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Abstract. We establish the existence of the Wilson Renormalised trajectory of
the O(N) sigma model in perturbation theory in the “effective charge.” This
yields a proof of perturbative renormalisability, and is also relevant in the
“small-field” analysis of the rigorous renormalisation group construction of the
continuum theory.

1. Introduction

The two-dimensional nonlinear O(N) sigma model, with N = 3, is perturbatively
renormalisable and asymptotically free [10, 1,2]. In this work we study the model
from the Wilson Renormalisation Group (RG) viewpoint and show the existence
of the renormalised trajectory in perturbation theory in the “effective charge.” This
yields in particular a proof of perturbative renormalisability and the expansion in
the small-field region that would be part of a rigorous RG construction of the
model. The approach is similar to that of J. Polchinski [9], where the A¢* theory
in four dimensions is treated. There are, however, marked differences and surprising
simplifications. We do not break the symmetry by applying a magnetic field, and
the analysis is therefore not around the Gaussian fixed point. Only two marginal
directions are involved, and these can be isolated very cleanly, yielding a surprisingly
pleasant proof of renormalisability.

The model is the quantum field theory of maps R? — S¥ 1. With a lattice cut-off
a, the theory is defined by a R¥-valued field ¢ on aZ? = R? with the constraint
¢*=1/Z,(a), and the bare action

_Zol9 5 [P(x) — p(»)]?
2g(z)(a) x,yeZz 2 '
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In applying Wilson renormalisation group (RG) techniques to the sigma model
we immediately face the problem that the simplest and most appealing RG
transformations destroy the delta-function constraint in the model. Here we adopt
the following approach: drop the constraint ¢? = 1/Z(A,) and take as bare action

1 -
S(Ao) = 55 Zo(Ao)d, F 1 (/) — A/ Ap)dd) + [ UZo(Ap) 9> — 1)*d*x
2g4(Ap)

Here (,) denotes the scalar product of R¥-valued functions, A is the laplacian and
F is a momentum space cutoff function. The function F is chosen such that it is
smooth, positive, F(0)=1, and F—0 at infinity; for example, we could take
F(x)=exp — x*. Now that we have dropped the constraint on ¢ we can work
with a momentum cutoff. This we do from now on. Then for large 1 we are
approximating the sigma model. The idea is to let 4 go to infinity as A, — co.

Of course, 4 has to go to infinity at some minimal rate. In [7] we implemented
the above idea in conventional perturbation theory. After applying a magnetic
field to break the symmetry and get perturbation theory started we showed that
up to one loop we can recover the usual perturbative results, including the
renormalisation constants, provided 4 goes to infinity at rate greater than
or equal to

AA3
go(Ao)2 ’

where A is an arbitrary positive cut-off independent constant.
Let us therefore rewrite the above action in terms of A. The action then becomes:

(V00 + 28 (a5, (L)),
0

1=

Stdo) = AP go(Ao)2

where
V(d, Ag) = [ d*xAAY(Zo(Ao)|d(x)* — 1)°. (1-2)

The RG transformation acting on any S(A,) of the form (1-1), with V(A,) not
necessarily of the form (1-2), produces for every A < Ay, an “effective action at
scale A” by a process of integrating out degrees freedom. Let us denote this by
R(A, Ap). The RG transformations form a semigroup; we have, for A; <A, <A,

R(A3,A2)R(A2,A1)=R(A3,A1). (1-3)

The problem of taking the continuum limit in field theory can be rephrased in
terms of effective actions as follows: as A, — oo arrange the dependence of the bare
action S(A,) such that

Sew(A)= lim R(A, A0)S(Ao)

Ag— 0

exists. Note that because of the semigroup property (1-3) of R the renormalised
effective actions Szy(A) obey

Srn(A') = R(A', A)Sgw(A).
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This is the renormalised trajectory.

In Sect. 2 we define the RG transformation in our context, and begin the study
of the renormalised trajectory. In fact we study a differential form of RG, and
continuously rescale back to unit cutoff. We write

S(t) = t)z[V(f(t)mz)+—(d¢F /- )dcp)]

(We defer the definition of g2 and V in terms of S till Sect. 2. Z is so defined that
V takes its minimum on constant field configurations @ with |®|= 1. This is
implementable in perturbation theory.) Then (V(¢), g(¢), Z(t)) satisfies a nonlinear
evolution equation

AV (), g(t), Z(t)

it = V(). 917, Z(1))). (1-4)

We refer to this as the dimensionless form of the RG flow; we denote the field
by @ to signal the rescaling that has been done, and t is defined by: ¢t = —log A.
In terms of the flow (1-4) the scaling limit consists in doing the following: For
T >0, (T =logA,), solve (1-4) with initial condition

g(—T)=go(T), Z(— T)=Zo(T), V(®, — T) = [ d*x (| p(x)|* = 1)*.  (1-5)

Let (V(t),g(t)*, Z(t)); denote the solution. Show that for suitable choices of go(T)
and Z,(T), both tending to 0 as T — oo,

(V(©),9(0), Z(0)gn = Lim (V(2),9(6) Z()r (1-6)

exists. (The fact that Z,(T)— 0 is elementary because the spins ¢ of the original
model are bounded. The fact that g,(T)—0 is asymptotic freedom.)

Note that in (1-5) we do not have A depending on T. This is because we will
find (in perturbation theory) that

i) The limit (1-6) exists for A any positive number.
i) The limit is independent of the actual value of A chosen.

