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Abstract. We prove that an irreducible representation of the Virasoro algebra
can be extracted from an irreducible representation space of the SL(2,̂ )
current algebra by putting a constraint on the latter using the Becchi-Rouet-
Stora-Tyutin formalism. Thus there is a SL(2,&) symmetry in the Virasoro
algebra, but it is gauged and hidden. This construction of the Virasoro algebra
is the quantum analogue of the Hamiltonian reduction. We then are naturally
lead to consider a constrained SL(2,̂ ) Wess-Zumino-Witten model. This
system is also related to quantum field theory of coadjoint orbit of the Virasoro
group. Based on this result, we present a canonical derivation of the SL(2, $)
current algebra in Polyakov's theory of two-dimensional gravity; it is a
manifestation of the SL(290f) symmetry in conformal field theory hidden by
the quantum Hamiltonian reduction. We also discuss the quantum Hamiltonian
reduction of the SL(n,$) current algebra and its relation to the W^-algebra of
Zamolodchikov. This makes it possible to define a natural generalization of
the geometric action for the Wn -algebra despite its non-Lie-algebraic nature.

1. Introduction

Among various favourable properties of string theory as a candidate for the unified
theory of everything, the uniqueness of target spacetime dimensions is one of the
most appealing. It is therefore crucial to know whether string theory is possible
off the critical dimensions. This question is also relevant in understanding the
large-ΛΓc limit of QCD in four dimensions, and many attempts have been made to
solve string theory below criticality. Kazakov and Migdal [1] have studied
various statistical models on triangulated random surfaces, and computed scaling
dimensions. Last year Polyakov examined the two-dimensional gravity induced
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by conformal field theory, and found that there is an SL(2,^) current algebra [2],
This result opened the way to solve the off-critical string theory. Later Knizhnik,
Polyakov and Zamolodchikov exploited this observation to evaluate scaling
dimensions of planar random surfaces [3]. Their result shows complete agreement
with previous computations by Kazakov and Migdal. This seems to suggest the
validity of Polyakov's observation. Still, the way the SL(2,^) current algebra
emerges is like a bolt out of the blue. He computed correlation functions of metrics
using the Ward identity of the energy-momentum tensor, and showed that they
contain the SL(2, &) current algebra. One of the motivations of this paper is to
obtain a canonical derivation of this current algebra and to understand the structure
of the off-critical string theory.

It has been suspected by several people that there should be hidden relations
between the Virasoro algebra and the SL(2,^) current algebra, and in general,
between the ^-algebra and the SL(n,&) current algebra. The VFπ-algebra is an
extension of the Virasoro algebra with additional chiral operators of spin-n [4].
For example, Fateev and Lykyanov [5] computed highest weights of completely
degenerate representations of the VFM-algebra, and found that they can be expressed
in terms of highest weights of the SL(n, 0ί) algebra. There is also an intriguing
connection with the classical version of these algebras observed in the context of
the Korteweg-de Vries type Eqs. [6]. Consider a dual space of the SL(n,&)
loop algebra. This space is endowed with a natural Poisson bracket, and we may
regard it as a classical phase space. This phase space has a certain symmetry, and
one may consider the reduced phase space with respect to this symmetry. The
Poisson bracket for the reduced phase space turns out to be the classical
version of the W^-algebra. This procedure is called the Hamiltonian
reduction.

In this paper, we develop the quantum analogue of the Hamiltonian reduction.
We replace the Poisson bracket by a commutation relation of operators, and the
classical phase space by an irreducible representation of the algebra. An attempt
in this direction was initiated by Belavin [7]. The irreducible representation spaces
of the Virasoro algebra are extracted from those of the SL(2, 0£) current algebra
by imposing a certain constraint on the latter. Consider an irreducible repre-
sentation space of the current algebra. In classical mechanics, we put a constraint
J~(z) = 1 to reduce the phase space of the loop algebra. Quantum mechanically,
we introduce a set of ghosts and define the Becchi-Rouet-Stora-Tyutin (BRST)
operator associated with this constraint. It is then proved that a quotient
Ker(gBRST)/Im(<2BRST) is isomorphic to an irreducible representation space of the
Virasoro algebra. The idea of our proof is the following. Both the Virasoro algebra
[8] and the SL(2,̂ ) current algebra [10] have realizations in terms of free bosons.
Although such realizations are highly reducible, there are BRST-like operators
whose cohomologies are isomorphic to irreducible representations of these algebras
[12,13]. The point is that the BRST-like operators for these algebras are equivalent
modulo trivial operators with respect to the BRST operator QBRST f°r tne constraint
J-(z)=l.

We are then naturally lead to consider the SL(2) Wess-Zumino-Witten (WZW)
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model with one of its right-moving currents, J~(z\ being gauged as

^̂  / ^z \
J (gauge volume) \ J 8π )

The physical Hubert space of its right-moving sector gives irreducible represent-
ations of the Virasoro algebra. Thus there is a SL(2) symmetry in the Virasoro
representations, but it is gauged and is not observable. This system is also equivalent
to quantum field theory of the coadjoint orbit of the Virasoro group. The geometric
quantization of the Virasoro group was previously discussed by Witten [14]. Based
on this result, we present a canonical derivation of the SL(2) current algebra in
the induced gravity; it is a manifestation of the hidden SL(2) symmetry in conformal
field theory.

In understanding various aspects of conformal field theories, it has proved
fruitful to explore the interplay between the Virasoro algebra and the complex
geometry of Riemann surfaces. Is there also some geometrical structure behind
the J^-algebra? To answer this question, we must understand what kind of
symmetry the W^-algebra implies. The Virasoro algebra is the consequence of
reparametrization and Weyl scaling invariance of a field theory, and the structure
of these symmetries is encoded into the geometric action of the Virasoro algebra.
Thus the first step to appreciate the geometric aspect of the Wn -algebra would be
to construct a geometric action for this algebra. The J^-algebra is not a Lie algebra,
but an algebra with quadratic relations. Usually a geometric action is defined for
a Lie group, and one might suspect that there should be no such action for the
H^-algebra. Still the quantum Hamiltonian reduction makes it possible to define
a natural generalization of the geometric action for the W^-algebra.

The paper is organized as follows. In Sect. 2, we study an effective theory of
gauge fields coupled to the WZW model. This gives a prototype of our construction
of induced gravity in later sections. Section 3 is devoted to proving the quantum
Hamiltonian reduction. In this section, we first recapitulate the classical Hamiltonian
reduction following the result of Drinfeld and Sokolov [6]. A reader may wish to
skip this part in the first reading. We then prove the quantum Hamiltonian
reduction in the case of SL(2,^) exploiting the free boson realizations of the
Virasoro and the current algebras. We also discuss the quantum Hamiltonian
reduction of the SL(n, $) current algebra and its relation to the Wn -algebra. In
Sect. 4, we consider the constrained WZW model. Due to the quantum Hamiltonian
reduction, this system gives irreducible representations of the Virasoro algebra. At
the classical level, the constrained WZW model is equivalent to the field theory
of the coadjoint orbits of the Virasoro group. We then discuss the quantization
of the Virasoro group. These results are applied to the induced gravity in Sect. 5.
It turns out that the quantum gravity is equivalent to the quantum field theory of
the coadjoint orbits of the Virasoro group, which, in turn, is related to the
constrained SL(2, $) WZW model. In the last section, we consider a generalized
geometric action for the VFn-algebra, and discuss its symmetries.

Notation and Conventions. In this paper, we employ the Lorentzian signature
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metric in two-dimensions. To avoid complication in notation, we denote light-cone
coordinates by z = t + x and z = t — x, where x and ί are space and time coordinates
respectively. The z-dependent sector is often called the right-mover and the
z-dependent sector is the left-mover. Throughout this paper, SL(ri) is meant to be
SL(n, R).

2. Gauge Field Coupled to Wess-Zumino-Witten Model

In this section, we describe an effective theory of gauge fields coupled to the WZW
model following Polyakov [15]. The cocycle condition of WZW action plays a
central role in understanding the dynamics of the effective theory. This is a prototype
of our construction of induced gravity in later sections.

