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A Note on the Ising Model in High Dimensions
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Abstract. We consider the d-dimensional Ising model with a nearest neighbor
ferromagnetic interaction J(d)=1/4d. We show that as d » oo the + phase
(and the — phase) approaches a product measure with density given by
the mean field approximation. In particular the spontaneous magnetization
converges to its mean field value. A similar result holds for the unique Gibbs
measure of the system subject to an external field h # 0.

I. Introduction

There exists a variety of rigorously established relations between statistical
mechanical models and their mean field approximations. For several models the
following types of results have been proven:

I) The mean field critical temperature is an upper bound for the critical
temperature of the model (see [F] and [G] for the Ising model and [Si] for the
classical Heisenberg model).

IT) Convergence of the free energy to its mean field value when the dimension-
ality goes to infinity and the interaction is properly normalized (see [T3] for
the Ising model and [PT] for generalizations; this result was first obtained
nonrigorously in [Br]).

IIT) The mean field value of the magnetization is an upper bound for the
magnetization of the model. In particular this implies the result in (I) above (see
[T1] for the Ising model and for instance [Pe, N, SI, TH, V] for generalizations).

1V) Convergence of the critical temperature to its mean field value when the
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dimensionality goes to infinity and the interaction is properly normalized (this
result follows for Ising and more generally for classical Heisenberg models from
(I) above and the methods introduced in [FSS]; see Theorem 3.1 in that paper
and Theorem 1 in [BF]).

While not directly related to our results in this paper, we should also recall
that convergence to mean field free energy can also be obtained in the limit of
long range weak interactions (Kac limit; see [LP] and Appendix C in [T2]) and
the important equality in large dimensions of critical exponents with their mean
field values (see for instance [AF] and references given there).

In this note we prove another such relation for the d-dimensional nearest
neighbor Ising model. We show that if the interaction is properly normalized, then
as d — oo, the spontaneous magnetization converges to the value predicted by the
corresponding mean field model. We show also that in the + phase the correlations
between different spins vanish in this limit, so that in a certain sense this Gibbs
state converges to a product measure whose density is given by the mean field
approximation. When the system is subjected to an external magnetic field h #0
(or when f is small) there is only one phase and we prove that it also becomes of
product form as d—oo. But in this case the fact that the corresponding
magnetization converges to its mean field value can be easily obtained from the
convergence of the free energy as stated in (II) above (see Theorem V.9.3 in [E]),
since the free energy is convex and the mean field free energy is differentiable in
hfor h # 0 (or when f is small). That the convergence of the free energy is in general
not enough to prove the convergence of the spontaneous magnetization can be
seen by considering a one dimensional model with a Kac type of potential. For
instance let each spin interact with its first N neighbors to the right and to the left
with constant strength 1/2N. In this case the spontaneous magnetization is 0 for
every N and every temperature, but the free energy converges as N — oo to its
mean field value (see Appendix C in [T2]). This limiting mean field free energy is
not differentiable in h at h = 0 for low temperatures, giving rise to a positive mean
field spontaneous magnetization. To our knowledge it is in fact an open problem
in the setting of Kac type of potentials, to find the general conditions for results
analogous to ours to hold, when phase transitions are present. (Unfortunately
there are statements in the literature in which it is wrongly claimed that the
interchange of limits above can be made even when the mean field free energy is
not differentiable).

On the other hand, there is one example of a Kac type of potential for which
the analogue of the theorem below can be proved by the methods of this paper
when d = 3 (i.e., the + phase converges to a product measure with density given
by the mean field approximation). This is the model (b) of Sect. II of [BF]: the
spins at sites x and y interact with a strength

ny(?’)=)’2(—‘A +'}’2)¢1(x,)’),

where A is the finite difference Laplacian operator on Z¢ and the mean field limit
corresponds to y — 0. We leave to the interested reader the work of adapting our
methods to handle this model. This relies only on the fact that J_,(y) is reflection
positive and that suitable infrared bounds hold.
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Before stating precisely out result we must introduce some notation. Consider
the lattice Z¢ and to each site xeZ¢ attach a spin (x) = + 1. The formal Hamiltonian
will be given by

Huplo)= = ¥, 6(x)00) —h Y o(2). (L)

4d s z

The first sum above runs over all pairs of nearest neighbors, each pair being
included only once. The normalization factor 1/4d in the Hamiltonian comes from
a factor 1/2d which is the inverse of the coordination number of the lattice and a
factor 1/2 which simplifies the comparison of the Ising model with more general
Potts models and percolation (see [K1,K2 and KS]). Observe that with this choice
the gap between the contribution to the energy due to a pair of parallel and a pair
of opposite spins is 1/2d. The presence of d in the denominator is natural, since
we know already from [ BF7] that with such a scaling the inverse critical temperature
converges to a positive finite constant; for the normalization which we use, this
constant is 2. .