In other words A as well as the other couplings that arise in the RG flow hit
fixed points. This is the explanation of the success of the perturbative computation
of [7].

We now summarize the results of Sects. 2. to 6. We need some preliminary
remarks. Fix T > 0. Then (given A) it is clear that the trajectories (V(t), g(t), Z(t))r
are parametrised by g,(s)?> and Z,(s) for any fixed s > — T. Also

V(©), 907, Z(O)r > (V(0), 9(t)*, 2 Z(0)r

with o« >0, is a symmetry of the evolution equation (1-4). This means that the
trajectories, modulo this scaling of Z, are parametrised by gr(s)>. We can
therefore write

V= 3 g0 V0
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1
ad——
gr(t)?

dt
1 dZi(¥)

Z.(t) dt

= 3 or0dp )

=917 3, gr0P"bP0)

In perturbation theory one can only gain access to the functional derivatives of V
at the minimum @ = constant, |®| = 1. We shall use V™ as a shorthand for “the
derivatives of V™ at the minimum configuration.” Then the results of Sects. 3
to 5 can be summarised as follows:

i) As T— oo, V¥, a{, and b tend to finite limits which we denote by V™", o™
and b™" respectively.

ii) The leading coefficients:

. (N—-2) . (N=-1)
op_ _WN=2 op_WN—1
a 2n b 2n

are given by the standard asymptotic formulae, independently of the specific
form of F.

We conclude with some comments and speculations in Sect. 6. In particular
we make the connection with conventional perturbation theory and pose the
question: how does a sigma model based on an arbitrary manifold fit into the
current framework? We also show how a Wess—Zumino term can be incorporated.

An earlier study, incorporating the local approximation to the RG flow, was
presented at the Ringberg Workshop 1987 [7] and this work itself at the Cargese
School, 1987 [14]. In contrast to the present work, in [14] the fields @ are rescaled
@ — g2 ®. We have found the present parameterisation more elegant. It should be
mentioned that the local approximation is similar to the RG iteration of a certain
hierarchical sigma model whose continuum limit was constructed in [4]. Also,
the asymptotic freedom of the O(N) models has recently been called into question.
See [8,11,6].

2. The RG Flow

In this section we summarise the derivation/definition of the RG flow. We work
formally; a less formal derivation would start with a volume cut-off. We are,
however, only aiming at perturbative results—we shall see below that no infrared
divergences occur in the RG flow equations. See Remark 2c.

We first set up notation. Let ¢ be a real N-component field in two dimensions,
 its Fourier transform. The Einstein summation convention holds. We shall denote
by p both a 2-momentum and its norm except when confusion might arise, when
we denote |p| the norm. Let

d?p . .
KE(¢, A)=%§ﬁ¢(p)¢(~p>pw—lwm),

S, A) = KE(¢, A) + U(6, A),



Two-Dimensional O(N) Nonlinear o-Model 579

E(J)=exp{ ———=S(/Z(A) ¢) + [ J(D)d(— p) b
(A) (2n)

§29EV)

20 =1a4E0)

= e'rx g .

adip) " @2n)® i)
Here F:R* —»R™ is the cut-off function. We shall require: F(0) = 1, F’ <0 and that
F and its derivatives fall off to zero at least exponentially at co. We shall also
require F(|p|) to be a smooth function of the two-momentum. (Thus F(s) = exp — 52
is okay, but not F(s) = exp — s). The effect of F is to damp out the contribution of
the high frequency modes in the definition of Z(J). We will strengthen the

assumptions on F, at the end of this section.
We define the RG flow by the Eq. (2.1) [and (2.4), (2.5) below].

A(?U d Adz
Sr6h= (dA >S(¢A) Z A

U (¢, A)
)
o0 02U(¢, A) ]

d’p -
.[KE(¢,A)+ﬂ(2n‘)’z $i(p) ] + f—(z P A (F /)

(¢, A) = (0 N=9* 7 |

[0¢ 12] 0¢;(—p) 09:(p)0p:(— p)
For motivation see remarks at the end of the section. We now transform the

RG flow into “dimensionless form.”

We define

2.1)

2
1A—A—(F( /A)) = -14F'(p/A) R(p/A). 22)

Thus K(x) will be the inverse Fourier transforzn of K; We put Ad/0A = —d/ot.
Finally we switch to dimensionle~ss fields @,(p) = ¢;(pA)A? or equivalently,
@D,(x) = ¢;(x/A), and define U(®@) = U(¢). Then the RG flow becomes

ou d 1 1dzZ ou(o,t
0= —¢ (g 5 s@o- 5 ke sfaran G0 |

Z dt 09;(p)
(@)
#1221 0,6,80)
. [oU(®,1) dU(D,1) ’*U(D1)
—(d?p(2n)*K - = -g?
Jdp(2m) (”)[ 60p) 30—p) ° a@(p)aaz-<~p)]

S(@,t) = KE(®) + U(Q, 1),
with
2

(2m)?