The effective action Γ(A) for the gauge field A coupled to the WZW model is
given by

(1)

where ta is a generator of the gauge group. Since Γ(Ά) is also a generating functional
for correlation functions of the currents Jα, the operator product expansion

fabc fc/2

J«(z) J -± - c — a

exp (iΓ(A)) = ( exp I + iJ — Aaj
\ \ 8π J I \vzw model

z — w (z — w)

when applied to Eq. (1), implies the following functional differential equation for
Γ(A):

(δf-S+f^At(z,z))^L= ^dA"(z,z). (2)

Let us now quantize the gauge field A with this action Γ(A\ The correlation
function is given by

From the functional differential Eq. (2) for Γ(A\ one can derive the following
identity,

Aa(z

,4.

after changing normalization of the gauge field, Ά-*(k H- 2cv)Ά. Here cv is the dual
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Coxeter number of the gauge group. Thus the correlation function of gauge fields
make the current algebra of level k = — (k + 2cv). Deriving Eq. (4), we performed
integration by parts in the functional integral (3). There we used the anomalous
transformation property of the functional integral measure

(δacd + fabcΆ»)^=-c[_dΆ-\ = -c^-dAa\_dA]. (5)
oA oπ

This is where the shift — k -> — (k -h 2cv) of the level comes from.
We can also compute the effective action Γ(A) of the gauge fields directly.

Using the cocycle condition of the WZW action [16, 17],

W(I7) - I t τ ( U - * d U ) ( d g g - * ) 9 (6)

the right-hand side of Eq. (1) can be rewritten as

exp (iΓ(Ά)) = exp ( - ifcSwlw(l/)) f \_g ~ ί dg\ exp (i*Swzw(E70)), (7)

where U is related to A as A = U~ldU. Since the measure \_g~ldg] is invariant
under the left action of the gauge group g-+U~lg, the result of the 0-integration
is independent of 17. Thus we obtain

Γ(A)=-kSm(U)9 A = U-ldU. (8)

It is easy to check that Γ(Ά) in the above solves the functional differential Eq. (2).
In fact Eq. (2) is the infinitesimal version of the cocycle condition of the WZW
action. Now we can compute the correlation function (3) of the gauge fields as

(9)

The shift of the factor — k -> — (k + 2cv) in front of the WZW action is due to the
Jacobian under the change of variable Ά^U.

= det(δacd + fabcAb)[U~1dU] = ap(-i2cvSmr(U))[y-ldlΓ\. (10)

From the above Eq. (9), it is clear that the correlation functions of the gauge fields
make the current algebra of level k= — (k -f 2cv).

It is also possible to consider the gauge field in the presence of several primary
fields Φ(z\

(̂I w^ w^ffo-1^^ (11)

where Φ^Wi) has the operator product expansion with the current as

}~-Φi(wi^i\ (12)

As in the case of the effective action, we can derive the functional differential
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equation for 3£ as

k - n \
--dA'(z,z) + X Wz-wt) £. (13)-"•• V"? "// c Tr/ -\ O I Λ^c(z,z) 8π\ 2

From this equation, it is easy to show that the correlation function of the gauge fields

<ίαHzJ. lΛ"(zJ>Wl...Wn = jM (14)

behaves as

— ta l

/ Aai('7 \... AΛγn(v \\ r^ J / Λa2ί^ \... ΛClrn(;7 \\
\/i \Z±) Ά \Zm)/wι \vn - _ - X^1 \Z2) Ά \zm)/wi Wn'*

Z l~W ' (15)

With slight abuse of notation, one may express the above as

Aa(z) Φ(w, w) - —*- Φ(w, w). (16)
z —w

It is clear that the highest weight state of the right-moving current algebra of level
k corresponds to the lowest weight state1 of the induced left-moving current algebra
of level -(k + 2cv).

3. SL(n) Symmetry Hidden in Wn-Algebra

In this and the next section, we develop tools to study an effective theory of gravity
coupled to conformal field theory. In this section, we point out that there is an
SL(n) symmetry hidden in the ^-algebra. The relation between classical versions
of the Wn and the SL(ri) current algebras has been known in the context of the
Korteweg-de Yries type equations. Consider a dual space of the SL(n) loop algebra.
This space has a natural Poisson bracket, and can be regarded as a classical phase
space. This phase space has a certain symmetry, and one may reduce it with respect
to this symmetry. The Poisson bracket of the reduced phase space turns out to be
the classical version of the VFn-algebra. We review this classical Hamiltonian
reduction briefly following the paper by Drinfeld and Sokolov [6]. The rest of this
paper is understandable without knowing the classical Hamiltonian reduction, and
the reader may wish to skip this part for the first reading. We then develop the
quantum analogue of this Hamiltonian reduction.

3.1 Classical Hamiltonian Reduction. For the purpose of illustration, let us start
with the finite dimensional situation. Let M be a finite dimensional phase space.
This means that M is implemented with a non-degenerate symplectic form ω, which
defines a Poisson bracket (,}PB. Suppose that a group G acts on M while preserving
the symplectic form ω. The group G is then the symmetry of the phase space M.
Now we are going to define the reduced phase space with respect to this symmetry.

By the lowest weight state, we mean the one with respect to the zero mode of the current algebra
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Each element e of ,̂ the Lie algebra of the symmetry group G, defines a vector
field ve on the phase space. Assume that for each eG& there is a function He(x) on
M such that

ve F(x) = {He(x)9 F(x)}PE for any function F(x) on M. (17)

In this case the symmetry is called Hamiltonian. Associated with this Hamiltonian
structure of the symmetry G, there is a canonical momentum mapping P from the
phase space M into the dual of the Lie algebra ^* defined as

,e> = He(x). (18)

For some e*e&* consider a level set of the momentum P~l(e*) = Me* a M, and
let Ge* be a stationary subgroup of G mapping Me* into itself. One may then
consider the quotient space Me*/Ge*, which has a natural symplectic structure
(for a proof see for example Appendix 5 of a book by Arnold [18]). This defines
the reduced phase space.

Now we are going to apply this construction to the case when M is a dual
space of SL(ri)k, the level-fe central extension of SL(n)-loop algebra. In this case,
the symmetry algebra ^ will be a subalgebra of SL(ή)k given below. To be more
explicit, an element of SL(n)k is a pair (A(z\a0) where A(z) is the mapping from
circle into SL(ή) and α0 is a constant number. The commutator of this algebra is
given by

B(z)l k§ta(A(z)d,B(z))dz). (19)

The dual space of SL(ri)k is defined with respect to the following pairing:

<x,α> = §tτ(J(z)A(z))dz + x0a0

x = (J(z\ x0)e(SL(n)fc)*, a = (A(z\ a0)eSL(n)k. (20)

The Poisson bracket of the phase space M = (SL(n)fc)* is defined as

{ J«(Z), J»}PB = fabC JC(w)δ(Z - W) + δabδ\Z - W),

{x0,J
Λ(z)}PB = 0, {x0^o}pB = 0,

where
Ja(z) = tτ(taJ(z)).

We consider a subalgebra 9 of SL(n)k consisting of pairs e = (E(z)9eΌ) with E(x)
in the Borel subalgebra of SL(ri) (subalgebra generated by strictly upper triangular
matrices). The action of ̂  on M = (SL(n)k)* is coadjointly defined as

(22)

where

(23)

and Ade is the adjoint action of eeΦ on SL(ri)k.
Now that we have the phase space M = (SL(n)k)* with the symmetry ^ —
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(subalgebra of 5L(n)k), we can define a reduced phase space with respect to this
symmetry. We are going to show that the Poisson bracket in the reduced phase
space gives the classical PΓw-algebra. The dual space ̂ * is isomorphic to the quotient
(SL(n)k)*/(U(x),Q) where U(x) belongs to the Borel subgroup of SL(n). As a
representative of a point in 0*, one may take e* = (E*(z)9 l)e(SL(ri)k)*, where E*(z)
is in the form

1 0 0 . . . 0
* 1 0 ••

\

* *

* *

(24)

For such choice of e*9 the level set Me* of the momentum mapping P consists of
(J(z), 1) where J(z) is also of the form (24). This condition is expressed in terms of
the currents J~a(z) as

1, if a is simple root,

0 otherwise,
(25)

for any positive root a. The stationary subgroup Ge* of Me* consists of pairs (ί/(z), 1),
where U(z) belongs to the Borel subgroup of SL(n). It acts on Me* by a coadjoint
action. To be explicit,

k
~2'

(26)

In order to describe the Poisson bracket on reduced phase space let us consider
some specific coordinate system on Me*/Ge*. Exploiting the gauge symmetry (26)
one can always put J(z) into the form

(φί0
0

'•
ό

V O

1

Φ2
0

0

0
1

Φl

0
0

0
0

...

1

Φn-i

0

oλ
0

0
1

Φn)

J(z) =

where ΣΦj = O ^ ̂ s convenient to introduce the fields φj defined as

(27)

(28)

and to use them as coordinates over the reduced phase space Me*/Ge*. In terms
of fields φj9 the Poisson brackets acquire the following simple form:

(29)
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where K{j is Cartan matrix of SL(ri). They are the Poisson brackets of the free
scalar fields.

