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Determinants of the Laplace and other elliptic operators on compact manifolds
have been an object of study for many years (see [MP, RS, Vor]). Up until now,
however, the theory of determinants has not been extended to non-compact
situations, since these typically involve a mixture of discrete and continuous
spectra. Recent advances in this theory, which are partially motivated by
developments in mathematical physics, have led to a connection, in the compact
Riemann surface case, between determinants of Laplacians on spinors and the
Selberg zeta function of the underlying surface (see [DP, Kie, Sar, Vor]).

Our purpose in this paper is to introduce a notion of determinants on non-
compact (finite volume) Riemann surfaces. These will be associated to the
Laplacian 4 shifted by a parameter s(1—s), and will be defined in terms of a
Dirichlet series {(w,s) which is a sum that represents the discrete as well as the
continuous spectrum. It will be seen to be regular at w=0, and our main theorem

0
(see Sect. 1) will express exp < T {(w,s) ) as the Selberg zeta function of the

w=0

surface times the appropriate I'-factor.

1.

Let M =T"\H be a non-compact, finite volume surface obtained as the quotient of
the upper half plane H by a discrete subgroup I' of PSL,(R). For simplicity we
assume that I" has no fixed points. Let y be a unitary character of I. We consider
the spectral problem

Af+if=0,  f2)=xNf(z) (el zeH), Afllf(Z)lde<OC- (1.1)

2 2
Here 4= y* <5y2 to

0<1,<4, = ..., this set-up gives rise to a continuous spectrum as well, as we now

) is the Laplacian of H. In addition to a discrete spectrum
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briefly describe (see [Hej, Sel, Ven] for details). The conditions on M mean that it
consists of a relatively compact part together with finitely many regions that
stretch out to infinity. These are the cusps, which we parametrize by their parabolic
endpoints k4, ..., ;. They are ordered so that the first h, are singular, i.e., if I} is the
stabilizer of k; in I' then y(I}))=1 for 1 <i<h,. To such a cusp k; we associate an
Eisenstein series, defined for ze H, Re(s)>1 by

E(zs0= Y x0y%02).
yel'\I'
Here z'7 =y, x9) is the local parameter at x;. Roughly speaking, these Eisenstein
series span the subspace of L*(I"\H, y) which is orthogonal to the one spanned by
the discrete spectrum.
Each E(z,s,y) admits a Fourier expansion at each cusp k;, whose zero
coefficient is of the form

5;‘;)’0)3 +oifs, Y9

Let @(s, x) =(¢:{, 2))i, j=1,...n,- Then the function ¢(s)= ¢(s, x) = det d(s, x) which
can be meromorphically continued to all of C, and satisfies ¢(s, y)p(1 —s, x)=1,
carries much of the information derived from the continuous spectrum. More
specifically, we have three sequences associated with our spectral problem (1.1):

1. The set S; of s,e C such that s,(1—s,)=4,, where 4, is in the discrete
spectrum of (1.1).

2. The set S, of poles ¢,,=f,.+ iy Of ¢(s, ) with f,,<1/2.

3. The set S;={n,, ...,ny} of exceptional poles of ¢(s, y) in (1/2,1].

We then have the asymptotic relation

4 {n [Im(s,)| S T} + # {m [Im(g,)| S T} ~ % T as T-oo. (12)

Here [M| denoted the area of the surface M. In general these two terms cannot be
estimated separately and it is conjectured that the main contribution can come
from either one. It is therefore natural to put the numbers 1,=s,(1—s,) and
0,,(1—g,,) together and define for s,w> 0,

{w,s)= ZS(G(1 —0)—s(1—9)7", (1.3)
where
S=8§,uS,—S;.

We shall see in Sect. 2 that {(w, s) can be continued meromorphically in w and is
regular at w=0. In view of the formal identity

_ _?_g(w’ S) = 10g(0(1 _U)_S(1 _S)) 5
ow s

w=0 O€

we define our determinant associated to M (and ) to be

- 2w )=
det> (4 —s(1 —s))=e ™~ 7°. (1.4)
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We have chosen this notation since the discrete eigenvalues (apart from those that
come from exceptional poles) occur twice in the sum (1.3).
Recall now the Selberg zeta function ([Hej, Sel, Ven])

Z(s)=Z(s,I,x)= T] TI1 (1 =x(P)NP™*7"), (1.5)
{P}hyp k=0
where { P}, run through the primitive I'-conjugacy classes of hyperbolic elements
in I and NP is its norm, so that log NP is the length of the closed geodesic on M
which arises from P.

