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Abstract. Consider the Schrodinger equation — u" + V(x)u = λu on the interval
la [R, where K(x)^0 for xel and where Dirichlet boundary conditions are
imposed at the endpoints of /. We prove the optimal bound

-f-^n2 for n = 2,3,4,...
λ1

on the ratio of the nih eigenvalue to the first eigenvalue for this problem. This
leads to a complete treatment of bounds on ratios of eigenvalues for such
problems. Extensions of these results to singular problems are also presented.
A modified Priifer transformation and comparison techniques are the key
elements of the proof.

1. Introduction

The Schrodinger operator H = — Δ + V(x) acting on L2 (Ω) with Dirichlet boundary
conditions is known to have purely discrete spectrum if Ω is a bounded connected
subset of (Rd with smooth boundary. We denote the eigenvalues listed in
ascending order (with multiplicities included) by {λi}^=1. Furthermore, λ2>λ1

(nondegeneracy of the groundstate) and, if V(x) ^ 0 for all xeΩ, λl > 0. Thus

0<λ1<λ2^λ3^λ4^...9 (1.1)

and in this context it makes sense to consider the boundedness of the ratio λ2/λ1

or, more generally, of λjλ1. Such questions seem to have first been addressed by
Payne et al. [16,17] who considered the case where 7 = 0 and Ω c= [R2 (the stretched
membrane problem). Among other things they proved the bounds

^3 (1.2)Λl

and, more generally,

V1^. (1.3)



404 M. S. Ashbaugh and R. D. Benguria

These bounds were generalized in a straightforward way to general dimension d
(still taking F = 0) by Thompson [22] who obtained

and the corresponding result for λn + 1/λn. Later, these same bounds were observed
to extend to Schrodinger operators with F^O by Harrell [13] and by Singer
et al. [21]. In addition, Payne et al. (respectively, Thompson) considered the
question of obtaining optimal bounds on eigenvalue ratios for H = — Δ and, in
particular, conjectured that λ2/λί is maximal for Ω a disk in U2 (respectively, ball
in Ud). This would result in (1.2) holding with a constant of approximately
2.539 replacing 3 on its right-hand side (and analogous improvements for other
dimensions d). A number of authors subsequently improved the constant 3 in (1.2),
the best value being 2.586 proved by Chiti [7] in 1983. For further references and
related material stemming from the original paper of Payne, Poly a, and Weinberger
we refer the reader to our earlier papers [2, 3] and to the survey articles of Protter
[18, 19] and of Kuttler and Sigillito [14].

In this paper we concentrate entirely on the one-dimensional case with
particular emphasis on higher eigenvalues. While when d = 1 Eq. (1.4) reduces to
λ2/λ1 ^ 5, if V ΞΞ 0 there is only one domain to consider (up to inessential rescalings)
and it is easily seen that in that case λ2/λi = 4. Thus for H = — Δ the case d = 1
holds little interest. However, for general Schrodinger operators with V ̂  0 the
situation changes. In that context the result (1.4) of Singer, Wong, Yau, and Yau
reduces to λ2/λί ^ 5. This bound was subsequently reproved by one of us [5] using
commutation. Later, we established the optimal bound

£*4 (1.5)
Λ1

in [1] by a slight modification of the approach in [5] (see also [2] for additional
comments). By using commutation, the Rayleigh-Ritz inequality, and ideas from
oscillation and comparison theory we were subsequently able to prove λ^/λ1 ^ 9.
Combined with other bounds on eigenvalue ratios (developed in Sect. 3 below)
this led to the result

y^n2 (1-6)/L!

for any positive integer n having only 2's and/or 3's as factors in its prime
factorization. Obviously, this suggests that (1.6) holds for any positive integer n
and this is the main result which we establish in this paper. For the general result,
however, we found that we had to abandon the commutation approach in favor
of an approach utilizing a modified Prϋfer transformation.

In later sections we discuss optimal bounds for λm/λn for any integers m, n and
show how our results can be extended to singular cases such as Schrodinger
operators on the line with V(x) going to infinity as x-> ± oo.
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2. The Optimal Bound λjλ^ ^ n2

In this section we prove the following optimal result for the ratio λn/λ1 .

Theorem 2.1. Let H = —d2/dx2 -f V(x) be a Schrόdίnger operator acting on I2 (I)
where I c (R is a finite closed interval and where Dirίchlet boundary conditions are
imposed at both endpoints of I. Assume also that VeL}(l) and V^. 0 a.e. on I. Then
the ratio λn/λί of the nth eigenvalue ofH to the first eigenvalue ofH satisfies the bound

Furthermore, this bound is optimal and, for VεI}(I) and rc> 1, equality obtains if
and only ifV = Q a.e. on I.

