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Abstract. A stratification of the moduli space of monopoles and of the space
of rational maps into a flag variety is presented. It is shown that the map
associating a rational map to a monopole preserves these strata. These strata
explain some problems in the intepretation of the parameters of the moduli
space in terms of superpositions of fundamental monopoles. This interpretation
is not valid on the individual strata. The space of fundamental monopoles is
described and shown to be the same as the corresponding space of rational maps.

1. Introduction

Recently Hurtubise (1988) showed that the moduli space of framed SU(N) mono-
poles, with Higgs field at infinity having distinct eigenvalues, is isomorphic to the
space of based rational maps of one dimensional complex projective space, P l 5

into the space of full flags in CN. This extends the work of Donaldson (1984) who
proved the same result for SU(2). These results are particular cases of a general
conjecture of Atiyah that the moduli space Jt(X) of framed monopoles for a group
K9 with Higgs field at infinity taking its values in an adjoint orbit X of the group
on its Lie algebra, is isomorphic to the space 01{X) of based rational maps of Pί

into X.
The Higgs field at infinity of a monopole defines a class m in π2{X) and this

labels a decomposition of the moduli space into disconnected pieces Jί(m, X). A
more precise statement of Atiyah's conjecture is that Jί{m, X) is isomorphic to the
corresponding connected component ^(m, X) of 0l(X\ This implies, in particular,
that Jί{m,X) is connected; a result that has been proven only for SU(2) and SU(3)
(Taubes 1985).

It seems likely that the methods of Hurtubise will generalise to SU(N) mono-
poles with any symmetry breaking at infinity. We examine what this means for
the moduli space of monopoles. In particular both Ji{m, X) and 0ί(m, X) have
stratifications and we show that these are preserved by the mapping assigning
a rational map to a monopole.

In Weinberg 1982 it was suggested that the monopole parameters could be
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explained by regarding them as superpositions of "fundamental monopoles." More
recently Bowman (1985) has shown, by counting parameters for the linearisation
of Nahm's equations, that this is not always true. The resolution of this apparent
contradiction is given by the strata in the moduli space. Bowman's calculations
give the dimensions of the various strata, these cannot be explained in terms of
fundamental monopoles. Weinberg's calculations are for the whole moduli space,
these can be explained in terms of fundamental monopoles. Some examples of this
phenomena are given in Sect. 5.

To summarise the rest of the paper. Section 2 explains the general setting and
defines the stratification of the moduli spaces, and in Sect. 3 the rational map
associated to a monopole is defined. After the stratification of the space of rational
maps is defined it is shown that the map from monopoles to rational maps preserves
the strata and that the corresponding strata have the same dimension in each case.
Lastly in Sect. 5 the structure of the space of fundamental monopoles is examined
and Atiyah's conjecture verified in this (trivial) case.

2. A Stratification of the Moduli Space of Monopoles

Consider a monopole (A9 Φ) for the group SU(N). It consists of a 1-form A on IR3

taking values in the Lie algebra su(N) of SU(N) and a Higgs field Φ which is a
function also taking values in su(N). These satisfy the Bogomoln'yi equations
(Hitchin 1982), but it is enough for our purposes to know that the Higgs field, up
to gauge transformations, has a limit at infinity which is a map

ΦΰO:S2->su(N) (2.1)

from the two sphere of radial directions emanating from the origin to some adjoint
orbit of SU{N). Let the distinct (real) eigenvalues of - ΐΦ 0 0 be

μl9μ2,.>.,μq (2.2)

with multiplicities

nun2,...,nq,

so that Yjii = N. In such a case the orbit of SU(N) containing the image of the
Higgs field at infinity is

U(nq)) ( 2 # 3 )

which, as a complex manifold, is the space of all flags of subspaces

{0} = V0czVί<zV2<z-Vq = CN (2.4)

with the dimension of Vp/Vp- x = np for all p = 1,..., q.
The monopole is called framed if the Higgs field at infinity at some base point

