Communications in
Mathematical

Commun. Math. Phys. 126, 291-324 (1989)

© Springer-Verlag 1989

First Order Phase Transitions in Unbounded Spin
Systems I: Construction of the Phase Diagram

Christian Borgs! and Roger Waxler?

! Theoretische Physik, ETH-Honggerberg, CH-8093 Ziirich, Switzerland
2 Department of Mathematics, University of British Columbia, Vancouver, BC, Canada

Abstract. The phase diagram and the corresponding infinite volume Gibbs
states are constructed for a large class of continuous, unbounded spin models.
Our construction relies on a partition of unity mapping our system onto an
interacting contour system, a generalisation of Zahradnik’s approach to Piragov
Sinai theory to interacting contour systems, and a suitable mean field expansion
around the minimas of the Hamiltonian.

Introduction

In this and a forthcoming paper, [1], we study continuous spin models with a
single spin potential, ¥, whose minima are deep and widely separated. While such
models have been extensively discussed in the literature if the minima of V are
related by a symmetry, [2—-5], results concerning the general case without any
symmetry were only obtained in recent years.

The first work in this direction is that of Imbrie, [6], who treated two
dimensional Euclidean field theories in which the potential, V, is a polynomial in
the fields. His idea was to use the cluster expansion of [2] to obtain a hard core
interacting contour system and to analyse this system using the techniques of
Pirogov and Sinai, [7-9]. This turned out to be technically rather complicated
because the resulting contour activities were not positive. Imbrie solved this
problem by using a relatively involved resummation technique®.

An alternative approach would be that of Bricmont et al., [12], who mapped
certain lattice (and continuum) gases with three or more particle species to an
interacting contour model (with positive activities) and then studied this model
using the methods of [7-9]. Their method has been extended to bounded
continuous spin systems on the lattice, but it is not clear whether their techniques
extend to the unbounded case as well.

! Recently, Borgs and Imbrie realised, [10], that this resummation can be avoided using the techniques
of [11] rather than [7-9] since that approach may be generalised to contour models with complex
activities. See [10] for details
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Another approach is that of [13] (see also [14]) which starts from the very
beginning with a generalised contour model and then analyses this model using
the cluster expansion techniques of [15]. Their results are very similar to those
described in the present work, with two differences. They only consider potentials,
V, which have two minima, and they only consider the point in the phase diagram
at which the two phases corresponding to these minima coexist. There is no doubt
that their methods could be easily extended to include potentials with three or
more minima, but extending their results to include points in the phase diagram
away from coexistence would require substantial generalization.

Note also that none of the papers, [2—-6], [12], or [13] treat the completeness
question. That is, the question of whether all translation invariant infinite volume
states are a convex combination of the particular states constructed, as expected.

The goal of the present work is to construct the phase diagram, and
corresponding infinite volume states, of an unbounded spin model with single spin
potential V and nearest neighbor interaction W (see Sect. 1 for precise definitions).
We assume that V has N deep and widely separated minima of approximately the
same depth, and that V depends on parameters ueRY~! in such a way that by
varying u one shifts the differences between these minima. We will need assumptions
concerning the behaviour of ¥ and W near the minima of V. We choose assumptions
(A.1 of Sect. 1) which allow us to control the Gibbs factor, e, for fields lying
near a minimum of ¥, through a cluster expansion around the Gaussian
approximation to e . This part of our analysis is quite flexible. We could use,
instead, any other single phase type expansion or, more generally, any other method
(for example that of [16]) which allows us to establish strong clustering properties
for the models in which all spins R, are constrained to lie near one of the minima
of V.

Concerning the fluctuations between the various minima of ¥V we proceed as
follows. Let y,(R,) denote a characteristic function which forces the spin, R,, to

N
lie in a certain neighborhood, U, of the ¢ minimum and let yo =1— )’ y,. Given
qg=1

a volume, A = Z", we introduce a partition of unity

1 = 2 Xw(x)(Rx)f (01)
w: A—{0,1,..., N}

and consider w as a spin configuration of a discrete spin system with ground states

1,...,N. Defining contours as usual in the Pirogov-Sinai theory we obtain a

representation of our model as a system of contours interacting via “fields” R.eU,,

for some ge{1,2,...,N}. (See Sect. 2 for details.)

At this point one is confronted with the problem lying at the core of the
Pirogov—Sinai theory. One would like to obtain expansions by insisting that w, =g
for x near the boundary of A and for some g. One then expects that if the g
minimum is stable (where the term stable must be defined) then the resulting
contours have small activity. It is, however, not clear a priori which g are stable.
In addition, one encounters such boundary conditions for all g at intermediate
steps of the analysis. To deal with this problem we choose to use the technique
developed in [11]. This technique is based on the introduction of auxiliary models,
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called truncated models, for which all contours have small activities and which
turn out to differ from the actual models that we are interested in only for rather
large contours. The truncated models may then be analysed by Mayer expansion
techniques. If h;, are the free energies of the truncated models one shows that the
truncated and actual models with g-boundary conditions are identical if

I, = h=minh,,. 0.2)

Using standard methods, we then construct, for g satisfying (0.2), called the stable
values for g, infinite volume states, {-),, which are small perturbations of the
Gaussian approximation to e # in U, (Theorem 1, Sect. 1). Making appropriate
assumptions about the behaviour of V as u varies (corresponding to the “degeneracy
removing condition” needed in the Pirogov—Sinai theory) we then construct the
phase diagram. That is, we show that there is a point, y,, for which all g are stable,
that there are lines, u,(f) starting at u,, for which all ¢’ except q are stable, that
there are surfaces, u,, ,,(t, s), bounded by u, (¢) and pu,,(t), for which all g except ¢,
and g, are stable, and so on (Theorem 2, Sect. 1 and Sect. 6). In a second paper,
[1], we then show that all translation invariant infinite volume states obeying
certain regularity conditions on the growth of the boundary condition are convex
linear combinations of the {-},. This then completes the analysis.

The paper is organized as follows. In Sect. 1 we define the model and state the
assumptions we use to prove Theorems 1 and 2. In Sect. 2 we use the partition of
unity, (0.1), to rewrite the model as an interacting contour model. In Sect. 3 the
truncated models are introduced and we prove that the truncated and actual models
are identical if hj = h. The cluster expansion we use to control the truncated models
is introduced in Sect. 4, and its convergence is proven in Sect. 5. In Sect. 6 we
discuss the construction of the phase diagram and in Sect. 7 we construct the
infinite volume states, {-),.

1. The model, Assumptions, Results

We consider an unbounded spin model on the lattice Z”,v = 2, with spins R.eR,

1
HR =Y V(R,)+ 5 ZA W(R,,R,), (1.1)
l5=yl=1
and partition function
Z(A)=[e "RAdR ,, 1.2)

defined for arbitrary finite subsets A = Z*. As usual we write |x — y| for the lattice
distance Y. |x; — y;|. V and W take values in RU{ + o0} and depend on the inverse
i=1

temperature B, as well as parameters pe?™?, where ¥"@ is an open neighborhood
of 0eR¥" !, N>2. For u=0,V has N absolute minima2, R(,...,R{’, which

2 In fact we allow for a slightly more general situation, see assumptions A.1-A.3 below
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become deep and widely separated as f§ grows (see assumption A.2 below). As a
typical example one may consider a potential, V(R), obtained by rescaling from a
f-independent potential, v(r), with non-degenerate minima r,,...,ry:

V(R) = pu(R//P), (1.3)

and similarly for W

W(R,R) = pw(R/\/B,R'//B) (1.4)

with, for example, w(r,r) = |r —r'|%
We now will formulate several assumptions on V and W, which will allow us
to prove the theorems mentioned in the introduction. We start with

Assumption A.0 (A Priori Bounds on Vand W). Forall f < oo,V and W are bounded
below, and exp(— V) is integrable. We will assume that W is normalised in such a
way that

min W(R, R") = 0. (1.5)
R,R’

Note that W(R,,R,) in (1.1) can be replaced by 3W(R,,R,) +3W(R,,R,) without
changing H(R ,). We therefore assume without loss of generality that W is symmetric,
ie.

W(R,R’)= W(R',R). (1.6)

Clearly the above assumption ensures that the partition function, Z(A),
exists. The next two assumptions state that in certain disjoint, open, intervals
U,=U/p)=R, g=1,...,N, the Gibbs factor, e”¥, is well approximated by
appropriate Gaussians in U,, whereas fluctuations away from U, are suppressed.
More precisely we assume the existence of a p-independent, positive function
F(B)— oo as f— oo, such that for

U,={ReR||R—RY > <%(p)}, (1.7a)

N
Uy= R/ U U, (1.7b)
q=1

the following assumptions are true (¢ and ¢’ always denote integers between
1 and N).

Assumption A.1 (Gaussian Fluctuations). There are constants n,%',n" not depending
on u and B, as well as functions

mi=m2(B,w)2n>0, ml<n <o

Ky =x,(B,m) 20, Ky<n' < oo

R,=R,(B,weU,, e,=¢,(B, weR
such that the following statements hold:

0) UnU,=9¢ for q#4,
i) V(R)=(n/2)(R—R,)* +e, for ReU,,
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ii) there are functions £(B)— oo as f— 00,0(f)—0 as f— oo such that

]V(R)—eq—%‘im—R,,v <5(p), (1.82)

lW(R,R')—%rR—R'IZ <d(p) (1.8b)

if |[R—RJI<EPB). IR —RI<EP),
iii) [R,—&(B), Ry + &(B)1 = U, () and

e~ WDEB < 5(p), (1.9)
iv) R,(B,0)=R{".