Proof. We begin by restricting consideration to continuous potentials and to the
interval / = [0, 1]. Since any interval [α,b] can be transformed into the interval
[0, 1] by a translation and a rescaling and since λjλί will be unaffected by such
a transformation it is clear that the latter of these restrictions causes no loss of
generality. The former restriction will be removed near the end of the proof.

The proof will be by contradiction. Fix n and suppose that λn/λi > n2 for some
potential VeC(I). Let M be a bound for V on / and consider all ε > 0 for which
λjλ± >(n + ε)2. We show that we can modify V while respecting the bound M so
that λjλi = (n + ε)2 for this new V. This follows easily from consideration of the
family of operators H(η) = - d2/dx2 + ηV(x) for j/e[0, 1]. Clearly λjλ^ is greater
than (n + ε)2 when η = 1 and is n2 when η = 0. By continuity of eigenvalues with
respect to η it follows that there is an ?/oe(0> 1)> where λjλ^ =(n + ε)2. Thus, if V
is replaced by η0 V we have the desired result and since ηQ < 1 the maximum of
the potential will have been decreased, and therefore M will remain an upper
bound. In the following we shall continue to call the potential V. A specific choice
for ε will be made later in the proof.

For the main part of the argument we shall need to introduce modified Prϋfer
variables r(x) and θ(x). For the Schrodinger equation

- u" + V(x)u = λu (2.2)

these will be defined by the transformation

), (2.3)

iφ) = λr(x) cos ( λ θ ( x ) ) . (2.4)

These imply that the angular variable θ must satisfy the differential equation

(x) = 1 - sin2 ( λ θ ( x ) ) = F(x, θ; λ). (2.5)

We define Θ1 (respectively, θn) to be the solution to this equation with λ = λ1

(respectively, λ = λn) and satisfying the initial condition 0(0) = 0. Since these
solutions correspond to the eigenfunctions ul and un and since the corresponding
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functions r(x) will never vanish we must have

0ι (1) =-4= (2-6)
\Mι

and

(2-7)

These results follow in exact analogy to the argument for the standard Prύfer angle
where it is shown that θ' > 0 whenever the argument of the sine function causes
it to vanish (see, for example, [6]).

The crucial part of the proof is a comparison between 0X and θn. We use a
standard result from the theory of ordinary differential equations to do this.
Specifically, set F^x, θ) = F(x9 0; AJ and Fn(x, θ) = F(x9 θ; λn) and consider the two
differential equations 0ι' = JΓι(x,0ι) and θn' = Fn(x9θn) with initial conditions
0^0 = 0 = 0B(0) on the interval [0,X], where Xe(0,l) is any point where

01^0 = π/2^/λ^. Since 0 < θί < π/^fλ^ for xe(0, 1) and Θ1 is continuous we can

be sure that there is a δ > 0 such that ^/λ^θ^ < π — δ for all xe[0, Z]. Indeed, the

maximum of θί on the interval [0,JΓ| either must be θ ί ( X ) = π/2^/λ^ or must

occur at a point x where 0 = 0/(x) = 1 — A j " " 1 K(x)sin2 [^/A^iM]. This shows

that 0j cannot come too close to n/^fλ[ since if it did 0/ would be positive, and

thus 0X would continue to increase until it passed beyond π/^/λ^ rather than

eventually arriving at the value π/2^/1^ when x reaches X. In particular, since

V(x) ^ M for all xe/ and λί ^ π2, 0t cannot get so large that sin2 [^/I î ] < π2/M.

The crucial observation to be made here is that the bound δ on how close ^/λ^θί

can come to π is controlled solely by the bound M. Thus, given the bound M a
bound δ can be found and this bound is independent of the value of the parameter
ε discussed earlier. We are therefore free to choose ε arbitrarily (subject, of course,
to the previous restrictions) and, in particular, we impose the added condition

(2.8),
π — o

We are now ready to complete the comparison argument. For xe[0,X], θ^x)

remains in the interval [0, (π — δ)/^fλ~ι~\ and it will follow that

0«W^0ιW for xe[0,*] (2.9)

if we can show that

Fn(x,θ)^F1(xίθ) for (x,0)e[0,*]x [0, (π - (S)/ 1 (2.10)

(see, for example, Birkhoff and Rota [6], pp. 26-28). Since V(x) ^ 0 this amounts
to showing that

for te^.syΛ (2.11)
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Fig. 1. Graph illustrating the inequality (2.12). Here n = 5, and ε = 0.2

or equivalently

|sin(n + ε)f| 5̂ for fe[0,π — < (2.12)

This latter inequality follows easily from the fact that sin(n + ε)£ and (n + ε)sinί
have equal values and equal derivatives at f = 0 and sin(rc + ε)£ has a smaller
second derivative on (0,π/2(n + ε)] than (n + ε)sin£. This situation is depicted in
Fig. 1.

