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Abstract. We consider a sequence of finite volume Λ a Zd, d^.2, reversible
stochastic Ising models in the low temperature regime and having invariant
measures satisfying free boundary conditions. We show that associated with
the models are random hitting times whose expectations, regarded as a function
of Λ, grow exponentially in |/l|(d~1)/d; moreover, the mass gaps for the models
shrink exponentially fast in |Λ|(d~1)/d. A geometrical lemma is employed in the
analysis which states that if a Peierls' contour is sufficiently small relative to
the faces of Λ9 then the fraction of the contour tangent to the faces is less than
a constant smaller than one.

1. Introduction

Let ΩA be the semigroup generator for a finite volume A c Zd (Zd is the
d-dimensional integer lattice, d^2) stochastic Ising model defined by [cf. 1,2]

ΩAf(σ)=^cA(i9σ)dif(σ). (1.1)
ίeΛ

Here, σ is an Ising configuration with σ(i) = ± 1, / is an arbitrary real- valued
function of the configuration, and 5f/(σ) = /(σf) — f(σ) with σt the new spin
configuration obtained from σ by flipping σ at site ί, i.e., σi(j) = σ(j) j / z ,
σ^ί) = — σ(ί). For the sake of definiteness, we will assume throughout that the
speed functions are given by

(1.2)

with HΛ the usual nearest neighbor Ising Hamiltonian,

HΛ(σ)=- Σ '('XΛ (1-3)
iJeΛ

<;,;>= i

although certainly other choices of Hamiltonian and speed functions are possible.
We will moreover assume that Λ is a (hyper)-cube, although here again, the



2 L. E. Thomas

assumption could be relaxed, provided A is sufficiently regular. Finally we will
assume that HΛ satisfies free boundary conditions, although presumably the case
of periodic boundary conditions could be dealt with as well by the methods
described; but evidently the methods do not work in the case of + or - boundary
conditions, so that the results shed no light on the mass gap for ΩΛ in a pure
phase, /l->Zd.

Recall that the semigroup T*A generated by ΩΛ has the state

μΛ{σ} = Z-Λ^xp(-βHΛ(σ)) (1.4)

as invariant measure. Regarded as operators in £2(XΛ,μΛ) with Jf Λthe set of spin
configurations in Λ9 ΩΛ is non-positive self-adjoint, and T*Λ is positive self-adjoint.
Associated with TA is a (right continuous) stochastic (jump) process σ(t) [3]. The
main results of this article are: (i) There is a relaxation time—actually an expected
time for the process σ(t) to hit a certain set SΛ of spin configurations—which is
at least as large as ~ exp(a*βh d~ l) (for some constant α* > 0 independent of /?,Λ9

and where h = \Λ\1/d is the length of a side of Λ) at least for β sufficiently large,
(Proposition 2.3). (ii) The mass gap of ΩΛ9 i.e., inf spectrum (— ΩΛ\I1), is less than
~ exp (— α*β/ιd~*), (Proposition 2.5); here, I1 is the orthogonal complement of the
constant function, which is an eigenvector of ΩΛ with eigenvalue zero.

The large hitting time estimate shouldn't be too surprising. Roughly speaking,
the idea is that in order for the stochastic Ising model to pass from a state with
spins mostly down to a state with spins mostly up, it must pass through a state
of large HΛ-energy, i.e., an energetically unlikely configuration. Obviously this
result is only interesting if the target set SΛ is in some sense of non-negligible
measure; we show that in fact the μΛ-measure of S Λ is bounded away from zero,
uniformly in Λ. The mass gap estimate is, of course, saying that the ground state
for ΩΛ is becoming degenerate very rapidly in the thermodynamic limit, a result
connected with the coexistence of phases for the Ising model at low temperature.
We add the gratuitous remark that these hitting times and mass gap estimates
suggest that Monte Carlo methods, which are related to the stochastic Ising model,
and which are used for studying the Ising model with free boundary conditions
and at low temperature, will take enormous time to pass between predominately
+ and predominately — states.

