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Abstract. The Chern-Simons gauge theory is studied using a functional integral
quantization. This leads to a differential equation for expectations of Wilson
lines. The solution of this differential equation is shown to be simply related to
the two-variable Jones polynomial of the corresponding link, in the case where
the gauge group is SU(N). A similar equation has been used before to get the
Jones polynomial from a braid representation of the link. The main novelty of
our approach is that we get the Jones polynomial from a plat representation of
the link.

1. Introduction

The purpose of this paper is to explore the connection between the non-abelian
Chern-Simons gauge theory and knot polynomials. The motivation for this work
comes, in part, from Witten's beautiful paper [1] in which he shows that the
expectation of a collection of Wilson loops in the Chern-Simons theory is related
to the Jones polynomial of the corresponding link.

Our approach is different from that in [1]. We start from the classical action of
Chern-Simons theory in Minkowski space and impose a particular gauge
condition which we call light-cone gauge. In this gauge the action is quadratic in
the gauge potential. The Feynman path integral then formally yields the
propagator for the gauge potential in light-cone gauge, up to an overall
normalization constant, denoted λ. Next, we complexify space-time and analyti-
cally continue the propagator from the Minkowski space to the Euclidean region.
In the Euclidean region we may then derive simple differential equations for the
expectations of Wilson lines in light-cone gauge with coefficients depending on λ.
These equations are similar to equations studied previously in connection with
representations of the braid groups [2,3] and the Wess-Zumino-Witten models of
two-dimensional conformal field theory, [4]. If we now require that the solutions
of our differential equations for expectations of Wilson lines are compatible with
unitarity (reflection positivity) of the theory then the parameter λ is constrained to
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take the values (k + c2(G)/2) ~ *, k = 1,2,3,..., where G is the gauge group, and c2(G)
is the eigenvalue of the quadratic Casimir operator in the adjoint representation.
This follows from the results in [2] and will be discussed in more detail elsewhere.
We discuss the equation more explicitly in the case where the gauge group is SU(N)
and the Wilson loops are chosen in the fundamental representation. Not
surprisingly, the solutions are simply related to the two-variable generalization of
the Jones polynomial [5]. We show that the solution satisfies the skein relations of
this polynomial, and we show that it is a link invariant. These two properties
characterize it uniquely, up to an overall multiplicative constant. In order to prove
that it is a link invariant, we find what Birman calls a plat representation for the
Wilson loops [6]. Birman found a collection of plat moves which serve the same
purpose as the Markov moves for a braid representation. We prove invariance of
the solution under these moves, which implies that it is a link invariant.

For groups other than SU(N) or for higher dimensional representations of
SU(N), we believe that the solution of our equation is again a link invariant.
However the skein relations for such an invariant are much more complicated than
for the Jones polynomial, involving crossings with several twists (see [7] for a
discussion of this). It is not clear that these invariants can be computed in any
simple way from our differential equations.1

The paper is organized as follows. In Sect. 2 we relate the Chern-Simons theory
to the differential equations for Wilson line expectations. In Sect. 3 this equation is
completely solved in a simple but non-trivial case. Sections 4 and 5 contain our
results about the general case, and establish the skein relations which define the
Jones polynomial. In the appendix we prove the main result about the regularity of
solutions of our differential equations.

From the point of view of this paper, it is the differential equations for Wilson
line expectations, the so-called Knizhnik-Zamolodchikov equations [4], that are
fundamentally related to link-invariants. The circumstance that these equations
can be derived from a gauge theory, the Chern-Simons theory, is interesting mainly
because it provides an intrinsically three-dimensional interpretation of link
polynomials, [1].

2. The Differential Equation for Wilson Line Expectations

The action of Chern-Simons theory for a gauge group G is given by

k ί 2
SlA]=-—{tτ[AΛdA+-AΛAΛ

4n \ 3

The connection A is a Lie G-valued 1-form on three-dimensional space-time M3

(or Euclidean space-time E3). For G = 17(1), the cubic term in S[A] is absent, and
the path integral for the abelian Chern-Simons theory is given by the Gaussian

1 For alternative approaches, where equations between so-called braid- and fusion matrices are
used, see, however [8]
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where the partition function, Z, is formally defined by

Let σ(t) be a closed parametrized curve in E3. The Wilson loop observable
corresponding to σ is

The expectation <W(σ)> of the Wilson loop observable is given by the Gaussian

(σ)y = Z~l\ W(σ;

and yields the Gauss "self-linking number" of σ; see e.g. [1], In order to evaluate
, it is necessary to regulate W(σ; A). One may, for example, replace W(σ\ A)

where the current j is bounded, with support in a tubular neighbourhood of σ.
Then

/)> = Z- 1 J

can be evaluated unambiguously. If the support of j consists of several disjoint
components then <VF(/)> can be evaluated in terms of the Gauss linking numbers
of those components and of "self-linking numbers" of the individual components
which, however, depend on the precise choice of j, a dependence that persists when
j tends to the distributional current with support on σ. Thus, the expectation
(W(σ)y is a topological invariant, albeit one which depends on the regularization
scheme.

Note that, in the abelian Chern-Simons theory the "coupling constant" k in the
action may be an arbitrary real number.

The method of calculating <W(σ)> outlined above for the abelian Chern-
Simons theory does not generalize to the non-abelian theory, both because the
action is no longer quadratic and because the Wilson loop observable is not the
exponential of a linear functional in A. Let G be a non-abelian, compact simple Lie
group. Under a gauge transformation g:M3->G which tends to the identity at
infinity, continuously, the connection A transforms according to

and the action evaluated at A9 is

where ng is the winding number of the map g. [Note that for any non-abelian,
compact simple Lie group G, π3(G) =Z.] Furthermore, under a diffeomorphism Φ
of M3 which tends to the identity at infinity, the connection becomes Φ*A, and

Similarly, the Wilson loop observables, i.e. the path ordered exponentials of A
corresponding to loops, are gauge- and diffeomorphism-invariant. For these
reasons, the Chern-Simons theory is called a topological quantum field theory.
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We are interested in the Feynman path integral defined by S[A], whose
partition function is formally given by

From the transformation properties of S[A] under gauge transformations of A it
follows that exp(iS[yl]) is gauge-invariant, provided the "coupling constant" k is an
integer. Moreover, exp(ίS[^4]) is diffeomorphism invariant. It might therefore
appear that Z is independent of the metric on space-time. However, the
regularizations needed to define the functional integral break general covariance;
in particular, the definition of IDA] requires choosing a metric on space-time.

In order to evaluate the path integrals of Chern-Simons theory, such as its
partition function Z, gauge fixing is necessary. [For normalized expectations of the
abelian theory, gauge fixing can be avoided, because the integrals are Gaussian.]
We choose a gauge that renders the action quadratic, even for the non-abelian
theories. We call it light-cone gauge, for reasons that will be evident.

A point in M3 is denoted by x = (x°, x1, x2\ where x2 is the time-coordinate of
x. The 0-direction is called "transfer direction."

We introduce light-cone coordinates

x+ =xl +x2, x~ =x1—x2.

The corresponding components of the connection A are denoted by A+ and A-9

with
A±=A1±A2.

Here At can be written as r τ

A = y Λ*
α = ι l]/2'

where Aa is a real-valued 1-form on space-time and {Ta}
r

a=i are an orthonormal set
of generators of the Lie algebra of G, so that

tτ(TaTb)=-δab.