The inequality continues to hold out to π — δ because of our choice of ε. In
particular, sin (n + ε)ί has a zero at t1 = nπ/(n 4- ε) < π so that the inequality certainly
holds on [0,^] and

ίι=
nπ nπ

n + ε n + nδ/(π — δ)

Thus θn(x) ^ 0i(x) on [0, X] and, specifically,

= π — δ.

(2.13)

(It might be remarked that θn can leave the interval [0, (π — δ)l^/~λ[~\ without harm
since it could only leave by becoming too large and then the desired inequality
would continue to hold trivially; if θn later reentered the given interval the
comparison argument would take effect again.)

To complete the proof we observe that the same argument can be applied to
compare Prϋfer angles starting from the right endpoint of the interval and

proceeding over to x = X. Specifically, one compares 0Ί(x) = (τr/^/17) — #ι(x) and

9n(x) = (nπ/yij - θn(x) and obtains

for (2.14)
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In particular, this shows that

-^-θn(X)^-7^-θl(X) (2.15)
V Λ Λ v^ l

and, when added to (2.13) this yields

•w^-TΓ (1I6)

V « v i

But this is equivalent to

contradicting the fact that λjλ1 =(n + ε)2 > n2. This proves the inequality (2.1).
To see that the result continues to hold for all Vel}(t) we observe that any

L1 function can be approximated arbitrarily closely in L1 by a continuous function
on / and that the eigenvalues of H are continuous functionals of V with respect
to the ί^-norm.

Finally, to see that λjλ^ = n2 implies that V must be identically zero we observe
that we can make the same comparison arguments in this case (in fact, one argument
suffices for the whole interval since Fig. 1 now applies with ε = 0) and the inequality
θn(x) ^ θ^x) will become strict as soon as V is positive on a set of positive measure.
But then we would obtain λjλί < n2 by evaluating the inequality at x = 1 which
gives a contradiction.

Remark. A modified Prύfer angle similar to the one employed here was used earlier
in a somewhat different context by Crandall and Reno [10].

3. Other Eigenvalue Ratios

In this section we develop optimal bounds for the ratios of any two eigenvalues
for the class of Schrόdinger operators treated in Sect. 2. Specifically we prove

Theorem 3.1. Let H = — d2/dx2 + V(x) be as in Theorem 2.1 Then the ratio of any
two eigenvalues, λm and λn, obeys

(3.1)

Furthermore this bound is optimal for the class of operators considered and ifn divides
m and n^m it is saturated if and only ίfV = 0 a.e. // n does not divide m then the
bound is never saturated (i.e." g " may be replaced by " < ") but multiple-well examples
can be constructed which come arbitrary near to saturating the bound.

Remark. The expression [x] (the "ceiling" function of x) denotes the least integer
greater than or equal to x.

The key element of the proof of Theorem 3.1 is the result for λjλn when n
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divides m. Since this argument is completely self-contained and perhaps of
independent interest we present it as a separate proposition.

Proposition 3.2. Let H be as above. If k and n are positive integers

with equality for k> 1 if and only ifV = Q a.e.

Proof. The proof is by induction on n. For n = 1 this is the content of Theorem 2.1
above. Suppose now that λkn/λn g k2 and that we want to prove the corresponding
result for n+ 1. We let wπ + 1 and uk(n+ί) denote the eigenfunctions for λn+l and
^k(n+ 1) respectively, and let \v1 be the first zero of un+ ί in the interior of the interval
/ and w2 the fcth zero of uk(n+1). In addition, with u(x,λ) defined as the solution to

-u" + V(x)u = λu xεl (3.3)

obeying the initial conditions

φ,Λ) = 0, t/(M)=l, (3.4)

we let zt(λ) denote the ίth zero of u(x, λ) in (α, b} (we have taken / = [α, b~] here). It
is a well known fact (see, for example, Courant-Hilbert, vol. I [9, pp. 454-455])
that z^λ), for each / = 1, 2, 3, . . . , is a monotone decreasing function of λ for λ ̂  λ^
Clearly, w t = z^n+1) and w2 = zk(λk(ϊl+1)).