KE(®)= zf D v F1(0)&,(p) B p). (2.3)
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We have not yet completed the specification of the RG flow, since the evolution
of g% and Z is not yet given. We do that now in two steps

i) Z is determined by the assumption

U achieves a minimum on constant field
configurations @ =veR", |v|=1. 24

Notation: From now on v will denote a vector of unit length in R".

ii) Define

Qry*dU(@,1)
&y (P1s P23 ) = o | .
Rt B2 09;,(p1)09;,(P2)o=»

By translational invariance
@5, (P1,D23t) = (2n)*o(py + P2) B (P23 1)
Further, by rotational invariance in R?> and O(N) invariance

ﬂjljz(p; t) = ﬁ(lpla t)vhvjz + ﬁ&(lpla t)éjljz‘

Since @ = v is a minimum of U, §;(0;¢) = 0 [see below for a proof]. We define g*
by the assumption

Bs(Ipl;0) = O(IpI*). 2.5)
Remarks.
2a) Consider the assumption
F(sy=1 for s=1. (2.6)
The flow (2.1) is designed such that, under assumption (2.6),
A%&V’U,A):O if suppJ(p) <= {p|lpl < A}. 2.7

We leave it to the reader to check this. Note that (2.7) implies that if
{P;,(p1)-- é ;.(D) Ds( 4 denote the correlating function evaluated with respect to S(A)
then

Ad - ~ . ,
B_A<¢j1(p1)"'¢jr(pr)>S(A)=O if [pl<A for i=1,...,r

2b) If we know the evolution of (U(f), g(t), Z(t)) with U rotationally symmetric
with respect to O(N), under (2.3), it is easy to add a magnetic field and trace through
the change. Let U () = U + h(t)[ @, (x)d?x = U + h(t)® ,(0). The reader can check
that (U ,,(¢), g*(t), Z(t)) is a solution of (2.3) provided

oh(t) ,(d 1 1dZ
—_=— —— \h—| =— 2h
ot I\ g? h Z dt h+2h,
and assumption (2.6) holds—in fact it suffices that R (0)=0, for then the potential
“cross-term” vanishes. Note that this is solved by
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g2 o,
"Z() ¢

where h, is the dimensionless renormalised magnetic field. In other words, the
magnetic field is not independently renormalised.

2c) If condition (2-6) is not satisfied, we can still evaluate (A9/0A)Z(J) and show
that the result vanishes as A — oo, so that (2-3) is still asymptotically valid. In the
subsequent sections, we shall in fact assume K (0) # 0. Also, we shall also assume F is
C® and has compact support. See Remarks 4b) and 4e¢) for an explanation. Note that
K(x — y) has fast decay and thus no infrared divergences occur in the RG equation
2.3).

h(t)=h,

3. Statement of the Main Result, Preparations for Proof
Note that as claimed in the introduction, the RG flow has the symmetry
(U@, g% (), Z(t)) = (U(1), g*(t), e Z(2))

for any constant o> 0. This is clear from Eq. (2.3) where Z occurs only in the
combination (1/Z)(dZ/dt). This implies that trajectories, modulo this rescaling, are
parametrized by g*(¢) for any fixed ¢, so that we can write

U(g,1) ~ Z g U™(@,1),

n=0

d 3 2n . (n
e (t ~ 3, 907"a",
1 dZ(t) s
R At A PR O C) (3.1)

(We shall prove below that the (1/Z)(dZ/dt) is of order g*(t).) This is, of course, just
a concise way of organising and working with “derivatives with respect to the
trajectory,” the trajectory being parametrised by g*(t) and Z(r). We have suppressed
reference to the initial time ¢t = — T. This we shall continue to do except when
necessary.

We introduce the notation

2,(t) = {set of derivatives of UV, UP,..., U™ on @=v}

() ={a9(),...,a" (1)}

B,(1) = {b9(),...,b" ()}

We set ./, = %, = empty set for n <0.

We have
Proposition. The following inductive scheme holds: for n =0,

) {Ay_1,By—i,D,} () determines {A,,, B,, D, } (1),
i) {,,B,,D,}(t) determines the evolution of {A,, B,, D+, }(t).

It is clear from the above proposition that {<«/,,%,,2,}(t) are determined by
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induction via the evolution equation and the initial condition
U=U@=Af(|®]* - 1)*d*x (3.2)

at t = — T. Note that the initial values of g2 and Z are not involved. We can now

state our main result:

Theorem.

i) For fixed T, {, 1(t), B, 1r(t), Dy r(t)} exist for allt = —T.
i) lim {, (1), B, r(t), Dpn1r(t)} = { L}, B, D} } exists and is independent of t.

T—o
iii) The limit is independent of 4 in (3.2)
iv) a®® = _ N -2
2n
pro N =1 (3.3)
2n

in agreement with conventional perturbation theory, independent of the particular
choice of F.

Remarks.

3a) The theory is renormalised by letting the dimensional coupling constant 1 go
to infinity, while the dimensionless A hits a fixed point under RG. Note the
similarity with the Wilson—Fisher fixed point. In our case however no mass-tuning
is needed.

b) Note that we have not referred to the bare couplings g, and Z, in the statement
of the theorem. Or course since this is an asymptotically free theory it is enough to
choose g, and Z, as given by the two-loop § function to stabilize the flow.

c) The theorem, as it stands, suffices to prove ultra-violet finiteness of Green’s
functions. We give the brief argument, assuming infra-red finiteness. Consider an
invariant Green’s function

x Z=G(X1,V10eees X Vs A).