Assumption A.2 (Suppression of Non-Gaussian Fluctuations). There are constants
K;>0,K, < 0,0 <a<1,independent of p and p, such that the following statements
are true:

i) min W(R,R)ZK,%(p) for all g #4,

RquyR/qu'
i) inf V(R) = e, = mine,, (1.10)
ReR q

iii) [ dRe™*V®=e0) < K e=Ki®b),
Uo

Assumption A.3 (Regularity of ¢ ).

i) For p=0all /s are equal.
ii) There is a constant K5 < oo, independent of p and B, such that for all u, i e,

leg(1) — e, (W) = K3 T(B) | — 'l
where |u| denotes the l,~norm of .

Note that assumption A.2 expresses the fact that fluctuations away from the
absolute minimum of V are suppressed. Since we want to construct the phase
diagram in a neighborhood of the coexistence point, we also need bounds on the
differences between the values V(R,) of the various minima. These follow from
assumption A.3.

Remarks.

i) Assumption A.1 will be used to prove the convergence of a convenient mean
field expansion for the “restricted partition function,” Z;*(A), obtained from Z(A)
by restricting all fields R, to U,. We therefore can replace this assumption by any
other assumption which guarantees the convergence of a suitable expansion for
Zs(A).

ii) In the abstract context considered in this paper it might have been more natural
to formulate assumptions A.2 and A.3 (as well as the following assumptions A.4
and A.5) using the free energy, h;, of the restricted model instead of e,. We choose
e, because the resulting assumptions are easier to check for the models we want
to consider in the future (for example the model considered in [17]).
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iii) In the case in which V and W are obtained by rescaling functions v and w,
where r{,...,ry are the minima of v and w(r,#') = w(r,r) =0, we set

HB) =0, R,=/Br,,
62
e,=po(ry), mi=v"(r), K= o w(r, ') i

&(B) and 8(B) may, for example, be chosen as O(B%), O(p3*~ 1/2), respectively, with
0<i<i

The goal of this paper is to construct infinite volume states, {->,, g=1,...,N,
which are (for f large) small perturbations of the Gaussian with covariance
(m2 — x,4)~ " and mean R, (see assumption A.1). The idea is to construct a cluster
expansion for each choice of g, with “high temperature” polymers describing the
fluctuations within U, and Peierls countours describing the fluctuations away
from U,. Using the above assumptions it will be possible to establish the
convergence of these expansions for a certain subset, S = S(f,u) = {1,...,N}, of
“stable phase” geS.

In fact we will show, following an idea of Zahradnik, that for f§ large enough
and p in a neighborhood of zero, S is always nonempty and is characterised by a
certain free energy condition

S(B, ) = {q| (B, u) = min hy(B, )}, (1.12)

where h; is the free energy of a certain auxiliary model (see Sect. 3).

We have assumed that for u=0 the e,(f,0) are all equal independent of g. If
the e, are well behaved as functions of u then for each q'€{1,2,...,N } there
will be a curve in 77, starting at p=0, along which all of the e, are
equal for q #q while e, differs from the rest. Similarly, for each distinct pair,
{a;,4,} = {1,2,..., N} there will be a surface in ¥"¥ along which e, are equal only
when ge{1,2,...,N}\{q;,4,}, and so on until one finds hypersurfaces of dimension
N —1 on which all e, differ from each other. One may ask to what extent this
structure reflects the behaviour of S(f, u) in the sense that there is some py,e?"®
such that S(f, uo) = {1,2,..., N}, that for each q there is a line starting at u, along
which S(8,1)={1,2,...,N}/{q}, and so on. Phrased in the usual language of
Piragov—Sinai theory we will show that, for f§ large enough, the phase diagram is
a continuous deformation of the zero temperature phase diagram in a neighborhood
of 4 = 0. To obtain this result, however, we will need some additional assumptions.

Assumption A.4 (Degeneracy Removing Condition).
(i) ey(w) is C* in ¥"© and let

d

qu=d—u.(eq—-e,,). (1.13)
J

Then E is invertible for all pev™©,

(i) |E~| S 1/M(B) for all ue v, and ¥ contains the sphere of radius M(p)™*

around O for some A <1 and some constant M(B)— oo as f§— 0.
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Assumption A.5 (Regularity of 0¥/0pu and 0W[ou). There are constants K5 and
K4(p), where K 5 is independent of p and f and K¢ satisfies

. Ke(p) _
o M) =
and there is a constant p > 0 such that
dV(R
l PR < K28+ (VIR — o)) (L14)
dW(R,R N
IO < Kot + WR R (115
and, for all ReU,, for each q=1,2,...,N
d
E(V(R)_eq) S Kes(BIR—R,I" (1.16)
d
WW(R’R,) S Ke(B(IR—R,I”+ IR — R,|"). (1.17)

Remark iv). For the rescaled model, a degeneracy removing condition on

“q,=dim(v(rq>—v(r,v)) (1133)

implies assumption A.4 with M(f) = O(f). Assuming, for example, that w does not
depend on p, together with the condition

<K (1 +v(r) (1.14a)

d
—ulr
200

and a Lipschitz condition on dv/dy; in an open neighborhood of r,,

—d—(v(r) —o(r'))| £ Kglr =77, (1.16a)

du;

gives assumptions A.5 with

Ko(B)=0(p'"""?).

Using assumptions A.0 through A.5 we will prove the following two theorems.
A = A(Ry,,p 4) always denotes a local observable, i.e. a complex valued function of
finitely many variables R, xesupp 4, || 4@ is the norm

“ A ” ® = Rsup A(RsuppA) 1—[ y eXp( - (1 - 0‘)(V(sz) - eO)) s
supp A XESUpp

and <), 4 denotes the expectation value

<'>q,A= ' l_[ Xq(Rx)e_H(RA)dRA’

1
Zq(A) I xedA



298 Ch. Borgs and R. Waxler

with Z,(A) chosen so that (1), ,=1. x,(R) is the characteristic function of the
event ReU,. The first theorem concerns the infinite volume limit of (>, 4.

Theorem 1. Assume that assumptions A.0 through A.3 are valid. Then there is a

finite constant B* and an open neighborhood, ¥V = ¥"©), of u =0 such that if B = *

and pey"Y, then there is a non-empty subset, S(B,u)<{1,2,...,N}, of stable

boundary conditions, qeS(f, w), such that the limit {A),= limd (A, sexists for all
A-Z

A with | A < 0. (A4 >4 i translation invariant and describes a small perturbation
of the Gaussian with mean R, and covariance (m} —x,A)~" (see Theorems 7.3 and
7.4 for the precise bounds).

The second theorem is the construction of the phase diagram. It states that
there is an open subset, ¥"® < ¥"©, in which {ue? ®|S(B, p) = {1,2,...,N}} is a
point, uoe?"?; that, for each ge{1,2,...,N}, {ue“/f(z’lS(ﬂ w={12,....N\{q}} =
"/f is an open curve one of whose end pomts is po; that, for each palr of distinct

ql,qze{l LNY, (e @SB ={1,2,...,N\{q1,45}} =7, ,, is an open
surface whose boundary in ¥ @ is 7, u“// ,U{tto}; and so on. More precisely

Theorem 2. Assuming assumptions A.0 through A.5 to be valid there is a finite
constant f* and an open subset ¥ @ < ¥V < ¢ @ such that for = p* and for
all non-empty subsets M = {1,2,...,N} the set ¥ py={ue?" ®|S(B,u)c M} is a
non-empty, continuous hypersurface of dimension N —|M]|.

For further discussion of the relation between Theorem 2 and the phase diagram
see Sect. 6.

2. Dilute Partition Functions, Contours

In this section we begin the contour analysis of our model. We will introduce
certain dilute partition functions, Z"(A), for which the field ¢, is constrained to
lie in U, near 04, and then rewrite Z3"(A) as a sum over non-overlapping contours,
interacting via a perturbed Gaussian.

We first fix some notation. For two points x, ye Z” we usually use the maximum
distance dist (x, y) = max |x; — y;|, except for the notation of a nearest neighbor

15isv

pair {x,y), for which
[x—yl= ‘Zﬁ [x;—yil=1

For V, W < Z® we define dist(V, W) as the minimum over all points xeV, ye W of
dist (x, y), and diam V = max dist(x, y). Weset V=2Z"\V, 0V ={xeV|dist(x, V) <1}

and say V is connected 1f d1st( W, V\W) <1 for any non-trivial subset W < V. We
say V is a volume without holes if V¢ is connected and call two sets V, W adjacent
or touching if dist(V, W) < 1.
Our partition functions will always be defined in sets A of the form
A=) O), @1
x'e A’

where, for some odd integer L > 1 to be chosen later, A’ is a finite subset of LZ®
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and [J(x') is an L-block centered at x/,
O = {xeZ|dist(x,y') < L/2}.