(say corresponding to the positive z axis) is diagonal with eigenvalues ordered as
above. The moduli space of framed monopoles is obtained by quotienting the set
of all framed monopoles by the group of gauge transformations which are one at
this basepoint at infinity. The moduli space of unframed monopoles is obtained
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by allowing gauge transformations that leave the Higgs field at infinity at this
base point unchanged. The moduli space of framed monopoles fibres over the
moduli space of unframed monopoles and over an irreducible unframed monopole
the fibre is

5 ( ί / K ) x ί / ( « 2 ) χ . - x ί / ( W ί ) ) . (2.5)

The homotopy class or degree of the Higgs field at infinity determines q — 1
non-negative integers, the magnetic charges m = (m1,...,m^_1) of the monopole.
The eigenspaces of the Higgs field at infinity split the trivial bundle CN x S^ into
a direct sum

^ Θ Θ W ; (2.6)

where Wj is the zμj eigenspace of Φ 0 0 and hence has dimension n}. The magnetic
charge rrij is the chern class of the determinant line bundle of W1 θ ••• θ Wj. The
connection at infinity defines a holomorphic structure on each of the Wj and as,
by Grothendieck's theorem, any holomorphic vector bundle on Pί splits into line
bundles we have

(2.7)

for each j = 1,...,q and some integers kί9...9kN.
The magnetic charges are therefore

and the sets of integers

K q = { k n i + ...+nq_1 + 1 , . . . , k N } (2.9)

are called the holomorphic charges of the monopole. Notice that because of the
degeneracy of the eigenvalues of the Higgs field the ordering inside each of these
sets is not well determined. We shall choose to order them so that

< ... < k

knι + ...+nq_1 + 1S-SkN. (2.10)

We shall denote by J({γn, F(n)) the moduli space of framed monopoles whose
Higgs field at infinity takes values in F(ή) and whose magnetic charges are
m = (m l 9 . . . , mq). It is expected that these manifolds are connected.
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In the next section we shall see that the holomorphic charges satisfy

mD + L > 0 (2.11)

for any p = 0,..., q — 1 and i = nί-\ h np + 1,..., n1 -\ h np + np+1 .We shall
always make the convention that mo = mq = 0. Let /7(m, ή) be all collections
k = (Kί9..., Kn) of sets of integers satisfying the conditions (2.8), (2.9) and (2.11).

The stratification of the moduli space of framed monopoles is

Jί{m,F{n))= U Jίk{m,F{n)\ (2.12)
keΠ(m,ή)

where Jίk{m,F(ri)) is the space of monopoles with holomorphic charge given by k.
As an example consider "projective monopoles" or elements of Jίim.Ψ^^^).

In this case the magnetic charge m is a single integer and q = 2 with nί = 1 and
n2 = N — 1. These set Π(m, ή) is

{m,0},{m-l,l},{m-2,2},...,{m-Γ5lJ^ljl (2.13)

3. The Rational Map of a Monopole

Using the twistor methods of Hitchin (1982) (see also Murray 1985) each monopole
determines a holomorphic rank N bundle E on TP1 the tangent bundle to one
dimensional complex projective space. Corresponding to our choice of the
behaviour of the Higgs field at infinity E has two filiations by holomorphic
subbundles

{0} = £0

+ c= £+ c: £2

+ c: ... c: E^± c E^ = E (3.1)

and

{0} = £ o " c £ Γ c £ 2 - c . . . c £ g - . 1 c J E f - = £ . (3.2)

The proof in Hitchin 1982 can be adapted to show that the quotients of these
bundles are

E+/£+_ x = Lμί ® π " x Ŵ f (3.3)

and

Wi (3.4)

for z = l , . . . , g , where π r T P i - ^ P i is the projection. Here L is the exponential
bundle introduced in Hitchin 1982.

If we restrict to the zero section of TPX then the bundle L is trivial as is the
bundle E. The conditions (2.11) satisfied by the holomorphic charges can be deduced
by taking various exterior powers of these bundles and using the two facts that
firstly an exterior power of a trivial bundle is a trivial bundle and secondly a line
subbundle of a trivial bundle over P1 must have non-positive chern class.