Now suppose that K is a potential for which the bound (3.2) is violated for
n + 1 replacing n. We consider the consequences in the two cases vv2 ̂  W j and
w2 < W j in turn. If w2 ̂  vvx we consider the Dirichlet problem on the interval
[α, Wi]. Let its eigenvalues be denoted !„ (n = 1, 2, 3, ... ). Since zk(λ) is decreasing
in λ and zk(Λfe(n+1)) = w2 ̂  w t it follows that λk ̂  ̂ fc(n+1). Because It = /ίM+1 this
yields a problem for which Ife/^ ^ ̂ k(Π+i)A«+ι > fc2, contradicting Theorem 2.1.

If w2 < W j we consider the other part of the interval, [w l9fe]. By considerations
similar to those given above (working now from the initial point x = b) we can
arrive at a problem where 1knβn > fc2, contradicting our induction hypothesis.

Thus we have proved the bound (3.2). To characterize the cases where equality
occurs one can make the analogous arguments to those above (now assuming
Λ*(n+i)Aι+ι = fc2) to see inductively that V — 0 a.e. both in [α, WjJ and [w^b] and
hence in / = [α, b]. This induction is based upon the characterization of the case
of equality given in Theorem 2.1.

Remarks.

1. One can also prove the bound (3.2) using the method of Barnsley [4]
for estimating eigenvalues. Specifically, to prove λkn/λn rg k2 one would let z0 = α,
z 1,z2,...,zn_ 1,zπ = b denote the zeros of un and consider Dirichlet subproblems
on each of the intervals [_zi,1 , z J for i = 1, 2, . . . , n. If M[ denotes the feth eigenfunction
for subproblem i one can take

u(x) = (-l)ί-iύί(x) for xeOj-!,^] and l^i^n (3.5)
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as a trial function for estimating λkn in the Barnsley method. One then obtains

max λ(
- < L'S'g J == max f ^ k2, (3.6)

l ^ t ^ r t A \

where J.\ denotes the first eigenvalue for subproblem z, and we have used the fact
that λn = H\ for l^i^n and that λk/λl ^ k2 is known for each subproblem.
Unfortunately, characterization of the cases of equality seems difficult from this
point of view.

2. Mahar and Willner [15] proved a similar result for the eigenvalues of the
equation of a vibrating string with variable density.

Proof of Theorem 3.1. Letting fc = [m/n] we have, by Proposition 3.2,

λmίλkn^λn (3.7)

(since k ̂  m/n and this implies m = (m/n)n ^ kri). Obviously, if n does not divide m,
then m<kn and the first inequality above becomes strict whereas if m divides n
then m = kn and the bound will saturate if and only if V = 0 a.e. This proves
Theorem 3.1 except for the claim of optimality in the cases where n does not divide
m. For these results we must introduce multiple-well examples. Roughly speaking,
if V has / identical wells separated by large barriers, then the first set of / eigenvalues
of V will be nearly 11? the first eigenvalue of a single well, the second set of /
eigenvalues of V will be nearly 12> the second eigenvalue of a single well, etc. Thus,
if n ̂  / < m/(k — 1), where k = [m/n] an /-well example will have λjλn « !Λ/!I. In
particular, an n-well example should suffce. These remarks can be made precise
through the notion of Dirichlet decoupling [8]. Specifically, we consider the
potential ι?(x) on [0, 1] defined by

O, for |x-i|<i-β

where 0 < ε < 1/2 and where M > 0. Let h = — d2/dx2 + v(x) with Dirichlet boundary
conditions at x = 0 and x = 1. Also, define the potential V(x) on [0, n] by repeating
v(x) n times across this interval and let H= —d2/dx2 + V(x) be defined with
Dirichlet boundary conditions at x = 0 and x = n. Finally, let HD be H but with
additional Dirichlet conditions imposed at the points 1, 2, . . . , n — 1. Then HD has
the same spectrum has h but each eigenvalue now has multiplicity n. By results of
[8] (see Propositions 6 and 7, pp. 263-264), if M is sufficiently large the resolvents
(H + I)"1 and (HD + I)"1 may be made arbitrarily close in operator norm. This
in turn implies that the first j eigenvalues of H can be made arbitrarily close to
the corresponding eigenvalues of H D for any finite j by taking M sufficiently large
[20, pp. 27-29]. Since the eigenvalues of HD are precisely those of h with multiplicity
n this gives an exact result concerning the clustering into groups of n for the
eigenvalues of H alluded to above. Finally, since the eigenvalues of h approach
those of the Dirichlet problem on an interval of length l-2ε as M goes to infinity
we see that this suffices to establish the remaining statements of the theorem.
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Remark. When k=lm^n and the result can be translated to a lower-bound result
for λjλn for m > n. It yields λm/λn > I for m > n which is uninteresting except for
the observation that there is no better bound.