What happens if one chooses another choice of gauge slice? For example,
instead of Eq. (24), one may also reduce J(z) to the following form:

J(z) =

1 °
0
0

όu

1
0
0

0

«„-!

0
1
0

0

W n -2

0
0

...

1
0

U2

0\
0

0
1

°J

(30)

In order to clarify the relation between these two sets of coordinates, let us consider
the differential equation ((k/2)dz — J(z))~v(z) = 0, where ~v(z) is a n-dimensional
vector. Due to the following form of this equation

/

ϊ° -
/ -J

* *

* *
* *

0 0
1 0
* -..

Λ \

1
*
•i

υ '
0

ό
1
•Λ ,

V2(Z)

« (^

= 0, (31)

one can eliminate all the components of the vector ~v(z] but υ±(z) and obtain an
nth order differential equation = 0 for ϋ1(z). It is easy to show that the
differential operator J£?[J] is invariant under the gauge transformation (26). Thus
by computing J^[J] in two cases, (27) and (30), and identifying them, we get the
relation in a compact form as

, M 0 = - l , M!=O. (32)

This relation is known as the Miura transformation in the theory of the
Korteweg-de Vries type equations. Using this relation we can rewrite the Poisson
bracket (29) in terms of u y The fields HJ make an associative algebra with quadratic
relations known as the Gelfand-Dickey algebra,

(ii^ii/w)},* = Cy(z - w) + F* (z - w)wfc + D\}(z - W^H,. (33)

For the case of SL(2) the algebra (33) reduces to the standard Lie algebra

{W(Z)M(W)}PB = k2d*)δ(z - w), (34)

and this is the classical version of the Virasoro algebra. The case of SL(3) gives us
the first non-trivial example of an algebra with a quadratic relation which is the
classical version of W3-algebra discovered by Zamolodchikov [4]. In general
algebras (33) correspond to W^-algebras of spinrc. For more details we refer the
reader to the original papers [6, 7, 19].



58 M. Bershadsky and H. Ooguri

3.2 Quantum Hamiltonίan Reduction; Case ofSL(2). Now we are going to develop
the quantum analogue of the Hamiltonian reduction. To motivate our construction,
let us start with some numerology in the case of SL(2) current algebra. For the
level-fc SL(2) current algebra,

J+(z)J-(w)
(" ..... \2 '

z — w)

w)~ (35)

there is a canonical definition of an energy-momentum tensor (the Sugawara
construction):

) = E:-r(4/"(*):- (36)

With respect to this energy-momentum tensor, the currents J±,J3 behave as
conformal fields of weight 1. In order to put the constraint J~(z) = 1 consistently
with the conformal invariance, this property of TSL(2) is not convenient, and we
wish to deform the energy-momentum tensor so that the conformal weight of J~
vanishes [7,20],

The central charge for this improved energy-momentum tensor is

I, «?rv , ^ _ Ό *• , •• Λ\

fc + 2 fc + 2 v '

On the other hand, a conformal anomaly for a degenerate representation of the
Virasoro algebra is given by the formula

f^L fl 1

Substituting p/q = k H- 2 in Eq. (39), we obtain the relation

4S = 13 - ̂  - 6(k + 2) = 42<2) - 2. (40)

We note that the difference of 42(2) and 4*ί *s independent of fc. In fact - 2 is
equal to the conformal anomaly of a ghost system (b(z\ φ)) of weights (0,1). Ghosts
of such weights naturally emerge if we put the constraint J~(z) = l using the
Becchi-Rouet-Stora-Tyutin (BRST) formalism.

This observation leads us to the following conjecture. Consider an irreducible
representation space of the level-fc 5L(2) current algebra ^(sί(2) and the Fock space
of the ghost system Jf &>c. The BRST operator defined by

QBRST = §—.(J~(z)~ 1)Φ) (41)

is nilpotent QBRST = 0, and one may consider the cohomology HQβRST with respect
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to the BRST charge,

HQmτ(^SL(2) ® *>,c) = Ker (βBRST)/Im (QBRST). (42)

The claim is that this cohomology is isomorphic to an irreducible representation
space t^f^ of the Virasoro algebra with c = c^(2) ~~ 2,2

#QBκsτ(^SL(2) ® ̂ .c) * &&• (43)

The rest of this subsection is devoted to proving this theorem.
In the classical Hamiltonian reduction discussed in the previous section, we

considered a subspace of the total phase space restricted by J~(z) = 1. The reduced
phase space was then defined as a space of orbits in this subspace generated by
J~(z) through Poisson bracket. Here quantum mechanically, the physical subspace
is defined by the constraint βBRsτl ̂ ) = 0 in the total Hubert space, and the reduced
Hilbert space is the space of orbits of the BRST charge.

As a matter of fact, the total energy-momentum tensor

Γotal(z) = Γimproved(z) + db(z)c(z) (44)

acting on Jfg£(2) ® ̂ b,c commutes with the BRST charge since the BRST current
(J~(z)— l)c(z) is a field of weight 1 with respect to Ttotal(z). It is also easy to
convince oneself that this total energy-momentum tensor is not a BRST exact
operator, Ttotal(z) / {βBRsτ» *}• One can> f°r example, examine the grade-2 physical
subspace in the descendants of the vacuum state |0>SL(2)® |0>5>c. The BRST
cohomology of this subspace is one-dimensional and generated by L^'f1 acting on
the vacuum. Therefore it is clear that the Virasoro algebra with c = c^(2) — 2 acts
on the reduced Hilbert space HQBRSτ(^fSL(2)(S)^bfC). The issue is whether the
representation is irreducible.

To prove the irreducibility of the reduced Hilbert space, it is useful to employ
the realization of the SL(2) current algebra in terms of a scalar field φ(z) and a set
of bosonic ghosts (β,y) with weights (0, 1)

β(z)y(y>) ~ -±— (45)

as

J + (z) = - £(z)(y(z))2 + i*+y(z)dφ(z) + kdγ(z),

(46)

This free boson realization was introduced by Wakimoto [9] (in the case of k = 1)
and by Zamolodchikov (for general k).

2 We are informed by A. A. Beilinson and T. Eguchi that a similar construction was suggested by

B. L. Feigin
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In this realization, the ghosts (b, c) and (/?, γ) make a pair of BRST doublets,
which is called the Kugo-Ojima quartet [11]. We are going to prove the following
lemma.

Lemma (Quartet Confinement).

) * <^φ> (47)

This lemma means that the ghosts simply decouple from the physical subspace.
The proof of this lemma goes as follows. Consider the following projection
operator ,̂

-+Jίf'φ®\Qyβίγ®\θybίC. (48)

Here the vacua |0>^y and |0\c are defined by

. (49)

The zero modes of the bosonic ghosts, β0 and y0 obey the commutation relation

[A»7o] = l. (50)

If y0 is dίagonalized, β0 can be regarded as a differential operator,

*•-£• (51)

Though the projection operator 9 does not commute with βBRsτ> we can modify
it as

p(0) =

so that P(0) commute with
Now we show that 1 — P(0) is BRST exact. Following the paper by Kugo

and Ojima [11], we introduce a set of operators P(N) (N = 1,2, 3,...) defined
inductively as

^ + y-J^-'^- U). (53)

These operators P(N) commute with QBRST. In fact, for N ̂  1,P(N) is a BRST exact
operator,

nΣ (b-eP
w-i>yn + c-eI*>'-»y.)

^ Σ (?-,P(W-1)6. + y-.P(ί'-1)fr.). (54)
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It is easy to see that they are complete,

!. (55)

Therefore any physical state | ψy annihilated by βBRsτ is written as

= P(0)|ΪO + QBRςτ y # ( Λ r ) |¥<_,- , - , I ^BRS1\4'1 '

This means that the physical state | ψy is equivalent to its projection onto
^%®£yo|0>0,y® |0\c modulo the BRST operator. This completes the proof of
the lemma.