It is useful to look at this also from the point of view of principal bundles as
in Murray 1985. The frame bundle Q of E is an SL(N,C) bundle with reductions
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to parabolic subgroups determined by the flags. Decompose C^ as

CJV = CΠ 1ΘC" 2Θ Θ C"«. (3.5)

Call the "standard flag" the flag

CW1 c C B l θ C " 2 c . c C", (3.6)

and the "anti-standard flag" the flag

O c c ^ e C - 1 c ... cz CN. (3.7)

Denote by P the stabiliser of the standard flag, P the stabiliser of the anti-standard
flag and L their intersection. Let P = L.V be the Levi decomposition of P, where
V is the subgroup oϊSL(N, C) consisting of all matrices with nt x nt identity matrices
along the diagonal, zeroes above these blocks and arbitrary elements below. The
flags (3.1) and (3.2) define reductions R+ and R~ of Q to P and P respectively.

Because the monopole is framed it follows from Hitchin 1982 that over the
point on the two sphere at infinity corresponding to the z-axis in R3 there is an
identification of fibres of the bundles in (2.7). It follows from (3.4) that over the
fibre F a TPX of lines parallel to the z-axis there is an identification

(3.8)

(0 Defining the Rational Map. The rational map of the monopole is defined as
follows (see also Atiyah and Hitchin 1988 and Hurtubise 1985). First assume that
over F ^ C w e have a trivialization of E so that the minus flag is mapped to the
anti-standard flag in ΘN. This can be achieved because we can just trivialize R~.
Moreover asume that under the identification (3.8) coming from the framing this
trivialization maps to a given trivialization. Call such trivializations admissible.
These constraints mean that an admissible trivialization is determined up to
multiplication by holomorphic maps of C into V. With respect to any trivialization
the plus flag defines a rational map from C into F{ή) the space of all flags of
subspaces

{0} = VoczVι^V2cz.. Vq = CN (3.9)

with the dimension of Vp/Vp_1 = np for all p = 1,..., q. In this context we shall use
rational as a synonym for holomorphic. By acting on the standard flag we obtain
an identification

F{ή) = SL{N,C)/P. (3.10)

We want to prove that there is precisely one admissible trivialization such that
the map /:C->F(n) induced by the plus flag extends to a rational map of all of
Px into F(n) mapping the point at infinity to the standard flag. This rational map
we will call the rational map of the monopole.

First let us prove uniqueness. Indeed if we have another admissible trivialisation
with this property then we get a different map vf for some map v:C-*V. The
subgroup V acts freely on a neighbourhood of the standard flag and sweeps out
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an open dense subset of F(ή). The complement of this is the union of q — 1
subvarieties of codimension 1. The results of Murray 1985 can be extended to this
case to show that where the map intersects these subvarieties is the intersection
of the spectral curves of the monopole with F. This intersection is contained in a
closed ball K containing the origin of C. Outside of K the maps / and υf into
F(ή) have image in the V orbit of the standard flag and can therefore be regarded
as maps into V. It follows that the map v extends to a map of all of Pt into V and
takes the value 1 at infinity. However V is a subvariety of SL(N9 C) which is a
subvariety of CN2 so that this map must be constant and therefore identically equal
to 1.

Now we prove existence. Choose any admissible trivialization and let

/:C->F(n) (3.11)

be the map defined by the plus flag. Then, as above, / defines a map

/:C-K->F, (3.12)

and this can be regarded as the transition function for a holomorphic V bundle
on Plm

Such a bundle is trivial. Indeed because V is unipotent this bundle is filtered
with quotients which are trivial, say

W1aW2^- 'ΘN (3.13)
with

W1~Θn\W2/W1~Θn2- . (3.14)

It follows that W2 is an extension of a trivial bundle by a trivial bundle and hence
determined by an element in H1(PuΘ

nitt2) = 0 so W2 must be the split extension
and therefore trivial. We can continue up the filtration in this way and show that
W is trivial.