N
We now introduce the partition of unity 1 =) x,(R), with
i=0

0 if R¢U,
x:(R) = { | if ReU;’ (2.2)
and rewrite Z(A) as
Z(A)= z ij(RA)e_H(RA)dRAa
w: A—>{0,..., N}

where we have introduced the notation y,(R 4) = [] ZuwRx)-
xe A

The g-dilute partition function Z"(A) is obtained from Z(A) by restricting the
sum over  to a certain set 23"(A). For volumes A without holes this is the set
of configurations, o, for which w(x) = g for all xeA with dist (x,0A°) < L+ 1. For
volumes A with holes we will introduce additional constraints which forbid
contours enclosing the holes of A (this turns out to be convenient at several places,
in particular in Sect. 3 and Sect. 7). We now define 24"(A) for arbitrary volumes,
A, of the form (2.1).

Given w:A—{0,1,...,n} a block [J(x') = A is called g-correct with respect to
w,q=1,...,N,if o(x) = q VxeA with d(x, [J(x")) = 1. [J(x') is called incorrect with
respect to w, if there is no ge{1,..., N} such that [](x’) is g-correct. The union of
all blocks incorrect with respect to w is denoted B(w), and Q23(A) is defined as
the set of all w:A—{0,1,..., N}, such that

i) all cubes [J(x') = A which touch 0A° are g-correct with respect to w and
ii) all finite connect components of (B(w))° lie in A.

Letting
HRLRL)=H{R)+ ) W(RLR,), (2.3)

x€ A, ye A’
[x=yl=1

A’ < AS, we define, for all finite A of the form (2.1), ge{1,..., N} and boundary
conditions R, in (U,)'*,
Zg M=) [re(Rpe "®VdR ,,
wedl(a)
ZS“(AIRA')= Z wa(RA)e_H(RAlRA')dRA~
P )
We also define the restricted partition functions

Z2(A) = [xg(R a)e” " VdR 4,
Z;eS(AIRA,) = jxq(R A)e_H(RAlRA,)dRA. (2-5)

We now wish to rewrite Z3"(A) as a sum over contours. We proceed as follows.
Given a function we5"(A) we decompose B(w) into its connected components
Vi,..., V; and define w; to be the restrictions of w to V,,i=1,...,k. The pairs

(2.4)
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y1=WVi,0),...,7. =V, w,) are called the contours of w, and V; is called the
support, suppy;, of y;.

Fix a contour y = (supp 7, w,) of @. Then, as may be verified from the definition
of g-correct, w is constant on the boundary, 0K, of each connected component,
K, of (supp y)°. We let Int,, y denote the union of all finite components, K, for which
w=m on 0K and write

Inty= () Int,y, V()=Intyusuppy, Ext(y)=Z"\V(y). (2.6)

m=1
We also introduce the notions
dy=0suppy, 0,y=20(Int,»), 0.,y =0V(y). 2.7)

Note that w is constant on dV(y) (we say y is a g-contour if w = q on 0V(y)) and
that w = m on d,,7. A contour y is called an external contour of w if suppy < Ext(y")
for all contours y’ # 7 of w.

We also introduce the following notation: A pair y = (suppy,w,) is called a
contour in A, if y is a contour of w for some ge{l,...,n} and some weR$(A)
(note that by our definition of £5"(A) this forbids contours which surround the
holes of A). Two contours, y, 7', are compatible if dist (y,y") = dist (supp y, supp’) = 2
and mutually external if dist (V(y), V(y')) = 2. Finally we let £25*(A) denote the set
of sets, {yy,...,7x}, of mutually external g-contours in A.

Remark 2.1. Since suppy is a union of blocks centered in LZ", and any two such
blocks, [1(x'), [(1(x"), which do not touch have at least the distance L+ 1, any
contour y in A has at least distance L+ 1 from A, and two compatible contours
have at least distance L+ 1 from one another.

The following procedure is standard in Pirogov—Sinai theory: Consider a
configuration w ,€Q5"(A) and its external contours yy,...,7,. Resum over all w ,
with a given set, C = {y,,...,7,}, of external contours. Introduce the notation

e OUIRy) — pr(Ry)e-H(Rﬂ (2.8)
with R, = R,,,,,. Then Z$"(A) becomes
23N = ¥ Ry ce MFEactr Oy Ry, o)
ceQF(A)
N
TTe*0®) ] z&"(Int,,yIR, ), (2.9)
yeC m=1

where we have used the notation

IntC=|()Inty, V(C)={J V(y), and Ext,C=A\V(C).

yeC yeC

We now define the relative free energy, F,, of a g-contour y by

dil
e FalrlRay) — ﬁ Zw (Int,, 7|R; )

m=1 Zg'(Int,y) ’ 210
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and the contour functional ,(-|-) by
exp(—¥,(7IR,,))=[dR, 1, (R,)exp(— H(R,[R; ) — F(7[R;,))
=[dR,exp(—d(|R)—F,0IR;) I exp(— W(R,,R,)).
xedy,yedgylx—yl=1
(2.11)
Dividing each term in (2.9) by [] Z,(Int,) and multiplying it back again we then
yeC

obtain
Z@ W= % (R, cleReq,c)

CeQ*(4)

-exp(— H(Rg, ,c) HC exp(— Y (IR ZF(Int,).  (212)

Equation (2.12) can be iterated and one obtains the following representation of
Z31(A) as a sum over sets, C = {yy,..., 7}, of pair-wise compatible g-contours in

q
A | we write this sum as )
Cin A

Z8A)= 3 JdRy o) oxp(— HRy ) []exp (= V0IR,,) | (.13

where we have used the notation A\C = A\ U suppy. We will sometimes also
write (2.13) as veC

q
C_Z B deA\C Xq(RA\c) exp(— H(RA\C)) exp(— l[/q(C | Raec))a (2.13)
where we have introduced the notation
Yo(CIR;,c) = Z‘é Y (IR, (2.14)
yE

Equation (2.13) is the desired representation of Z'(A) as a sum over
non-overlapping contours interacting via a perturbed Gaussian. The convergence
of the corresponding Mayer series for log Z3'(A) will be studied in Sects. 3-5.

3. Stable and Unstable Contours, Truncated Contour Models

In this section we begin the analysis of the convergence of the Mayer expansion
for log Z3"(A). To motivate our strategy, assume for the moment that Z, defined
in Eq. (2.5), can be written as the partition function of a dilute polymer model
(this is in fact possible due to assumption A.1) and that , obeys a bound of the form

exp(— Y, (7IR,,,)) S exp(— 7+ e,)|suppy|) CRY

for all g-contours, y, and all boundary conditions R, ,eU}". Then, for t large
enough, we can combine the contours in the sum (2. 13) w1th the polymers of Z7*
to obtain a new polymer system which is again dilute. The resulting polymer
expansion for log Z$" (A) would be the desired convergent Mayer expansion.
While a bound of the form (3.1) can be established for the integral
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fexp(— ¢(yIR,))dR,, see Lemma 3.1 below, we cannot expect that (3.1) holds for
¥,(|), at least not in general (otherwise one could show that the Gibbs states
corresponding to ZJ" are small perturbations of the corresponding Gaussian, for
B large and for all ge{1,..., N}, which is clearly false in general).

To overcome this difficulty we follow the strategy of Zahradnik [11] and
introduce certain truncated contour functionals, ¥, for which a bound of the form
(3.1) is true. In our context this is done by replacing F,(y|R,,) in the definition of
Y, by Fi(y|R;,)=max {F, (7IR,,), —(27/3)Isuppy|}. The corresponding partition
function, Z}, can then be analysed by a convergent cluster expansion. In a final
step one shows that ¥, and v, agree for those g, for which hj = h, where h; is the
free energy corresponding to Z; and h= m1n h,. Thus, if h, = mm h,,, the cluster

expansion for the truncated partition functlon Z,, is in fact a cluster expansion
for Zg".

We begin by proving that the integral of e~ obeys a bound of the form (3.1).
K, >0 and K; < oo are the constants from assumptions A.2 and A.3.

Lemma 3.1. There is a constant ¢, < oo not depending on L, B, and u such that for all

pey D = {ye“lf‘o’

lul< (2L”) 1}

and all g-contours, 7, the following inequality holds:

Jexp(—¢(yIR,))dR, < exp(—(t + e,)|suppy|) (3-2)
with
<
r=w(f L= (;(f)) —logc,. (3.3)

Proof. From assumption A.1 i),
fe " ym(R)AR < €™ [ yu(R) exp (—31(R — R,,)*)dR

Q

<emon | exp(—n(R— Rm>2)dR<(2n”> e, (34)

— 0
where m # 0 and we recall that e, was defined as mine,. Given a g-contour, y, we

q
let N(I") be the number of points, xesupp y, for which w,(x) =0, and Z(y) be the
number of links, {x,y) < supp?y, such that

0 # w,(x) # w,(y) #0.
Letting ¢, = max {K,,(2n/n)/*} we have from assumption A.2
Jexp(—¢([R,))dR, = [exp(— H(R,))1, (R,)dR,
< (coe™ )PPl exp (— K, E(N () + Z(7))). 3.5

Recall that by the definition of a contour each block [J(x') =suppy must be
incorrect. Therefore each block, [J(x’), must touch a link or point contributing to
Z(y) or N(y) respectively. Since a link or point in Z" can touch at most 2” distinct
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blocks we find that

N(y)+ Z(y) 2 |suppy|(2L) . (3.6)
On the other hand, by assumption A.2,
. T(B)
|%—ea§2Ksﬂmuu§%K1@£F, 37)

provided pev"™. Combined with (3.5) and (3.6) this gives the bound (3.3). M

We now define the truncated contour functional ;. We will assume from now
on that 7 is the constant from Lemma 3.1 and that f is chosen so large that t > 0.