Z(s) is meromorphic in C and its zeros are at the points in S (with the same
multiplicity) as well as at the nonpositive integers —j with multiplicity (j +1) |]M|/x.
It has a pole at s=% of multiplicity 4(h, —tr&(3, ¥)) and trivial poles at —%, —3,
—3, ... of multiplicity h,. Z(s) is also known to admit a functional equation which
involves the I'-factor

L(s)? %
Z ()= ((2;:)& ;(S)> , (1.6)

where I,(s) is the double Gamma function (see [Bar, Var, Vig]). Z (s) gives rise to
poles which exactly cancel out the trivial zeros of Z(s). We can now state our main
theorem:

Theorem. We have the identity

det? (4 —5(1 —5)) = PO Z(SZ (2T (s +1) (25— 1)4ePs~ D+ cCs=n+p,
(1.7)

where
A :hl —tI'@('é‘, X) >

M|
B=—""1
47
C=— Y logll—x(y)l—hylog2 (y; a generator of I}),
hi<i<h

D= l%(zg'(— 1)—log)/2m)+2h, log)/2n — A log?2

({(s)=Riemann’s zeta function).

It follows from the above that det?(4—s(1—s)) can be extended to an entire
function whose zeros are s, with doubled multiplicity as well as ¢,, and 1 —p,, with
their multiplicity as poles and zeros of ¢(s) respectively. We obtain precisely the
zeros of the formal product

det*(4—s(1—s))=[] (6(1 —0)—s(1—5)).
geS

Thus, ¢(s)~* det?(4 —s(1 —s)) is the square of an entire function whose zeros are
the s, and g,
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Remarks

1. We note that with this normalization the determinant is finitely multiplicative,
that is, for S, CS finite,
det*(4—s(1 —s))= ﬂ 1—0)—51—5)]—[(01—0—3(1~s))

2. Asanimmediate corollary to the theorem we obtain a symmetric functional
equation for Z(s) (see [Vig] for the case of SL,(Z)).

3. More generally, one can proceed in a similar fashion to define and compute
determinants of Laplacians corresponding to Dirac operators on spinors. The
relevant automorphic forms then transform via a multiplier system, and one
applies a trace formula of the type given in [Hej, Chap. 9].

Our proof, which we now turn to, is a non-compact analog of that of [Sar].

2.
The analysis of our {(w,s) will be carried out via that of the kernel function
0)="73 e 7177 (>0,

geS
for which we have
1 = dt
__ S(1=s)tew 77
lw,s)= ——F(w) g O(t)e t .

The behavior of {(w, s) at w=0 is thus related to the asymptotics of () as t—0.
These will be determined using the Selberg trace formula of I' and y which we now
recall (see [Hej, p. 314]).

Let A(r) be an even function, analytic in |Im(r)| <%+9, for some >0, and

O(1 +r[)~ 27 there, and put g(u)= f h(r)e”"“dr. Then
T ¢/<1 +lr> h(r)dr 2.1)+22)
1/4+r2:;,, “w 2
- '2—ﬂ~ jf r tanh (zr)h(r)dr 2.3)
ok
12y w7 (PIogNP o 1oaNP) (2.4)

{Phyp k51 NP¥2— NP2

T e it THO+2C00) 0.9 +26+07)

(with A and C as above). We apply this formula to the pair

1 _uw ot

hy=e"G L g e
2t



Determinants of Laplacians on Surfaces of Finite Volume 447

The term (2.1) clearly gives 2y e~ *. To compute (2.2) we expand (see [Hej, p. 438])

@' ) 1-2p N2 —1

— == (+ir= —

R ("

The corresponding integral is computed with the residue theorem as the limit as
T— oo of the integrals over the rectangles in the lower half plane connecting — T, T,

T—iT, and — T—iT. It gives
o —(&+r?)
1-28 e 7 t_dr:e_@(l_@)t
e (r=9)?+ G B ’
and we note that ¢ is a pole of ¢(s) if and only if ¢ is. Similarly we have
2, —1 e~ GHrin

|

St (—)

+cq.

— o mi(1—n)t
sdr=e .

These cancel out one of the two terms (2.1) corresponding to A=#,(1 —#,), and so
the left-hand side yields 0(¢).
We begin the estimation of the right-hand side with the term

hy = _aie )
——= (1 d
" —jme F( +ir)dr,

which by integration by parts is

2ih, >
e"/“t% { re”""log'(1+ir)dr.

—

Recall Stirling’s formula

1 v
logl'(s+1)= <s+ 2> log(s-l—l)—(s—i—1)+log]/2n+0<é> as s— 0.

The first term in the integral is then

© A1\ 1
[ re7r ‘(5 +zr> <§10g(1 +r?)+iarg(l +ir)> dr

:%(I rle " log(1 +r¥)dr+ | re_’zlarCtan(V)d”>=‘;(H’H)'

Some calculation leads to

I= O(fj e "log(1 +u)/udu=1t"*e' Ojt? e ")/u—t(logu—logt)du
=1 %(c,logt+c,e'+0(t)) as -0,
and
e 1

H=c3—tey— +0()/t) [GR, 3.466].
[4

V
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The linear term contributes c5¢t ™% and the remainder is O(1).
It is not difficult to see that the contribution from (2.1) is
M| 1

1 +ce+0() as t—0,

—t/4 1

t

and that of (2.2) is of exponential decay. Finally the term g(0) gives c,e

Summarizing we have

Proposition 1. For some constants «, 8,7, (given explicitly in Sect. 3)

1
0()= % +ﬂ~01/%t + l—y/t— +5+0(]/1?10gt) as t—0.

