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Abstract. In this paper, we define excited states for Coulomb systems in the
Hartree-Fock approximation as minima of the Hartree-Fock energy on a set of
constraints depending on excited states of the lower energy. There are several
ways to define such a procedure: we study four of them and prove an existence
result for these excited states.

1. Introduction

We present here an existence result for a class of minimization problems related to
excited states in Hartree-Fock (HF) theory. We consider the standard description of
non-relativistic electrons in a coulombic field. The TV-body Hamiltonian is then

H= Σ (-AXi + V(xt))+ Σ Vis*-*, l
ί=l,N l^Kj^N

with

V(x)=-Σ Zj/\x-Xj\, (1)
j — 1, m

where m ̂  1 is the number of nuclei and Zj > 0 and Xj are respectively charges and
position of nuclei (xt denotes the position of one particle in R3). Furthermore, we
denote by Z = Σ Zj the total charge, where N is the number of electrons.

7= l,m

We assume in this paper Z ̂  N. As usual, H acts on L2

a(R3N) (antisymmetric
functions of L2(R3N). We neglect the spin dependence but everything we say below
may be trivially adapted to spin dependent functions.

There is a functional called the "energy" which is related to H; it is classically
defined as follows:

E(φ)= J f | V φ | 2 + f Σ W+ Σ l/\xi-xs\}\φ\2}dx = (φ,
K 3 * \ \ i = l J V I^KJ^N ) J

with φ€H1
a(R

3N). (2)
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In other words, an energy is here the quadratic form associated with the self-adjoint
operator H. The functional E completely describes the system.

We notice that φeL2

a(R3N) is a priori complex-valued. Nevertheless, since we
are interested in the spectrum of H and since H is real and self-adjoint, we can
deal with real-valued functions.

Unfortunately, the study of £ on L2

a(R3N) is hopeless for N ̂  2 and approxima-
tions are needed. The so-called Hartree-Fock approximation is the usual approxi-
mation in atomic and molecular physics. See Cowan [1] for the practical use of
this approximation in computational physics.

The basis of the method consists in restricting the study of £ to a subspace of
L2

a(R3N) sufficiently large to provide good estimates but sufficiently tractable
to allow numerical computations. This is the space of Slater determinant wave-
functions SN, so that

where

φieH\R3)\/ί and (φi9 Ψj) = δtj V/j .

Now E restricted to SN may be written E(Φ) = E(φ1? φ2, - - φ^\ where

E(φ ι,φ2,...φN)=

Π ((p(χ)p(y)-\p(X,y)\2)/\χ-y\)dxdy (3)
? 3 x t f 3 /

where we employ the notations p(x) = ]Γ φi(x)2, p(x, y)=
l, N

(Recall we are dealing with real functions.)
This functional is defined on the set

(4)

The derivation of (3)-(4) from (2) may be found for instance in Lions [4].
Lieb-Simon [3] show the existence of a ground state of (3)-(4); Lions [4] gives

various proofs of this fact and defines excited states as critical points of E.
In this paper, we define excited states in another way as solutions of successive

constrained minimization problems and we show the existence of such excited
states. On the other hand, we define another class of minimization problems related
to the sum of the Mth first eigenvalues of H and show an existence result for these
problems. We follow the method proposed in Lions [4].

2. Minimization Problems and Existence Results

We consider four minimization problems, which consist in minimizing the func-
tional E on various sets derived from SN. The purpose of these minimiza-
tion problems is to provide approximations for the energies of the excited states.
The idea is that if we minimize the function E on the set of normalized Slater
determinant wavefunctions which are orthogonal to the approximate ground state,
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we compute an approximation for the first excited state. Nevertheless, there are
various ways to iterate the procedure. We study two of them, which we denote
by Pί(K, θ) and P2(K, θ). On the other hand, we remark that from a mathematical
point of view, the determination of the Mth first eigenvalues should be transformed
into the determination of the successive sums of the Xth first eigenvalues for every
X ^ M. This reformulation of P±(K, θ) and P2(K, θ) provides two other minimiza-
tion problems, P4(K) and P3(K); but the connections between these problems and
P1? P2 are nontrivial. Nevertheless, it is easy to see that the last two approximations
are the best ones, but they are much more expensive if we want numerical results.