Definition 3.1. We define the truncated contour functional y(:|") by replacing
F,(yIR;,) in (2.11) by

217
Fy(y|F,,) = max {Fq(leay), —?lsuppvl}- (3.8)

The truncated partition function Z7(A) is defined by the relation (2.13) with y,
replaced by v,

With this definition ¥, obeys a bound of the form (3.1) (with 7 replaced by 7/3).
For B large enough, Z(A) can therefore be analysed by a convergent cluster
expansion. This is done in Sects. 4 and 5, where we prove the following lemma
(#,#',n" are the constants from assumption A.1).

Lemma 3.2. There are constants Ly, c, < o0 not depending on L or B, as we all as
B independent constants t, =1,(L), B; = (L) < oo such that for L= Ly, pe¥"®,
Bz B, and t(B,L)=1,, and for each qe{l,2,...,N} there is a number h, which
- satisfies

i) [Hy— e, ey,
ii) [log Z,(A) + | AIK,| < ¢, |04,

Definition 3.2. Let h; be the free energy for the truncated contour model. We then
define
h=minh, and a,=h,—h. 3.9)

m

We call a g-contour, y, stable if, Vme{1,...,N},

i S/l 610
and small if
a,diamy < 7/3. (3.11)

If y is not small we say it is large. Finally we define g to be a stable phase if all
g-contours are stable. We denote the set of stable phases by S = S(f, n).

Remark 3.1. We have normalised W in such a way that W = 0. Therefore

exp(— F(y|R,)) = 1;[ %’% (3.12)
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On the other hand
Y 10nyI = 10y| £ |suppyl, (3.13)

which implies that y,(y|") =y, (y|) for stable contours y. In particular Z,(A) = Z$*(A)
if q is a stable phase. It is, however, not a priori clear which are the stable phases,
and whether there is at least one stable phase.

The following theorem implies that the set S of stable phases is in fact not
empty, and that a stable phase can be characterized by the condition a, =0.

Theorem 3.3. Assume that L has been chosen according to Lemma 3.2. Then there
is a constant B,=P,(L)=B,, such that for =B, and uev the following
Statements hold:

i) Zg"(A) z exp { — | Al — ¢ [0A°]},
ii) ZJ(A) <exp { — h|A| +(c; + 1)]0A°|},
iil) If y is a small contour, then v is stable.

Here A is an arbitrary finite volume of the form (2.1) and ,, ¢, are the constants
of Lemma 3.2.

Remark 3.2. The constant B, is chosen in such a way that t=1(8,L) =1, for
B = B,.In addition we will need, in the course of the proof, the additional constraints

2¢, +1=1/3, (3.14a)
=3¢, —12=1,, (3.14b)
where 7, is a constant depending only on an N and v.

Remark 3.3. Obviously Theorem 3.3 iii) implies that all phases g with a, =0 are
stable. If, on the other hand, g is a stable phase, then all g-contours are stable and
Zy(A) =Z3'(A) 2 Z3 (A) exp(— 21/3)|0A°))
for all A and all m by (3.10) (given A and m, one just has to choose a g-contour y
with Int,y=A, which is always possible). Combined with Lemma 3.2 and

Theorem 3.3 i) the above bound shows that hj < h;, for all m, and hence a, =0.
So Theorem 3.3 implies in fact that g is stable if and only if a,=0.

Proof of Theorem 3.3 i). The statement follows immediately from Lemma 3.2 and
the fact that ¥'(y|R, ) Z ¥(7|R, ).

Proof of Theorem 3.3 ii) and iii). The proof will be done by induction. We define
the level of a contour y to be the maximal n such that there are contours y,,...,7, =79,
with supp y; < Inty; . ¢, dist (V(y;),7;+1) > 2 and the level of A as the maximal level
of a contour in A.

Proof of i) for level A=0. Trivial, because in this case ZJ"(A) = Z3(A) = Z(A).

Proof of iii) for level y=n. Int,,y is a volume of level < n — 1. Therefore we can
use the inductive assumption to bound

Zw (Inty ) _

S L= 1)|0,.7)).
Z;ill(Intm ,V) = eXp (aqllntmyl + (201 + )‘ myl)
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Bounding |Int,, y| by
(0,,y|diam Int,,y <[0,,y|diam y,
and using the definition of a small contour we obtain the upper bound
exp((2¢; + 1+ 1/3)|0,.71),
which shows that y is stable if
2ci+1<1/3  (this is (3.14a)).

Proof of ii) for level A=n. We use the relation (2.9). Fix, for a moment, the set
C, of large external contours in C. To specify C completely, one has to specify, in
addition to C,, a set C, of mutually external, small contours in A\V(C,)=
Ext 4(C;). Using the fact that the volume Ext , C appearing in (2.9) can be rewritten
as Ext, ., C, we can resum the small contours in A\V(C,) to obtain the
relation

Z{A) =3 Z"(A\V(Cy)l Raycc,)

1] [exp(— #01R) 11 zs:.“antmyma,ﬂ)d&],

yeCy

where Z;™ is obtained from Z3" by restricting the sum over  in (2.4) to a sum
over configurations w which contain only small external contours, and Z’ is sum
over sets of mutually external, large contours. We now bound

Z AV (C) Rayie,) S 2 (AV(CY))
Z;inﬂ (Intm y | Ramy) é Z;il“(lntm Y)s
and use the fact that all the contours appearing in the representation (2.13)
for Zi™(A/V(C,)) are stable due to the inductive assumption iii). Therefore
ZMA/V(Cy)) £ Zy(A/V(Cy)) which can be bounded using Lemma 3.2. Using

the inductive assumption ii) for Z3"(Int,, y) and Lemma 3.1 for [exp(— ¢(y|R,))dR,
we get the bound

ZPA) S T exp(— KIAV(O)l + 2104+ ¢, V()

[ exp(—(z +e,)Isuppy|) [ ] exp (= hlInt, y| + (1 +¢1)|9,71).

yeC m

We now extract a factor exp(— h|A|), bound
exp(— e, [suppy|) S exp(—h; —c,)Isuppyl),
and use (3.13) to obtain the inequality
ZF (N <exp(—h|A| +61I6A°I);’eXP(—aqlA\IntCl)ﬂeXp(—(T—3cl —1)|suppy]).
yeC
(3.15

To complete the proof, we need the following technical lemma, proven in [11].
For the convenience of the reader we give the proof of this lemma at the end of
this section.
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Lemma 3.4 ([11]). Consider a contour functional R:y—R(y)=0 and let Z be the
partition function

Z(A)= Y T[R@e.

Cin A yeC

Assume that K(y) < §?!. Then there is a constant ©, depending only on v and N, such
that for § < e™ ™ the following statement is true. Let § be the free energy corresponding
to Z. Then, for all d= —3,

Y exp(—alA\Int C|) [ K(y) < ¢,
C yeC
where the sum goes over sets of mutually external q-contours in A.
To apply this lemma we put d=a,,
E=exp(—7y—3¢;—1))
and

- gl if v is large
K —3
® {0 if 7y is small

Using the fact that Z contains only contours y for which
lsupy| 2 (1/3a,)

(since diam y < [supp 7|, because suppy is connected) one easily finds that

—5§=< 0(§(r/3aq)) < a,

if 7 is chosen large enough. We therefore can apply the lemma provided
T—3¢c;—1=1,

(this is the restriction 3.14b). W

We close this section with a proof of Lemma 3.4.

Proof of Lemma 3.4. Z is the partition function of a polymer with activities
K*(y)= K(y)e!”!. For & small enough (depending only on N and v) Z can be
controlled by a convergent expansion and

llog Z(W) + 3| W|| < O@2)| 0W*| < [aW*|.
Putting W = Int C and using (3.13) together with the assumption @ = — § we get
Y exp(—alA\IntC|) [ K(y) <Y [] K()e!” Z(Int y)
C yeC C yeC

=MZA) <. m

4. Polymer Expansion for the Truncated Model

In Sects. 4 and 5 we prove Lemma 3.2 by a convenient cluster expansion. In
principle we could use the Glimm—Jaffe cluster expansion in the form of [18] to
obtain a representation of Z;* as a partition function of a hard core interacting
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polymer system and combine it with the contour expansion (2.13). This approach
has however the disadvantage that it needs C*-differentiability of V and W near
R,, which is not natural for the lattice models considered here.

Instead we use a slightly different approach, which, after expanding in the
perturbing potentials

2

V)= VR, +9) =Sl 9* —e,
. @.1)
Wi, $) = WR,+ . R, +¢) =219 — ¢,

uses interpolation parameters (s-parameters) only in regions where no factors of
V,,W, or e"V4 arise. Since we decouple these regions using non-zero Dirichlet
data on their boundaries, we do not generate field derivatives of V, or W,, and
therefore don’t need differentiability assumptions on V, or W,. The convergence
of this expression is established in Sect. 5.