The light-cone gauge is defined by setting A*L to zero, for all a = 1,..., r. This is
not a complete gauge fixing, since gauge transformations which only depend on x°
and x+, i.e. are independent of x~, preserve the light-cone gauge condition.

The Chern-Simons action in light-cone gauge is given by

where 2d_=d1 — d2. Notice that the action has no derivatives in the transfer
direction, and that the cubic term vanishes in this gauge, so the action is quadratic.

In order to complete our definition of the light-cone gauge, we must specify the
correct interpretation of the formal "integration measure" [_DA~]. Let 91 denote the
affine space of all connections A = (A0,A+9A-). This space carries a metric given
by

where
= J tr((5α c)α)dvol,

M3
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for a Lie G-valued function δa on space-time. To define d vol, we choose the usual
Lorentz metric on M3.

The integration measure IDA] is then defined to be the formal volume form
associated with the metric on 91 defined above. The equation A- =0 determines a
surface, 5^Lc<, in 91 which intersects all gauge orbits. A general connection in 3Ϊ can
be represented as a gauge transformation of a connection in 5̂  c . Thus we may
introduce coordinates (A0, A +, g) on 31, with A _ = 0. Then IDA] is proportional to

where [/M0]
 and [^4+] are formal Lebesgue measures, and [Dg] is the volume

form on the group of gauge transformations. The Jacobian, i.e. the Faddeev-Popov
determinant, turns out to be independent of A and g. After these preparations, we
can proceed to calculate the propagators of Chern-Simons theory in the light-
cone gauge.

Let D be the Feynman propagator of the two-dimensional d'Alembertian

vήth2d+=d1+d2, 2δ_=δ1-32. Then

^χ-μ»(/,̂ ^
with X_L = (x1, x2). The possible values of K are determined by the requirement that
expectation values of gauge-invariant operators satisfy unitarity. Since the Chern-
Simons action in light-cone gauge is quadratic, all Green functions are completely
determined by the two-point functions.

In order to calculate the expectations of Wilson loop observables, it is
convenient to perform a Wick rotation. The propagators are analytically
continued in the time variables to the imaginary axis. A point in the Euclidean
region is written as (ί,z), with f = x°, z = x1-\-ίx2.> x°, x1, x2 real. The formal
Euclidean versions of A + and A _ are denoted by α and α, respectively. Then we
find that

, z)Ab

0(s, w)> = 4λδabδ(t - s)

(2.1)

where λ = — ——. All ra-point Euclidean Green functions are determined by (2.1). It
loπ

turns out that unitarity of the theory requires that

This follows from (2.1 1) below and the results in [2] and will be discussed in more
detail elsewhere. Since the action of Chern-Simons theory in light-cone gauge is
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quadratic, one might think that the overall scale λ of the two-point Green
functions is a free parameter. As a trace of the non-linearity of the theory one finds
that unitarity imposes the quantization of λ described above. It would be desirable
to derive this fact directly from a more careful study of the path integrals defining
Chern-Simons theory (rather than by using the results in [2]).

Now we will use the two-point functions in (2.1) to compute the Wilson loop
expectations. The method we use was developed in [9] and [10] for the
computation of loop expectations in two-dimensional Yang-Mills theory, in axial
gauge. We recall the method below.

In light-cone gauge, the equation for parallel transport along a curve σ(t)

' du(t) = &dz + A0dt)u(t) , (2.2)

where we assume O^ί^l, and w(0) is the identity on <CN. In order to compute
expectations involving these parallel transport operators, we make an assumption
about the meaning of the differential du(t) in (2.2). Specifically, we assume that the
increment (^αdz-f A0dt) depends only on the fields supported in the region
{(s,z)|s>ί}, and that u(f) depends only on the fields supported in the region
{(s,z)|s^ί}. Since the Chern-Simons action in light-cone gauge has no time
derivatives, the fields in these two regions are independent, and hence the
increment (^ocdz + AQdt) is independent of u(f). This is the crucial fact that allows us
to derive our differential equation; [if (2.2) were a genuine stochastic differential
equation, our assumption would mean that u(t) is given by an Ito integral].2

First we define new variables for the curve σ(ί):

Then (2.2) becomes
du(t) = (idL(t) + dM(t))u(t) . (2.3)

Now suppose that we have n curves σ±(t\ ...,σπ(ί) each given in the form

We assume that the curves never intersect so that zt(t) Φ zffl for different i and;,
and all 0 ̂  t ̂  1 see Fig. 2.1 . The parallel transport operators along σ t, . . ., σn will
be denoted uί9 ...,wn, respectively, and are defined by (2.3) with new variables
{Lt(t)9 Mf(ί)}, i = l,...,n. We will now compute a differential equation for the

°PeΓatθr φn(t) = <f*ι(f)® - - ® u.(ί)> , (2.4)

where the expectation is taken with respect to the Chern-Simons measure in the
light-cone gauge. Since ut(t) is an operator on C ,̂ φn(t) maps the tensor product
(€")" into itself.

2 There are other interpretations of the meaning of du(t). However, they change our equations for
the expectation values of Wilson lines, see (2.7), only by terms that yield a different dependence on
the "framing" of the Wilson lines and drop out in (2.15)
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Fig. 2.1. Wilson lines in ]R x (C

We use (2.3) to get the differential equation for φn(t). We take the differential of
(2.4); in order to include all terms of order dt, we must include the second order
differentials of the right-hand side. This gives

dφn(t) = Σ
i=ί

Σ . . ®dUj

By our assumption regarding the meaning of du(t\ these expectations factorize,
and we get

dφn(t)=

+ Σ ® (¥Li(t) + dMτ{t))® . . .

+ dMjt))®...®iy<pn(t), (2.5)

where / is the identity on <CN. We evaluate the expectations of the increments as
follows. First, from (2.1) we have

<L^(ί)M?(ί)> = 4λδab J f dzi(s)ds'δ(s - s') -
0 0 2

1

Taking the differential of both sides gives

dt.(Λ
zi\l) ~

Inserting the generators {Ta} of the Lie algebra gives

- Σ Ta®Tadt. (2.6)

In order to use this in (2.5) we define the following operators on (C )̂

= Σ
α= 1
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where the generators Ta occur in the i andj positions. The first expectation on the
right-hand side of (2.5) is zero, and the second term gives

So we finally get the promised differential equation:

^=A Σ ^0 .̂. (2.7)
ut ί^Kj^nZi — Zj

This equation has been studied before in connection with linear represent-
ations of the braid group [2], statistics of quantum fields [3] and monodromy
equations in two-dimensional conformal field theory [4]. The relevance of the
equations to these topics is due to the following observations.

Let Mn be the subset of C" consisting of points ζ whose coordinates (z1? ...,zπ)
are all distinct. We define an operator-valued connection on Mn by

ω = λ £ Ωίjd\og(zi-zj), (2.8)
l^i<j^n

where, here, λ is any complex number. Then it is easy to show that ω is flat, so that

dω + ω Λ ω = 0 .

This follows from the infinitesimal braid relations for the operators {β }̂ (see
[10] for a simple proof):

[fly, 0^ = 0, lΩipΩjk + Ωkί] = 0 (2.9)

for all i, j, fc, / distinct. Therefore the holonomy of ω gives a linear representation of
the fundamental group of Mn, which is the pure braid group on n strings [6]. Also
the symmetry of (2.8) under permutations of the coordinates means that ω induces
a flat connection on the quotient space Mn obtained by identifying points in Mn

whose coordinates are equal up to a permutation. Since the fundamental group of
Mn is the braid group on n strings [6], we also get a linear representation of the full
braid group. It is known how to obtain a link invariant from this representation, by
defining a suitable trace on (€N)n ([2,7]). In the case where G is SU(N)9 this link
invariant yields the two-variable generalization of the Jones polynomial [5].
Therefore the differential equation (2.7), which is the equation of parallel transport
for the connection ω, can be used to obtain knot polynomials. This already
indicates a connection between the Chern-Simons theory and knot polynomials.