On the other hand, the total energy-momentum tensor is expressed as

Ttotal(z) = TFF(Z) _ |gBRsT> y(z)db(z)}

k + 1
Ϊa0d

2φ(z),

i.e. upto a BRST exact operator, Ttotal is equal to TFF(z), which is in the same form
as that in the free boson realization of the Virasoro algebra developed by Dotsenko
and Fateev [8] (also called the Feigin-Fuchs realization). Thus one may suspect
that there is a close connection between these free boson realizations of the Virasoro
and the SL(2) current algebras.3

Let us recall the free boson realization of the Virasoro algebra by Dotsenko
and Fateev. They assume that the scalar field φ(z) winds around a torus of a radius

α+ = v/2/e~+~4. Then the Fock space J^φ is decomposed into subspaces with definite
(7(1) charges with respect to — idφ,

φ
r,s

f̂ £s:subspace with charge (1 - r)α+ -I- (1 - s)α_ ί α_ = -- ]. (58)
V α+ /

In this realization, primary fields inter wine subspaces of different (7(1) charges,
and their correlation functions vanish in general due to the conservation of the
(7(1) charge. To get meaningful results, we must introduce charge screening
operators \l/*ir(z),

Since their operator product expansion with ΓFF(z) is total derivative,

(60)

3 D. Bernard and G. Felder have examined degenerate representations of the 5L(2) current algebra
using the free boson realization (46). They also found the intriguing relation between the representations
of the Virasoro and the SL(2) current algebra, which is potentially related to our observations here.
We thank them for informing as of their result before publication
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we can insert their contour integrals in correlation functions to satisfy the total
charge conservation without spoiling the Ward identities.

The realization of the Virasoro algebra in ^£>s) is highly reducible. It was
pointed out by Felder [12] that one can extract an irreducible representation out
of 3?y by using the charge screening operators. Following Thorn [21], he
introduced an operator βvir defined by contour integrals of the screening operators.
It is nilpotent β^ir = 0? and generates the following spectral sequence:

He then proved that this spectral sequence is exact, Ker(βvir) = Im(βvir), except
at the middle Fock space tf £'s) with

l^rgp-1, l^s^g-1, qs<pr. (62)

The cohomology at the middle Fock space is isomorphic to an irreducible
representation space of the Virasoro algebra ffl^ with a highest weight ΔftS =

>). (63)

For the SL(2) current algebra, there are also two screening operators4

which satisfy

Since all the singular terms in the operator product expansions are total derivatives,
we can insert contour integrals of these screening operators into correlation
functions without spoiling their Ward identities. As in the case of the Virasoro
algebra, one can construct a nilpotent operator QSLW from the screening operators.
In the case of the Virasoro algebra, the spectral sequence (61) is exact except at
one point Jf7 (r's), where the cohomology #Qvir is isomorphic to an irreducible
representation of the Virasoro algebra. The corresponding statement in the case
of the SL(2) current algebra, i.e. exactness of the spectral sequence of QSL(2) except
at Jf£'s)(χ)^yand

3f?sL(2) ~ (irreducible representation of the current algebra)
~ H ( yp(r>s) (9\ 3P \ (66)
-nQSL(2)\^φ W πβ.γh V '

is now being worked out by Bernard and Felder [13].

4 The definition ψ^L(2) may be subtle, for it involves a negative power of β(z) when k is greater than
— 2. In extracting an irreducible representation from 3tf^'m) as described below, however, one needs
to use only one of these screening operators, say ψsi(2) which is well-defined [13]. (This is also the
case for the Virasoro algebra [12].) Thus this subtlety is not relevant to our construction here



Hidden SL(n) Symmetry in Conformal Field Theories 63

The screening operators for the Virasoro and the SL(2) current algebra are
equivalent to each other modulo BRST exact operators,

{βfiRST,

Γ
βBRST, _β(z] b(Z)J* + « . (67)

This implies that the BRST-like operators Qvίΐ and QSL(2) are also related as

βsL(2) = βvir+{βBRST,*} (68)

In deriving these relations, it is crucial that J~(z) is constrained to be a
non-vanishing constant (in our convention J~(z) = 1). If we had chosen βBRST

 =

§(dz/2πi)J~(z)c(z)9 βSL(2) would have been a BRST exact operator.
Now we are ready to prove the main theorem of this subsection (43). The

quartet confinement (47) and the result by Felder (63) implies

&tf * HCvlr(^e)) =* HQviroHQBRST(^)® jT,,y® Jfft,c). (69)

Since βSL(2) commutes with Qmsj>HQsL(2)°HQBRST is also well-defined. We now
show that it is equivalent to the right-hand side in the above. Consider kernels of
βvir and QSL(2) on Ker(QBRST). Thanks to Eq. (68),

βsL(2)l ^>eIm(βBRsτ)^βvirl ϊF>Elm(βBRST). (70)

On the other hand, due to the quartet confinement of ghosts, images of βvir and
βsL(2) are equivalent modulo βBRSτ when considered on Ker(gBRST). Hence we
obtain

(71)

The next step is to relate HSL(2)°HQBRSΎ in the above to HQ

Following the result of Bernard and Felder (66), we may identify
HQsL(2). Thus what we need to prove is

(72)

For general nilpotent operators βx and Q2 which commute with each other,
HQί°HQ2~HQ2

oHQl is not neccessarily valid. To find a sufficient condition for
this to be valid, let us consider the following spectral sequence of the double
complex generated by βt and Q2,

IQ2 IQ2 IQ2

IQ2 IQ2

V -̂ -» Va+ltn
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462 Iβ2 Iβ2

Here a pair of indices (n,m) of FΠjW denotes a double-grading with respect to Qx

and Q2; where (?! = QBRST and 62 = δsL(2)> n i§ the ghost number and m is related
to the 17(1) charge. Now we prove the following lemma.

Lemma

(I) Assume (1) the horizontal sequence is exact except at Vn=Qtin and the vertical
sequence is exact except at Vn>m=θ9 and (2) the horizontal sequence is finite, i.e. for
a sufficiently large N,VN+lίtn = {0} and V_N_lm = {0} for any m. Then

Ker(β1β2) = Ker(β1)φKer(β2) (74)

holds on Vn^m and F_m>π with n ̂  0, m > 0.

(II) Under these assumptions, #Ql°Hβ2(F0>0) = #Q2°HQl(F0so).
When <2X = QBRST and 62 = 6sL<2)> the assumptions of this lemma are satisfied.

The assumption (1) is the consequence of the quartet confinement of the ghosts
and the result of Bernard and Felder [13]. Concerning the assumption (2), we note

that both QBRST and 6sL(2> commute with the total energy-momentum tensor
Ttotal(z) given by Eq. (44). Thus we may restrict VΛtm's to be in the same eigenspace
with respect to Lo°tal. In this case, the ghost numbers of states are bounded below
and above, and the horizontal sequence terminates beyond these bounds.

The first part of the lemma is proved by mathematical induction. We first show
that, if the lemma holds at Kπ+1,_(m+1)(F_(M+1),m+1), so does VΛt.m(V^m\ By
repeating this procedure finite times, we arrive at an edge of the horizontal sequence,
where the lemma can be easily checked explicitly.

Since Ker(β1Q2)
:=)Ker(βι)ΘKer(β2) is obvious, we just need to show

Ker(β1β2)cιKer(β1)ΘKer(β2).

4
Fn,_m— * Kπ + 1,_m — » . (75)

I

* « + l , - m + l

Take an arbitrary element v of Ker (QιQ2)\vn _ m Since 6261^ = 0? Qιv belongs to
Ker(<22)|Kn+1 _ m . By the assumption (1), there is some element λ of Kn + 1 _ ( m + 1 )

such that QιV = Q2λ. Such A should satisfy Ql Q2λ = 0. According to the assumption
of the induction, A belongs to Ker(Q1)0Ker(β2), and it can be written as
A = β1v1 + Q2v2 by the assumption (2). Substituting this into Qι^ = 62A, we
obtain Qί(v-Q2vί) = 0, i.e. ί;-β2v1eKer(β1) and ι?eKer(βJ0Ker(β2).Thus
we proved Ker(β1β2) c Ker(β1)0Ker(β2). This is what we wanted to show. By
interchanging Ql and Q2, we can also prove Ker(β1β2) = Ker(β1)0Ker(β2) on

* —nn,m'
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Let us have a look at the right edge of the horizontal sequence,

-*r*.-«-*0. (76)

It is obvious that VNt-m = Ker(Q1)\Vfίt_m. Thus we obtain

Ker(β1β2)|Nf-M c FN,_W = KerίβJI^^

cKerίβOΘKerίβ,)!^.,,,. (77)

Thus Ker(β1β2) = Ker(Q1)0Ker(β2) holds at the right edge. At the left edge

o—* v.Ntm — >

(78)
Q—+V-N.m + l—> { }

I

the assumption of the induction is trivially satisfied for F _ N _ l m + 1 = 0 . This
completes the proof of the first part of the lemma.