Because W is trivial we can write / as a product

7 = 7o7oo, (3.15)

where

/oiPi-oo-C-^F (3.16)

and

J^-K-*?. (3.17)

This factoring of / is unique if we fix 7oo(oo) = 1. By applying f0 to the chosen
trivialization we change the map / to

(/oΓV, (3-18)

and this clearly extends to infinity.
This defines the rational map of the monopole. This map can also be defined

as "scattering data" in U3 see Hurtubise 1985 and Atiyah and Hitchin 1988.
The collection of q — 1 non-negative integers which define the degree of a

rational map from Pt into F(ή) are determined by counting the number of times
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that the image intersects each of the q — 1 hypersurfaces in the complement to the
open orbit of V. These intersection points are also the intersection points of the
spectral curves with the fibre F. As in Hitchin and Murray 1988 it is easy to show
that the p t h spectral curve intersects the fibre F in mp points. Therefore the rational
map of a monopole with charges m = (m1 ?...,mq) has degree m = (m l 5...,m q). If
we denote by &(m,F(ή)) the space of based rational maps of Px into F(n) of degree
m then we have defined a map

Jί(m, F(n)) -* Λ(m, F(rή). (3.19)

In the next section we define a stratification of M(m,F(n)) and show that the strata
of Jί(m,F{n)) are mapped to the strata of &(m,F(ή)). Notice that the group in
(2.5) acts naturally on both sides of (3.19) and commutes with this map.

In the case of our example a rational map of degree m into PN-i is just a
collection of N homogeneous polynomials / 1 ? . . . , / # ofdegree m which define the
map by

(3.20)

where we use the usual homogeneous co-ordinate notation for points in projective
space. These polynomials have to satisfy the constraints that they have no common
factor and no common zero. Furthermore to be based maps they have to satisfy,
say ^(1,0) = 1 and /\(l,0) = 0 for j = 2,...,JV.

4. The Strata of Rational Maps

There are q — \ natural vector bundles Ut defined over the variety F(ή) by
associating to each flag {Vu...9Vq-1} the vector space Vt. More formally

U{ c F(n) x CN (4.1)

and

Ui = {{{Vι,...,Vq^lυ)\veVi}. (4.2)

These vector bundles provide a filtration of the trivial bundle

υxczυ2ci... c ί / r l c F ( « ) x CN. (4.3)

If f'.P1 ->F(n) is a rational map then it pulls back each of these bundles to a
filtration

/ - 1 £ / 1 c / - 1 t 7 2 c = . . . c / - 1 t / ί _ 1 c i P 1 x C Λ r (4.4)

of holomorphic bundles on Pίm By Grothendieck's theorem a holomorphic bundle
over Px splits as a direct sum of line bundles so we have

/ - 1 C / i / / - 1 ί / i _ 1 ^ ^ ( - f c M l + ...+ n i_1 + 1 ) Θ Θ^(-fcW l + . . + n ί _ 1 + n i ) (4.5)

for some collection of integers k = {kl9...,kN}. The degree of the map is
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m = (mu..., mq) where

mq-1=h1 + k2 + - + knq_1 (4.6)

and the same proof used for the monopole bundle in Sect. 3 shows that the collection
of integers k satisfies the constraints of (2.11). Hence it is an element of Π(m,ή).
We shall order the fe/s as in (2.10) and call them the holomorphic charges of the
map /. Define Kj as in (2.9). If k^eKj define the multiplicity μ(fcf) to be zero if
fcf = ki-ίEKj and otherwise to be the number of k^Kj with kt = kt.

If we denote by $k(m, ή) the subset of M{m, ή) of maps with holomorphic charges
fc, then we have stratification of the rational maps

®(m,F(ή))= U 3tk(m,F(n))9 (4.7)
keΠ(m,n)

with the indexing set the same as in the case of monopoles.
Before we show that the map from monopoles to rational maps preserves the

strata let us consider another way of understanding the strata. If W is any
holomorphic bundle on Px then it splits as a direct sum

W~Θ{ax)® . Θ{ar) (4.8)

of line bundles. This splitting is not unique. However if a1 > ••• >ar then the
subbundle of chern class aι is uniquely determined. In fact, if there is another
subbundle of chern class ax then the inclusion maps composed with the projections
on to the various factors of (4.8) defines holomorphic sections of Θ{ai — a1) for
i= l,...,r. However a line bundle of negative chern class admits only the zero
section, so all these maps except the map of the line bundle to Θ(a1) must vanish.
If we quotient by this subbundle and repeat the argument then we find that W
has a uniquely determined filtration

W^-cW (4.9)

with quotients

W, ~ G(aά..., W/Wr-X * 0(0,). (4.10)

If some of the αt 's are the same there is still a unique filtration but the quotients
will no longer be 1 dimensional.