We now wish to explore more fully the statement that the expectation of a
Wilson loop in the Chern-Simons theory yields a knot polynomial. We will do
this by using a differential equation for the loop expectation which is similar to
(2.7). Our approach is different to that described in the previous paragraph. We do
not want to use a braid representation; rather we want to use the original loop
itself. The equation we use is again suggested by the Chern-Simons theory.

If we take a cross-section of the Wilson loop, we will intersect an even number
of Wilson lines, half of which "go up" and half of which "go down"; see Fig. 2.2. The
upward moving lines carry a representation R of the group G, while the downward
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\
\

Fig. 2.2. Cross section of a Wilson loop

moving lines carry the representation R. Our previous equation (2.7) applied to the
case where the n lines carry the same representation of G, so we generalize it in the
following way.

Let σ±(t\ ..., σ2n(t) be parametrized curves in R x C, given by

Again we assume that z^ήφzfa) for any ί, ifi andj are different. The parallel
transport operators on the curves σ l 9 . . ., σn will be written w l 5 . . ., wπ, and these are
defined by (2.2). On the other n lines we use the complex conjugate representation,
and we define operators ΰn + 1, ..., ΰ2n by the equation,

(2.10)

where Tα is the complex conjugate of Tα. The operator we consider is

ψn(t) = <t*ι(ί)® . . . ® un(t)® ΰn+ ι(0®

which maps (<C^)2n into itself. We can view ψn(t) as a linear operator taking states in
(CN)2n at time ί = 0 to states in (<CN)2n at time ί. We now compute an equation of
motion for ψn(t) using the same method as before. This produces the following
operators on (CN)2n:

α=ί

where again the non-identity factors occur in the z andj positions. We also define
Sj~Sij for i<j. These operators also satisfy the infinitesimal braid relations.

Repeating the derivation of (2.7), we get the following differential equation
for ψn'. A , ,

-JΓ=* Σ ^SijΨn, (2.11)

c2(G)/2)-1
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In order to apply this to the computation of Wilson loop expectations, we can
restrict the operators to a subspace of (<CN)2n, corresponding to gauge-invariant
states. Let R be the representation of G on (CN, and let R be its complex conjugate.
Then we define the gauge invariant subspace to be

Vn = {υe (CN)2n|K(g)(x) . . . (x) R(g)<8> K(g)® . . . ® R(g)v = υ, all g e G} .

As an example, suppose {eα} is an orthonormal basis of CN, and consider the
state N

Vo = N~n Σ eαι® ®eαn®eαι®...®eαn.
αι,...,αn=l

Then v0 is in Vw and the matrix element of \pn(f) in this state is

)v0) = <tr K(ίK+

+ ι(ί)) - - tr (

where the trace is normalized to give tr/=l. Suppose now that the curves
σ l 9 . . ., σ2n satisfy σ^O) = σn+ί(0) and σ i ( l ) = σn+ ,.(1) for all ι = 1, . . ., n. Then each term
trίu^lXJ+^l)) is the trace of the holonomy around a closed curve, and so
(t?0, v?π(l)t;0) is the expectation of a product of n Wilson loops. Similarly, let P be any
permutation of the integers {1, ...,n} and consider the state

N~n Σ β«p(1)®-®ββj>(n)®eβl(8)...®ββfι.
αι, . . . , f l n =l

Then t>(P) belongs to Fn for any permutation P. The inner product (ι (P), ψn(ί)vQ)
is again the expectation of a product of Wilson loops, if the curves satisfy

σl<0) = σn + ί(0), σI<l) = σn+p(i)(l) for all i = l,...,n.

The number of Wilson loops is the number of cycles in P.
In [10] it was proved that the operators {Stj} map Vn into itself, for any group G.

Therefore the solution of (2.11) restricts to this subspace also, assuming that ψn(0)
leaves Vn invariant. In fact we will always take ψn(0) to be the identity operator.

We are now faced with two problems when we try to use (2.11) to compute
expectations of Wilson loops. The first problem is that a Wilson loop is obtained
by joining the "up" curves and the "down" curves at their endpoints. However the
right-hand side of (2.11) is singular at these joining points, and the solution itself
may be singular there also. Indeed the solution of (2.1 1) in the case G = t/(l) is given
by

ψn(t)= Yl (Zi-Zj)λ Π fr-^ΓVΛO),

which is singular when z{ = zj9 being either zero or infinity.
The second problem is the framing problem pointed out by Witten [1]. In our

approach this shows up as the dependence of the solution of (2.11) on quantities
which are not topological invariants. This problem occurs already in the case n = 1,
where there is one up curve and one down curve. The equation is
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The gauge invariant subspace Vί is one-dimensional, containing just the state
v o, and

=-cf?o, (2 12)

where c is the Casimir operator, which we assume to be a multiple of the identity.
So the solution is

This result depends on the winding number of zί— z2 about the origin (in
general cλ is not an integer). This winding number has no topological significance
and should not appear.

It turns out that we can solve both these problems by considering a ratio of
expectations. Let W(σ) be the Wilson loop observable for a closed curve σ,
computed for the gauge group G in the representation R. We denote by < W(σ)>G

the expectation of this in the Chern-Simons theory with gauge group G, evaluated
in light-cone gauge. In addition we consider the Wilson loop observable W(σ)
computed for the group (7(1) around the same curve σ. We denote by <W(σ)yυ(^
the expectation taken with respect to the (7(1) Chern-Simons action in light-cone
gauge, where the square of the (7(1) charge is adjusted to be the Casimir of G in the
representation R, as in (2.12). Then we consider the ratio

<W(σ)yG^W(σ)y^. (2.13)

In [1] it was shown that by choosing a framing for the curve σ both the
numerator and denominator in (2.13) can be computed and yield topological
invariants. In our approach we consider only this ratio of expectations, but we do
not require a framing on the curve σ. Once again, we consider 2n curves σ l s . . ., σ2n

which never intersect, and we define parallel transport operators both for the
group G and for (7(1). If we write χn(t) for the operator ψn(t) in the (7(1) case, we get
the equation of motion

dt

where θ,j = θjΊ is given by

0 , =
-1 l^ί^n,n + l

The operator which leads to the ratio of expectations (2.13) is

v5π(ί) = V»(ί)χ»(ί)"1,

and its equation of motion is

The new operators are

Si;=Su-(c0u/(8)...®/), (2.14)
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which also satisfy the infinitesimal braid relations (2.9). Deriving this equation was
the goal of this section, and in the remaining sections we will ignore its origins in
the Chern-Simons theory. For this reason, the parameter λ is no longer
constrained to be — (k + c/2) ~ *, and for convenience we drop the tilde on ψn. So we
consider the equation

& =1 Σ ίtfjlΛv (115)
ut l^i<j^2n Zj — Zj

In the remainder of the paper we will study (2.15) in the case where G = SU(N),
and R is the fundamental representation. In the next section we will consider the
case of four curves σ1? σ2, σ3, σ4, and we will solve (2.15) in terms of hypergeometric
functions. In order to do this, we will need to restrict λ in (2.15) by the condition

(2.16)

which is automatically satisfied if λ = — (k + N) ~1, k = 1,2,3,....
We will see later in Sect. 4 that this restriction is also necessary in the general

case, so henceforth we will assume that λ satisfies (2.16).