Let us explain in detail now how these different methods arise. Assume that
we have determined M — 1 Slater determinant wave functions, Φt = (φί7 ) 1 rg i ̂
M — 1, 1 ̂  j ^ TV. We want to determine a normalized Slater determinant wave-
function Φ, orthogonal to the M — l(Φj). A tractable numerical method should
transform this global orthogonality condition into an orthogonality condition on
the one particle wavefunctions. It is this tractable constraint which induces the
nonuniqueness of the procedure. Indeed two nonequivalent orthogonality condi-
tions are:
1. InP l 5 we assume that each single-particle wavefunction of the Slater deter-
minant we are minimizing is orthogonal to one single-particle wavefunction of the
M — 1 Slater determinants already determined. So, we write for P^K, θ\

P1(K9θ)\(φl9φ29...9φN)eK

l(θl,φi) = 0 for all U

where θ = {θt} is a given finite set of functions of H1(R3)
The M th Slater determinant is determined by considering the finite infimum

Min {P^K, θ)/θ = {φm} 1 g / £ M - 1, 1 ̂  j(l) ί N}.

2. In P2, we assume that one single-particle wavefunction of the Slater determinant
we are minimizing is orthogonal to each single-particle wavefunctions of the M — 1
Slater determinants already determined. Thus we write

f I n ϊ E ( φ ί 9 φ 2 9 . . . φ N )
P2(K9θ)i(φl9φ29...φN)eK

((θp,φ1) = WlθpεH1(R3) 1 ^ l^L= N(M - 1).

So the Mth Slater determinant is determined by solving P2(K, θ) with {θt} = {<gy}.
Next, the reader should recognize in P3(M) defined below the minimization problem
of giving an approximation of the sum of the Mth first eigenvalues related to P2>
whereas P4 is related to P1?

(Έ3(M) =

P (M} i=1'M3

JE4(M) = lnϊκ'M J£ E(<p ί l9 φi29 . . . φίN)
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Let us emphasize here that P3 and P4 are distinct problems due to the fact that the
constraint sets in these problems are distinct.

It is clear that from a numerical point of view, the formulation in terms of P2

or P1 is more tractable, the most efficient one being P2. On the other hand the
best results will be obtained with the formulation in terms of P3 or P4. Indeed
we have the two inequalities that are easy to prove with the definitions of the
constraint sets for the four problems:

X E2(i)<0,
i=l ,Af

z=l,M

The main result of our paper is an existence result for these problems.

Theorem 1. We assume Z^N. Then every minimizing sequence of P^ or P2 is
relatively compact in H^(R3)N. Every minimizing sequence of P3 or P4 is relatively
compact in (H1(R3))MN and thus, each of these problems admits a minimum.

Remarks. 1) We use here without proof two properties of E which are proved in
Lieb-Simon [3]. Namely, E is bounded from below on K and, E is lower semi
continuous on Hί(R3).

2) The physical situations that are enclosed in our result are neutral or positively
charged systems.

3. Proof of the Theorem

Sketch of Proof . In the four cases, we follow the same method.
Step 1. A minimizing sequence for P(=P1,P2,P3 or P4) is perturbed with a

method due to Ekeland [2] in a way such that each element of the perturbed
minimizing sequence should be seen as a minimum for a perturbed problem. Of
course, the perturbed sequence is a minimizing sequence for P again.

Step 2. Writing the non-negative Hessian condition for a perturbed problem,
we deduce some bounds on the eigenvalues of the matrix of the Lagrange
multipliers.

Step 3. Step 2 yields the compactness needed and the conclusion is then standard
in view of the properties of E recalled above.

Before proving the theorem, we recall a general lemma. (See Lions [4] or the
appendix for the proof.)