(A)

0, (x1)0;,(01) - @5,(x,) 95,(0,) D
We assume this has an infrared finite (asymptotic) expansion
Zg* (A" G (X1, V15 es Xps Vs A)-
If A, is any fixed momentum scale, we have
g* Ay = ; An(A,Af)g* (A g™,
so that we can write
G(X1, Y15ee s X Vs AV = ZgH(A )" Gop(X1, Y1505 X Vs A, Af).
By Remarks 2a), 2c)

Aa—iG——m as A— oo,
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and this shows that as A— oo the G, have finite limits.
The rest of this section is devoted to setting up notation and proving the
proposition.

Notation. We first set up notation for functional derivatives of U. Given (j,---, j,),
each 1 < j,< N, and points (x,,...,x,), each x;,eR?, we let

oTu(o,t)
0D;,(x1)--0D; (x,)
We shall let 4 denote the Fourier transform of «. We have
aUu(Q,t)
0®;,(—py)--09,(—p,)

We can write, by translational invariance

ajlmjr(xla"':xr;t) =

d=v

&jl ...jr(pl’ ceos Dps t) = (zn)lr

P=v

&j‘.‘.j,(P1 AR :pr; t) = (2725)25(:21 Pi)ﬁjl--.jr(p25 e ’pr; t)' (34)

We shall let R denote the sequence (1,2,...,r), R’ the sequence (2,...,r),and S;, S,
etc. denote subsequences of R, their cardinality being denoted by |S,|,|S,]| etc.
Thus r=|R|. We will also use the abbreviations jr =(j;,--.,Jj,), etc. Thus, for
example, we can rewrite (3.4) as

Qi (Pr: ) = (275)25(2 pi)BjR(pR'; t)
By the O(N) invariance, the tensors f8;, are in the tensor algebra generated by the
vectors v and the identity operator—a typical such tensor being

t =v;0;:0;

J1izjsjaisie 195243 9jajs Vjs-

We write f;, = Z B2, where ¥ is the component with “a” factors of v in them.

JR?

This is well- deﬁned since tensors with different numbers of “v-factors” are linearly
independent. Thus for ¢ above, t = 2],
By differentiating (3.5) r times, and evaluating at @= v we get:

0 d 1
EﬂjR(PR';t)= (dt 2>[(KE)jR(pR’;t)+Bja(pR’;t)]

1dZ
Z dt [(KE)]R(pR ’ t) + 2U ﬂug(pR’ t) +3 ﬂJR(pR at):l

+2ﬂjn(pR’;t)'— Z lua ﬁ]n(pR 9t)
=2 Dip
p=1,2

2 Pm
meS,

- X K( )ﬂ (P53 DBy (Ps,51)

S;US; =R

[ @ PR (9)Bisj (P> Prs s (3.5)

g
o
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where
if |R|#2
p2)5j1j2 if |R|= ’

This is the basic equation we shall deal with.
Corresponding to the expansion (3.1) we have

0
(KE)j (pr3 1) = {ng"l(

Bilowin = 3, BR(owig™)

The initial condition (3.2) translates into
u(|wl)

— ] 3.6
awjl‘..awjr w v ( )

ﬂjR(PR'Q -T)= ﬂ(O)(pR ;—T)=

independent of p%. for
u(lwl) = A(jw|* - 1)%

We can now give the

a) Proof that (1/Z)(dZ/dt) is of order g*(t): Reading (3.5) to order O for r=1
we get (0/0) B0 (1) = — ((1/Z)(dZ/dr)) O ((2m)*/2)v, B))(0; t) + terms linear in B{(¢).

Requiring B2 (f) = 0 yields ((1/Z)(dZ/dr))® = 0 as long as v;5)(0; ) # 0 which we
shall show later to be the case. W

b) Proof of Proposition: Part ii) is trivial. Note however that an induction on |R|
is required and is possible because the | R + 2| derivative appears in a lower order
in g2(¢). This is in contrast to [9] and a major simplification.

We now turn to part i) of the Proposition. Consider (3.5) for r =1, put % =0
forn <n, j,=1,2,...,N, then:

B(n+l)( = — (1 dZ>("+1)(2n)2

Z dt . B9(0; t) + terms showing b(?,... b~V

1

[ @2pR(p)BE, (p,0;t) + terms linear in B+ V().

L1
(2n)?

Requiring %+ V(t) = 0 yields b™(p).

A similar proof now works for a®(t). W

4. Convergence of U

We adopt the notation g, (pg-; 1) = B9 (pg.; t). We have

JR

oo
’R —Eprit)=-Y pZu—ajR(pR'; t) + 20, (pr:3 1)
Lu aplu

-2 ZZI; K(Pz)o'ijl(l’z; 1)0;nus(Pr31)

)

_ Z K<
S;uS,=R meS
IS1h1S5122

P )a,-jsl@s,;t)a,,-&(psl;t), (1)
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where we have used the fact that for S, =R\{l}ﬂijsl(psl;t)= Bira.,Pr> 1) with
jrap =(j1s jas---»i--- j,) with i in the I'* place. This follows from

8, i, P P1s e By PR =Gy i (P1seevs Piseees Prs D)y

where the * over p, or j, means that it is omitted.

Before we state the main results of this section we set up a little notation: the
letter € will denote a “varying constant.” independent of ¢, but in general depending
on the order of perturbation in g?> and number of derivatives. We will fix the
constant b (to appear soon) in a while; it could, for example, equal 1.

We shall also make a translation in time so that — T'—0. Thus convergence
will be achieved if ¢ — oo rather than T — oo for fixed .

Lemma 4.1. There exist ¥, such that |6;,(0;t) — o%| < Ge ™™

Proof. Let 0;,(t) = 0;,(pr- = 0;t). Then

a_gz—R(t) = 20'1’3 - Z K(O)o-iis‘(t) s, ®).