3. The Solution for Four Curves

We consider the case where n = 2, and G is SU(N)9 so that there are four curves
σl9 σ2, σ3, σ4. The gauge invariant subspace V2 is two-dimensional. If we let {eΛ} be
an orthonormal basis of <CN, then V2 is spanned by the states

N

VQ=N~2 Σ ey.®£β®ev.®eβ'>

α,0=l

JV

The operators {5^} are given by 2 x 2 matrices on this subspace (see [9,10]):

ιj ι 7 == Λ - 3 Λ —=

0 1

0 -N)'

-N 0

1 0

We define a new variable

χ=(z1-z3)(z2-z4)
(z1-z2)(z3-z4)'

in terms of which (2.15) becomes,

dψ2 Jl /O 1 \ , 1 / N 0

dx~'Ίx\0 -N) ' 1 - x V - l 0 / 1 T Z ' (3-1)
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An equation very similar to (3.1) was studied in [4]; the solutions can be
expressed in terms of hypergeometric functions. As t increases from zero to one,
x(t) describes a curve in the complex plane, which never passes through x = 0 or
x=ί. Equation (3.1) describes the analytic continuation of a matrix-valued
function along this curve. It is clear that the solution has monodromy about x = 0
and x = l (indeed this is the characteristic property of the hypergeometric
function).

In order to solve (3.1), we consider the associated vector equation

where w(x) is a two-component vector. This equation has two linearly independent
solutions. There are two natural bases to choose in the solution space; the one
which diagonalizes the monodromy about x=0, and the one which diagonalizes
the monodromy about x = l. The first basis is (w1(x),w2(x)), where

(ί-x)-"lF(λ,-λ ,l+Nλ;x)
_λ

— —xF(ί +Nλ-λ, 1 +Nλ + λ; 2 + Nλ; x)\

< , _Nλf(i-xΓNλF(λ-Nλ, -λ-Nλ; ί-Nλ; x)
W'(X)=* (-NF(λ,~λ -Nλ;x)

Here F(a, b; c; x) is the hypergeometric function, which is analytic and single-
valued for |x| < 1 . The second basis, which diagonalizes the monodromy about
x = l, is (w3(x), w4(x)), where

(ί-x)F(ί+Nλ-λ,ί+Nλ + λ;

^Fμ+Nλ-λJ+Nλ + λ; l+Nλ; 1-;

,-Nii-NF(λ>-λ > -Nλ ί-x)

These bases are related by a constant transition matrix, given by

Γ(Nλ)Γ(-Nλ) -N Γ(Nλ)Γ(Nλ)
Γ(λ)Γ(-λ) N2-l Γ(λ + Nλ)Γ(

]\Ί =.

Γ(-Nλ)Γ(-Nλ) Γ(Nλ)Γ(-Nλ)

Γ(λ-Nλ)Γ(-λ-Nλ) Γ(λ)Γ(-λ)

Note that by our assumption (2.16) we avoid any poles of the gamma function.
We can now compute the solution of (3.1) around any closed curve in the plane
which avoids the two singular points x = 0 and x = 1. For example, suppose γ is a
closed curve which encircles the point x = 0 once in the positive direction, but does
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not encircle x = l. Then the solution of (3.1) in the basis (w1?w2) is

Ί 0
\p2(y) =

0 exp(-2πiΛΓ/l)

This is also the solution of (3.1) for a curve which encircles x = 1 once in the
positive direction, but does not encircle x = 0, given in the basis (w3, w4). Similarly,
if y encircles both x = 0 and x = 1 once in the positive direction, the solution in the
(w1?w2) basis is

r-i

Every closed curve can be built out of these elementary curves, and so the
solution can be computed. We can also solve (3.1) along a curve y which is not
closed, and we will denote the solution by \p2(γ) also. In this case a basis for the
solution spaces at the initial and final points of y must be specified in order to write
down the solution.

It is straightforward to continue from this point and obtain a representation of
the braid group on four strings using the monodromy of the solution of (3.1) (see
[4]). However we want to consider what happens when we apply (3.1) to a Wilson
loop which is constructed by joining together the ends of the curves σ l 5 σ2, σ3, σ4.
There are two ways of doing this; we can join σ^ to σ3 and σ2 to σ4, or we can join
σ1 to σ4 and σ2 to σ3. Either of these two ways can be used at the beginning and the
end of the curves, as we illustrate with the example in Fig. 3.la. In terms of the
variable x, these are the points x = 0 and x = 1 respectively, which are precisely the
singular points of the solutions of (3.1). So the Wilson loop in Fig. 3. la corresponds
to the curve y in Fig. 3.1b, which begins at 0 and ends at 1.

If we now consider the behavior of the solutions W 1,w 2,w 3,w 4 at x = 0 and
x = l, we see

Wl(0) =

w3(l)=

w2(0) =

(3.3)

We have used the fact that λ satisfies the bound (2.16). From (3.3), we see that
any solution w(x) has a limit as x approaches 0 or 1. At x = 0, the limit is

0

121

1

(α) (b)

Fig. 3.1. a A single Wilson loop and b the corresponding path in the x-plane
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proportional to y0, and at x = 1 it is proportional to v x. So this defines the solution
w(x) along a curve which terminates at x = 0 or x = 1. If the curve begins at these
singular points, we must make a choice about how to define the solution. Firstly
the initial value must be proportional to the appropriate vector, i.e. at x = 0 it must
be proportional to v0 and at x = 1 it must be proportional to vl. There are many
solutions vφc) which converge to a given vector av0 at x = 0, where a is a constant.
However there is a unique solution which is single-valued in the disc \x\ < 1, namely
αw^x). This is the only solution which does not depend on the behavior of 7 in the
vicinity of x = 0. Therefore we define the solution along a curve y which begins at
x = 0 as follows. The initial state is av0, and the solution for 0 < |x| < 1 is αw^x). This
solution can now be analytically continued along the rest of y, giving a solution
ψ2(y) f°r the whole curve. Similarly if 7 begins at x = 1, the initial state must be bυl9

for some constant fe, and then the solution for 0< |1 — x| < 1 is frw3(x).
Notice that the only allowed initial state at x = 0, namely vθ9 is the state which

contracts the indices on the curves σl and σ3, and also on σ2 and σ4. Since the point
x = 0 is reached when the curves join together in these pairings, this means that the
initial state is precisely the one required to compute the corresponding Wilson
loop expectation. Similarly the state v1 at x = 1 contracts the indices on σί and σ4

and on σ2 and σ3.
If a curve passes through the point x = 0, the solution is continuous but not

analytic in general. For example consider the set of curves in R x C shown in
Fig. 3.2b. The corresponding curve y in the x-plane is shown in Fig. 3.2a; it begins
at x and ends at y, and passes through 0. Suppose |x|<l, |)>|<1, and that the
solution at x is , λvφc) =

Then the solution along y is

Returning to the example shown in Fig. 3.1, we have defined ψ2(γ) for the curve
y. The matrix element of ψ2(y) which computes the Wilson loop expectation is

Γ(Nλ)Γ(-Nλ)
>~ Γ(λ)Γ(-λ) '

where we used the explicit expressions for the matrix M. Recalling the identity

smπz

A
(α)

Fig. 3.2. A curve which passes through x = 0

(b)
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Fig. 3.3. A deformed version of Fig. 3. la

this reduces to .
smπA

This is equal to the expectation of an unknotted Wilson loop in the SU(N)
Chern-Simons theory calculated by Witten [1], if we take λ to be — (fe + JV)"1.