We recall the definition of the truncated partition function (A\C is defined as

A\ UC suppy)
Z,(A)= ;IdRA\CXq(RA\C) exp(— H(RA\C)) 1;1: exp(— ¥, (vl Raey))»

and rewrite, with ¢, =R, —R,, where R, is the minimum of the quadratic
approximation of H in U,,

1
H(Ry o) = e,|A\supp C| + HP($ 4, c) + 3 Y Widud)+ Y Vi) (42
x,ye A\C xeA\C
where V,, W, are defined in (4.1) and
) Kq 2, M 2
Hq (¢.Q)=_ Z (d)x—'d)y) +—= Z d)x' (43)
4 x,yef2 2 o
lx=y|=1
We now expand in V, and W,. More precisely, we define
ny(()bx’ d)y) =CXp ( - Wq(d)x: ¢y)) - 1: (443)
Fx(()bx) = Xq(d)x + Rq)exp ( - Vq(d)x)) -1 (44b)
and, with the convention Fy =1,
FX(¢X) = Z ]__[ Fx(¢x) l—[ ny(d)xs d)y)a (440)
Xq,Bst.  XeX1 {xy)eB
X=X, UX(B)

where B denotes a set of nearest neighbor pairs and X (B) is the corresponding set
of points. Then

Z;(A)=e_eqM'§c: Z Id¢A\Cexp(_H(0)(¢A\C))

XcA\C

“Fx(dx) ]:L exp (e,[supp 7| = ¥4 (7 IR, + ¢,,,)). 4.5)
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‘With the notation
ZP(Q)¢ o) = [do gexp(— HY (P ol P o))

4.6)
K
HLO)(¢Q|¢Q’)=H;0)(¢Q)+J Z l¢x_¢yl23
2 xe 2, ye '
|x=yl=1
this can be rewritten as
Zy(A)= e~ cl A|Z510)(A) ; Z j.d¢XubeC exp(— Hfzo)(ﬁbx\)aec))
X cA\C
ZP(A by coox)
TLexp (= VGIR, + s, + enlsuppy D Ex(bn) =y (4)

where A; = A\(X usupp Cu,C). In order to decouple different connected com-
ponents of X usupp Cud,C we now choose a convenient expansion for the ratio
of the Gaussian partition functions in Eq. (4.7). The expansion we choose is
essentially that used in [18].

We note that there is a characteristic length, [, the correlation length of the
gaussian, Eq. (4.3), over which points in the lattice are strongly correlated. It is
this fact which motivated our introduction of the coarse lattice, LZ". Choosing
L> 1, we treat the couplings across faces of L-blocks as perturbations, but only
for those L-blocks far enough from 0Xud,C to sufficiently moderate the
effects of the conditioning. Thus, given X and C, define X to be the smallest
union of L-blocks such that X ud,C < X = A\supp C and dist (A\(X Usupp C),
0X v ,C)>r,, where ry > I, will be fixed, along with L, in the next section. Given
two nearest neighbor points, x',’, in LZ" define the face separating the adjacent
L-blocks x’ and y’ to be the set of the L'~ ! nearest neighbor pairs {x, y} = Z* such
that {x,y} " [O(x') # & and {x, y} " [O(y") # . Given a union of L-blocks, Q< Z°,
we say that a face, b, intersects £ (written b Q) if at least one of the L-blocks
separated by b is a subset of 2. Introduce decoupling parameters s, for all faces
bn A\(X usupp C) by defining, for each set I" of faces intersecting A\ (X Usupp C),

s, if {x,y}ebel’
S =40 if {x,y}eb¢l, bnA\(XUsuppC).
1 otherwise
Denote the Gaussian partition functions obtained from Z{(A) and ZQ(A; | Pax5,c)
upon substituting  s,,(I')(¢.— ¢,)*> for (p,—¢,)> by Z(A,sp) and
ZO(Ay,s rl®axoa,c)- Then by the fundamental theorem of calculus,
ZO(Aboxooc)  ZDXNX V0.0 oxus,c)
= og S exp( > W(rwwec)), 438)
a2 (A Z (X usupp C) r'#e

where
W \$owoad)= [ dsrdm {log ZP(Arsrldorunc) —log ZP(Asr)}) (49)
[0,1]

with dsp =[] ds,,0" =[] /s,; the sum over I' is over all non-empty I
bel’ bel’
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intersecting A\(X usupp C). We note, see also [18], that W(I"|") is zero unless I"
satisfies the connectivity conditions:

i) X(I')n(X usupp C) # &,
ii) X(I') is contained in one and only one connected component of X(I')u
(X usupp C).

Here, and in the following, X(I") denotes the union of all L-blocks which intersect
a face in I'. If i) is violated, then the terms from the two partition functions in
(4.8b) are equal, and thus cancel each other. If ii) is violated, then the derivative
0T vanishes because it acts on a sum of terms, one for each connected component
of X(I')uX usupp C, none of which depend on all of the s,. Expanding the
exponential in (4.8) and inserting the result into Eq. (4.6) we obtain

ZiN=HZONS Y T
¢ xine Il
1

ZOX osupp ©) fdogexp(— HY ($5))Fx(dx)
yﬂc exp(— Y, (7 IR, + ¢,,,) + eglsupp 7)) r[EIrW(F |Paxooc)  (4.10)

where the last sum is over all sequences Z~ of sets I satisfying the connectivity
conditions i) and ii).

Equation (4.10) is essentially the expansion we are looking for. Defining a
polymer in A as a connected union of L-blocks, P < A, and its activity

1 1
P)= —
D= Y TF1ZOosupp0)

suppCUXUX(T)=P

711 exp (— o1 Ry + ¢5,,)) Fx(dx) rl—e[lr W | $axos,r)h (4.11)

fd¢zexp(— HY (¢x))

where X(I')= U X(I'), we obtain, after rearranging with the help of the
Irer
multi-nomial theorem,

Zi(A) =M ZOUN Y Y p(P) (4.12)

where the sum is over sets of unions of L-blocks, P = {P, P, ...}, such that each
P; is connected and if j # k then P; and P, have no face in common.

In the next section we prove the following theorem, from which the convergence
of the Mayer expansion for log Z;(A) immediately follows.

Theorem 4.1. For all b < oo one can choose Ly < oo independent of f and L, and
Y0 = Yo(L), B1 = B1(L), T4 = t,(L) not depending on P, such that

p(P)| S &7 PP = g7t

for all polymers P, provided L= Ly, pe¥" Y, t=1(B,L) =1, and B = B;.
Lemma 3.2 is an immediate consequence of Theorem 4.1: Let 6,(A) be the
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polymer partition function
0,A) =Y 1] p(P. 4.13)
P Pep

Choose b large enough, for example so large that the sum ) over all polymers
touching a given L-cube [](x’)

e -OIPl <, (4.14)
14

Then [19] the Mayer expansion for log6,(A) is absolutely convergent. It follows
that the limit

S,= /111;1 ‘/1” log 0,(A)
exists, and that
sl = &(b),
and
Hog 0,(A) + 5,1 Al | = &(b)|0A]

for a constant ¢(b) — 0 as b— oo. This, together with the corresponding bounds on
the Gaussian partition function Z{”’(A)—proven for example by random walk
methods—immediately gives Lemma 3.2.

5. Convergence of the Mayer Series for the Truncated Models

In this section we prove Theorem 4.1. The proof will follow from two lemmas. We
first state the lemmas. Then using them we prove Theorem 4.1. Finally, we prove
the two lemmas themselves.

Lemma 5.1. V¢ < oo there is a constant L, (depending on c,n,%" and v) such that,
VL= Ly, Ye>0 and a suitable choice of r, (depending on ¢, L,n,n" and v),

”‘Z IFl‘ H !W(Fld’axw C)l
suppCu)?z;((I‘) P

éeXp{—cL‘”lP\()?usupp Ol + f11X usupp C| +§ ) ¢§},
xedXvo,C
f1 is a constant depending only on L,v,n and n".

Lemma 5.2. V¢ < oo, Ve < there is a choice of B,, (depending on ¢,&,v,n,1',1")
such that

1 ]
T ol HPG0 4] T 6 s

Sexp{—¢lx|+ f2| X usupp CU,.C|,
provided B = B,. The constant f, depends only on ¢,v,n,%' and n".
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5.1 Proof of Theorem 4.1. We choose ¢ =#/2, c=b +1og2, and 7, = 3¢, and we
fix L= L, and r, according to Lemma 5.1. ¢ > b will be chosen later. Using the
bound

T
exp(—Y,(?R; ) + e,lsuppy|) éeXp<—3|sum> Cl)

together with Lemma 5.1, Lemma 5.2 and the fact that |0,C| < (3" — 1)|supp C|
we obtain

lp(P)I< Y exp(—cL™|P|+(fi +cL™)| X usuppCl)
C,Xst.
)?usuppécP

‘exp(—(c —3"f3)| X usupp C),

provided t = 7, = 3¢and f = B, = B,(¢). Next we use the definition of X to conclude
that

|X| < @Qro+1)'1XUd,C| £ (2ro +1)'(1X | + (3" — 1)|supp C|),
which shows that
[ X UsuppC|=37"(2r, + 1)| X Usupp C|.