S;uS,;=R
It is easily verified that this is solved by

_ Ou(lwl,9)
Jr@) 5Wj' .. 3Wj,

with

ou

ou A
E(IWI,I) =2u _K(O)<@IWI

2
) . u(lwl,0)=A(lw|* = 1)%
One can show that u—((jw| — 1)2/212(0)), but we shall only show convergence of
derivatives at |w| = 1 since this is easier, and illustrative of what follows later. Let
"u

dn(t) = W

lwl=1 ’
We have then
dd, (?)
dt
and since d,(0) =0, we have d,(f) =0 for all £ = 0. Again

dd,(t)
dt

=24, (1) —2d,()d, () R(0),

=2d,(t)(1 — d, (1) K(0)),

which is solved by

N CeZt
K(0)d, (1) = 13 Co™
Note that d, —d¥ = (1/K(0)), and
|dy(t) — d5| < Ge™ ™.

We shall choose b to be a constant such that 1 <b < 2.
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We show by induction that the higher derivatives converge: d,(t)—d¥,
|d,(t) — d¥| < Ge ™. In fact d* = 0 for n = 3, but we will not use this. The evolution
equation for d,(t), n =3, is

Y20 24,0~ 2R O)d(0,0 + 6o,
n-2 _
6.0 =%, RO} Jdter0do-r11 00, @2

Assume |d, (t) —d%| < Ge™" for n’ <n. Then G,(t)— G*, |G — G*| < e "
We can write the solution to (4.2) in terms of

4.3)

(@ 1+ Ce*\"
0,(t) =exp 2n g K(0)d,(s)ds = <_1T6_> ]

Then

d,()=e*0, 1(t){i e~ 2°0,(s)G,(s)ds + d,,(O)}
0

: 14 Ce>\" 1+ Ce?\ "
— —2(s—-1) 2t
ge <1+Ce2‘) F,(s)ds + d,(0)e < T1cC ) .

From this it trivially follows that if d}f = G¥*/2n — 2, then
|d, () —d¥| <%e™®. M

Remark 4a). The above convergence was first observed as the local approximation,
cf. [7].
We now prove convergence of o;., |R| =2, at nonzero momenta.

Lemma 4.2. Let us write 0;;,(p;t) = o(p; t)v;, v}, + A(p; 1)0;,;,. Then A(p;t) =0 and
a(p; t) — o*(p) uniformly on compact sets.

Proof. The evolution equation for g;,;, is

d G R
o OB 0= =5 9P 1) + 20;,,(p; 1) = 22X K(p)0;.i(p; )03, (5 8),  (4.4)

and the initial condition

ajsz(p; 0) = SA,UJ" sz‘ (45)
Equation (4.4) and the initial condition (4.5) imply A(p;t) =0. We can now write
2 olE50)= ~ p 5ot + 20050~ 2K () 030 @6

which gives

0 1 2

— =— + 2K (ped).
0s a(pe’;t +s) a(pe’;t +s) pe’)

This can be solved to give
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1 — 1 -2t ¢ A — 1 -2t 1 —-t

O.(p;t)_a.(pe—t;o)e +2e'[:K(qp)qdq—ge +;2—{F(pe )—F(p)}a (47)
where the last equation holds for p #0. (cf. definition of K, Eq. (2.2)). We shall
now prove convergence, with

1 N 2 P
o*(p) ' =2 (5) K(qp)qdq = §, K(g)qdq.

We have, for p ranging over a compact set, trivial inequalities |o(p, 1)| < Ge* %,
and |(1/0) — (1/0%*)| < %e™ 2" which give

1

|o —o*| =|oo*| e <¥o*, 4.8)

which in turn yields

1
lo —a*| slo*|(lo*| +]o —o*|)|=—— | S Glo*|?e™>. W
g O

Remarks.

4b) The expression for o* shows the necessity for the assumption K(0) 0. But
for this the limit 6* would be + oo at some points. This can probably be interpreted
as a d-function constraint on the low-frequency components of the field, and in fact
the convergence on higher orders will hold unchanged since in their evolution
equation o(p; t) only occurs in the combination K(p)o(p; t) which has a finite limit.
4c) a(0;t) = d,(t) in the notation of the proof of Lemma 4.1.

4d) Note that ¢ satisfies

lol <€(1 +p?). (4.9)

4e) In deriving (4.9) uniformly in p we have used the assumptions that F is of
compact support. This inequality will enable us to apply the dominated conver-
gence theorem.

Lemma 4.2b. Let Do;

i1y, denote any momentum derivative of o;

Ji.j2*
c1+c2

Do, ,(p;t) 05,5, (P3 0). (4.10)

B 0p1¢10pyc,

Then Do; ;,(p;t) —— Do, ;,(p) uniformly on compact sets. Also
t

J o Ji.J2
lDijjzl é(g(l +p2)‘ (411)

Proof. It is enough to show pointwise convergence and the bound (4.11). Also it
is enough to show convergence on [0, co] of o(|p|, t) and its derivatives and bound
them because for finite time these are smooth functions of the two-momentum p.

By differentiating (4.7) with respect to p, and noting that o(p;0) is a constant,

1 -~
o) = —20" | K'(gp)g’ds,
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which shows pointwise convergence as well as

1

, Co
0. S 7

<%0 +p).