Next we prove the following equality at F0 0:

H OH IV )= Ker(q1)nKer(e2)
c, <bl 0,0) (ιm(ρι)φIm(β2))n(κer(β1)nKer(β2)) l ;

Since the right-hand side is symmetric with respect to Qί and Q2, the second part
of the lemma follows from this equality. A class [v] in HQί°HQ2 is given by veVOΛ

satisfying

Q.veQ^V,,^), Q2v = Q, (80)

and taken modulo βι(Ker(β2)|κ_ l t0)φβ2(K0>_1).

Vo,-ι— »^ι,-ι

4 4 I
V-ι,o-^ V0t0 -^ Flι0 . (81)

I I

Let us rewrite the first condition on v; Q\v = Q2λ for some λ in Ft _ x . Since λ
belongs to K-eτ(QlQ2)\yί _ , , it can be written as λ = Q1ε1 + Q2ε2 thanks to the
first part of the lemma. Thus the first condition becomes

Q1(v-Q2ε1) = 0 for some s^eV^- ^. (82)

Since the representative v of the class [t>] is chosen modulo ζ^C Ό.-iX we can

exploit this freedom to set

(83)

We have shown the following equality
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Finally we prove

ι ι0. (85)

It is clear that

ι0. (86)

On the other hand, any element of 6i(K_1 > 0)nKer(<22)lr0o *s written as διε

with ε£Ker(β1β2)lκ_1 0 Thanks to the first part of the lemma, ε belongs to
Ker(βjeKer(β2), and Q^ is in & (Ker(β2)|κ_ lt0). Thus Eq. (85) holds.
Combining this with Eq. (84) we obtain Eq. (79). This completes the proof of the
lemma.

This completes the proof of the quantum Hamiltonian reduction.

Theorem (Quantum Hamiltonian Reduction).

Vb,c). (87)

We would like to make two comments. The completely degenerate represen-
tations of the Virasoro algebra are parametrized by a set of two integers (r, s) with
1 ̂  P ̂  P — 1» l ^ s ^ ς f — 1, and there are corresponding representations of the
SL(2) current algebra. According to Bernard and Felder, the SL(2) current algebra
has another class of representations, which corresponds to the case of r = 0. In
this case, it is not yet checked whether the assumptions of our theorem (87) hold.
Most probably, the cohomology of the nilpotent operator βvir may not give
irreducible representations of the Virasoro algebra. This existence of such represen-
tations for the current algebra does not contradict our proof. We also remark that
this construction may not work if one replaces SL(2,^) by SU(2). First of all, it
is not clear whether the constraint J~ = 1 makes sense in 5(7(2), for J+ = (J~)*.
Another important point is that SU(2) is simply connected while SL(2,̂ ) is not.
The level k of the current algebra related to a completely degenerate representation
of the Virasoro algebra is in general fractional (k + 2 = p/q\ and so is its highest
weight. This is possible only for SL(2\

3.3 Quantum Hamiltonian Reduction', Case of SL(n). The above result can be
extended to the case of SL(3) current algebra though it requires more elaborate
computations. The SL(3) algebra is generated by six charged currents, Jf , J} 9J^9

and two neutral currents, Hl9H2 The basis is chosen in such a way that these
currents correspond to 5L(3) generators as

(88)
Vo o -i/

In order to put the constraints
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consistently with the conformal invariance, we deform the Sugawara energy-
momentum tensor TSL(3) for the 5L(3) current algebra as,

Timproved(z) = T5L(3) - d(H,(z) + H2(z)\ (90)

With respect to this improved energy-momentum tensor, J$ has weight — 1 while
J^ and J2 have weight 0. To put the constraints (89) in the BRST formalism, we
must introduce three sets of ghosts, (b^c^ (b2,c2) and (b3,c3), with weights
(0, 1),(0, 1) and (-1,2) respectively. The BRST charge defined by

QBRST = $ ̂  Wϊ(z) - l)Ci(z) + (J2 (z) - I)c2(z) + J3~(z)c3(z) + Cl(z)c2(z)b3(z)]

(91)

acts nilpotently on Jf1j*L(3)® ̂ ί,ι!2)3,c1>2,3 The total energy-momentum commuting
with QBRST is

Γtotal(z) = Timproved + db,(z)c,(z} + db2(z)c2(z) + 2δί>3(z)c3(z) + b3(z)dc3(z). (92)

The free boson realization (46) of Wakimoto and Zamolodchikov can be
extended to the case of the SL(3) current algebra as follows. Let us employ two
scalar fields φx and φ2 and three sets of bosonic ghosts, (βl9 yj, (/?2, γ2) and (j83, y3),
with weights (0, 1), (0, 1) and (-1,2) respectively.

φa(z)φb(w) ~ δab log
z - w / J z-w

(α, 6 = 1,2, i,j = 1,2, 3) (93)

It is straightforward to check that the following is a realization of the SL(3) current
algebra:

-h iαV

J3

+(z) = )81(z)((y1(z))2y2(z) - y1(z)y3(z)) - jS2(z)y2(z)y3(z)

- (fc + l)3y !(Φ2W
y3(z) - y ! (z)y2(z))? 2 3φ(z), (94)

Hiίz) = 2jβ1(z)y1(z) - 02(z)y2(z) +

H2(z) = - β,(z)yι(z) + 202(z)y2(z)

Substituting the above bosonized expressions of the SL(3) currents into the total
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energy-momentum tensor (92), we obtain

ra"l(z)=TWί(z)-{Qmsr,t(z)},

t(z) = yv(z)dbt(z) + y2(z)db2(z) + 2y3(z)db3(z)

+ dγ3(z)b3(z)-γ1d(γ2(z)b3(Z)), (95)

with

))2 + (dφ2(z))2) + i2a'03
2 φ t(z),

(96)

The energy-momentum tensor TW3(z) in the above is in the same form as that in
the free boson realization of the W3 algebra (chiral algebra generated by the
energy-momentum tensor and a spin-3 chiral operator W3(z)) developed by Fateev
and Zamolodchikov [22].

The charge screening operators for W3 algebra are given by

^ 3

±>(z) = exp (iα'± -ea-φ(z)) (α = 1, 2), (97)

where

The structure of representations of the W3 algebra has been examined by Mizoguchi
[23] using these screening operators. For the SL(3) current algebras, there are also
four screening operators

= (/* 2(z) + Ύ 1 ( z ) β 3 ( z ) ± exp (ία ± -e, φ(z)\

(AW/* exp(iα±T2 ?(z)), (98)

with

rc'+ = -(/c + 3), n_ = l. (99)

It is easy to check that the screening operators of the W3 and the SL(3) current
algebras coincide modulo BRST exact operators. Although the representation
theory of SL(2) current algebra has not yet been worked out, it is plausible that
the construction of irreducible representations using the screening operators (98)
along the line of refs. (12, 13) extends to the case of SL(3). If this is the case, one
can employ the argument used for the relation between the Virasoro and the SL(2)
current algebra to show that the BRST cohomology in the physical subspace of
^sL(3)®^bi,2,3Ci 2 3 ^s isomorphic to an irreducible representation space of the
W3 algebra.

We have explored the relation between the Virasoro and the SL(2) algebras
and the W3 and the SL(3) current algebras. It is then natural to expect that such
relation between the Wn and the SL(ri) current algebras persists for an arbitrary
value of n. There are some suggestive feature to support this expectation. The
central charge for the Sugawara energy-momentum tensor TSL(n) for the level-fe
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SL(ri) current algebra is (n2 - \)k/(k + n). Let us deform the energy-momentum
tensor as

ΓimprovβdW = ΓSL(B)(z) - ~δ-dH(z) (100)

(H(z) is an (n — l)-dimensional vector of Cartan generators and δ is a sum of
positive roots) so that we can put constraints on the Borel subalgebra of the SL(ή)
consistently with the conformal invariance. The central charge of this improved
energy-momentum tensor is

&<„) = «4 - 1 - n(n2 - 1) + k + n . (101)n).
j

On ther other hand, the conformal anomaly for a completely degenerate represen-
tation of the Wn algebra discussed by Fateev and Lykyanov is given by

(102)

Substituting p/q = k + n, we obtain

(103)

In order to put constraints on the Borel subalgebra using the BRST for-
malism, we need j-sets of ghost systems with weights ( — n + j+l,n — j) for
j = 1,2,..., n — 1. The sum of conformal anomalies for these ghosts is — (n4 — 2n3 + n)
and coincides with the difference between c($n and c(Jl(n}.