Bounding the sum over C and X with fixed “support,” Y =XusuppC, by
2N + 1Y), choosing

=3, +[f1+cL” +1og(2N +2)](6r + 3)"

{piL”"

and bounding the remaining sum by 2 we obtain Theorem 4.1. W

5.2 Proof of Lemma 5.1. Using the fact that the contributions from A\ P cancel in
the definition of W(I"|¢,x,,5 c) We rewrite

W(r|¢6Xu6eC) = _fdsrar{log Zé"’(Pl, sri ¢aanec) —log Zflo’(P, Sr)} (5.1
with P, = P\(XusuppCud,C). Let C®(s;) be the covariance matrix cor-
responding to ZQO(P,s ), ie.

CO(sp) =<y >0,,— D00 Dy D8

where ({7 denotes the expectatlon with respect to the Gibbs factor
exp(— H(¢p,s)) obtained from ¢ ~HY6p) by substituting s,.,(I")(¢, — ¢,)* for
(P, — qSy)2 and let CV(s) be the covariance matrix corresponding similarly to
ZP(Py,5r|¢sx00,c)- Evaluating the Gaussian partition function in (5.1) we rewrite
W(I|") as

1
W(I | baxoo,0) =W )+§ Y. ¢.B,(INg, (5.2
x,ye0Xv0,C
with
W(I')=4{ds 0" {trlog CV(s ) — trlog C?P(s )}, (5.3a)
By()= T [dsyo"Clsr) (5.3b)
|x— vl 1

ly—ul=1
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Our starting point is the following basic estimate (proven e.g. in [18])
[0TCQI < db 1 P exp (— mod(x, T, y)), (5.4)

where d, < c0,my >0 are constants depending only on #,%#” and v (recall that
mZ 21, k,<n") and d(x, T, y) is the length of the shortest path from x to y that
visits each bond bel  at least once.

Proposition 5.3. Given n,n” and v there is a constant d, < oo such that

o _ &
IW(I, $axoa o)l = (dye (mOL/4V))n|:f1 | X Usupp C| + ?1 > ¢32c],

CstTi=n x€dX Ud,C
where
fi=(dy/L)e"™?, g =d e Mo LD, (5.5)
Proof. We first bound |W(I')|. Fixing a bond bel” and using the formula
9 CcH— C(i)gl;_c_fi)_]_—_l c®
sy sy ’

we obtain, noting that
0 0
- _ -1 _ @)-1
Ib asb (C ) asb (C )

does not depend on s,
W) =%[ds[tr[,0"\"C? —tr [,0"\ P V],
Using (5.4) together with the explicit representation
Uh)xy =K, Z {0ux Oy + OucBuy — Oux Oy — 00Oy }

MI)G

and the bound x, < %" we obtain
(WD) S 40"~ do | T |e™mo4D),

where d(I") is the length of the shortest closed path that visits each face in I" at
least once. Using the fact that W(I') =0 if X(I")n(X usupp C) = J we can always
label the bonds b,,...,b,el” in such a way that

i) byn [l(x)# & for some [1(x') = (X usupp C),
i) d(I') = Z dist (b;, b, ).

Bounding the sum over sets I” by a sum over sequences bq,...,b, we get

Y W) < L1 X Usupp Cldn" L™ diy-ebmol? = nkmol4v
I's.t.
| '|=n

n—1
sup Y. exp(—% ¥ dist(b.-,b,-+1)),
X' by, byst. i
bynOX)#¢

where we have used the bound d(I")=(|1'|/2v— 1)L (for a proof, see e.g.

i=
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[18]) to extract the factor elmo/2g~ITILmo/4v We now use the fact that there
are not more than 2v bonds, b;, with [J(x')nb; # &, together with the bound
Y exp ((—my/2)dist (b, b)) < K, where K < oo is a constant depending only on v
b

and m,, to get the estimate
Y |W(I)| < |supp CuX|(8vy"/L)e"™?(Kdye ™ tmol4vyr, (5.6)
t.

s.
| C|=n

On the other hand, by (5.4) and the definition of B, (I'),
Z Z |Bxy(F)‘ é 4v2 dr(n)+ 1 eLmo/2e~(Lmo/4v)n

|[|=n yedXvd,C
. ~Mmoro sup z Z exp ( _z}no d(u, r, U))a

LY )

where we have used the fact that
dist(x,I")=ry, dist(y,I')=r,

to extract the additional factor e ™", Bounding the sum over I" with |I"| =n as
before, and noticing that

byl <33 + 67),
which implies that

Y, I¢Bodls X ¢ Y Byl

x,yed0Xwd,C xed0Xui,C yedXuo,C
we find
> | By(I) byl < (kdge ™ ™) -dv2dgetmol2=mor K % 2.
x,yedX ud,C lll:ls.t' x€dXUd,C
=n
(5.7)
Choosing

d, = max {Kd,, 8vn",8v*Kd,},
we obtain the proposition. W
We now prove Lemma 5.1. Given ¢ we choose L, so large that
dye~molo/4y < 1p72¢,
Using the fact that X(I")u X Usupp C = P, together with Proposition 5.3 and the
bound |I'| = 1L™"|X(I'")| we may extract a factor
[T e T <exp(—cL™|P\(X Usupp C)|)

Ier
from the left-hand side of Lemma 5.1 and bound the remaining sum by

) © k
£ | rxosmer+s s 02| § ol
k= . n=1

xe0Xud,C

=exp[f1L’”l)?usupp C| +%1 Y qﬁ],

x€0Xud,C
which proves Lemma 5.1 (choose r, so large that &, =¢,(ro, L) <¢). M
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5.3 Proof of Lemma 5.2. We first bound, using the fact that W >0,

1 €
e G I
_ZP(E\(XUa,0) e

< _ Aoy cFx(dy)exp( — HO(Gyos o) + i)
Zflo)(XusuppC) _f bx a,c x(Px) P( e (Dx aec) 2xe@XZu0eC¢

< exp(f51 X Usupp CUA,Cl)[dy. 5. Fx($x)

&

‘exp < - H;O)(‘:quaec) + D Z ¢)2c>>
x€0Xvo,C

where f, is a constant depending only on v,#,7’ and 7" Using the fact that the
sum in the definition (4.3c) of Fy(¢) contains at most 2!X122*1X! terms, we are left
with the proof of the following proposition (choose ¥ =X Ud,C and f, = f, +
(2v + 1)log2 + 3|log /7))

Proposition 5.4. V¢ < co Ve < there is a choice of [, (depending on & ¢,n,n' and
n") such that

§dd,| T] Fu(¢) I1 Fopdwd))

xeX1 (xyYeB

exr>< —HP($y) +% ZY ¢£>

S(%)mzwlexp(—5|X1uX(B)|), (5.8)

provided X v X(B) = Y. 7] is the constant n — e.

Proof. We introduce the notation

ny = |ny(¢x9 d)y)lexp(_% I¢x_ ¢y|2>9

B _mi—e o\l if x¢X,
A T e
and #j = 5 — &. The left-hand side of (5.8) can be bounded by

[ 11 Gu(@x ¢y [] Guld)dd.

(xy)eB
<[] [fd¢.G.1 ™" T[] [[d¢.de,G.G3,G,T"™, (5.9)
xeY {xy>eB
where we used Holder’s inequality and the fact that each point in Z” can be shared
by at most 2v nearest neighbor pairs. n, is the number of nearest neighbor pairs
in B that contain the point x. The integrals in (5.9) are estimated using the following
bounds (they all follow from assumption A.1 and the definition of G,, G,,):

|G(py)] < (€2 — 1)e 0%
if xeX, and |¢,| < &(P),

2
1G] < e@ﬂwi[exp(— (V(@+ R) =) +exp ( — ¢»§)] < 2704
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if xeX, and |¢,| = &(B),
|G (d)] = 228

Iny(d)xd)y)' é e's(ﬂ) - 19
if ¢, = ¢(P) and |$,| < {(P), and
1G9 Hy) 1 £ 1,

if xeY\ X,

if || > &(B) or |¢,| > &(B).
Combined with (5.9) and the estimates

» —imet < | —Gme? _ N/ 2T
j d¢xe = j d¢xe

- “w 7l

-8 < N 2T e,
T

o] 2 &(B)
we obtain the bound

/ Y|
ﬂ ! 10 ,6(8) _ ~(EB* 1 X1 5(B) _ 1)2v ~/2EB* 1Bl 2v
2 [3(e D+e 14 x [(e 1)*" +2e ]

for the left-hand side of (5.8). Using the fact that |X(B)|<2|B| and that
e~PE°® < 5(p), we obtain the proposition with ¢ = 0(3(8)*), for some A >0
depending on (n —¢)/n and v (for e=7/2, A =1/8v). W

6. The Phase Diagram

In Sect. 3 it was shown that the free energies of the truncated contour models,

hy= 1111112 M'logZ (A),

are enough to determine which phases, g, are stable in the sense that ;, = ¥, (which
implies, as we show in the next section, that infinite volume Gibbs states, {- ),
can be constructed for such g). The stable ¢’s are those for which hj is minimal.
Thus, recalling Eq. (3.8), the a, indicates which phases are stable: g is stable iff
a,=0. If q is not stable then a,>0 so that a, determines a function from
# M < RN ingo RY = {xeRN|Vk, x, = 0and 3 j with x; = 0}. In the Pirogov—Sinai
theory the inverse of this function is called the phase dlagram [9]. The standard
physicist’s notion of the phase diagram corresponds to the images, in "), of the
various hyperplanes given by x; =x;, =---=x; =0 for all possible non-empty
{j1r--»imp ={1,2,...,N}. These consist of all ue?"¥ for which the phases
Jis---» jm are stable.