Differentiating further and by induction we are done. In fact, the bound (4.11) can
be much improved. H

We next prove convergence of the second p-derivative of o}, (pg/;t) at pg. = 0.
For any function f of pg. let

r azf
2 Z 0Py, 0D,
Lm=2 OP1uOPmy | (pg.=0)

Also recall the notation from Sect. 3: ¢} denotes the component of ¢;, what ‘@’
factors of v. From (4.1) we get

f(pR )_ plupmu'

oAl it
Va0 _ 20K 0)0()%2 03 ) + Riles ), @12)
where R¥(¢) is a quadratic function of ¢, (0;1), |S| <|R| and 6 b<a,l|s|<R
Lemma 4.3.
i) Let |R|>2, a= 1. Then &% (pg.;t)— R /2a. In fact
Riar
8 pas) V)| < gy e, @13)

where |py|* = }: pi-
il) There exlst 6% such that |8 (pg; 1) — ' (pr)| < €lpr*e ™
Proof. We work by induction on |R| and a. Assume that
|6, — 6% S Blps|2e™™ for |S|<R
and
|te] — glek| < Elpg|*e™™ for d' <a.

Assume now a>0. For a=0 we require a different argument which we
postpone. From (4.12) we have

t ~
6L (prs ) =0, (1) g ds,(s)R}(s)ds,

where

1+ Ce”)“

0,(s) =exp2a (j: R(0)a(s)dl = ( TC

We now imitate the proof of Lemma (4.1).

We now turn to case a =0.

For R odd the result is vacuously true. Consider the case R even, =4. From
the O(N) invariance of U(®,¢) it follows that for any antisymmetric ¢; we have
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8ijvi&jj2~--jr(09p2 pr,t) 112 1]3 j(pZ’ 7pr’t)+8113 jaijz ]'(pZ’ ’pr;t)
+ o+ 8,8 i(Pas e P ). 4.14)

By induction on r the left-hand side converges. Letting ¢;; = 6,0, — 0;,0; for
fixed I,m, we obtain one convergence of v,py, .; (Pr;t)— v,ﬂmjz_“ (PR3 1) when

Y. p=0. Since these are linearly independent tensors we get convergence of
leR’

UmBy,...;,» and hence of B2l when ) p,=0. This implies that B! converges when
leR’

at least one of the p;, [eR’ is zero. Since |R| = 4 this suffices to prove convergence
of B;.(pg:; ) for arbitrary p,.. W

Remark 4. b) The proof of part ii) of the lemma is written, and works, to all orders
in g2. We shall refer to this as the “invariance argument.”
C) G;g is quadratic on momenta; so a bound similar to (4.11) is trivial.
We can now complete the proof of convergence of o;,(pg;t). Let D=
0'P\jopds,, - op. Zd =|D|. Then
Lemma 4.4. Do, (pg:;t) > D%, (pg) uniformly on compact sets. We have the bound
1D (PR3 ) S G(1 + | pre|?)- (4.15)

Proof. Let pj (pr;t) =0, (Pr:; 1) — 05, (05 1) — 6 (PR3 ¥)-

In view of our earlier results we can assume [R|> 2 and it is enough to prove
the corresponding results of the Lemma for p;, . Also it is enough to prove pointwise
convergence and the bound (4.15).

We assume the results for |S| <|R|, and work by induction. First, suppose
[D|=0. We have (defining R, in the obvious way)

0P (Pr:3t) 0
ﬁ%—_zplua pJR(pR ’t)+2PJR(pR at)

- Z K(pl)aijz(pl; DPjranPr3t) + R (Pr:3 1),

which we rewrite
apR S. _ A S. R S.
TR et +9)= —(ApR)Prest+ 9+ Ralpp st +5),  (416)

where we mean by pg the vector {p;. }cquencesjr and

(A(Pr;3DpR)ie =2 Y. K() 015,013 )Py — 20;r-
We have then

1
Pr(Pri;t) = (,g ‘E'(pn,;z)(S)RR(pR'e_s? t —s)ds, 4.17)
where

oy 0 3
- (PRI';K)(S); d t)(s) - A(pR’e ,E— S),

Eiprn(0) = 1.
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Note that we have |R; . (pg ;1) < | pg.|* for |pg/| bounded, where ¢ may depend
on the bound on |pg/| but not on ¢. (This is because R;, is of O(p%) for fixed ¢,
and derivatives converge uniformly on compact sets by the inductive assumption.)
Also R;.(pg;t) = R¥, (pg-) pointwise by induction. By Lemma (4.2) b

B 527 E 1 )
Since — A4 =21 — (positive operator) we have
I B ) | < €.