Let fi s ,ap, b€ the Gibbs measure with boundary condition ne{— 1, + 1}*
outside the finite region A = Z? at inverse temperature B, ie.,

exp(— BH 4 44(0) — ﬂWA,q,d(O'))
Ranapn(0)= < if a(x) =n(x) for every xe A", (1.2)
0 otherwise.

Here

1
H,4(0)=— 4d o(x)o(y) — hz o(2)
(9D zeA

x,yeA
and

1
WA,n,a(‘T) = - 44 a(x)n(y).
(&R

xeA
y¢A

Itis well known [LM] (see also [Pr]) that if 4 # 0 then for every boundary condition
N, B a,n.a,pn CONVErges weakly to a measure 4, (Which does not depend on #) as
A1Z% (in the sense that every finite region is eventually covered). If n is the
configuration identically + 1 (which we will, as usual abbreviate by # = +), then
for h=0, u, + 440 converges weakly to the + phase u, ,, as A7

We will use the notation <-) for expected values with respect to Gibbs measures;
we attach the same indices to the expectation () as to the Gibbs measures. The
spontaneous magnetization is defined by

m(d, B):= 1:?01 <0(0)>4,ph=<0(0)>+ 45 (1.3)
(see [LM] for the second equality), and the critical inverse temperature by
B.(d):=inf {B = 0: m(d, B) > 0}. (1.4)

Later on it will also be convenient to consider the probability that a given spin is
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up in the + phase:
1 +m(d, p)
—

The corresponding mean field model (see for instance Sect. V.9 of [E] or Sect.
4.5 of [T2] for details) is obtained by supposing that the spins outside the origin
of Z* assume the value given by the expectation of the spin at the origin. Denoting
by m(B, h) the expected value of the spin at the origin (in external field k) we write
then the self conistency equation

m(B, h) = tanh ((8/2)(m(B, h) + 2h)). (1.6)

For B <2 or large | h| this equation has only one solution, which is 0 when h =0,
while for > 2 it has three solutions when |h| is small. We restrict ourselves to
the cases h =0 and denote by m,z(f,h) the largest solution (see the references
given above for the motivation behind this definition). We will concentrate mainly
on the case h = 0 and abbreviate my;(f):= my (B, 0). The corresponding probability
that the spin is up is

P, B):= s 4 (0(0) = + 1) = (L5)

1+ mMF(B)

pur(B) = 2

1.7
More generally we will omit & when it is 0.

We will use also the following notation: | I"| will denote the cardinality of a set
I' 7% 2(d) will denote the set of finite subsets of Z% Given I'e2(d) we write
A(I") (respectively B(I")) for the event that all the spins in the region I" are + 1
(respectively — 1). Our main result can be stated as follows

Theorem. If § <2 then m(d, ) =0 for every d. For every f =0

.}im m(d, ) = myr(B), (1.8)
.,hfn p(d, B) = prr(P), 19)

and more generally
lim  sup |uy 4 6(AT )N BI-)) — (paer(B)) (1 — pars(B) ' = 0. (1.10)

d> 0 I e?d)
Remarks. 1) One would like to interpret this theorem as saying that the + phase
converges weakly to a product measure. The trouble with such a statement is the
fact that the lattice itself is changing with d. Still one can imbed each Z¢ in the set
{(x1,%3,...): x;€Z,i=1,... and for some K, x; = 0if j = K} and give this statement
a precise meaning.
2. As mentioned in the introduction, similar results can be obtained when 4 # 0 for
the unique Gibbs measure y, ;,. We will address this point after the proof of the
Theorem is completed.
3. Similar results were proven for an interacting particle system—the contact
process—in [SV]. Using some of the methods in the present paper, they have also
been obtained for ordinary percolation and some dependent percolation models
[K1,K2]. Finally in [KS] such results were established for classical Heisenberg
and Potts models using again in part methods employed here.
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2. Proofs

In the lemma below, { f;9>:={fg> — {f><{g) and || stands for the Euclidean
norm on Z°.

Lemma. For every =0,

2
lim <i> Y, (x> +,45=0. (VAY
e\ s

Proof. The proof is based on the use of infrared bounds [FSS]. For every d, f and
h # O recall that y, ; , is the unique infinite volume Gibbs measure. Let the measure
@455 o0 Ry:=[—m,7]* be such that

< (0)a(x)Da p.n = Rf " dwy g (k). 22)

From [FSS] (see the proof of Theorem 3.1 there and remember that the external
field only affects the a priori measure)

dwq,p, (k) = (D(d, B, W)o(k) + g(d, B, h, k))d’k, 23)

where D(d, §, h) is a constant, § is the point mass concentrated on 0 and g(d, B, h, k)
is a non-negative integrable function satisfying