Another piece of evidence for the relation between the Wn and the SL(n) current
algebras comes from their highest weights. The conformal weight in a completely
degenerate representation of the Wn algebra is given by

''""—, (104)

where ωf (z = 1,2,..., n — 1) are the fundamental weights of SL(n) normalized as

4 ω7. = ̂ ^(fori^y). (105)

This expression for the highest weight can be rewritten as

Λ= J ((1 - rt)(k + n) - (1 - s^ω,. (106)

This is in the same form as the conformal weight of the spin — A primary field of
the SL(n) current algebra with respect to the improved energy-momentum tensor
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(100). Thus one may suspect that the following relation holds:

TSL(n}(z) ~ ~$ dH(z) + "Σ Σ ((* ~ Wbijtfc^z) + (n - j - l)fty(z)δcy(z))
j=l i = l

= ?Vn(z) + {βBRST,*}. (107)

These observations support the validity of the quantum Hamiltonian reduction of
the SL(ή) current algebras down to the Wn algebra for general value of n.

4. Quantization of the Virasoro Group

The analysis of the previous section makes it possible to construct a quantum field
theory such that its right-movers give irreducible representation spaces of the
Wn-sAgebra. In the case of n = 2, its classical action turns out to be a geometric
action for coadjoint orbit of the Virasoro group. We then discuss quantization of
this system.

4.1 Constrained Wess-Zumino-Witten Model We are going to show that the
reduced Hubert space discussed above naturally emerges if we consider the SL(n)
Wess-Zumino-Witten (WZW) model and couple the gauge field to the SL(n)
current belonging to the Borel subalgebra. For simplicity we discuss the case of
SL(2), but extension to the case of SL(n) is straightforward. Let us consider the
following system

I+GT - 1),

J(z)=~dg g-\ (108)

where Swzw(#) is the action of the WZW model. The WZW action obeys the cocycle
condition.

Sm(Ug) = Swzw(#) + Sm(U) - J ̂  tr (17- 1 dU)(dgg^). (109)

If we restrict U to be in the Borel subgroup of SL(2), SWZW(17) in the above
vanishes. Therefore the gauged WZW action SsaugQd(g,A + ) is invariant under the
transformation

g-+Ug, A+^Ά+ +tr(t/-1at/ ί + ), (110)

where U belongs to the Borel subgroup, U = exp(εί~).
In order to do the functional integration over g and Ά+, we must divide the

measure by the volume of this Borel gauge symmetry.

Let us fix this gauge invariance using the BRST formalism. The BRST transforms
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of g and A+ are defined by replacing the parameter ε of the infinitesimal gauge
transformation with the Faddev-Popov ghost field c,

<W0) = cΓg, δmsτ(A + ) = - dc. (112)

The ghost and anti-ghost transform as

) = Q. (113)

Here we introduced the Nakanishi-Lautrup auxiliary field B as the BRST transform
of b, which will serve as the Laugrange multiplier to impose the gauge-fixing
condition.

The BRST gauge fixing is done by adding the BRST exact operator to the
gauged WZW action Sgaugcd. The original gauged WZW action is clearly invariant
under the BRST transformation, for the BRST transformation for g and A + is in
the same form as the Borel gauge transformation. On the other hand the nilpotency
of the BRST transformation implies that the BRST exact operator itself is also
BRST invariant. Choice of the BRST exact operator defines a gauge-fixing
condition. Here we choose the following gauge-fixing condition:

d2z - d2z -
= fcSww(ff) + f— Wc + J — A + (J--l-B). (114)

Integration over B imposes the gauge-fixing condition A+ = 0, while integration
over A+ puts the constraint B = J~ — 1. Thus we obtain the relation

[g-^+:ι
J (gauge volume) gaugeovσ

= ί [<Γ ^dg, db, dc-] exp ikS^(g] - i j * & , (1 15)

with the on-shell BRST transformation

) = ct~ g,

This is the system we have discussed in Sect. 3 in the Hamiltonian formalism. Thus
the maximal chiral algebra in the right-moving sector of the constrained WZW
model is reduced to the Virasoro algebra.

In the path integral (111), we can also integrate over A+ first. We then obtain

Using the composition law (109), it is easy to show that the above path integral
still has the Borel gauge invariance. Since the 5L(2) group is three-dimensional,
the original WZW model has three degrees of freedom. The constrained WZW
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model (117) has only one degree of freedom since two are killed by the constraint
J~(z)=l and the Borel gauge invariance.

4.2 Geometric Action for the Virasoro Group. We have seen that the physical
Hubert space of the gauged WZW model with the constraint J~(z) = 1 contains
irreducible representation spaces of the Virasoro algebra. Recently Alekseev and
Shatashvili [24] also examined the constrained WZW model from a different point
of view. Let us make a digression to convey their idea. They start with solving the
constraint J~(z)= 1. If we parametrize the element g of the SL(2) by the GauB
product

-l.
the Borel gauge invariance g->Ug allows us to put the gauge-fixing condition

Φ=0.
In this guage, the constraint takes the form

^123F + 1=0. (119)

On the other hand the WZW action in this gauge becomes

Solving the constraint with respect to λ and substituting it into the WZW action,
we obtain the effective action for F as

k r)F
-2(a2F)2). (121)

vir

Thus the constraint of the gauged WZW model is solved,

(122)

The measure [dF~\ is derived from the Haar measure [_g~ldg] by reduction of
degrees of freedom.

The energy-momentum tensor for the theory 5vir(F) can be derived using the
Nόther procedure as

ί /33j7 Q / Λ 2 ϊ ? \ 2 \ k

(123)

Remarkably the right-hand side is the Schwarzian derivative of F. In the conformal
field theory, the Schwarzian derivative usually appears as in inhomogeneous term
in a coordinate transformation z -» w(z) of an energy-momentum tensor.

T(z) -> T(w(z))(w'(z))2 - -£- {w(z), z}. (124)
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This situation is reminiscent of the following fact about the WZW model. In the
WZW model, the current J is given by

k _i

and this is the inhomogeneous term in a chiral gauge transformation g->Ug of
the current

U~l(z). (125)

In mathematical terms, Eqs. (124) and (125) give the coadjoint orbits of the Virasoro
and the Kac-Moody groups. Wiegmann [26] and independently Alekseev, Faddeev
and Shatashvili [25] have developed a procedure to define a geometric action for
a quantum field theory of coadjoint orbits, which in the case of the Kac-Moody
group reproduces the ordinary WZW action. Alekseev and Shatashvili [24] applied
this procedure to the Virasoro group and found that the geometrical action is
precisely given by (121), i.e. Svir(F) is an analogue of the WZW action for the
Virasoro group.

Let us have a look at the symmetry of the action Sviτ(F). The original WZW
model has both left- and right-moving chiral symmetries,

Sm(V(z)g(z, z) V(z}) = Swzw(#(z, £)). (126)

For the constrained WZW model, the left-moving chiral transformation g(z, z) ->
#(z, z) V(z) is still a symmetry of the system since it keeps the constraint J~ = 1
invariant. Thus the left-moving sector has the SL(2) current algebra. On the other
hand, the right-moving chiral transformation g(z, z} -> U(z)g(z9 z) either changes the
constraint or is absorbed into the Borel gauge symmetry of the system. Therefore
the constrained WZW model has no current algebra in the right-moving sector.
In fact according to the analysis in Sects. 2 and 3, the maximum chiral algebra for
the right-mover is just the Virasoro algebra. The left-moving chiral symmetry of
the constrained WZW model is reflected to the invariance of the action Svir(F)
under the following transformation:

a(z)F(z9z) + b(z)

4.3 Functional Integral over the Virasoro Group. We have seen that the system
defined by the functional integral

ί[<*F]exp(i/cSvir(F)) (128)

is equivalent to the constrained WZW model. The maximal chiral algebra in the
right-moving sector is the Virasoro algebra of ck = 13 — 6/(fe + 2) — 6(k -f 2), while
the left-mover has the SL(2) current algebra of level-fc. In this subsection, we
examine the property of this functional integral in more detail. Let us consider a
generating functional for correlation functions of energy-momentum tensors
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defined by

exp(iΓ(fc)) = f ίdF] expf ifcSvlr(F) + i$d2z^{F(z,z),z}h(z,z)\ (129)

The operator product expansion of the energy-momentum tensors

Γ(z)Γ(w)~— + -— δ w > + Γ v ϊ (130)
\(z — w)z z — w / (z — M/Γ

implies the functional differential equation for the generating functional,

(d - h(z,z)d - 2dh(z,z))-^—Γ(h) = B*h(z,z). (131)
on(z, z)

As in the case of the WZW model discussed in Sect. 2, the geometric
action Syiτ(F) for the Virasoro group satisfies the cocycle condition under a
diffeomorphism,

Sv«(F1 °F2) = S^FJ + Svir(F2) + $d^{Fί°F2, F2}dF2dF2,

F1of2(z,f) = F1(F2(z,z),f). (132)

After the change of variable, z-*w = F2(z,z), z->w = z, in the integral in the
right-hand side, this cocycle condition becomes

Svir(^ι °F2) = Svir(F,) + Svir(F2) + f {Fiίw, w), w} ϊ

/2 = F2-S i.e. F 2 ( f 2 ( z 9 z ) 9 z ) = z. (133)

It is worthwhile to note that the cocycle condition (133) can be derived from the
cocycle condition of the WZW model (6). Since the Virasoro algebra comes from
the SL(2) current algebra by reduction of degrees of freedom, it is natural that the
cocycle conditions for these symmetries are related. We will come back to this
point in Sect. 6.