We can now apply the dominated convergence theorem to (4.17) to conclude
that pr(pg-;t) converges pointwise.
We will now prove the bound

e (PR I S E(L + | prrl?).
We write the solution of (4.16) in the form

i~ t S~
pr(pr€,t)= e?51 (pr-€',t) g e 2SE(PR' €, 5) R (pg-€°, 5)ds, (4.18)

where

—_—— 0 — % s s
(.»_1 l'a;':PR). (pr€’,s) = (BpR')jR =2 Z K(p,e )O'ij.(Ple aS)P;R,(,i),-

JR leR

Since B is a positive operator, || Z(pg-€°,s)| increases with s. From (4.18) one
can estimate

t
llpr(pr-e, @) = (g(j ez(t_s)e“h)lpx'lz = (gll’R'|ze+2t, t>0,
0
where we have used the inductive assumption to get the bound || Rg(pg — )|l <

%|pg/|? for large |pg-|2. The last inequality can be rewritten

I pr(Pr; )|l £ €lpr|* large |pgl?

which is what we want.
The proof for derivatives proceeds similarly. One applies D to (4.1) to get, for
suitable B and R}

0
= (Dpg)(pr-€’,5) = — (D — 2)Dpg((pr-€’,5) — BDpg + RR,
Js

which can then be treated exactly as above. W

5. Proof of All Orders

For the most part the proof follows the lines of the previous section, so we give
details only where necessary.
Recall the evolution equation of §;,, (3.7)
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ﬁJR

d
(pr; )= ( T ‘g‘15>[(KE)jR(PR'§ £) + B (Pr31)]

1dz N )
_Z E[(KE)jR(pR’; t) + 5ﬁijg(pr; t) + EﬂjR(pR'; t):]

+ 28, — z Pz i)

. ,g(
SjuS, =R
g’ -
2 e -
+ (2n)2 jd pK(p)ﬁiUR(p>pR’ t)
We have, by the definition of (1/Z)(dZ/dt), B;(t) = 0. Also, writing as before,

Bj.i.(0; 1) = B(p; t)v;, 0, + Bs(D; 1) 05,5,

In variance arguments show that f,(0; ) = 0, and the definition of (d/dt)(1/g?) gives
Bs(0;2)=0.

Writing f;, =Y ¥ g*" we show convergence by induction on n and |R|. Note
that we already have the desired convergence for f?. Suppose now n > 1, and we
have shown convergence of % for [S| <|R| and all n, and S = R,n’ <n. We write
(for suitably defined R$?)

)

meS1

P )Bi,s,(psl; 0By (Ps;31)

ﬁ(")(PR > Z Dy

a 1)+ 280 (prist)

-2 IZR, K(pl)aijx(pl; t)ﬁyg(,_,-,(l’x'; )+ Rﬁ';’(le; 0. (5.1

The proof of convergence differs only in the following points:

i) Convergence at 0-momentum. Here we adopt a strategy different from the
proof of Lemma 4.1 because we can no longer simulate the problem by the local
approximation. We follow instead the route of Lemma 4.3. We write

R
BY2O; 1) = B(r) = Z:O Bix(mlale

and do an induction on a. The cases |R| even, a =0 and |R| odd, a = 1 are handled

by invariance arguments. We give the argument for |R| odd, a = 1. From (4.14),

with p;=0, we get by induction on r, the convergence of &;v;BM! () —
ﬂ("’[” (). From this we see that ™! converges provided r = 3. For r=1 the

requlred convergence follows from the definition of Z. For a > 1 we have

P (0= 2890) — 2aR 00 (0)10)+ R0

and since K(O)a(t)—» 1, arguments as before apply.
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ii) In the inductive proofs we have as part of the remainder term R{? the integral

I™(pgst) = [ d*pR(p) %P (P, Prrs t).

We can use the fact that K has compact support to see that I converges pointwise
and that the bound

|BiR(pr; )] = €(1+ | prel?)

iterates. The same holds for derivatives of f;,,.

iii) The proof of convergence of ¢ ,n>1 is no different from that of %),
|R| > 2. Note that the only place where this would not work is at the O(p?) level
where the invariance argument would not work for f¢. But the definition of g2
takes care of this.

iv) Finally, the definition of Z and g2 involves differentiating integrals of the
type I™(pg; t) above under the integral sign. The compact support of K and the

bounds on derivatives make this possible.

The theorem is proved. M

Conclusion

i) We need to ask why the theory we have renormalised is the O(N) o-model. The
reason is this: for arbitrary 4>0 in the bare trajectory, we obtain the same
renormalised trajectory. But for A large this approximates the conventional bare
trajectory since the fluctuation of the field is concentrated around the sphere, and
also because leading behavior of the bare charge and wave-function renormalisation
(Theorem (iv)) is the conventional one.

il) Our approach to the o-model is global (in contrast to usual treatments) but
not intrinsic since we have chosen a particular embedding of S¥~! = R". But this
corresponds to choice of fundamental fields which is in any case inevitable.

iii) Note that the renormalisations are not canonically separated into a metric
(“charge”) and wave function renormalisation. In fact for a general submanifold
M < RY if we repeat the above procedure with the replacement

sz( 2_ )Zdzxe 45 [ Fp)aix

with dF = 0 defining M = R", we shall find that the RG flow deforms the minimum
manifold M in nontrivial ways.

iv) The specification of a continuum field theory as an “inverse limit” of cut-off
theories given by the renormalised trajectory is ideally suited to the study of
topological effects since the cut-off fields have good differentiability properties
which make the topological terms well defined. In particular, one might investigate
sigma models with Wess—Zumino terms.