Obviously the loop in Fig. 3. la is untypical, since all four curves begin and end
at the same horizontal levels. A more typical loop is pictured in Fig. 3.3. The
solution of (3.1) for this loop is obtained by solving the equation separately in each
of the horizontal slices where the number of curves is constant, and multiplying the
solutions in the appropriate order. In the slice labelled Sί in Fig. 3.3, there are only
two curves σ2 and σ4, so we could evaluate this by using (2.1 5) with n = 1 . However
in order to be compatible with the solution in the next slice S2, we use (2.15) with
n = 2 in the slice S^ The functions zt(ί) and z3(ί) no longer appear, and (2.15)
becomes , , ,

^=A^S24Ψ2. (3.5)
at z2 — z4

Referring back to the Chern-Simons theory, the solution of (3.5) corresponds to
the operator <7®w2®/®M4>, i.e. the parallel transport operators on the missing
curves are replaced by the identity. The right-hand side of this equation annihilates
the state v0. Since this is the initial state which we want to use in the slice Sl9 this
means that the state is unchanged and \p2 is just the identity. So the final state for
Sl5 which is the initial state for S2, is again ι;0, as we had previously. Similarly the
final state for S2 is proportional to t^. The equation in the slice S3 corresponding to
(3.5) has the operator S13 on the right-hand side, which annihilates v^. So the
solution ιp2 in the slice S3 is again the identity. Therefore the solution obtained for
the loop in Fig. 3.3 is the same as for Fig. 3.1, and the matrix element of this
operator between the initial state v0 and the final state vi is equal to (3.4).

Our equation (3.1) can be used to obtain a solution for any combination of
Wilson loops whose intersection with a horizontal plane contains no more than
four points. An example is shown in Fig. 3.4. Again the reader can check that the
final state for each slice is an allowed initial state for the succeeding slice. So the
operators in the slices can be multiplied and the resulting operator has a non-zero
matrix element which gives the loop expectation.

We now turn to the problem of identifying this solution in terms of knot
polynomials. To do this we need the skein relations which serve to define the knot
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• to::::::
Fig. 3.4. A collection of loops with the slices indicated

Fig. 3.5. Crossing for the skein relation

σ! *2

(α) (b)

Fig. 3.6. Crossing of two up curves

(c)

polynomial. We will write PL(t, x) for the two- variable generalization of the Jones
polynomial. This polynomial satisfies the following recursion relation [5] :

where the links L+, L_, and L0 differ at only one crossing, in the manner shown in
Fig. 3.5. Notice that PL(t,x) is defined for oriented links, and hence for Wilson
loops. Furthermore PL(ί, x) is invariant under ambient isotopies of the link L. In
order to relate our solution to this knot polynomial, we shall study the skein
relation.

There is a basic asymmetry in Eq. (3.1), namely the transfer direction is singled
out. Therefore we must consider two different skein relations, depending on
whether the crossing curves in Fig. 3.5 carry the same representation or conjugate
representations. Suppose first that σ1 and σ2 cross, as in Fig. 3.6.

If σ3 and σ4 are vertical during the crossing, then the variable x follows the
paths 7+ and y _ shown in Fig. 3.7, corresponding to the crossings L+ and L_.
Notice that interchanging zί and z2 replaces x by 1 — x.
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Y.
1-χΛ

Fig. 3.7. Curves in the x-plane for Fig. 3.6

We will write φ± for the solutions of (3.1) along the paths y + . For convenience
we assume that \γ+(z)\ < 1 and |1 — y_(z)| < 1 for all z on the curves γ±. Suppose we
have an initial state w(x) given by

Then from our explicit expressions for w l 5 w 2 we get

We can also re-express w(x) in the other basis

w(x) = c3 w3(x) + C4w4(x) ,

and then we have „ _,
\p - w(x) = c3 w3(l - x) + c4^

2πι]v;ιw4(l - x) .

We now claim that there is a simple relationship between these solutions. If we
write Mtj for the entries of the transition matrix M, we get

c3 = c1M11+c2M21,

vv2 = M21w3 + M22w4.

Therefore
(eπίNλψ + — e~πίNλψ-)w(x) = cίMίl(eπiNλ — e~niNλ)w3(l — x)

+ c2M22(e ~ πίNλ — eπ'N;l)w4(l — x). (3.6)

Referring back to the matrix M, we see that

_ _ sinπ/ί
M11=-M22=sίι^-[.

Hence

Finally from our explicit solutions we can simplify this further. Define a
transposition operator acting on V2 (our gauge invariant subspace) by

i o
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(α)

Y.

(b)

Fig. 3.8. Crossing of an up curve and a down curve

Then a straightforward computation using the properties of hypergeometric
functions gives A , v

Therefore we get

This relation corresponds to the skein relation for PL(ί, x), with t = exp( — πiNλ)
and x = 2ί sinπ/l. The operator τ in (3.7) interchanges the labellings on the curves σ^
and σ2? so that the three terms in (3.7) can be fitted into a product of operators at
the same place.

Now consider the case where σ± and σ3 cross, as in Fig. 3.8a. The correspond-
ing curves y + , y _ , y 0 in the x-plane are drawn in Fig. 3.8b. Notice that interchang-
ing zl and z3 replaces x by x(x — 1) ~ 1. Again we assume the curves lie inside the disc
|z|<l.

Let w(x) be an initial state, given by

w(x) = cλ Wj(x) + c2w2(x) .

We will denote by ψ+9 φ_, and ψQ the solutions of (3.1) along the curves y + , γ_9

and y0. We have /

φ + w2(x) = e ~~ 2πιNλψ _ w2(x) .

Therefore

χ—
(3.8)

As indicated in Fig. 3.2, the solution of (3.1) along the curve y0 in Fig. 3.8b picks
out the analytic part of w(x), which in this case is C1w1(x), and evaluates it at
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x(x-l)'1. So (3.8) implies

eπiNλψ + _e~ πiNλψ _ = (eπiNλ __e~ niNλ^ (39)

Unfortunately this is not the skein relation we want: the coefficient on the
right-hand side of (3.9) is wrong. Therefore the solution of (3.1) is not the knot
polynomial.

However it is very easy to manufacture a knot polynomial from our solution.
Notice that in Fig. 3.8b the curve γ0 passes through x = 0; this corresponds to the
fact that in L0 two curves join and separate again. Suppose that we have a set of
Wilson loops W of the kind shown in Fig. 3.4. Let y be the corresponding curve in
the x-plane. Then y is a union of curves {y J, i = 1, . . ., n, each of which begins and
ends at either x = 0 or x = 1, and otherwise avoids these points. We have defined the
solution of (3.1) for y by „

)= Π

From this operator we get the matrix element (vf, ψ2(y)Vi)> where υ{ and vf are,
respectively, the initial and final states for W in V2. We now define the following
number, which we call the loop polynomial for W:

P(W; λ, N) = (Of, V2(yto) - (3.10)

If we denote by W+,W-, and WQ the collections of Wilson loops which differ
only at one crossing in the way shown in Fig. 3.6 or Fig. 3.8, then from (3.7) and
(3.9) we deduce

which is exactly the skein relation for the knot polynomial. In the next sections we
will extend the definition of P(W; λ, N) to a general collection of Wilson loops and
we will show that it also satisfies the skein relation. We will then show that
P( W, λ, N) is invariant under ambient isotopies of the Wilson loops. These results
together imply that it is exactly the link polynomial PL(t, x).