The analysis leading to these estimates amounts to a fairly conventional
application of Peierls' contour arguments, with one caveat: The contours are defined
in such a way that they may be at least in part tangent to the "surface" dΛ of the
"volume" Λ. Recalling that free boundary conditions obtain, one sees that flipping
all spins inside a Peierls' contour results in an energy factor dependent only on
the portion of the contour in the interior of Λ; conceivably entropy factors could
overwhelm these energy factors thereby spoiling the estimates. We prove, however,
a kind of isoperimetric inequality, Lemma (2.1) or Lemma (A.3), which says that
if a contour is sufficiently small relative to the surface dΛ9 then the fraction of the
contour tangent to dΛ is less than some constant K < 1. By this lemma the above
difficulty is circumvented. It is conceivable that the lemma could be useful in other
contexts.

The article is actually part of a general program on the part of A. D. Sokal,
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the author and others to establish rigorous bounds on the rate of convergence to
equilibrium for various stochastic processes arising in physics, including those
closely related to Monte Carlo algorithms. The results described here should be
contrasted with those of Holley and Stroock [4] who obtain, among other results,
lower bounds on the mass gap for the stochastic Ising model, in effect at high
temperature. Their arguments are closely related to those of Sullivan [5] and
Dobrushin [6]. See also the work of Z. Yin and the author [7], in which lower
bounds for other Ising-like models are obtained. Some of the probabilistic ideas
employed in the article here have been used in work done with A. D. Sokal (and
I am particularly indebted to him for many additional discussions). The joint work
with him concerns rigorous bounds on the mass gaps and autocorrelation times
for classes of stochastic contour and random walk models [8,9].

It should be added that the analysis in this article and that of R. H. Schonmann
[10] are closely related. In his work, Schonmann obtains large deviation results
for the (static) Ising model magnetization in a hyper-cube V9 V increasing to Zd,
for the Gibbs states with -f or — boundary conditions for any dimension, and
for the Gibbs state on finite volumes with free boundary conditions in 2 dimensions.
This latter result can be combined with easy arguments used here to give alternative
proofs of Propositions 2.3, 2.5, in the 2-dimensional case, (see the remark following
the proof of Proposition 2.3). The geometrical lemma mentioned above, however,
provides the key to extending these propositions to dimensions d ̂  3, where no
large deviation estimate is currently available. Finally, the work of Capocaccia,
Cassandro and Olivieri [16] should be mentioned, who consider stochastic
dynamics for a 2-dimensional Ising model having + boundary conditions and
having an external magnetic field. They obtain upper and lower bounds on the
initial time rate of change of probability that σ(ί) is in a certain set of configurations,
with σ(t) starting in this set (the set itself being analogous to the complement of
SΛ defined above). For a non-zero magnetic field, they show that the μΛ-measure
of this set goes rapidly to zero, A -> Z2, but that the time rate of change of probability
per unit volume can be small, the estimate independent of A. Aside from dealing
with different boundary conditions and dimensions, our results set a time scale for
this time rate of change of probability which is much smaller (see Proposition 2.4
and the following remark). Note that in both the work described here and in ref.
[16], the hitting set SΛhas non-vanishing measure, A -> Zd. For estimates on times
to hit sets of vanishing measure, e.g. sets on which the magnetization is bounded
away from its mean, see the article by Lebowitz and Schonmann, [17].

2. Expected Hitting Time and Mass Gap Estimate

1. Let A c Zd be a cube of sides h. By dΛ, we will mean the surface of the cube Q
in Rd with Q => A and such that each face of Q is parallel to a coordinate plane
and is of distance 1/2 from a face point of A. Recall that to each spin configuration
σ there is a corresponding set of disjoint Peierls' contours {7} [11]. We will observe
the convention that the contours are such that they separate + spins from —
spins as well as + spins along face points of A from the exterior of A. (Thus, with
this convention all contours γ are closed; a contour can be in part tangent to dA
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if the spins immediately inside A along this tangency are +.) Let V c A be a
connected set of + spins in σ, (connected in the sense that there exists a lattice
path along the bonds of Z? with vertices just in V linking any two sites of V).
Then in the obvious notation, dV = uyt with yt Peierls' contours; among the yf

there will be a distinguished contour yίo which we call the outermost contour of V
which bounds a volume containing V (the other contours bound holes in V).