If we apply these ideas to the filtration (4.4) and take into account the ordering
(2.11) we see that we can "fill out" this filtration until all the quotients are either
one dimensional or direct sums of line bundles of the same chern class. This
filtration of the trivial bundle defines a map of Px into another flag manifold which
fibers over F(ή) and composition with the projection onto F(n) recovers the original
/. Moreover all maps into that flag manifold of that particular degree arise in this
way because of the uniqueness of the filtrations. If we consider then unbased maps
we see that the strata correspond to the maps obtained by composing maps into
other flag manifolds with the projections onto F(ή).



Monopole Strata 669

For the holomorphic bundle of a monopole the same procedure works. When
we fill out the filtrations (3.1) and (3.2) in this way we see that all the holomorphic
charges become topological quantities. We can use this larger filtration to construct
a rational map as in Sect. 3(i) and the result will be a lift of the rational map we
constructed with the original filtration. As the topological charges are preserved
by the constructions in 3(i) it follows that the holomorphic charges are preserved
also.

This proves that the assignment of a rational map to a monopole (3.19) preserves
the strata.

In Bowman 1985 the dimension of various sets of solutions to Nahm's equations
(Nahm 1983) are calculated. These correspond to the various monopole strata we
have defined. We will calculate the dimension of the strata of rational maps and
show that they have the same dimension as the corresponding strata of monopoles.
Let us denote @{(m,F(ή)) the strata of free, that is not based, rational maps with
fc, m, and n as above. Let k be the sequence of N — 1 non-negative integers

k = (ku k1 + k2,...,kι+k2-\ h kN_ x) and F(CN) denote the variety of full flags
in CN. The projection map

π . ^ f c , F{CN)) -> Λ{ (m, F{n)) (4.11)

is onto and in fact a bijection if the k( are all distinct. If some of the k{ in a given
set Kj are the same, then after filling out the flag as much as possible we have
some quotients which are direct sums of line bundles all with this repeated value
as the negative of their chern class. A flag in such a quotient is determined by
choosing a flag in the fibre at any point and if we make this choice then we can
extend to a full flag and hence an element of the fibre of (4.11). So the dimension
of the fibre of (4.11) is

Σμ(kj)(μ(kj)-1). (4.12)
j

It is easy to calculate the dimension of the space of all rational maps into the
full flags using the Riemann-Roch theorem. If we are looking at maps from
f:Pί-*G/P then an infinitesimal change in / is a vector field along the image or
a section of the pullback of the tangent bundle. From the Riemann-Roch theorem
we have (for real dimensions)

dimtf°(P 1,/- 1Γ(G/P))=^

(4.13)

The fact that the group acts on T(G/P) shows that it is ample and therefore
H1 (P i > / ~ 1 T(G/P)) = 0. The chern class of the determinant of the pull-back of the
tangent bundle can be calculated by relating it to the determinants of the bundles
Ui which are known to give rise to the degrees of the map. In the case of the full
flags in CN we have

det (TF(CN) = ((det U± ® ® det UN)*f 2. (4.14)

Alternatively we can usee the result of Hurtubise (1988) to show that the real
dimension is
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dim (&$, F(CN)) = 4 Σ (kx + • + kt) + dim F(CN). (4.15)

So using the ίibration (4.11) we have

dim Mk(m, n) = dim M{{m, F(ή)) - dim F(n)

= dim Λ ' β F(C")) - dim F(n) - £ μ^Xμίfc,) - 1)
j

= 4Nf(ki + -+ki) + dimF(CW) - dimF(n)