In order to simplify the presentation we prefer to do away with RY by
considering, rather than a,, the function

hy —hy

h,—h
b= > " (6.1)

hy-1—hy
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which maps 7" into RN~ 1. (Note that there is nothing special about N in Eq.
(6.1). We could have chosen any je{l,...,N} and defined b by b, =h, —h;.) The
phase diagram is here given by the images, under ™!, of the sets {yeRY"!|y; 20
for all j,y;,...,;,, =0} for all possible {ji,..., j,} = {1,...,N — 1} (including the
empty set as a possibility) and the sets {yeR""!|y; =y, =--- =y, <0} for all
possible non-empty {ji,..., jn} <{1l,..., N —1}. The advantage of using b is that
it simplifies the following

Theorem 6.1. If B is large enough then there exist open sets, ¥", # = R¥ ~* such that

i) b:¥" > W is a homeomorphism,
ii) Oe# .
Comments. The point of (i) is that b is in fact continuously invertible. (ii) shows
that the point of maximal phase co-existence, when all phases, g, are stable, is in
the phase diagram. This insures that all possible combinations of co-existing phases
can be obtained by varying u in #". It is also possible to demonstrate that, for f
large enough, Oe7". b(0) is not, however, in general 0.

Let fi(1)=e;(w)—en(u) for je{l,2,...,N—1} and let si(1)=hj(p) — hy (1) — f{(1)-
Then Eq. (6.1) reads

b= f(1W)+ s(u). (6.2)

By Lemma 3.2 [s{(u)| <2c, for all ue¥" ), where ¥"(V is the set defined in
Lemma 3.1. By assumption (A.4) and the inverse function theorem there is an open
set w1 = R¥~! containing a sphere of radius M(B)' ~* around 0 such that ¥"®*)
and #Y are diffeomorphic under the action of f. Let

W = (beW Db eW OV s.t.|b —b| <2Nc, }.

Then, YVbe?” and all k=1, @ = f~1(b) and pu® = f~1(b—s(u*~V)) are well
defined, with u®ey "™,

Again, assumption A.4 and Lemma 3.2 allow us to conclude that, for be %"
and p, ey,

_ 1
O =1f"1b) = ———Ibl,

~ M(p)
© _ 0 <L o0 < 2N
| — IéM(ﬁ)IS(u NéM(ﬂ)
and
If 71 —s(w) — f~Hb—s(u))] éMl(B) Is(w) — s(u)]. (6.3)

Therefore, the existence of the limit = lim u® solving Eq. (6.2), as well as the
k— o0
continuity of the resulting b~! follows from the following estimate.

Lemma 6.2. There is a constant c¢(f) such that

i <O _

PR VT
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and, for all p,u' ey
Is(r) — s(p)| = c(B)lp— 1|

Proof. Letting hy ,(p) = (1/]A])log Z;(A) it is enough to bound the one sided
derivatives (d/dp )(h; 4(1t) — e (1)) uniformly in A for all q. Note that

d !
G A= M—l(g(“(u)+g‘2’(u)),

where

(l)w) Z 5dRA\C exp (— Y,(C| Ra c)) du, exp(— H(RA\C))Xq(RA\c)

z, (A)
and

05;2)(#) 7' ( A) Z j dRA\C exp(—H (RA\C))Xq(RA\c) CXP( '//q(CIRa o)

We find

( A) £, Z I dRA\ch(RA\c)
x€ st

x¢suppC

d 1
“exp (— Yq(C| Raec) - H(RA\C)) d—( V(R,)+ 2 Z W(R,, Ry))'
u yeA\Cs.t.|x—y|=1
Using assumption A.5 to estimate derivatives, the bound (3.1) (with 7/3 instead of
1) for all contours y with xeInty and W = 0 to eliminate couplings between partition
functions we can re-sum the remaining contours and obtain

4O () — |A|ded"—ff‘) < Qv+ DN — DK4()

E I RasRe) T R-RpJerp( = 3 (e hRe- R ))

xe(x) xe[(x)
Z (A)(supp Cu[1(x"))) T
Z : Z/(A) l_!:exp - §+eq Isupp)" 5
st 1 e
D(x%ctlnty
VyeC

where 7 is the constant from assumption A.1. The existence of a convergent cluster
expansion for Z;() allows us to estimate
Z(A\(O(x")usupp C))
Zy(A)
where ¢, is the constant from Lemma (3.2). Thus, for t large enough, we may
bound the sum over C by 1 + O(e~1/3*) < 2, obtaining

<exp((e,+¢;)|O(x")usupp C|),

e (1) 2n\F ! ,
o0~ 14142 §|A|(2v+1)<N~1>(7> Ko(B) ¢ 2[dR|R|Pe™ 2

(6.4)
To estimate g{»(u2) we again use W = 0 to decouple, and bound ratios of partition
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functions as in the step preceding Eq. (6.4) to obtain, where ) is the sum over
sets C of pairwise compatible contours, y’, all compatible with y, such that
suppy cinty’,

d
R ESIN ‘—d exp(— V(7| R;,0)
y C |dl+

-exp((eq+c1)|suppv|—(§—cl>|supp cu)

exp ((e; + ¢1)Isupp y|). (6.5)

<23 |0 e (~ 01R,,)
K+

More that either

d ! —
P (—¥3(IR;,,)) =0

or
d d
Eu—eXP( AVIESINES eXp( ¥, (7[R,,)).

Thus, we need only estimate

d
ECXPP Yo(r1R;,,))

1
: W deV("’ xwY(Rs“PP?U(?'Inty)

dH(Ry )| R;,,)

exp(—H (RV(y)IRaey)) du

1
+exp(— ¥,y Raey))ﬁ(l—t—i ,f ARy 5 Yo Ryt 1aty)

exp (= H(Rp )| )|

(6.6)
where ¢ Inty is the union of all L-blocks in Inty which touch d(Inty).
Using assumptions (A.5) we have, for any finite Q< 2,

dH(R )
du

S Ks(N = D{(1 + 20)(B)| 2| + H(R ) — eo| 21}

and similarly for H(R | R ). Using the notation y o(R o) = [ | xx(R,), where y, =1

or x; for some j=0,1,...,N, we have integrals of the follc:\?v!i)ng form to estimate:

dH(R )
du

< [dR oy o(Rg)e TRAK (N — 1){(1 + 20)(B)| Q| + H(R o) — eo| 21}

SKs@v+ 1+ p)E(B) Q2N — 1) [dR oy o(R g)e™ " ®

+e @l UK (N—1) [ dRgexp(—(H(Rg)—eo|0l))
RgeD

‘(H(R o) — €0|2))x alR o), (6.7)

JdR g1 o(R g)e "R
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where D ={Rg|H(Rg)—e,|2| = p7(f)|2|} and where p>0 is a constant
independent of f§ to be chosen in a moment. Given o > 0 as in assumption A.2 we
now bound the second term on the right-hand side of 6.7) by

(N—1DKse™ ! sup xe™"~2*[dR gexp(— a(H(R ) — €| 2))1a

x2 pilQl |

Bz )@l
é(N_I)KS‘fe‘”mCXp(Tl(12(153))v|.(2|> sup xe‘(l—a)x-{Kz'{'N%} ,
x2pt|Q|

where we used assumption A.1 and A.2 to bound the integral over R, and (3.7)
to bound e, —e,. We now choose

] L LK
p= 1—a’1—a QL)

to conclude that

dH(R g)
du

< K5(N = 1)@+ 1+ p)F(B)| 21 [dR o1 oR p)e™ "

f dR (R o) o(R g)e R

(2

N _ _ o
+K5(N—1)<ﬁe N > PT(B)1£2], (6.8)
with 7 as in Lemma 3.1, Eq. (3.4). Combined with (6.5), (6.6) and the bound

analogous to (6.8) for [dR gy oexp(— H(Rg|R.)|[dH(R g|R o/)/dp| we obtain the
estimate

1
7197 W1 S 4N = DRs@v+ 1+ p)f(ﬂ)zexp<_ (%‘ cl>lsuppv|>
exple,+cy)lsuppy)( N, \IV®!
Zg(Inty) ‘ﬁe

S T
+2(N—1)K5pf(ﬁ); <ﬁe-ee-f) .

+2(N = DK;pi(B) ),

Z(Int,)
Using Theorem 3.3 i to bound Z$"(Inty) and Lemma 3.2 to bound &, — e, we can

sum over y and obtain

ﬁ(gf’(#))§0(f(ﬂ)e"’3)- (69)

Combined with (6.4) this proves Lemma 6.2 and hence Theorem 6.1. H

7. Expectation Values

In this section we construct the infinite volume states ¢-), corresponding to the
dilute partition functions for stable g’s.
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We consider local observables A, that is complex valued functions 4 = A(Rgypp 4)
depending only on a finite number of variables R,,xes/ =supp 4, for which
the norm

A1 = sup iA(R,,,)lexp< —(1—o) ) [V(R)— eo]> (7.1)
Ry x¢d
is finite (x < 1 is the constant from assumption A.2). We assume without loss of
generality that o is a connected union of cubes.