We proceed to the definition of the hitting set. We fix a number 0, 0 < a < 1
which will be specified below. Let SC

Λ be the set of spin configurations on A with
the following property: σeSc

Λ iff every + spin σ(ί) is contained in a connected
volume V(ΐ)<^Λ with outermost contour γ(V(i)) satisfying |y(F(0)l < ahd~1. (Here
\γ I is the number of unit plaquettes in γ.) The hitting set SΛis simply the complement
of SC

Λ. Roughly speaking, a configuration σeSc

Λ is one such that each + spin is
contained in a connected volume of + spins having small size relative to Λ; this
forces the + spins to be either of low density, or if high density, in small clumps
so that Ufli has large area relative to <3Λ

We first obtain a lower bound on the measure of SΛ, ^A(^A)- The number a is
fixed according to the following geometrical lemma, whose proof appears in the
appendix; see Lemma A.3.

Lemma 2.1. There exists an α, 0 < a < 1 and κ<\ such that ify is a Peierls' contour
satisfying | y | < a | dλ \ = 2 ad (h + l)d~ *, then

\yndΛ\<κ\y\. (2.1)

Lemma 2.2. For β sufficiently large independent of A, the measure of the hitting set
SΛ satisfies

μΛ(SA)>lβ. (2.2)

Proof. Fix a site ι0eΛ Then

/USJ^(M'o)= + l}nSΛ) = 1/2-μΛ({σ(i0)= l}nSc

Λ). (2.3)

Now the last term on the right-hand side of this inequality is less than μΛ(Sc

Λ(ί0)),
where

Sc

Λ(i0) = {σ\i0 is contained in a volume V of
+ spins with outermost contour y satisfying \γ\ < ah*'1}. (2.5)

There will be a plaquette of an outermost contour y, say due "south" of iQ within
a distance *?/2 of i0 if \γ \ = (. If we imagine building y, plaquette by plaquette, each
new plaquette can be attached to one of the at most 2d — 3 "edges" of the previous
plaquette and can be in at most one of three possible orientations [or cf. lί, p. 117].
We also note that since the outermost contour y satisfies Lemma 2.1, at least the
fraction 1 — K of y is internal to A rather than tangent to dA so that μΛ{y occurs} <
exp(-2j8(l-κ)M).Thus,

^Λ(SΛ(*O))= Σ ^A(SΛ(ΪO)n{outermost y satisfies |y | =/})
£^ΊA

< 1/2 X ί(3(2d - 3)Ye~m~Ky < 1/6, (2.5)
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for β sufficiently large. This inequality, together with Ineq. (2.3), completes the
proof of the lemma.

As mentioned in the introduction, the semigroup Tt

A has associated with it, a
right continuous stochastic process σ(ί) such that, for example, Prob^ (σ(ί) = σ) =
Tί

Λc5σ(σ0). We let £(•) denote the path space expectation of the process. Let τA be
the hitting time for SΛ, τ Λ = inf {t\σ(t)eSΛ}. Our principal result is the following
proposition.

Proposition 2.3. For β sufficiently large, there exists a spin configuration σ^axe5c

Λ,
a constant α* > 0 independent of Λ, β and a function c(β) > 0 independent of Λ
such that

βhd-ί). (2.6)

Proof. The function ι^ε(σ) = Eσ(eNΛ), which exists for ε < ε0 with ε0 sufficiently small
(since the process is irreducible in a finite state space) satisfies the differential
equation

(βΛ+eWrβ(σ) = 0, σeSc

Λ (2.7)

with \l/ε(σ) = 1, σeSΛ. This is most easily seen as follows: Again for ε sufficiently
small, Eq. (2.7) has a solution ψε ̂  1. Now ψε(σ(t))eεt is a martingale so that if we
stop the process at time T Λ Λ T, we get

φε(σ) = Eσ(ψε(σ(τΛ Λ T))e"*A T) ̂  Eσ(f^ τ), (2.8)

which implies by monotone convergence, T->oo, that e£TΛ is integrable. Taking
this limit T->oo in the equality of (2.8), we obtain the assertion, by dominated
convergence. If we retain 0(ε)-terms in (2.7) after expanding ψε in a power series,
we obtain

ΩΛEσ(τΛ)=-l σeSc

Λ (2.9)

with Eσ(τΛ) = 0, σeSΛ. Summing this equation against μΛ over the set S°Λ9 and
using the fact that Ω*A kills μΛ, we get finally

(2.10)

an equation familiar from renewal theory [12, 13], (ΩA(σ, σ') is a matrix element
oϊΩΛ).