Let us set h = Sf2/df2 in Eq. (129). Then we can exploit the cocycle condition
to rewrite the path integral (129) as

exp (iΓ(fc)) = exp ( - ifeSvir(F2)) J [dFJ exp (ikS^F, of2))

= exp ( - ;/cSvir(F2))J IdF, o/2] exp (i/cS^)). (134)

If the measure [_dF^] was invariant under diffeomorphism Fl -+F1°f2, we would
have gotten Γ(h) = — fcSvir(F2). However this is correct only in the classical limit
of fc-> oo. In fact, using the cocycle condition (133); it is straightforward to check
that the solution to the functional differential Eq. (131) is given by (cfc/6)Svir(F 2)
(note that ck/6-+ — k as fc-> oo). Thus an additional factor exp(i(ck/6 + fe)5vir(F2))
should come from the change of the functional integration measure \_dFl°f2\-+

The measure \dF~\ has been derived from the Haar measure [g x dg] of the
WZW model by reduction of degrees of freedom. In the next section, we
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will encounter another type of measure \_[dFΎ\ = [dF°f] (F(f(z,z),z) = z). This
measure is defined to be diίfeomorphism invariant and should be a natural
functional integral measure to quantize the Virasoro group. The above observation
suggests that these two measures are related as

f [dF] exp(ifeSvir(F)) = J [[dF]] exp ( - i|svir(F)). (135)

One can easily check that the right-hand side in the above functional integral
correctly reproduces the value of the conformal anomaly ck. We thus claim that
the quantum theory of the Virasoro group with the action — (ck/6)Svir(F) is
equivalent to the constrained SL(2) WZW model of level k.

5. Two-Dimensional Gravity

5.1 SL(2) Symmetry in Gravity. Now we are ready to study the quantum theory
of the induced gravity. Consider the gravity coupled to the left-right symmetric
conformal field theory. Because of the general covariance, we may choose the
light-cone gauge for the metric,

d2s = dzdz + h(z, z)dzdz. (136)

In this gauge, an effective action of the gravity is given as a generating functional
for the energy-momentum tensor for the right-movers. Then it should satisfy the
functional differential Eq. (131), and the effective action for the light-cone metric
is given by the geometric action for the Virasoro group as

svir(F), Λ(z,f) = , F(f(z,z),z) = z. (137)

In the light-cone gauge, the Faddeev-Popov determinant does not depend on h.
The quantum gravity is then defined by the following functional integral [2]:

(138)

Let us make a change of variable in the above functional integral. To
parametrize an infinitesimal variation of the metric h, we may introduce a vector
field ε(z, z) as

(139)

The Jacobian for the change of measure \dh~\ -> [dε] can be easily computed to be

[dh] = det(3 - hd + dh)[dε] = exp(- i^Svir(f)) [&]. (140)

It is also straightforward to see

[<fc] = [dF°/] = [[dF]], (141)

where [[dε]] is the diffeomorphism invariant measure for F discussed in the last
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section. Thus the functional integral (138) is written

j [[dF]] exp( - i^Z^tfo). (142)

In Sect. 2, we have shown that the gauge Geld coupled to the WZW model of level
k also makes the WZW model of level — (k + 2cv). We now found that the induced
gravity coupled to the conformal field theory with the conformal anomaly ck gives
the quantum field theory of the coadjoint orbit of the Virasoro group with the
conformal anomaly c = 26 — ck.

In the last section, we have shown that the constrained SL(2) WZW model
with level k is equivalent to the quantum theory of the Virasoro group with the
action - ck/6Svir(F). Because of the relation 26 - ck = c_( fc+4), the quantum gravity
coupled to the conformal field theory with ck is equivalent to the constrained WZW
model of level k = — (k + 4),

- ί , . δ(J~ W ~ 1) exP ( - <(* + 4)SW2W(#)). (143)J (gauge volume)

Thus the left-moving sector of the gravity has the 5L(2) current algebra of level k.
This relation between the level k of the current algebra in the induced gravity and
the conformal anomaly ck of the original conformal field theory agrees with the
result by Knizhnik, Polyakov and Zamolodchikov [3].

So far we have not looked at constraints implied by the light-cone gauge
condition of the metric. Originally Knizhnik, Polyakov and Zamolodchikov
derived the relation between k and ck by requiring such constraints be imposed
consistently. Since the notion of constraints in the induced gravity sounds delicate,
we would like to explain the situation using the example of the WZW model.
Consider the WZW model coupled to a gauge field A and A as [16]

(144)
Z Λ J

This action has the vector gauge invariance

duu'1, A-^uAu'1 + duu~1. (I45)

By setting the gauge-fixing condition ^4 = 0, we obtain the system discussed in
Sect. 2. In the BRST formalism, we introduce a set of^ ghosts (b,c) in the adjoint
representation of the gauge group. The total current Jtotaι(z) is given by

Λotai = J-\(β~ 'Ag - A) + Jghost. (146)

By making a change of variables (g^>U~1g and similar operators on b and c,
where A = U~ 1dU\ an effective action for the gauge field is extracted, as we have
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seen in Sect. 2. After this ^/-dependent chiral gauge transformation, the total current
Jtotai becomes the sum of three currents, J,((k + 2cv)/2)U~ldU and Jghost. Since
anomalies of these currents are fc, — (k + 2cv) and 2cv respectively, the total current
is anomaly free. The BRST charge for the vector gauge invariance is then nilpotent.

The situation should be the same in the case of the induced gravity, and the
total conformal anomaly in the left-moving sector should vanish. The original
conformal field theory has an anomaly ck, and the ghosts for the light-cone
gauge-fixing add — 26 — 2 = — 28. Then the conformal anomaly in the left-moving
sector of the gravity must be 28 — ck = 3k/k + 2 — 6k(k= — (k + 4)). This seems to
indicate that the left-moving current algebra of the gravity is also constrained,
otherwise the conformal anomaly would be 3k/fc + 2. Knizhnik, Polyakov and
Zamolodchikov argued that one of the constraints associated with the light-cone
gauge fixing is J~ (z) = 0 for the left-moving current algebra of the gravity, and
that this constraint shifts the conformal anomaly by — 6k. We think that this
aspect of the theory is not well-understood yet and requires further investigation.
It should be emphasized that, in our approach, the relation between ck and k is
derived independently of these considerations on constraints.

We would like to note intriguing numerology concerning the levels of current
algebras. In Sect. 2, we have seen that the right-moving current algebra of level k
induces the left-moving current algebra of level — (k + 2cv) ( —(fc + 4) for SL(2)).
Here we found that the conformal field theory with anomaly ck, whose right-mover
has a hidden SL(2) current algebra of level fc, induces the left-moving current
algebra of level k = — (k + 4) in the gravity. There should be a way to derive the
current algebra in the induced gravity directly from the hidden current algebra in
the conformal field theory.

5.2 Scaling Dimensions of Planar Random Surface. Let us now discuss how we can
compute scaling dimensions of a random surface from the above result. First we
would like to remind the reader the definition of scaling dimensions. Consider a
partition function for random surfaces with fixed area j/,

#(.*) = £ e~Γ (147)
surfaces

Here the weight Γ is given by a partition function of some statistical model on
the surface. It is expected that the partition function behaves asymptotically as

&(Λ?)~^-* + ye-KJ*, j/-»oo. (148)

Although K is cutoff dependent, γ depends only on the topology of the surface
[27,28] and it gives the scaling dimensions of the random surface. In the following
we restrict ourselves to the case of planar topology. In this case, the scaling
dimensions have been computed for various statistical models on triangulated
random surfaces by Kazakov and Migdal [1].