4. The General Case

We now consider a general collection of Wilson loops W, whose cross-section can
contain more than four points. As illustrated in Fig. 4.1, the number of
intersection points of W with a plane perpendicular to the transfer axis changes
as the plane moves up or down.

In Fig. 4.1 the number of curves intersected by a horizontal plane is either zero,
two, four, or six, depending on its position. This number changes by two at the
points where the tangent vector to W is horizontal (and the curvature is non-zero).
We call these the turning points of W. There are an even number of turning points;
half are "minima" and half are "maxima," as in Fig. 4.1. (We restrict attention to
"generic" sets of curves for which these assertions are true.)

In order to apply Eq. (2.15), we want to describe W by a set of curves {σj, each
of the form σ(t) = (t,z(t)) for some function z(t). Suppose FFhas 2n turning points.
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Fig. 4.1. A general collection of loops

We can view each turning point as a point where two curves join, one oriented
upwards and one oriented downwards. In terms of the operator ψn(i) in Sect. 2, the
up curve carries the representation N of SU(N) and the down curves carries the
representation N. Since at each turning point two of these curves join, it follows
that W can be described by 2n curves σί9..., σ2π. We assume that σ1?..., σn are the
up curves, and that σn+1?..., σ2n are the down curves. For example, we can describe
W in Fig. 4.1 by six curves σ l 9..., σ6. Each curve begins at some "time" tt and ends
at another "time" tp where 1 ̂ i<;^6, and {ίj are the coordinates of the turning
points in the transfer direction.

Each up curve σt begins at some turning point simultaneously with a down
curve. This down curve can be written σπ(i)+n for some permutation π in Sn.
Similarly the up curve σ{ ends with another down curve σρ(ί)+m where ρ is another
permutation in Sn. We will see that π and ρ determine the initial and final states for
the operator ψ(W) which we will define for W using Eq. (2.15), in the same way that
v0 and v1 were the initial and final states for the solution of Fig. 3.3.

The "time" coordinates of the turning points of W can be listed as
tι<t2< . < t2n We will call the set [ίp, tp+J x C the pth slice, and our first concern
is to solve Eq. (2.15) in each slice. In the pth slice, some subset of the curves
σ l 5 ...,σ2n are present, corresponding to a subset Kp of the integers {1, ...,2n}.
Therefore the differential equation in this slice corresponding to (2.15) is

dψp

~dt~
(4.1)

The solution of (4.1) is a function of the coordinates (zj, for ieKp. Referring
back to the Chern-Simons interpretation the operator ιpp should be interpreted as
the expectation of the tensor product of parallel transport operators along the
curves {σj for i e Kp, with the missing parallel transport operators replaced by the
identity.

The operators {Stj} appearing in (4.1) act only on the factors of the tensor
product ((CN)2n which correspond to the integers in Kp. Acting on a vector v(P) in
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Vn, they generate a subspace of Vn, which we will describe below. First of all, we
separate the lines missing from this slice into two sets, which are labelled by subsets
IP and Jp of the integers {!,..., 2n}. An integer is in Ip if the corresponding curve
begins at a "time" t^tp+ί. Similarly an integer is in Jp if the corresponding curve
ends at a "time" t ̂  tp. All the missing curves are included in these two possibilities.
We now define the subspace of Vn on which we want the solution of (4.1) to act. The
subspace is called Vn(Ip',Jp). A vector υ(P) in Vn belongs to Vn(IpιJp) if the
permutation P satisfies

allje/p, l<^rc,
(4.2)

all;eJp, ί^j^n.

The subspace Vn(Ip\ Jp) is then the linear span of the vectors v(P) satisfying (4.2).
In order to see that the solution of (4.1) leaves this subspace invariant, we use the
following explicit expressions for the operators {3^}. These can all be deduced
from the following result. Let {7^} (a = 1,...,N 2) be a linearly independent set of
N x JV skew-hermitian matrices satisfying

tr(TaTb)=-δab.

Then as an operator on C^φC^,

Σ τβ®τβ=-f,
α = l

where τ is the transposition operator given by

Recall that Vn is the linear span of the vectors (v(P)}, where

N

oci, ...,αn= 1

We write τ^ for the transposition in Sn which interchanges i and j. Then we have

„ + ! g j <,- ( '

Furthermore if 1 gi, j^n, then

if

if

It is clear that the operators on the right-hand side of (4.1) do not affect the
conditions (4.2), and so ψp leaves Vn(Ip\ Jp) invariant. Furthermore we can read off
the eigenvalues of Stj now. From (4.3) we see that for lgz<j^n, or n+l^ i
<7^2n, Sij has two eigenvalues, namely N±l, and they occur with equal
multiplicities. From (4.4), we see that for 1 <*ί, j^n, Sifj+n has eigenvalues 0 and
— N, the former occurring with multiplicity (n — 1)1. In fact the subspace of Vn

annihilated by Sitj+n is isomorphic to Vn-γ.
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In order to solve (4.1), we again look at the corresponding vector equation

J=A Σ f^S>. (4.5)
dt ΪJeKpZi-Zj

ί<j

The solution of (4.5) is a multi-valued analytic function of the coordinates (zj,
for i E Kp. It has non-trivial monodromy about the singular subspaces where any
two coordinates are equal. Although we cannot solve (4.5) explicitly, we can
compute the monodromy of the solution. Suppose that \zk — zt\ is very small, for
some kJeKp. Then we can find the monodromy of (4.5) by solving the reduced
equation , ,

Suppose first that 1 ̂ k<l^n. Then the solution of (4.6) is

+ (zk-zί)
λ("-1)w_ , (4.7)

where u + are eigenvectors of Skb with eigenvalues N±l. From (4.7) we can read off
the monodromy, which is given by a 2 x 2 matrix, as in Sect. 3. The solution of the
full equation (4.5) has the same monodromy, and so it can be written as

= (zk - z/<» + "wΛO + (zk - zύ«N - VK) , (4.8)

where now w^Q and w2(C) are single-valued analytic functions of zfe and zl9 for
\zk — zt\ small. By this we mean that the other coordinates lie outside some disc in
the complex plane containing zk and zt. We have denoted by ζ the point in (C|Xpl

with coordinates {zf} (/ e Kp)9 where \KP\ is the cardinality oίKp. In the appendix we
prove that the solution w(£) has the form given in Eq. (4.8), and we prove that w^Q
and w2(C) are analytic.

We will write τkl(ζ) for the point obtained from ζ by interchanging the
coordinates zk and zt. Let τkl be the operator on Vn given by

Then τkl satisfies

I Φ K, t ,

Recall that
Ski = N

so from (4.7) we have
τklu± =

Therefore from (A 10) in the appendix we deduce
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If we take n + 1 ̂  k < I ̂  2rc, the same result holds. In this case τkl is a different
operator, given by

) = v(τklP)

Now suppose that 1 ̂ k^n and n + 1 ̂ l^2n. Then the solution of (4.6) is

zlΓ
λNul, (4.10)

where u0 is annihilated by Skl and uv has eigenvalue — JV. Notice that our condition
(2.16) on λ implies regularity of (4.10) as \zk — zj( approaches zero. Once again the
solution of the full equation (4.5) can be written

w(ζ) = W3(ζ) + (zk-ZlΓ
λNw4(ζ), (4.11)

where w3(£) and w4(£) are single-valued analytic functions of zk and zl9 for \zk — zt\
small as described above. Again this decomposition follows from the results
proved in the appendix.