This last equation can be estimated,

where cv majorizes the matrix elements of ΩΛ,EσΛ^(τΛ) is the largest among the
expectations Eσ(τΛ) for σeS€

Λ and the J]' extends^ver all σεSΛ and σ'eS^ such
that ΩΛ(σ, σ'} φ 0.

Given a (σ, σ')-term from the sum Σ' above, we claim there is a single outermost
contour y of the σ spin configuration with \γ\ ̂  αhd~1; were there most than one
such contour, it would be impossible for ΩΛ(σ,σ') ^0 with σΈSc

Λ. We will refer
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to this contour as the critical contour of σ. Note also that given this configuration
σ with critical contour 7, there are at most |y | spin configurations σ' with
ΩΛ(σ, σ') Φ 0 and σ'eSc

Λ. These remarks enable us to estimate the sum of Ineq. (2.1 1),

* Σ MΣ" (2-12)
Λ W Λ ; \y\^ahd-1 M Λ W Λ ;

with Σ" a sum over σeSΛ such that ΩΛ(σ,σe) ^0 for some σ'eS°Λ, and such that
7 occurs in σ (hence Σ" is a function of 7).

Given σ,σ', with ΩΛ(σ, σ')^0 with σeSΛ, σ'eSc

Λ and with σ having critical
contour 7, there evidently are outermost contours 7ι,72, > 'y/ of the spin
configuration σ' (with j at most 2rf) such that for some unit lattice cube q with

j
boundary dq, (J 7^5^ = 7. (The cube q is the jumping cube in the dual picture of

i=l

the transition σ'->σ.) Moreover, since σ'eSc

Λ, each yt satisfies |7t | <ahd~l, so we
can infer a maximal size on 7

(2.13)

and so by Lemma (2.1),

\yndλ\<κ\γ\. (2.14)

Let *σ denote the new spin configuration obtained from σ by flipping all spins
inside 7. Then clearly

)- Σ" MΛ(*σ)

(the latter sum as above but with the further restriction that *σeSΛ) so that by a
slight variant of the Peierls' argument

- Σ"
*σeSΛ

-κ)\γ\) 1 - Σ"

by Ineq. (2.14). The next step is to show that the quotient of sums in the denominator
on the right-hand side of this inequality is small.

Now if *σeSΛ, then evidently there must be an outermost contour 7' inside
the volume bounded by 7 with |/| ^ahd~1'9y

f couldn't be on the outside of this
volume (or enclose it) since / and 7 would both be critical contours for σ which
is impossible. In particular, / n dΛ = 0. By flipping all spins inside / we obtain
the estimate in the manner of Ineq. (2.5),

Λ{M ̂  \A Σ 0(2d - 1))V2/* < 1/2 (2.16)

for β sufficiently large (the factor \Λ\ = hd estimates the number of plaquettes from
which / could emanate).



Mass Gap for Stochastic Ising Models 7

Inequality (2.16) implies that the left side of Ineq. (2.15) is bounded above by
2exp( — 2/J(l — κ)\y\), and thus the left-hand side of Ineq. (2.12) is bounded by
(again in the manner of Ineq. (2.5))

βa*hd-i) (2.17)

for a suitable constant α* >0 and c3(/?). This inequality, along with Ineq. (2.11),
completes the proof of the proposition.

Remark. This argument can be appreciably shortened in the two-dimensional case,
if we apply Schonmann's large deviations result [10]. Let mΛ(σ) = \Λ\~l ]Γ σ(i),

ίeΛ

and set SΛ= {σ|mΛ(σ)§:0}. Then clearly SΛ,Sc

Λhave μΛ-measure approximately
equal to 1/2 and the "boundary" Sb

Λ given by, say, Sb

Λ= {σ\ |mΛ(σ)|<ε} for ε
sufficiently small has μΛ-measure of the order of exp(- constant h0'1) by his large
deviation result. (Note that Chayes, Chayes and Schonmann showed that the large
deviation estimate holds for any temperature below the critical one [15].) These
facts, combined with Ineq. (2.11) give the proposition. The facts that both SΛ and
Sc

Λhave non- vanishing measure, A -> Zd can be used to provide an alternative proof
to Proposition 2.5 below.