2dp~1

9(d, B, h, k) < .
(@)’ < i (1 —cos ki)>

2.4)

From the triviality of the tail o-field of y, 4 , (see Theorem 1.11 in [R]), translation
invariance and the Riemann—Lebesgue Lemma [FSS] it follows now that

(K0(0)>4,5,0)* = ” lim (a(0)a(x))4,5,n = D(d, B, ). (2.3

x|l >

From (2.2), (2.3) and translation invariance we obtain

” %__1(<6(x)a(y)>d,ﬂ,h_]—)(da B, h))=“ %',_ Rf e g(k)d’k
il =1 livll =1

= | <2_Zd: cos ki>2g(k)d"k. (2.6)

Since the integrand in the right-hand side of (2.6) is positive, it follows from (2.4)
and (2.6) that

2
(50) 2 (<o90Dasa - D81}
[lxfl =1

Iyl =1

1 2
. —Zcoski>
2( ! ) Ig—@———d"k =%1d. 2.7)

S |
p\2n 1—= 3 cosk;
di=1

As h]0, p, 4, converges weakly to u, 4 5 (see Lemma 1 in [LM]). In particular,
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using (2.5)
D(d, B, 1) = (£0(0) >4,5,1)> = (m(d, B))? (2.8)
and
(a(x)a(y) >d,ﬂ,h"’<0(x)0'()’)>+,d,ﬂ- 2.9)
Therefore (2.8) implies, by taking the limit 4|0, that
1 2
(—) Y. (Ka(¥)a()> 4,45 —(m(d, B))?) égld- (2.10)
= !

Finally, we prove I,— 0, or more sharply,
dl;»1 (d- o). (2.11)

We owe the proof below to M. Aizenman; it is much simpler than our original
proof. First write

dl; = 2E{< ! i[Z2 E(ZZ)])2<1 iZz -
d— \/ d T i i d T i ?
where E denotes expectation with respect to the probability measure P(dk)=
(2n)"%d%k on Ry, and Z; = sin (k;/2). Here we used of course 1 —cosk; =2Z? and
E(Z?)=1. Since the Z? are independent, identically distributed under the measure
P, with E(Z#) = 3/8, we have by the central limit theorem that
1
Jd
where N(0,1/8) is a normal variable with mean zero and variance 1/8. Also, by
the weak law of large numbers

d
Y [Z? — E(Z*)]- N(0,1/8) in distribution,
1

14 e e .
y Y. Z? -4 in distribution.
1

Standard theorems (e.g. [Bi], Corollary to Theorem (5.12)) therefore allow us to
conclude from this that

dl;~>25(3) 7 =13,
provided we can show that

1 3 1 d —-3/2
E«{ — (-zz,?) } (2.12)
d

d
2 _ 2
Ja A - EED]
is bounded as d — c0. But by Hoélder’s inequality (2.12) is bounded by

({(Jaswz-eam) )" (e{jEen})"

It is routine (compare [Bi], p. 409) to show that the first factor here is bounded,
while the second factor can be handled by means of the harmonic-arithmetic mean
inequality. Indeed.
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where
I/j=Z§j+1+.“+Z§j+5 for 5]+10<d,

and for the single j with 5j +5<d < 5j+ 10,
VJ=Z§J+1 + .- +Z§

Since V' 2 is integrable when d = 5, we see that

(e{(tg) )<l <

(2.1) follows from (2.10) and (2.11).

Remark. 4) An alternative proof of (2.10) can be obtained from results in [FILS]
for the + phase.

Proof of the Theorem. As observed in the introduction, the first statement of the
theorem was proven for the Ising model in [T1].

We will now prove (1.8) (which is clearly equivalent to (1.9)) in Step 1 below
and then use it to prove (1.10).

Step 1. Conditioning on the random variables {o(x):||x| =1} and using the
Markov property of Gibbs measures we obtain

m(d,ﬂ)=<tanh<£ y o'(x)>> . 2.13)
4d it Y

From the Lemma,

% Z_ o(x) — m(d, p)—0 (2.14)
llxfl=1

in distribution with respect to u, 44, as d— oo. To see this observe that by (2.1)
the variance of the random variable in (2.14) tends to 0 as d— co, while, by
translation invariance, its expectation is 0 for every d. Let

(di:k=1,...) be a sequence such that for some I,

lim m(d,, ) =L (2.15)
k=
Then from (2.14),
a(x)—1 (2.16)
2dk Hx%= 1

in distribution, as k— co. Since tanh(-) is bounded and continuous, (2.13) and
(2.16) imply

lim m(d,, f) = tanh ((8/2)]). 2.17)
k=

Comparing (2.15) with (2.17) yields
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1 = tanh ((8/2)]). (2.18)

In words, any limiting point of m(d, f) must satisfy the mean field equation (2.18).
In case B < 2 this equation has the unique solution, | = m,(8) =0, and so m(d, )
must converge to this value. But in this case we know already that m(d, ) = 0 for
every d. More interesting is the case ff > 2; then myz(f) >0 and (2.18) has three

solutions: | = — my(B), I =0, I = m,p(B). But we know also from infrared bounds
(see the proof of Theorem 3.1 in [FSS] and the proof of Theorem 1 in [BF]) that
liminfm(d, B) = (1 — 2/B)*/*> > 0. (2.19)

d—

Thus m(d, ) must converge to m,(f) also in this case.