4. Singular Problems

We now give a brief discussion of problems which are singular either in the sense
of occurring on infinite intervals or of V being singular near finite endpoints (or
both). We assume throughout that V is in L\OC(Ω\ where Ω denotes the open
interval under consideration. We begin with the case of an infinite interval, which
may by convention be taken as either IR or (0, oo).

Theorem 4.1. Suppose H= -d2/dx+V(x) on L2(Ω\ where Ω = R or (0, oo). //
β = R suppose that VeL1( — a,a) for any α>0 and ι/ί2 = (0, oo) suppose that
KeL^O^α) and let a Dirichlet boundary condition be imposed at 0. Suppose further
that V(x) ;> Qfor all xeΩ and that

lim F(x)=oo. (4.1)
|x|-oo

Then the bound

HίΓ (4 2)
λn | _ n j

holds for all eigenvalues λm and λn of H.

Proof. Consider first the case Ω = R. Then if for b > 0 we define HD(b) to be the
operator obtained from H by imposing Dirichlet boundary conditions at x = ±b
a result of Combes, Duclos, and Seiler [8, Proposition A.I.8, p. 296] shows that
H^(b) converges to H in norm resolvent sense as b-*oo. This implies that any
finite initial set of eigenvalues of HD(b) can be made arbitrarily near to the cor-
responding eigenvalues of H by taking b large enough. Now HD(b) = Hί(b)® H2(b\
where Ht(b) = HD(b) \L\-b,b) and H2(b) = HD(b) \(L2(- oo, -6)uL2(i>, oo)), and
since 7(x)-»oo as |x|-*oo we can pick b so large that σ(H2(b)) lies above any
initial set of eigenvalues of H. Thus for any ε > 0 and positive integer N we can
find b sufficiently large that

\λi(H)-λi(H1(b))\<ε for I g ΐ ^ Λ Γ .

Since the eigenvalues λ^H^b)) obey all the bounds proved previously for finite
intervals and λί(H)>0, this estimate shows that the same bounds apply to the
eigenvalues of H. Finally, the proof for the case Ω = (0, oo) follows from that for
Ω= R by extending V to [R by reflection and then considering the even-order
eigenvalues of the operator so obtained.

To handle the other cases mentioned above we work with conditions allowing
us to approximate eigenvalues in terms of C%(Ω) trial functions. These are, of
course very natural for problems with Dirichlet boundary conditions.

Theorem 4.2. Let H = -d2/dx2 + V(x) on L2(Ω) where V = OonΩandB eLloc(Ω)
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and suppose that C$(Ω) is a form-core for H. Then if λ^H) > 0,

where λm and λn are any two eigenvalues of H. (If necessary, the "eigenvalues" of H
should be taken as those deriving from the min-max principle [9,20].)

Proof. Since C^(Ω) is a form-core for H and H is bounded below, given ε > 0 and
a positive integer N we can find orthonormal C$ functions φ^x), i — 1,2,...,JV,
such that the N x N matrix A with elements (φh Hφj) for 1 ̂  ij ^ N has eigenvalues
λi(A) satisfying

Q<λi(A)-λi(H)<ε for l ^ i ^ J V . (4.4)

Since the φ('s have compact support we can assume that they are all supported in
a closed interval [c,d] cΩ. Next we consider the operator H'= — d2/dx2 +V(x)
on the interval [e,d] with Dirichlet boundary conditions imposed at both
endpoints. By the min-max principle the first TV eigenvalues oϊH' lie between those
of H and A. It therefore follows that

λi(H)<λt(Hf)^λi(A)<λi(H) + ε for l ^ i ^ J V , (4.5)

so that

\λi(H)-λi(H')\<ε for l^i^N. (4.6)

The proof can now be completed as in the proof of Theorem 4.1 since H' is an
operator to which all our previous results apply and λ^H) > 0.