= 4 i ^ 1 ( k 1 + •••+*,)+ Σ nf-ΛΓ-ΣMfcjKMfcj)-!)- (4-16)
ί = l ί = l J

To connect with formula (3.13) of Bowman 1985 we have to remove the framing
/ q \

which for irreducible monopoles means subtracting Ϋ nf I — 1, the dimension
\ί=l )

of iS(ί/(π1) x ••• x U(nq)). The dimensions are then the same.
In a similar manner it is possible to calculate that

dim#(m,F(n)) = 2 Σ " Φ i + "«+1) ( 4 1 7 )

agreeing with the result of Weinberg (1982) for the dimension of Jί(m,F{ή)\ This
should be the dimension of the open strata, which corresponds to the case
where the fcf in each Kj are as close to being identical as possible. We can
check formula (4.16) by naively setting kj = (nij — mf_ i)/^ for all i = 1,..., N — 1,
j = n1 + — h Wj-1 + 1,..., Hi + — h nf and substituting these values into (4.16) to
get

= 4

q

4 Σ

j(nj + nj+ι). (4.18)

As Weinberg (1982) has pointed out because the formula in (4.17) is linear in
m it is reasonable to interpret an arbitrary monopole as a collection of fundamental
monopoles which have only one non-zero charge equal to one. In the last section
we investigate these fundamental monopoles and show that their moduli space is
the same as the space of corresponding rational maps.

5. Fundamental Monopoles

Consider a fundamental monopole, that is one with only one non-vanishing
magnetic charge say mp = 1. Then under the twistor correspondence it is equivalent
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to a bundle E on TPX with filtrations as in (3.1) and (3.2). Because only the pth

magnetic charge is non-zero we have

EtnE-.t = 0 (5.1)

for all i Φ p. By using the filtration of the Wj we can fill out the filtrations of (3.1)
and (3.2) to obtain

{0} = F0

+ czFf c=£ + c= ... czFΪ <=£; <=F2

+ <= -Eϊ^cE^E (5.2)

and

{0} = £ 0 " c £ Γ c £ 2 - c . . . c F 1 - c £ ί - . p c F 2 - c . . . c £ ί - _ 1 c £ ί - = £ , (5.3)

The quotients of these new bundles are

^p+i/Γi — ^ {<y<J 9 [?'V

and

I p + l - l

E~-P+1/F; "If'toO*"*-1. (5.5)

The subbundles F^ and F̂ ~ are defined by the filtration of W using (3.3) and
(3.4) which are, in this case

E;/E;_ ! ί* L** ® (0(i) Θ 0 Θ Θ 0( - I)) (5.6)

and

i))9 (5.7)

it follows that they are always disjoint so that E = Ff ®F2". Similarly we have
F2 θFϊ =E. If we define E — F^c^F^ this has constant dimension as the
dimension is at least two, but if it was more than two anywhere then F
would be non-zero. So" E is a rank two vector bundle. Moreover

L^(~l) (5.8)

and

are line subbundles of E for similar reasons. Finally because of the splittings in
(5.1) we have a decomposition of E as

(5.10)

and it is straightforward to check that this is preserved by the real structure. This
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decomposition of the bundle E means that this monopole is determined by a
representation χ:SU(2)->SU(N) such that 5(7(2) is mapped to a 2 x 2 block on
the diagonal and some suitable (7(1) monopoles are added in along the rest of the
diagonal. Conversely any such representation determines fundamental monopoles
by applying it to a translate of the Prasad-Sommerfield monopole.

Let Xp denote the set of all such representations. Then taking account of
translations of monopoles we have M(δp, n) = [R3 x Xp, where (δp) = (<5?,..., <5£) is
the vector whose only non-zero component is a 1 in the p t h place. The group

β (5.11)

acts transitively on Xp9 and if we fix an embedding as a base point the isotropy
subgroup is

S(U(ni) x ."1/(11,-1) x 1/(1) x U(np+1- 1) x - U(nq)). (5.12)

It follows that we have

where a = np and b = np+1.
Each such representation defines a map S2 = SU(2)/U(ΐ) -> F(n) and, as we shall

see, every based holomorphic line arises as the image of such a map. If we denote
by J£f(F(n)) the based holomorphic lines in F(ή) then we have a fϊbering

J((δp

9n)-+&(F{n)) (5.14)

and the fiber is (R3 x S1 isomorphic to the moduli space of SΪ7(2) monopoles
of charge 1.