When zk = Zj, we will write η in place of ζ. The solution w(f/) = w3(?/) is
annihilated by Skl, so it satisfies the equation

Σ

For each fΦ/c,/ , the operator (Sik + Su) annihilates the kernel of Skb so it
annihilates w3(^). Therefore when zk = zt, w3(η) satisfies the equation derived from
(4.5) by omitting all terms involving the curves σk and σt. Conversely, suppose u(η)
is a solution of this reduced equation with the curves σk and σt missing. Then there
is a solution w(Q of (4.5), given by (4.11) for \zk — z,| small, which is equal to u(η)
when zk = zt. In fact there are many solutions, since the other function w4(() in (4.1 1)
can be chosen arbitrarily. We will pick out the analytic solution for which w4(£) = 0,
and we will call this the extension of u(ή) for \zk — zj small. This is the analog of our
definition in Sect. 3 of the solution of (3.1) along a curve which begins at either x = 0
or x = l.

We can now define the solution of (4.1) in the pih slice. This slice is defined by
tp ̂  £ ̂  tp+ 1? where tp and tp+ ! are the time coordinates of two turning points of W.
For tp<t<tp+l, (4.1) is solved by analytically continuing a solution of (4.5) along
the curve y(t) = (σ^ί)} for ieKp in the space (C|Kpl. This leaves the subspace
Vn(Ip\Jp) invariant. So the only question is what happens at the endpoints where
t = tp and t = tp+ί. From (4.11) we see that nothing goes wrong at these points. If
two curves σk and σt meet at tp+ 1? the solution w(f) converges to a solution w3(τ/) of
the equation in the succeeding slice. Furthermore, if w(0 is in Vn(Ip\ Jp), then w3(^) is
in Vn(Ip+1;Jp+1\ since by assumption we have
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Similarly if two curves σk and σl begin at tp, then the solution from the previous
slice is in VJ^I^^J^^ and by assumption

This means that the solution from the previous slice is annihilated by Skl9 and so
its extension in the pth slice is defined.

Therefore the solution of (4. 1 ) extends to the whole interval tp^t^tp+1, where
it defines a continuous mapping from the solution space t^(/j,-ι; /p-ι) of the
previous slice to the solution space Vn(Ip+ ^ Jp+ ±) of the succeeding slice. We call
this operator ψp.

The solution for W is now obtained by composing these operators in the
correct order. We define

and call this the solution of (2.1 5) for W. We evaluate it on the initial state υ(π\ and
it maps this to a final state proportional to υ(ρ). To get a number out we compute
the matrix element (υ(ρ\ψ(W)v(π)).

We will see in Sect. 5 that in order to get a link invariant from the solution, it
will be necessary to use the loop polynomial introduced in Sect. 3. Our general
definition of the loop polynomial is

- - (v(ρ),ψ(W)v(π)). (4.12)

This definition depends explicitly on the number of turning points in W, but of
course the link invariant does not.

In the next section we will prove that (4.12) is the knot polynomial for the
collection of Wilson loops W. We do this by establishing the skein relations and by
showing that it is invariant under ambient isotopies (these are the deformations of
a set of closed curves which preserve its link equivalence class). When a link is given
as the closure of a braid, invariance under ambient isotopies follows from
invariance under the Markov moves (see [6]). However in our case we do not have
a braid representation. Fortunately there is another way of representing a link
called a plat representation. This is defined in [6] and [5], and we recall the
definition below.

Consider a braid on 2n strings as in Fig. 4.2a. We label the top endpoints
al9 . . ., a2n and the bottom endpoints bί9 . . ., b2n To obtain the plat corresponding
to b, we put caps on the top and bottom of the braid, making it into a link. We join
α2 f c_ ! to a2k by an arc lying above the braid, for each k= 1, . . ., n. Similarly b2 f c_ 1 is
joined to b2k by an arc lying below the braid, as shown in Fig. 4.2b. The resulting
set of loops is called a plat.

Obviously a plat is determined by a braid, and vice versa. Birman [6] showed
that every link is ambient isotopic to a plat. She also showed that two plats are
equivalent if and only if one can be reached from the other by a sequence of plat
moves. These plat moves are shown in Fig. 4.3.

The first move twists a cap; the second and third moves interchange two
neighboring caps in the ways indicated. The fourth move adds on an extra cap at
top and bottom; this is the only move which changes the number of caps.
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α2n-1 α2n

b., b2 b3 b

(α)

Fig. 4.2. a A braid and b its closure as a plat

α
(b)
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Fig. 4.3. The plat moves
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Fig. 4.4. Adding an unlinked loop

In the next section we will show how a collection of Wilson loops can be made
into a plat without changing the loop polynomial. Then we will prove invariance
under the plat moves and that will complete the proof that we have a link invariant.

We will need a result in the next section concerning the expectation of an
unknotted, unlinked Wilson loop. In fact we just need to consider a loop of the type
shown in Fig. 4.4a, which is described by two curves σk and σz, going up and down
respectively. This loop is part of a larger collection W, but is not linked to any other
loops in W.
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First of all, the integrability conditions for Eq. (2.15) allow us to deform the
curves σk and σl into the shape in Fig. 4.4b without changing the solution (notice
that the endpoints are fixed). This can be done so that \zh — z,| is always sufficiently
small that the solution defined by (4.11) is always analytic in zk and zl [i.e. w4(Q is
always zero]. The curves begin and end with zk = zl9 so by analyticity we get the
same solution by fixing zk = zl throughout the interval. The corresponding
collection W with this loop removed has two turning points less than W, so the
solution space Vn_ 1 for W is smaller than Vw the solution space for W. However the
matrix elements of ψ(W) and ψ(W) are the same because we normalized the states
{υ(P)}. Therefore from (4.12) we get

(4.13)
sinπ/i

5. The Skein Relations and the Link Invariant

We will now establish the skein relations for the loop polynomial P(W; λ, N), for a
general collection of Wilson loops. Consider first the case where two up curves σk

and σt cross in the pth slice in the ways illustrated in Fig. 3.6a and b. The curves not
shown are assumed to be constant in this interval. In Fig. 3.6c all the curves are
constant. We will write ψ± for the solutions of (4.1) along the curves L+ in this
interval. Let ζ be the initial point in <C|Xpl, where the curves begin; again we denote
by τkl(ζ) the point with zk and z{ interchanged. Suppose that w(£) is an initial state.
Then from (4.8) we have

Therefore

We have used the analyticity of wt(C) and w2(0 nere Using (4.9) now gives

Therefore
eίπλNιp+ -e~ίπλN\p. =(eiπλ-e~ίπλ)τkl (5.1)

which is the required skein relation. The same relation holds when two down
curves cross.

As in Sect. 3 the other skein relation corresponding to the crossing of an up
curve and a down curve behaves differently. The situation is illustrated in Fig. 3.8a.
Once again the other curves are assumed to be constant, and we write ψ+ for the
solutions of (4.1) along the curves L± in Fig. 3.8a. If w(£) is an initial state, then
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and again using the analyticity of w3, w4 we get

ψ _ w(C) = w3(τkz(0) + eίπλN(zk - zύ ~ ̂ w4MO).