2. It is not difficult to use our estimates to obtain an upper bound on the mass
gap for ΩΛ. To do this we first define the operator Ω$ which is obtained from

ΩΛby imposing Dirichlet boundary conditions on 5 Λ: In other words, for /defined
on SC

Λ, we get

(2.18)

with /(σ) = /(σ), σeSc

Λ, and /(σ) = 0, σeSΛ. The expected hitting time estimate
Ineq. (2.6) can be used to estimate the least eigenvalue of — Ω$ (which is a

positive operator) [cf. 8]; alternatively, we do this just as easily by a Rayleigh-Ritz
argument, since the hard work has already been done.

Proposition 2.4. The least eigenvalue m^ of — Ω^ satisfies

m^Λ = inf spec - Ω$Λ ̂  c4(β) exp ( - jSα*^' *) (2.19)

for some constant α*, and c4(β) independent of Λ, for β sufficiently large.

Proof. The quantity m^ satisfies

- < Xsc , βg Xsc•***
,

where Xsc is the indicator function for SC

Λ, <,> is the inner product in £2(Sc

Λ,μΛ)

and cl and Σ' are precisely as in Ineq. (2.11). But Σ' ^as already been estimated
in Ineq. (2.17). The proof of the proposition is completed by setting c4(β) = C1c3(β).
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Remark. The expectation in (2.20) is the initial time rate of change of probability
that σ(t) exits SC

Λ. It is this quantity which is estimated in [16] for a + boundary
condition model in 2-dimensions, and for a different set of initial configurations.
Their analysis employs Peierls' contour arguments reminiscent of those used here.

Finally, there is a simple inequality relating m£ and the mass gap for ΩΛ,
so that we arrive at the following proposition:

Proposition 2.5. The mass gap mΛfor ΩΛ satisfies

mΛ=mfspec(-ΩΛ\ί±)^c5(β)exp(-βa*hd-1) (2.21)

for some α* >0, c5(β) independent of Λ, for β sufficiently large.

Proof. For any subset SΛ of spin configurations we have that

mΛ^m^(μΛ(SΛ)Γ\ (2.22)

where m%c is inf spec ( — Ω^) and Ω^Λ is the operator obtained from ΩΛ by
imposing Dirichlet boundary conditions on the set SΛ [cf. [8] and references cited
there]. In particular, if S Λ is chosen as above, then the previous proposition and
Lemma (2.2) imply this proposition, with c5(β) = 3c4(β).

Appendix

The purpose of this appendix is to give a proof of Lemma (2.1). In fact the proof
we give here can be made to work for d-dimensional volumes with piecewise
smooth boundaries in a d-dimensional cube. For the sake of simplicity however,
we just consider the case of lattice volumes in Zd, d ̂  2.

Let Λd~ 1 be a (d — l)-dimensional cube of sides h with vertices having integer
coordinates and let W <^Λd~ί be the union of unit (d— l)-dimensional cubes in
Λd~ l (each cube having vertices with integer coordinates). By dW (dΛd~1) we mean
the set of d — 2 dimensional unit cubes constituting the boundary of W (respectively
Λd~l). By a slight abuse of notation, \dW\ will denote the number of d — 2 unit
cubes in dW, \ W\ will denote the number of d — 1 dimensional cubes in W. Note

Lemma A.I. There exists an ε > 0 and κf < 1 (independent of the size of Λd~ *) such
that if\W\<ε\Λ*-l\, then \dWndAd~i\<K'\dW\.

