)

From (3.1) and (3.4) it then follows that

1 KC} ί 1 \ l χ ~>Ί
—\P,0(x,y)\ Z ~ - L , ,

2πc 2Jd0\
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for some constant l(C) < oo. Therefore

\PIo(x,y)\^c0e-m^χ-y\ (3.5)

with constants c0 = l(C)/2Jδ0, m0 = log(l + <50) independent of L.
We are now going to drop the assumption of a gap. In this situation we have

to make use of the localization results for one dimensional random Schrόdinger
operators.

If the probability distribution μ is absolutely continuous with a bounded density,
it follows [4] that, with probability one, PIo(x, y) is exponentially decaying for all
L large enough. For more general μ as in the Theorem, it follows from the results
of [10] by using [5, 6, 7] that the exists m > 0, such that with probability one, given
ε0>0,

sup \GL(x9y,E + iε)\ g c(h9ε0)e'm^^
|ε |^ε0

for all L large enough and all x,yeZ, with some constant c(/ι,ε0)< oo. We can
then use (3.1) with the same contour C, where we take <50 given by m = log(l + δ0)
and choose ε0 = 27(1 + <50). As before, we obtain (3.5) with probability one for all
L large enough, with a different constant c0 = c0(h).

Thus, under the hypotheses of the Theorem, there exists πij > 0 such that, with
probability one,

^Che-m^χ-y\ (3.6)

for all L large enough and all x,yeZ, with some constant Ch < oo.

4. Correlation Functions

In this section we discuss the asymptotic behavior of the correlation function
(\l/θ9σ+(x)σ-(y)ιl/0). We first write the non-local expressions for products of spin
operators in terms of fermion operators: for x < y,

σ+(x)σ_(y) = a*(x) f] exp{m(z)}α(y),
x<z<y

σ-.(x)σ+(y)= -a(x) [] exp{m(z)}α*(j;).
x<z<y

If ψe J^ Λ is an eigenvector of the "total particle number" operator, i.e.

(Σxe/,n(x))ψ = Nψ

for some integer N ̂  0, then

Π exp{/πφ')}</'
\ -L^z<x y<z'^L

so that, for x < y

(4.1)

and

(4.2)



One Dimensional X — Y Model Localization 105

where

and

Next, following [2] we introduce the operators:

A(z) = a*(z) + α(z), (4.3)
B(x) = α*(z)-α(z), (4.4)

which satisfy the anticommutation relations:

{A(x),B(y)}=0.

Moreover

exp [/πn(z)] = A(z)B(z).

Using (4.1), (4.2), (4.3) and (4.4) we get

(ψ,σ+(x)σ-(y)φ) = e^-^^A

and so, for x < _y

(ιA, [σ+(x)σ_(y) + σ_(x)σ+(y)]ιA)

= ei«w(^, Π M(z)B(z)M(x)BU') Π (Λ(z')B(z'))φ] (4.5)
\ -L^z<jc y<z'^L /

and

j;) - σ .(x)σ +

Π (A(z')B(z'))ψ (4.6)
z'^L )

k crucial fact now is that in both expressions (4.5) and (4.6) all operators involved
anti-commute.

If we now take ψ to be the ground state φQ given by (2.1). We are in a position
to apply Wick's Theorem. Indeed, if the operators C l 5 . . . , C2n satisfy {Ci9 Cj} = 0,
i 7^7, then

OAo, C, C2 - - - C2>0) - ΣPσ(P)(ψ0, Ctl Ch φ0) - (ψθ9 CinCjnψ0\

where the summation is done over all permutations P = (i1 Jι,Ϊ2J2ί j Wn) °f
{1,2,..., 2n}, σ(P) being the corresponding signature.
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We then notice that

OAo, B(x)A(y)ψ0) = - OA0, A(y)B(x)ψ0) = gL(x9 y),

where

QL(*, y) = (Ψo, <**(x)a(y)Ψo) + (Ψo, β*0>)ΦWo)

= P,0(χ,y)-PΪ0(χ,y).

The operator PIo — P^0 is unitary in / 2(ΛL), since (P/0 — P^0)
2 = /, and therefore

the kernel gL(x, y) satisfies

^reΛL0L(x» Z}QL(Z, y) = δxy (4.7)

Now PΪ0(x,y) clearly satisfy the same bound (3.6) with possibly different constants,
so that there are constants c(h) and m > 0 such that

\gL(x9y)\^c(h)e-^χ-^ (4.8)

To simplify the notation let us rewrite (4.5) in the form

= eίπN°(ψQ,C2lC2l-l...C1C0D0Dί. D2kψ()) (4.9)

with

and

A similar expression holds for (4.6).
Since both the number of C's and D's are odd in every term contributing to

(4.9) through Wick's theorem, there is a number m ̂  1 of pairings of Cs with D's.
We therefore write

mm{2Λ+l,2/+l}

Σ Σ ^.....i^i....

{to, Π C^o)f^o, Π ΆoU (4.10)
\ i f i ι , . . . , i m / \ JΪJl,...Jm J )

where σ£l . and σ. .. are such that
* l » »*w J l j j jw
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Formula (4.10) is proved using Wick's Theorem and resumming all contractions
not involving z\, . . . , im and j i , . . . Jm, again with Wick's Theorem.

To estimate (4.10) we first notice that

iel

and

< 1

<1

(4.11)

(4.12)

for any collection of indeces / and J. This follows from the fact that both the
right-hand side of (4.11) and (4.12) can be written as

which by Wick's Theorem is given by the determinant

= ΣPσ(P) \ g(xi9ypi)9

ί=ί

where the summation is taken over all permutations (l,...,n)->(Pl,...,Pn).
Using Hadamard's Theorem

and (4.7) we get (4.11) and (4.12).
Therefore (4.10) can be estimated, by

m i n ( 2 f c + l , 2 / + l )

Σ
m=l

This implies

^ Σ
ΣP\:\gL(z1>Z'Pl)\ ..\gL(Zm,Z'PJ\,

the same estimate holding for y < x.
The number of pairs (zi9z'j) such that \Zι — z'j\ = \y —

equals R -h 1. Using (4.8) we get the simple estimate

KΆo, [σ+(x)σ-(y)

for some R^

For \x — y\ sufficiently large the right-hand side can be estimated yielding,

I«Ό, [σ+(x)σ-(y) + σ.(x)
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with

for a given constant d < oo, thus concluding the proof.
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