Let us consider holomorphic maps / of degree δp into F(ή). If we look at the
fibering

F{n)-+F({nl9...9np-l9np + np+l9np+29...9nq)) (5.15)

which just forgets the plane of dimension n1Λ h np9 then composing such a
holomorphic map with this fibering gives a map all of whose degrees are zero. But
such a map must be a constant and therefore, because it is based any value of /
must agree with the the standard flag except that the plane of dimension n1 + — \ - n p

may be different. It suffices then to consider based maps into Ga(Ca+b) of degree
1 where a and b are defined above. The image of such a map is a linear subspace
in Ga(Ca+b) and they are all defined as follows. First let Cfl be the standard plane
in Ca+b which we shall use as a basepoint. Then choose a plane π 0 of dimension
a—I contained in Cα and a plane n1 of dimension a + 1 containing Ca. The set
of all a planes containing π 0 and contained in πx forms a line in GΛ(Cα+&) and all
lines arise in this way. The set of all such pairs (TC^T^) is a homogeneous space
of S(U(a) x U(b)) and so we have a fibering

The moduli of monopoles as we have seen also satisfies
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Je(δ9n)*J((lMb)) (5.17)

and the map (3.18) assigning to a monopole a rational map defines a commutative
diagram

Jf(δ>9F(n)) >

\ / (5.18)

The horizontal map in (5.18) restricted to each fibre is just the map that assigns
to each charge 1 SU(2) monopole a rational map. Because of the commutativity
it follows that this map is a diffeomorphism.

In the example the space of all lines in PN-λ through a fixed point is the
projective space ( P ^ ^ and the space of rational maps of degree 1 is IR3 x S2N~3.
The fibering is

with fiber (R3 x S1. If we regard S2N~3 as the unit vectors in C*""1 ~ U2n~2, then
the circle fibre is the set of all unit vectors which lie on the same line in

If N = 2 and m = 2 then there are two strata, the open set labelled by {1,1}
and of dimension 12 and the strata labelled by {2,0}. The latter is the set of all
rational maps whose image lies in a line in (P2 Its dimension is calculated by
adding up the 2 real dimensions of the Pr of lines through the base point and the
8 dimensions of the space of all rational maps of [Pi to P x of degree 2 to obtain
10. These parameters can be interpreted as two monopoles in R3 with a vector
each on the three sphere. In general this gives 3 + 3 + 3 + 3 = 12 parameters, but
for the smaller strata the two vectors have to lie in the same S1 orbit so there are
3 + 3 parameters for the positions, 1 + 1 parameters for the points on the orbit
and 2 parameters for the choice of orbit giving a total of 10.

If we consider monopoles of charge 4 then there are three strata, {4,0}, {3,1}
and {2,2}. Using formula (4.16) these have dimensions 18,22 and 24 respectively.
The first dimension can be understood as 4 x 3 position parameters, 2 for a choice
of circle in S 3 and 4 x 1 parameters on that circle giving 12 + 2 + 4 = 1 8 . The open
strata has, of course 4 x (3 + 3) = 24 parameters. However there appears to be no
simple explanation of the parameters for the middle case, the monopoles would
appear to fall into a set of three and one and constraining the three to lie on the
one circle produces only 20 parameters.

6. Conclusion

It would be interesting to understand the effect of these strata on the dynamics of
monopoles (Atiyah and Hitchin 1988). The case of P2 monopoles has been studied
by Atiyah and Hitchin (Atiyah private communication). They found that the metric
on the moduli space is infinite in directions normal to the strata and therefore
monopoles on the strata are trapped.

Further work on these questions is in progress (Hurtubise and Murray 1988).
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