Proof. Consider a face of Λd~1, Ft ί= l,2,...,2(d— 1), say for the sake of
visualization, the bottom face of Λd~1. Let Gt = dWnF f and let Ht c Gt be the
collection of (d — 2)-dimensional cubes {c}} so that above c7 in Ad~l there occurs
exactly one cube c} from dW contained in a horizontal hyperplane, and moreover
this cube c] is contained in the top face of Λd~ 1. Clearly h\Ht\ ^ | W\. On the other
hand, for each cube cj in Gt — Hi there is at least one (d — 2)-dimensional unit cube
contained in a horizontal hyperplane and in dW, which is located directly above
Cp and moreover which is contained in the interior of Ad~l (i.e., not in dΛd~ί).
Denoting the interior of Λd~l by int/ld~1, we have

Σ \Gί-Hi\^\dWnmtΛd-ί\. (A.I)
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Therefore, since the left side of this inequality is also bounded by \dWr\dΛd~l\
we have that

V i TJ i i V1 i r* o i

^2(d- l)\W\ | 1_
\dW\ IdWnwtΛ'-^ + tfWndΛ'-1^ \dW\h 2

Now by the usual isoperimetric inequality, there is a constant c(d) such that
\dW\ ^ c(d)\ w\(d'2}l(ά'l\ [cf. [14]], so that the above is bounded by

for ε sufficiently small and some κf < 1.

Let K be the union of d-dimensional unit cubes (with vertices having integer
coefficients with VaΛ9Λ a d-dimensional cube with vertices having integer
coefficients, and with edges of length h. As above, int/1 will refer to the (d— 1)-
and lower-dimensional cubes not contained in dΛ.

Lemma A.2. Let F be a face of Λ. With ε as above there is a δ >0 such that if
\dVnF\<ε/2\F\,then \dVr\mt Λ\>δ\dVnF\.

Proof. Again for purposes of visualization, think of F as the bottom face. The
quantity δ will be defined below, but immediately we assume δ < 1. Let Sproj be
the union of (d — l)-dimensional unit cubes contained in F, (cj, obtained as follows:
Cj c 5proj if there exists a d — 1 dimensional unit cube in <3Fnint/l above c,- and
which is contained in a (d - l)-horizontal hyperplane. Clearly if |Sproj| >δ\dVrιF\,
the conclusion of the lemma follows since |9Fnint/i| ̂  |Sproj|. So suppose

Consider any (d — l)-dimensional horizontal hyperplane S(t) of some half-
integer height above F, t = 1/2, 3/2, . . . , h - 1/2. Let W(t) = S(ί)n V. Then | W(t)\ ^
\dVr\F\ - |Sproj| ̂  (1 - δ)\dVr\F\, and so by the isoperimetric inequality, (dW is
(d — 2)-dimensional)

\dW(t)\ ^c(d)((l -δ)\dVnF\)(d-2M*-». (A.4)

On the other hand,

I W(t)\ ^ \dVnF\ + |5proj| ^(1 + δ)\dVπF\ < 1/2(1 + δ)ε\F\ < ε\F\ (A.5)

by hypothesis, so that by Lemma A.I, we conclude that

\dW(t)ndΛ\<κf\dW(t)\.

Therefore, the number n(t) of (d — l)-dimensional unit cubes at height t and
contained in some (d — l)-dimensional hyperplane perpendicular to F and not
contained in dΛ satisfies

n(ί) > (1 - κ?)\dW(t)\ ^ c(d)(\ - *')((! - S)\dVnF\y*-2W*-»9 (A.6)

so that
md-1\ (A.7)
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provided \dVnF\ < s/2\F\ = ε/2hd~\ and δ is chosen so that

δ(ε/2)W-» <c(d)( ί - κ')(l - δ)(*-vn'-u. (A.8)

This completes the proof of the lemma.

Lemma (2.1) of the text is an easy consequence; we restate the result here, in
slightly more general notation.

Lemma A.3. There exists a constant a > 0 and κ<i so that if \dV\<a\dΛ\9 then
\dVndΛ\<κ\dV\.

Proof. Let a = ε/4d. If \dV\<a\8Λ\9 then for each face Fh i= 1,2,...,2d of
Λ9 \dVnFt\< ε/2\Fi\9 and so by the previous lemma there is a δ > 0 so that

(A.9)

Thus,

2d

'•'"T

and so

\8VndΛ\ 1

' v ' ;\dV\ \dVndΛ\ + \dVnmtΛ\ l + δ/2d
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