Let us assume that, in the j3/-»oo limit, the sum over surfaces in Eq. (147)
reduces to a functional integral over an intrinsic metric on the surface, and the
weight Γ is replaced by the effective action Γ(h) for the gravity. Then the partition
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function is given by

J [dΛ] <exp ( - i\d2zh(z, z) T(z))> (j* -> oo)

(149)

In the light-cone gauge, the area j/ is given by

1). (150)

The value of s/ is fixed by the range of coordinates (z, z) independently of the
dynamical variable h. Thus we can perform the functional integral (149) without
any restriction on h. As we noted in Sect. 5, the functional integral (149) has the
chiral SL(2) symmetry in the left-moving sector.

(15!)

Remember that the relation between F and h is non-local as h = df/df, f(F(z, z), z) = z.
With respect to /(z, z), the above transformation becomes

-->
The chiral SL(2) transformation of the constrained WZW model turns into a
coordinate transformation on the surface. In fact this is the symmetry of the induced
action Γ(h) as well as the measure. Among the SL(2) currents Ja(z) in the left-moving
sector, P(z) generates the scale transformation

z->(l+β(z))z, z->z. (153)

Therefore the scaling dimension y is given by the SL(2) spin of the vacuum state
of the induced gravity as

(154)

In order to compute the scaling dimensions, we need a relation between the
conformal weight of the right-moving Virasoro algebra in the original conformal
field theory and the SL(2) spin of the left-moving current algebra in the induced
gravity. Following previous sections, we regard the right-movers as that of the
constrained WZW model. The energy-momentum tensor is then

and the BRST charge

§—.c(z)(J~(z) - 1) (156)
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is used to define physical states. The physical primary field Φ-λ(z) should be the
lowest weight state of the SL(2) algebra

J3(z)Φ_» ~ -̂  Φ_», J'(z)Φ_» ~ regular. (157)

The conformal weight A of Φ-λ(z) is given by

'-̂ -̂By extending the argument in the last subsection in the presence of primary
fields, we can show that the physical field Φ_A(z) is also the highest weight state
of the left-moving current algebra with highest weight + λ,

J 3 ( z - ) Φ _ Λ ( w ) ^ Φ _ » . (159)

Thus right-moving conformal weight A and the left-moving SL(2) spin λ are related
by Eq. (158). Especially the SL(2) spin of the vacuum state is obtained by putting
4 = 0 in Eq. (158), i.e. either 0 or -(/c+ 1). This gives the scaling dimensions of
the surface. Since the level k of the SL(2) current algebra is related to the conformal
anomaly of the conformal field theory as

C*= 1 3~fcT2~6 ( k + 2)' (160)

we obtain the formula

7 = 3^-1 + ̂ -1X^-25)) orO. (161)

This formula agrees with that by Knizhnik, Polyakov and Zamolodchikov [3]. If
one chooses the branch (—) in the above, it is also consistent with the analytical
and numerical computations of triangulated random surface by Kazakov and
Migdal [1].

6. Geometric Action for JFn-Algebra

In this section, we construct a generalization of a geometric action for the
PFn-algebra. For simplicity, we discuss the case of n = 3, but a generalization
for n > 3 is straightforward. As we have seen in Sects. 3 and 4, irreducible
representation spaces of the W3 algebra emerge from the constrained SL(3) WZW
model. Following the case of the minimal conformal field theory, we will solve the
constraints of the WZW model. The constrained SL(3) WZW model is given by

<5(JΓ (z) - 1)(5(J2 (z) - 1)(5(J7 (z)) exp (iSwzw(#)). (162)J vol(Borel)

Using the GauB decomposition

1 0 Ox λ

• 0u
0

μ
0 λ~

o ϊ
0

V V

i
• 0

lo

F!

1

0

F3

1

(163)
I I I

VΦ3 Φ2
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we may put conditions Φ^ = 0 (ί = 1, 2, 3) to fix the Borel gauge invariance. In this
guage, the constraints become

JΓ = λμ~1dF1 = 1, /2 = λμ2dF2 = 1

j- = λ2μ(dF3 - F2dFl) = 0. (164)

By solving them with respect to λ, μ and F2 and substituting them into the WZW
action, we obtain the effective theory for Fl and F3.

(Fl9F3)). (165)

Here the effective action SW3 for F1 and F3 is given by

(166)
We have chosen Fx and F3 as dynamical variables of the reduced system, for they
do not imply an additional Jacobian factor in the functional integral. We claim
that SW3 is a natural generalization of a geometric action for the W3-algebra.
Especially when F3oc(Fί)

2

9 this action reduces to the geometric action for the
Virasoro group,

SW3(Fl9F3σc(F±)2) = 4S^(FJ. (167)

As in the case of the SL(2) current algebra, the effective action SW3(Fl9F3) has
the left-moving SL(3) current algebra of level fc, while the maximal chiral algebra
in the right-moving sector is reduced to the W3 algebra with the conformal anomaly

(168)

The energy-momentum tensor T(z) and the spin-3 generator W3(z) in the
right-mover are given by substituting Eq. (164) into

T(z)=-~l(λ-1dλ

ίdλ - μ-ldμ) - d2(λ~ l δλ)]. (169)

Let us have a look at the symmetry of the action SW}. After some computations,
one can check the following cocycle condition directly.

z,z) = Fί(F(z,z),z), F(f(z,z),z) = z. (170)
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One can derive this cocycle condition from the cocycle condition of the WZW
action (6). Suppose we have fields, U(z9z)9g(z9z)9 both satisfying the constraints
(164). In general, the product of U(z9z)g(z9z) does not satisfy these constraints.
However, when U is of the form

(171)

we can modify the action of U on g as

ίλ 0 0

(t/.0)(z,z)= 0 μ 0

V O 0 λ~lμ-

g(F(z,z)9z), (172)

so that U g also obeys the constraints. It is easy to see that Swzw(U g) =
SW3(Fι°F,F3

oF\ and that the cocycle condition for Swzw implies the cocycle
condition for SW3. This relation between the cocycle conditions of Swzw and SW3 is
quite natural, for the Virasoro algebra in the theory with SW3 comes from the SL(3)
symmetry in Swzw by way of the quantum Hamiltonian reduction. Unfortunately,
we have not succeeded in defining a modified action of U on g, U g, for a general
WZW field U. Such a multiplication rule, if exists, defines the full W3 symmetry
realized in terms of Fx and F3, just as a diffeomorphism is realized by a single
function F with a product °. This will also make it possible to derive a generalized
cocycle condition for SW3 corresponding to the full ^-symmetry. Since the
WValgebra is not a Lie algebra, it would not be straightforward to find such a
modified action U g. Still, we believe that such a construction is possible. For
the ^-symmetry comes from the SL(3) symmetry of Swzw by the quantum
Hamiltonian reduction.

Let us make some more speculations about the theory with SW3. In the
functional integral (165), the measure \_dFl9dF3~\ is derived from the Haar measure
[g~ldg] by reduction of degrees of freedom. We conjecture that, if there is a
measure \_[dFl,dF3]~] invariant under the full ^-symmetry, it should be related
to the reduced Haar measure as

(173)

In the case of the SL(2), the geometric action Svir(F) described the induced gravity,
which is gauge-equivalent to the Liouville model. Therefore we suspect that the
constrained SL(3) WZW model is related to the field theory of the Toda
molecule, a natural generalization of the Liouville model. Previously Bilal and
Gervais [29] have also pointed out that the Toda field theory realizes the
W^-algebra. It should be interesting to re-examine their result from the point of
view of the quantum Hamiltonian reduction.

Proceeding further, we may consider gauge fields coupled to chiral currents in
a conformal field theory with the PF3-algebra. The induced action for the gauge
fields would be -((100- ck)/24)SW3(Fl9F3). The induced gauge fields will then
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make the 5L(3) current algebra of level — (k 4- 6) in the left-mover. If this is the
case, we may compute the scaling dimensions of the surface of the "fluctuating
WVgeometry." Conformal weight A and W3-charge w0 of the conformal field theory
are given by

ί \ \3/2

W0 oc — — [9(λ + μ)2(λ -μ)~(λ- μ)3 + 72(k + 2)2(2λ + μ)
\κ + J )

+ 9(k + 2)(3(A + μ)2 + (A - μ)2 + 4(Λ2 - μ2))]. (174)

Here λ and μ are lowest weights of the hidden SL(3) current algebra. The scaling
dimensions y of the surface is given from solutions of Δ(λ,μ) = 0, w0(A,μ) = 0 as

y = λ + μ

= 0, - (k + 2), - 3(k + 2), - 4(/c 4- 2), (175)

where

- 4(/c + 2) = £(c - 2 ± 7(c-2)(c-98)). (176)

Unfortunately we do not know the classical limit of scaling dimension for
"fluctuating W3 geometry" which allows one to choose one of the four solutions.
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