Step 2. We will prove that for every N,
lim sup |ps45(0(0)= +1|AUT)) — pur(B) =0, (2.20)

d— o0 'eP(d,N)
0¢r

where
P(d,N)={I'cZ%|I'| < N}.

From (2.14) and (1.8),

1
20, o0 M) @21

(withrespect to u, 4 g)in distribution as d > co. Now, given 6 > 0, consider the event
1
E;= { Y. a(x)e(myp — S, myp + 5)}. (2.22)
2 1+

(Equation 2.21) can be rephased by saying that for every 6 >0,
dlim H,a,5((E;)) = 0. (2.23)

Observe also that if we define o« = 1/(1 + €f), then
/~‘+,a,ﬁ(A(r)) > ol 7l
Thus, if |[I"'| £ N then
E;) _
b as BV 1A S 28000 <o (B 224
+.d,p

Write now

[t ,45000)=+1AT) = prr(B) =1t 4 050 O0)= + 1A )N Es) ts 4 5(Es|AI))
+ s 45(0(0) = + LA)N(Es)) v a,5((Es)TATT))
— Pur(B) s 4 p(E5|A()) = parp(B) i +.a,6((E5) | A(L))]
St ,05(0(0) = + LA N E;) — pagr(B)| + 14 a,6((E5) | A7) (2.25)
Using (2.23)-(2.25) we obtain
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limsup sup |uy 45(6(0)= + 1{A)) — ppr(B)

d= o T'e?dN)
0¢r

Slimsup sup |uy 44(0(0) = + HA()NE;s) — ppr(B). (2.26)
d>®©  'ep(d,N)
0¢I"

But by the Markov property of the Gibbs measures,

B+ .ap5(0(0) = + LA(I') N E;)e{g(m):mpp — 6 Sm < myyp + 6}, (2.27)
where
_ 1
“1+exp(—pm)
Indeed, the left-hand side of (2.27) is a convex combination of g(m)s with
Myp — 0 S m < myp + 0 (by the definition of Ej).

Since 6 >0 is arbitrary, (2.20) follows from (2.26)—(2.28), the continuity of g(*)

and the fact that g(myr(B)) = ppr(B). The last identity can be easily verified from
(1.6) and (1.7).

Step 3. It follows easily from (2.20) and translation invariance that for every N

im sup |y g p(AD)) = (0aer(8, 1) 71| = 0. (2.29)

d—> o I'e?(d,N)

g(m) (2.28)

(Use induction on N).
By the inclusion—exclusion principle (using induction on |I"_|) we have then
for every N

Jim SUI;dN l:u+,d,ﬂ(A(r+ )NB(I"_))— (pMF(ﬁ))l I I(1 - pMF(ﬁ))} - I' =0.
—1 4 € (d,N) (2.30)

Step 4. To finish the proof of (1.10) we have to enhance the uniformity in (2.30)
by removing the bound N on the cardinality of I"_ and I',.
Given ¢ > 0, take N such that

(omr(B) <& (2.31)

For each d we can choose I' (N)c< I', and I'_(N) < I _ such that |I",(N)| <N,
|I"_(N)| < N. By (2.30) we can find d large enough so that uniformlyin I, and I _,

et a (AT )N BUIT2)) S pry g, 0(AT( (N)) N BUI'_(N))
< (par(B)' VA — ppp (BTN e (2.32)

The difference between two positive numbers is not greater than the largest of
them, hence by (2.32),

s ap (AT )NBI2) = (oaer (B)! (1 = ppg(B) 7]
= (Par (BN 1 — ppgp (BTN . (2.33)

But myp(f) Z 0 and so 1 — pyr(B) < pur(B). Thus the right-hand side of (2.33) is
bounded above by

(Parr(B)) T+ MIHIT-MNI 4 ¢
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If|I"'.|>Nor|I'_|> N, we have now from (2.31) and (2.33) with a suitable choice
of ri (N),

11+ a,6(A(T )N B(I2)) = (page (BN (1 — ppgp(B) 71| < 2e. (2.34)
This completes the proof of (1.10). []

Remark. 5) The analogue of (2.1) in case h # 0 follows from (2.7) and (2.11). One
can therefore prove the analogue of (1.10) when h # 0 by the same arguments as
used above.
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