Lemma 1. Let μ be a bounded non-negative measure on R3 such that μ(R3) < Z. Let
Hl be the Hamiltonian given by

Then H1 admits an increasing sequence of negative eigenvalues λn converging to 0
as n goes to oo.

Finally, we detail the proof for P2 only: the reader will convince himself that
this proof may be easily adapted to the three other cases.
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Proof of the Theorem. Let (φ"i)ι<ί<N ^e a minimizing sequence for P2 We use
the general perturbation principle due to Ekeland [2], as in Lions [4], and we
build another minimizing sequence (φni)ι<l<N for P2 such that \\φni — φnt\\L2~*Q
as n goes to oo and (φn

i)ί^l^N is a minimum of the functional

E ( τ l 9 τ 2 9 . . . τ N ) + μn Σ ||τ£- φn

t ||L2, (5)

with μπ>0, μπ->0 as n goes to oo. So we can write first order conditions and
"non-negative Hessian" conditions verified by (φni)ι<i<N, minima of (5). These
conditions may be written

φ\ + (pn*l/\x\)φ"i- J pn(x9
Ri

Σ α"^/)-+° in L2(R3) V i ί^i^N (6)

( 5 l f = l if i = l , 0 in the other cases and et is the vector with components

δtjl^j^N).
These equations are generalizations of standard HF equation. We recall the

notations: pn(x, y) = Σ <Pni(x)<Pni(y) an<^ Pn(x) — P"(X> x) = O An is the symmetric
ί=l,N

ihmatrix of Lagrange multipliers associated to the nih perturbed problems. We say
that (φn

i)l^i^N is a minimum for (5). Thus the Hessian of (5) is non-negative along
an admissible direction. Indeed (after a lengthy but straightforward computation)

Σ ί ( |Vχ I-| 2 + F(x)|χI.|
2 + (p"*l/|x|)|χ ί |

2)^+ J (Anχ9χ) + μn(χ9χ)dx
i=l,NR* R3

- Π P"(χ,y)χ(χ)x(y)/\χ-y\)dχdy
R 3 χ R 3

+ 1/2 JJ (\Kn(x9y)\2-Kn(x)KΛ(y))/\x-y\dxdy^09 (7)
R3xR3

provided χ satisfies χίEH1(R3) for every i and

fo*j) = 0 ϊ V j

ta,^) = 0 V i , j

(a,^) = 0 V i , / ,

with the notations K"(x,y)= Σ ΦniWXί(y) + <Pni(y)Xi(χ) and XM(x) = Kπ(x,x).
i = 1 ,JV

Notice that the vector space on which the hessian of (5) may be negative has
dimension at most NM. Let en be the normalized eigenvector corresponding to
ε", the smallest eigenvalue of A". Let χ = θe" with (θ, φ"j) = 0 V j and (Θl9 θ) = 0 V/.
Then we have as a special case of (7),

+ μJ0|2}^^0. (8)

This inequality is deduced from (7) with χ = θen, because we have

JJ pn(
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and
JJ ((\K"(x, y)\2- K"(x)K"(y))/\x - y\)dxdy ^ 0.

D * „ D3

The first inequality is standard (l/|x| is a positive type distribution), the second
one is an application of the Cauchy-Schwarz inequality and is proved in Lions [4].
Now, assume extracting a subsequence if necessary, that limsupπ( — (εn + μπ)) ̂
0. We can assume without loss of generality that limn(—(εn + μn))^Q. On the
other hand, the sequence pn(x) is strictly bounded in Ll(R3) by N, and for every
n the function pn(x) is nonnegative. So there is a non-negative measure p such that
pn converges toward p (extracting a subsequence if necessary) in the weak topology
of M(JR3). Furthermore, p(R3) < N. Then, passing to the limit in (8) provides the
following estimate

3 dx^O. (9)

Indeed, we have

l(p"*l/\x\)\θ\2dx =
R3 R3

and I #|2* 1/| x \ is in L°°(#3) for θeH^R3). (Recall the well known inequality 1
C|0 | 2 |V0| 2 .) From these facts, we deduce

lim J ( p n * l / \ x \ ) \ θ \ 2 d x = J (p*l/ |x |) |0 | 2 dx as n goes to infinity.
Rl R3

Let //! be the operator defined by the formula

The estimate (9) tells us that if Z > N, Hv has at most a finite number of negative
eigenvalues, an assertion which is in direct contradiction with Lemma 1. So

limsup(-(εΛ + μn))<0.