In order to construct the expectation value, {A),, of 4 in the infinite volume
limit,

{4y, =lim (AP, (7.2)
ArZY
CAYU=ZFA)™Y Y JdR4xo(R e R4, (7.3)
we,(A)

we consider the modification function

Z3(A,A)= Y [dRx,(Ry)e "R, (7.4)
0e,(A)
Our goal is to derive a polymer representation for Z3*(A, A). We always assume
that A is chosen so large that dist («/, A€) = 2.

We proceed as in the derivation of (2.9), the only difference being that we fix
not only the external contours of a configuration we£2,(A), but also all contours
y of o which are incompatible with A, that is all y for which dist (V' (y), &) < 1. We
now introduce the notion of an A-contour.

Consider a configuration we£2,(A) and the contours y,,...,7; of w which are
incompatible with A. Let y, be the pair (suppy,,®,,), where

k
suppy, =/ v ) suppy; (7.5)
i=1

and o, , is the restriction of o to suppy,. We call y , the A-contour of w. Consider
a connected component K of (suppy,)¢. Then w is constant on dK and equals ¢
if K is the infinite component of (suppy,)‘. As before we define Int,, v, to be the
union of all finite components, K, for which w =m on K,

N
Inty,= () Int,y, and V(y,)=Inty,Usuppy,.
m=1

Defining

exp(— @(4IR,,) = Aexp(— H(R, )z, (R,,)
and

exp(—¥,(alR;,, ) =[dR, exp(— ¢(v4IR,,))

N Zm(Intm Vas Ra ) (77)

€Xp ( - W(Rxs R )) m?4 ,

xeﬁyAI,-eraeu ’ ml;l1 Z,(Int,,7,)
Ix—yl=1
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one immediately obtains the analog of (2.12), namely

Z8A A=Y 3 [dRyctRac,)
YA CeQP'(A)
CinEXtA’YA

‘exp(—H(Ry\c,) IC] exp(—y¥,(71R;,)) Z,(Inty),  (7.8)

where the first sum goes over A-contours in A and the second over sets
C={y1...,7m} of mutually external contours for which each 7y, lies in Ext 4y, =
A\V(y,).C istheunionof Cand y :C 4= {y4V1,--->Vm}and A\C = A\supp C 4.
Again, (7.8) can be literated giving

Z8(A A= 3 Jexp(— Vo(CalRs,c,))

Cain A

“exp(— H(RA\CA))Xq(RA\CA)dRA\CA’ (79

where the sum goes over sets, C, of pairwise compatible g-contours in A which
contain exactly one A-contour. Here compatibility between an ordinary contour
y and an A-contour, y,, is defined by the requirement dist (V(y),suppy,) = 2.
We now combine the expansion (7.9) with the high temperature expansion for
Z;*. Up to Eq. (4.10) the procedure is exactly the same as in Sect. 4. The only
dxfference arises when we decompose the set supp CuX U X(I") into polymers
where we have to introduce the notion of A-polymers. We introduce, for a connected
set, P, of L-blocks, the volume Int P as the union of all finite connected components
of P° and the volume V(P)= Pulnt P. We define: a union P, of L-blocks is an
A-polymer if P, contains the set o/ and dist(V(P), /) <1 for all connected
components C of P ,. Compatibility between an ordinary polymer P (i.e. a connected
union of L-blocks) and an A-polymer P, is again defined by the requirement

dist (P, V(P)) = 2. (7.10)

We finally introduce the activity p (P ,) by replacing the sum over C in (4.11) by a
sum over sets C, containing exactly one A-contour, y, (note that p ,(P,) is linear
in A4 by our definition of e ~¥4?4); we also use i, instead of i, because q is assumed
to be stable).

With these definitions we obtain the following analog of (4.72)

Z3N A, A) = e~ ZOA) Y pa(P) ] p(P), (7.11)
Pa i
where the sum goes over sets
FAz(PA’Plr--’Pk)

of mutually compatible polymers containing exactly one A-polymer: We now divide
(7.11) by Z3"(A) by the standard algebraic procedure for polymer systems, see e.g.
[207]. One obtains

it 5w el ) ey | )

n=0 P4,Py,..., Pn

where ¢, is the usual combinatoric factor (it is called a(X) in [20]).
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To prove the convergence of this expansion we need the following Lemma,
which is the appropriate generalization of Lemma 3.1. 7" is the region from
Lemma 3.1.

Lemma 7.1. There is a constant ¢, not depending on L, f§ or u such that
flexp(— d4IR, AR, , < K sexp(— e |suppy4| — tlsuppy, \ A ),
provided uev"V, v = t(L, f) is the constant from Lemma 3.1 and
K, =(oecs )| 4| .

Proof. We first extract a factor ||A|® and then proceed as in the proof of
Lemma 3.1 to bound

flexp(— ¢4l R, IR, , < | A]|®exp(—eolsuppy4l)f [ exp(—a(V(R,) —eo))

xedd

l_[ exp( - (V(Rx) - eO)) I—[ exp( - W(Rm Ry)) H Xw(x)(Rx)de

xesuppy 4\ {xy) Xesuppya
<A@ exp(—#HL + N) — eqlsuppy ) ch™ 4\ (co//2) ),

where N and & are defined as in the proof of Lemma 3.1. Using the fact that all
cubes in suppy,\&/ are incorrect we obtain £ + N = (2L)™"|suppy,\«| and
hence, again proceeding as in the proof of Lemma 3.1,

flexp(— ¢(y4IR,,))dR,,
¢ 1|
<4 ll(“’<7°&ee"“"°) exp(—e,|suppy4l)exp(—t|suppy\«|)

provided pe?"® (we have used ¢, = 1 without loss of generality). This proves the
lemma with ¢, = co/\/&. n

Corollary 7.2. Forallb < o0 one can choose L independent of f and L, and ro = ry(L),
¢z =c5(L), B, = B,(L) and t, = 1,(L) not depending on B, such that

lpa(Po = 5" A @e?1P4l,
provided L= Ly, ue¥" V1 =1(B,L) =1, and B = B,.

Proof. Wefix ¢,¢,¢,7, =3¢, L= Ly and r, as in the proof of Lemma 4.1. Assuming
without loss of generality that Theorem 3.3 is valid for f = f; we bound

lexp(—¥(y4lR;,,))exp(e,/suppy 1)
< K exp(—t|suppy,\ |+ (2c; +1)|0suppy,l)
S K, exp((2¢; + 1| —(¢/3)|suppy 4\ H|).

If q is stable, h; < h;, for all m and, by Lemma 3.2, e, < ¢,, + 2c;, which shows that
R exp (e, + 1)) S | 4] (@Ge+).

Combining these bounds with Lemma 5.1 and Lemma 5.2 and proceeding as in
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the proof of Theorem 4.1, one obtains
1p4(P )] S | A|®(Eetr 1)

Y., exp(—cL7|Pl+(fi +cL™)| X Usupp Cyl)
C 4, X,s.t.
)?usu;pCAtcPA

-exp (— ¢| X usupp C,\ | + 3, | X usupp C,l).

Extracting a factor ¢ we can bound the sum as before and obtain the corollary
with .

C3 =50e401+1ec. .
Corollary 7.2, together with Theorem 4.1, immediately imply convergence of the
cluster expansion (7.12), and hence the following

Theorem 7.3. There are constants ¢ >0, K < co and * < o0, such that the following
statements are true for B = B* and uev" V.

i) For stable boundary conditions q, and any observable A with ||A||® < oo, the
thermodynamic limit
(A, = lim {A)J",
A-ZY
exists, is translation invariant and shows exponential clustering.
ii) Let {-)I** be the infinite volume state corresponding to Z;. Then, for stable
boundary conditions q,

€AY = AV | S KIswmndl| | @0,

q
where T(P) is the constant from assumption A.2.
Proof. i) is standard and ii) is proven by comparing the cluster expansion for (A4,
and {(A4);*. Since the activities of these two expansions differ only by terms

containing at least one contour, we may extract a factor e~* < e~*); the remaining
sums are bounded as before giving the factor K!s"PP41|| 4||®, W

The following theorem is proven in the same way as Theorem 7.3 ii). {-){
denotes the infinite volume state of the Gaussian with covariance C, = (m; — x,A)™ !
and mean R,. §(p) is the constant from assumption A.1.

Theorem 7.4. For a polynominally bounded function A(-) denote by A, the shifted
Sfunction, A,(R)= A, (R — R,). Then, for > p*,

<A — (AP = K40(B),
where K , depends on A, but not on f§, and & > 0 is independent of f§ and A.

Remark. One may have observed that the definition of (-}, in Sect. 1 differs from
that given here. Since Z,(A) and Zj"(A) and hence also (-, , and {(->$", differ
only by contours touching dA, one may easily check that

lim {A), o= lim A>3,

A-ZY A-Z"
if q is stable, B = * and || 4||® < o0.
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