Remarks. (1) It would suffice here for H to have a form-core of compactly-
supported functions. (2) This result covers finite-interval problems where V becomes
singular near one or both endpoints of the interval, and thus it applies to operators
obtained from H by commutation [11, 12]. It also covers problems on (0, oo),
where V has a singularity at 0 as well as problems on (0, oo) and R where V has
a variety of behaviors as |x|->oo. As such, it extends the result of Theorem 4.1.
(3) As in Sect. 3 one could show that the results of Theorems 4.1 and 4.2 are optimal
for their respective classes of potentials by providing examples that come arbitrarily
near to saturating the bounds. In addition, we expect that within the context of
nonnegative potentials in L]OC(Ω) one has equality for n dividing m and m / n if
and only if F = 0 a.e. for finite-interval problems and that for infinite-interval
problems the bounds are never saturated except when m = n or when one considers
λjλn with m < n and both λm and λn sit at the bottom of the essential spectrum
of H. However, these latter expectations have not been proved, and they are perhaps
of only technical interest.

Examples

(a) For V(x) = x2 on R one has λn = 2n-l (n= 1,2,3,...) and then λjλn =
(2m — l)/(2n — 1) which behaves roughly like m/n rather than like (m/n)2. Even for
λ2/λi we get only λ2/λl = 3. Thus the harmonic oscillator does not come near to
saturating the bounds presented here.
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(b) For V(x) = p(p + 1) tanh2 x (p > 0) the eigenvalues are given by λn — p(p + 1) —
(p — n-hl) 2 for indices n satisfying Q<n<p + l. One obtains, for example,
Λ-2/Λ ι = (3jP — 1)/P = 3 — 1/p, and again the bound appears rather far from being
saturated.

The results of these examples are not unexpected since on infinite intervals Dirichlet
boundary conditions are most closely approximated by fast-growing potentials.
Thus, potentials like V(x) = |x|v for v large would be expected to come closer to
saturating the bounds. Indeed, the bounds will be saturated in the limit v-»oo,
which gives the finite square-well.

5. Concluding Remarks

In this paper complete results for bounds on eigenvalue ratios of one-dimensional
Schrodinger operators with Dirichlet boundary conditions and nonnegative
potentials are given. Some problems that remain open here are the proof of
bounds such as

(5.1)

and similar inequalities for higher eigenvalues and the proof of bounds like

T^- for m > n ^ l (5.2)
λn \n J

under the additional constraint that V be convex. The convexity hypothesis might
also be presumed to yield a better lower bound than 1 in the case of λjλn

for m > n. These seems like reasonable conjectures since convexity of V rules out
all multiple- well examples. Also inequality (5.1) is reasonable in that it yields
^3^9^! and λ3<4λ2 when combined with λ2^4λί and λί<λ29 respectively
(indeed, this explains where we obtained the coefficients 3- and f ).

In addition, there is a possibility that the techniques of Sect. 2 can be extended
to higher-dimensional problems with spherical symmetry. This problem is currently
under investigation.
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Note added in proof. We have recently realized that the proof of our main result, Theorem 2.1, can be
simplified considerably. Specifically, one can avoid having to work from both ends of the interval to
the intermediate point X and, in addition, the somewhat delicate arguments involving ε,<5, and the
bound M can all be dispensed with. The key to this simplification is the observation that we need only

show that Fn(x,θ)^Fί(x,θ)(eq. (2.10)) holds for (x,0)e[0,l] x [0,nπ/>/ΐJ to arrive at a contradiction

to the assumption that λjλ1 > n2. This is equivalent to showing sin2 [ V λ n θ ] / λ n ^ sin2 \_\/λί 0]/λj for

0e[0, wr/x/Ij or, more simply, to |sinns| ^^/λjλl sin [ns/x/X//^] for se[0,π] and this is easily seen
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to hold since it amounts to showing that the appropriate inequality holds from 0 out to the

nth positive zero of |sinns| (see Fig. 1). Since 0Λ(ί)e[0,nπ/vΛ.Λ] for all fe[0,1] it follows from
the comparison theorem [6] that θι(t)^θn(t) for all ίe[0,1] and this contradicts the fact that

^j(l) = π/\/λl > nπ/\/λn — #„(!), concluding the proof.
In connection with our introductory remarks concerning the extension of the results of Payne,

Pόlya, and Weinberger and of Thompson to Schroedinger operators with positive potentials it has
recently come to our attention that Allegretto was aware of this prior to either Harrell or Singer, Wong,
Yau, and Yau. Allegretto's results appear in the article "Lower bounds on the number of points in
the lower spectrum of elliptic operators," Can. J. Math. 31, 419-426 (1979).