We apply Proposition 1 to
dt
{(w,s)= j O(r)est 9w i
For the first four terms we need

! )jt eI d = (s(s— 1)) *T(w—¢) (2.8)

1
I(w I'(w)

with ¢=0,4, 1, and

1
. F(w——> y
1 logt oS8t W= 1dt—ﬁ£~(s(s~1))%_w<£ (w—— ;> —log(s(s-1))>

b e T'(w) r
(2.9
(see [GR, 4.352]). The remainder is
ﬁ w5 (2.10)

with w(t)=0(\/f logt) as t—0 and O(1) as t— 0. Since m vanishes at w=0 we

have
Proposition 2. For a fixed s> 0, {(w,s) is regular at w=0.

as s— oo, Going back to the

w=0

. 0
Lastly we need the asymptotics of %C(w, s)

of (2.8) with £=0, 3, 1 is,

) I 0
formulae above we find using — —;(0)=1 that —
r oW, =0

respectively

—log(s(s—1);  —2)/m(ss—1)Y%;  s(s—1)(log(s(s—1)—1);
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that of (2.9) is
2)/n(e+1logd—2)(s(s— 1))/ +2)/m(s(s — 1))/* log(s(s — 1))

(c=Euler’s constant),
and that of (2.10) goes to 0 as s—o0. Hence

Proposition 3.

0
3y SO 8o ~as(s —1)(log(s(s — 1)~ 1)

+2)/mB(s(s— 1)) *(log(s(s — 1)) + (¢ + log4 —2))
—2)/my(s(s—1)'>—log(s(s—1)) as s—oo.

3.

The Selberg zeta function arises from the trace formula with the choice
W =(s= 92+ —(a— 3P+,

1 1
—luj(s—%)__
25—1°¢ 2a—1

g(u): e‘l“l(“—%),

where a>1 is fixed and 1 <Re(s)<a. The hyperbolic term (2.4) becomes

1 Z/(S) 1z
s—% Z a—% Z

(@).

’

To compute the integral in (2.2) we follow [ Ven, p. 84] and integrate%(r)h(r) along

the contour consisting of the interval Re(r) =4, — T<Im(t) < T and the semicircle
connecting the two endpoints. One obtains

g sl ) ()
B G R

For (2.5) we use ([Hej, p. 435])

1 o/, 1\2\"'r 1 I 1
— — = —( +indr= — —
n_j@(r +<s 2>> F( +ir)dr s—%F<S+2>’

and for (2.3) we need

© © 1 1
_jw r tanh(nr)h(r)dr—2k:0 <S+ i a+k>'
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We thus arrive at the key formula

P (6(1—0)=(s(1=5) "' —(o(1 —0)—(a(l —a) ")

R Z r( 1

L 1 24 2C
Z <S+k >+(28—1)2+§—_;+09. (31)

T k=0 a+k 1

As in [Sar] we now differentiate both sides with respect to s. The left-hand side
becomes

—(@2s—1) ¥ ((o(1—0)—(s(1—5))"2,

ogeS

L . d 1 d 0
which is precisely — *<—— 4. —{(w, s)|w:0>. Furthermore, by the product

d 1 ds ow

expansion of I5(s) (see [Bar, Var, Vig]),
d 1 7, ()= M| 1
ds2s—12, 07" 2nko@+m

Thus we obtain the following relation between Z(s) and our determinant:

d 1 d

15251 ds —logdet?(4 —s(1—3s))
d 1 d1¢(+212 2logZ 2th—i-1
dS 25 1d Og S Og (S)+ 0og () log S 2

N d( 24 N 2C
ds\(2s—1)*>  2s—1
(4 and C appear in the trace formula). Integrating twice we sec that for some
constants B, D,
det? (4 —s(1—5)) = G(5)Z(5)>Z . (5)* T (s +3) 7 211 (25 — 1)eB2s~ 1?eCQ2s~ DD

We compute these constants from the asymptotics at s+1 as s—oo. Recall
Stirling’s formulae [ibid.]

logly(s+1)= —3(s* — &) logs+ 35> —slog]/2n —{'(— 1)+ o(1).

Therefore, since Z(s+ 1) and ¢(s+ 1) go to 1 as s— oo, the logarithm of the right-
hand side is

M 1
'7TI<—SZ logs+ %sz—slogs—i—s— glogs—klog /2 —2(’(—1))

—2hy(slogs—s+logs+log)/2n)
+Alog(2s+1)+B2s+1)*+ C(2s+1)+ D +o(1).
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On the other hand, Proposition 3 tells us the logarithm of the left-hand side is
—o(2s? logs+2slogs—s?+3),

—2)/nB((2slogs +logs+1)+(c+logd —2)(s + 1),
+2)/ (s + 3+ 28 logs +o(1).

A comparison of the two formulae determines all constants:

oM
2n’
h
ﬂ: : P
2)/n
1
= 2C+hc+h log4),
’)) 21/;( 1 1
s A _h M
2 2 6’
__M
4n’

M|
D="—(2{(—1)~log}/ ]/ _
(20(—1)—log}/2m)+2h, log}/2n — Alog2.
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