Therefore

(e^ψ +-e~
 iπλNιp_)w(ζ) = (eίπλN - eiπλN)w3(τkl(ζ)). (5.2)

The right-hand side of (5.2) is the solution for the curve L0 in Fig. 3.8a. If we
consider the collection of loops W in which L+ is replaced by L0, we see that W
has two more turning points than W. Therefore when we apply (5.2) to the
evaluation of the loop polynomials for W and W, the change in n (the number of
turning points) changes the coefficient on the right-hand side of (5.2). Let W+, W_,
and W0 be three collections of loops which differ only at one crossing in the way
shown in Fig. 3.5. Then (5.1) and (5.2) imply that

e™wp(W+ ;λ,N)-e~ iπλNP(W- ;λ,N) = (eίπλ -e~ iπλ)P(W0 ;λ,N). (5.3)

Our final task is to prove that P(W;λ9N) is a link invariant. As explained in
Sect. 4, we do this by obtaining a plat representation for W. It should be noted that
our method for doing this relies on the skein relation (5.3).

First of all, in Sect. 4 we derived (4.13), which shows how P(W;λ,N) changes
when a single unknotted, unlinked loop is removed from W. Consider a turning
point in W, as illustrated in Fig. 5. la.

We will introduce a single unknotted link above this turning point, as in (b).
Using the skein relations, we can compare this with the situations in (c) and (d)
where the loop is connected at the turning point. We will write Wa, Wb, ... for the
corresponding collections of loops. Then from (4.13) and (5.3) we have

But since the solutions of (c) and (d) are the same, and are equal to (e), we get

,N). (5.4)

A A A
(α) (b)

Fig. 5.1. Moving up a turning point

(c) (d)



Chern-Simons Theory and Knot Polynomials 195

0

(α)

Fig. 5.2. The last plat move

o
(b)

o
(c) (d)

Comparing (a) and (e), we see that the turning point has been pulled up without
changing P(W'9λ,N). We get a plat representation for W by doing this for each
turning point which looks like (a). The new turning points can be arranged in a
horizontal line as in Fig. 4.2b. Similarly the turning points which are inversions of
(a) can be pulled down to the same horizontal level, without changing P(W\ λ, N).

Now we just need to check invariance under the plat moves shown in Fig. 4.3.
The first three plat moves can be implemented by making different choices for the
loops which are added on when W is put in a plat representation, as in Fig. 5.1b.
The result is independent of this choice, and so is invariant under these moves.

To check plat move (iv), we again use the skein relations. Firstly, by (5.4) we can
change the new caps at top and bottom so that the plat looks like Fig. 5.2a.

The solutions for Fig. 5.2a and b are equal, and are related to (c) by the skein
relation:

sinπ/t

But from (4.13) we have

Combining these gives

Therefore P(W;λ,N) is invariant under all the plat moves, and so is a link
invariant. Since it satisfies the skein relations (5.3), it is equal to the two-variable
Jones polynomial PL(exp( — πiλN)92ismπλ).

Appendix

The principal result in this appendix is contained in the following lemma.

Lemma 1. Let M(z) be anxn matrix which is an analytic function of z in a simply
connected domain D containing 0. Suppose that there is a vector u satisfying

M(0)w = 0,

and suppose also that ||M(0)|| =c<l. Then the differential equation
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with the initial condition

φ(0) = tt

has a unique analytic solution in D.

Proof. We will construct the solution in a neighborhood of z = 0. Analytic
continuation then extends the solution to the whole domain D.

Consider the modified equation

^ = lM(0)φ + Aβ(z)φ, (Al)

where β(z) = z~1(M(z) — M(0)) is analytic in D, and λ is a parameter. Setting λ = \
recovers the original equation. When /ί = 0, the solution of (Al) is

ψ(z) = u.

We construct the full solution as a power series in λ:

φ(z) = u + λφΛz) + λ2ιp2(z) + A3φ3(z) + . . . . (A2)

Substituting (A 2) into (Al) and equating powers of λ gives

pn^(z). (A3)

We can solve Eq. (A3) inductively in n. We assume that

φn(0) = 0 all n^l .

Our induction hypothesis is that φw_ t(z) is analytic in a neighborhood |z| < 2R,
so that we can write

Q(z)ιpn_ί(z)=Σ^,

The corresponding expansion for φM(z) is

ψn(z)= £ bkz
k. (A 4)

Equation (A3) implies that

" !/7 all Lr~> 1a^ _ ̂ , αii rv ̂  i .

Using our assumption that ||M(0)|| =c<l, it follows that the series (A 4)
converges in the disc |z| < R. By analytic continuation with (A3), this extends to the
original disc |z| < 2R.

So our induction hypothesis is verified. It is interesting to note that Eq. (A3)
implies that the first non-zero coefficient in (A 4) is

Finally we need a bound on ψn(z) which is uniform in «. From (A3) we have

n , (A5)
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where the line integrals begin at 0 and end at z. When /(z) is analytic we will write

| | f | | Λ =sup|/(z) |=sup|/(z) | ,
|z|^R \z\=R

where we used the maximum modulus principle. Returning to (A 5) we get

1
~Ψn

R

HeΠCe llvJ^ m"R

1—c

Iterating this bound gives

"™"*- V 1-c

Therefore by Weierstrass' Theorem the series (A 2) converges to an analytic
function φ(z) in the disc |z| ̂  .R, where .R satisfies the bound

1-c
£< A l i e n * '

Setting λ = ί gives the desired result. Π

We now exploit Lemma 1 to derive our results concerning the singularities of
our differential equation (2.15). We single out any two coordinates zk and zl9 and
any eigenvalue μ of Skl. We define

and then Eq. (2.15) becomes

dzk

^ Σ S v - - - φ . (Ad)
ί,j *k,ί z; — Zj \αί αί/

At first, we will keep fixed the remaining 2n — 2 variables. Let

M0 = λ(Skl-μ),

Q(z) = λ Σ Sfi — ,
jή=k,l z — zj

p(z)=λ Σ Sj,-^—.
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Then Eq. (A 6) becomes

j, —^oat z —

The remaining In — 2 coordinates appear only in β(z) and P(w), as external
parameters. By the integrability conditions (2.9) this equation is equivalent to the
pair of equations

p, (A 7)

(A8)

From our assumption (2.16) we deduce that

So suppose that the vector u satisfies

Sklu = μu. (A9)

The matrices Q(z), P(z) have simple poles at the 2n — 2 coordinates being held
fixed. So let D be a simply connected domain in (C which excludes these points.
Then Q(z), P(z) are analytic in D. By Lemma 1 , Eq. (A 7) has a solution φ(z, w) which
is analytic for z in D and satisfies

φ(w, w) = u .

Equation (A 8) guarantees that φ(z,w) is analytic for w in D also.
We can now use the full equation (A 6) to analytically continue this solution

into C2/I. In particular, the vector u which satisfies (A 9) can be an analytic function
of the other 2n — 2 variables. So we can extend φ(z, w) to an analytic function in a
simply connected domain in C2π, where we restrict the variables so that z^Zj
unless i = k and j = I.

Each eigenvector u of Skl provides a solution of Eq. (2.15) of the form

ψ = (zk-zl)
λμφ,

where φ(zk = zt) = u and
Sklu = μu.

By taking a basis of these eigenvectors we generate the full solution space of
(2.15), and so any solution can be written as a linear combination of these
solutions.

Finally, we need a further property of the solutions of (A 7) and (A 8). Suppose
there is a matrix A which satisfies

AQ(z)A-1=P(z)y

and suppose also that
Au = au .
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Then it follows from (A 7), (A 8) that

Aφ(z, w) = aφ(w, z) (A 1 0)

for all w,z in D. This property extends to the solution of the full equation (A 6).
In our case the matrix A is τkl, which interchanges the coordinates fe and /, when

either l^ fc</^π, or n + l^k<l^2n. The eigenvalues are + 1 .
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