We briefly indicate how this may be done for the O(4) sigma model, which is
also the SU(2)-valued model. The field @ is R*-valued; we add to the action a
term 27ninW Z(®) defined as follows. Given a map R? - R*, constant outside a

compact set, nowhere zero, WZ(®) is defined by extendmg this to a map @ of
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R3 = {x, y,t|t = 0} which is constant outside a compact set, and setting
WZ(®)= | &*, (6.1)
R}

where 7 is the 3-form on R*\{0} obtained by pulling back the volume-form on $*
(normalised to give total volume = 1) by the obvious retraction R*\{0} — S3. This
additional term is only defined mod Z, and is not defined for all maps R? — R*,
But with suitable cut-offs exp in2nnWZ(®) will be defined a.e. in probability. We
will need only

.
5WZ(¢) == O(Bijqu)—iax ¢kay ¢16¢i’ (6.2)
where o is a constant determined by the normalisation. We can now write the RG

flow for the potential U, + 2ninW Z(®):

oU (D, 1)

Framm (as before)

U & @(y)0x D, (y)0, D(y)
0D;(x) D*(y)

— 2(2nin)g? | d*xd* yK(x — y)

& D; (x)0, D (x)0 y D (x)
D*(x)

+ (2min)?g* [ d*xd* yK (x — y)

SEijrer (Dj'()’)ax D (y)0,(y) ]
D*(y)

One can now proceed as before and prove the perturbative existence of the
renormalised trajectory. This theory is not the Wess—Zumino—Witten model, but
is asymptotically free in the ultraviolet and conformally invariant in the infra-red.
It would be interesting to see if a nonperturbative study of the above flow,
incorporating anomalous dimensions could yield the WZW fixed point [15].

We remark that the last term on the right-hand side of (6.3) has the effect of
concentrating the field on one-dimensional submanifolds of S3. This, we believe is
an intriguing signal of the fact that WZW models with values in a group are the
“same” as sigma-models with values in the maximal torus.

v) Finally, let us point out that the perturbative expansion implemented in
this paper is just what one needs in the so-called “small-field region” of rigorous
RG theory (see e.g., [5]). For a nonperturbative control of the Ay — oo limit one
needs suitable stability estimates in the “large field region.” The large field problem
in this model is now under investigation.

(6.3)

Appendix A. The Leading Coefficients of the Beta Functions

We will first evaluate certain expressions involving %, = Bj.‘;’*, |R| = 3,4, and use
these to determine a‘® and b©. Recall B, (p) = o*(p), and we use the notation
a(p) = o*(p) in this Appendix.
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i) Write
0}1j2i5(P25 P3) = B1(P2, P3)v), 65, + B1(P3, P1)v),0)55, + B1(P1,P2)0;,0),,
+ B2(P2’p3)v}1 v}z”}a‘
We have, by looking at the v;, 9;

i»j» component of (4.1) for |R| =3, t= o,

0 N
PtuaBl(Pz’Ps) — 2B, (p;,p3) + 2B, (p2, p3)K(p, + p3)a(p, + p3) =0.
ln
This is solved by
Bi(p,q9)=0a(p+9). (A-1)

The overall constant is fixed by invariance, i.e., by studying (4.17) for r =3, p,;=0.
We also have, using A-1.

Ptua—zl_Bz(Pz,Pa) —2B,(p3,p3) + ZBz(Pzaps)[zi: K(Pi)U(Pi):l

+2K(py)o(p,)[6(py + p3) + 6(py + P3)]
+ 212(1’2)0'(1’2)[0(1’2 +p;1) +o(p; + ps)]
+2K(p3)o(p3)[0(ps + p1) + 6(p3 + p3)1=0.

We will need B,(p, — p). If we specialise the above equation to the case p; =0,
a little guesswork shows

B,(p, — p) = —(a(0) + 20 (p)). (A-2)
ii) We will need a certain expression (see below) involving the fourth derivative.
We write.
Gjirisis(P2>P3>P4) = D1(P2,P3,P4)9},;,05,5, +( )+ ()
+ D, (P2, P35 P4)0;, 05,655, + () +( )+ () +( )+ ()
+Ds(p2’p3’p4)vilvjzviavi4'
We will need F4(p), where
F(p,q)=ND(—-p,q, —q9)+ Dy(p, —p, —q) + Dy(— ¢, — P, @) + D2(— p,q, — )
=NDy,+Dyy+ Dy + Dy
and
FA(p) = AqF(p’ q)|q=0'
We have
g 4 0 A 2@
pa—lea =0, Pé‘pr +24,(0*K)=0.

By appealing to initial conditions and by guesswork again (the prime “” denoting
differentiation with respect to p),

D4 =0, be=a"+%sA , Dg,,=a"+";. (A-3)
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Again , by looking at the v;,v;,0;,;, component we get
6D 2d 2
p——+4D% K(p)a(p)+4(A R)e*(p) =

We give the solution:

2K'¢’ 4('K' + oK)

D4 =" -
24 7 &p

(A-4)

We finally have

a 2K’ 4(oK)
FAp)=2|o"+— |+—5———5—.
@ (a p ) K Kp

iii) We are ready to compute the wave-function renormalisation to leading
order. This is given by

d

L pn_o

o B =0:
From (3.1) we get

‘°’ ~0;;(0) =

1 N
2n)? .‘.dszQ’)aiij(ps 0).
The results of Ai) show (recall ;;(p,0) = 0;;:(p, — p))
741(p.0) = {No(0) + (p) + 0(p) — (o(0) + 20(p)}v;.
Also v;0;;(0) = 6(0)v;, so that ﬁnally

SV e (N-1)
I 2 JaER @n)

p© —

using the definition of K.
iv) We turn now to the computation of a‘®. We use the definition of the g?
flow, Eq. (3.1), and the results of Ai) to conclude

©_ VWU 2 1
a 2n )2 {d pR(p)
We can now use the computation in A ii) to conclude that
—(N-2)
©) —
4 2
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