This yields for n large enough the inequality

β" + μn ̂  κ> 0. (10)

Since μn ->• 0 as n goes to infinity, we deduce that for n large enough there exists
an ε > 0 such that εn ̂  ε > 0, so An is a positive matrix. Now, multiplying (6) by
φni for each i and summing on i give the estimate

ί=l,NR3

ίί ((P"(-

with αw -> 0 as n goes to infinity. So, Tr (An) is bounded in R +. Recalling (Lieb-Simon
[3]) that minimizing sequences are bounded in H1(R3)N, we deduce (extracting a
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subsequence if necessary) that

φn

ί^φi (weak) in H1(R3),

An->AmL(RN),

and ε, the smallest eigenvalue of A9 satisfies ε > 0.
Now, we can pass to the limit in (6) and we deduce

R3 II = I,L
(11)

The α, are the limits of the sequence (απ

z), which is bounded in R for each /. To
see this, we have just to multiply (6) by 0Z and integrate: the result follows
immediately. On the other hand, multiply again (6) by φn

i9 sum on i, and pass to
the limit to obtain the identity (the convergence in (6) is strong)

limsup J (Anφ\φn}dx= - \\irninf J £|Vφ^ 2+V\φn

i\
2)

n R3 [ n R3 i

+ JJ ^(pn(x)pn(y)-\p^x9y)\2)/\x-y\dxdy\.

By the same arguments as the ones used to show that E is weakly lower
semicontinuous on H1(R3) (see Lieb-Simon [3]), this yields

limsup J (Anφn,φ")dx^ -< J £(|Vφj| 2 + 7|<p ί |
2) + JJ (p(x)p(y)

-\p(x,y)\2)/\x-y\dxdy\=$3(Aφ,φ)dx.

Hence, φn

t converges strongly in L2(R3) to φt, and it is easy to conclude the proof
of our theorem.

If Z = N, we just have to modify slightly the above argument by passing first
to the limit weakly in Hl(R*). Then the operator H = -Δ + 7 + (p*l/ |x |) still
has at most N + K eigenvalues less or equal than — ε, ε defined as below. Now if
J p = N this means that φn

{ converges strongly in L2(R2>) to φί9 and the proof is

over. Otherwise, we apply Lemma 1 to show that ε > 0; this enables us to conclude
as before.

Appendix. We rewrite the proof of Lemma 1 from Lions [4].

Lemma 1. Let μ be a bounded non-negative measure on R3 such that μ(R3) < Z.
Let Hί be the Hamiltonian given by

Then Hί9 admits an increasing sequence of negative eigenvalues λn converging to 0
as n goes to oo.

Proof. It is enough to find for each integer k a subspace of dimension k which
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we denote by Fk, such that Min {(H^φ, φ)/φeFk, || φ ||2 = 1} < 0. To find such a
Fk9 we consider an arbitrary normalized function

φeD(R3) and we set

φσ(x) = σ~ 3/2φ(x/σ) for σ > 0.

Then we have

where Vσ(x) = — £ Zj/\x — (Xj/σ)\ and μσ = σ3μ(σj. In particular, if we choose
j= I » Ή

φ to be radially symmetric, we may write the last term as

f ( μ σ * l / \ x \ ) \ φ \ 2 d x = S ( \ φ \ 2 * l / \ x \ ) d μ σ
Ri R3

\φ(y)\2m^(\x,\y\Γldμσ(x)dy

Now choosing any fe-dimensional space of radially symmetric functions in
D(R3) and denoting Fk the space obtained by rescaling them (φ -> φσ) as above,
we obtain the result for σ large enough.
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