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Abstract This is a study of the equilibrium thermodynamics of the Huang-
Yang-Luttinger model of a boson gas with a hard-sphere repulsion using large
deviation methods; we contrast its properties with those of the mean field
model We prove the existence of the grand canonical pressure in the
thermodynamic limit and derive two alternative expressions for the pressure as
a function of the chemical potential. We prove the existence of condensate for
values of the chemical potential above a critical value and verify a prediction of
Thouless that there is a jump in the density of condensate at the critical value.
We show also that, at fixed mean density, the density of condensate is an
increasing function of the strength of the repulsive interaction. In an appendix,
we give proofs of the large deviation results used in the body of the paper.

1. Introduction

Since London's proposal [1] that the super-fluid phase-transition in He 4 is an
example of Bose-Einstein condensation, it has been of interest to know how, in
theory, interparticle forces affect the condensation of bosons. London himself
conjectured [2] that, as a manifestation of quantum mechanical complementarity,
the momentum-space condensation of bosons is enhanced by spatial repulsion
between the particles; we know of no proof of this general proposition.

Huang et al. [3] introduced a model of a boson gas with a hard-sphere
repulsion which displays enhanced condensation. The model may be described
thus: Let AUA2... be a sequence of regions i n R d and denote the volume of Ax by
Vχ\ we assume that FJ-+oo as /->oo. We associate with the region Λι the sequence
ε ?(l)^ε z(2)^... of ordered real numbers, where εx(j) is the j t h eigenvalue of the
single particle hamiltonian of the non-interacting system in the region At; the free-
gas hamiltonian H° is given by

H?= Σ ΦM/), (i.i)
^ 1
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where nt(j) is the occupation number of the j t h level The Huang-Yang-Luttinger
model is described by the hamiltonian

H™< = H?+£-\2Nf- Σ njtj)2}, (1.2)

where JVZ = £ /?,(/) is the total number of particles and α > 0. The HYL-model is to

be compared with the mean-field model described by the hamiltonian

Hr = Hf+^Nf. (1.3)

in the mean-field model, the interaction may be understood classically: the term

— JVf is an "index of refraction" approximation to the interaction energy in which

we imagine each particle to move through the system as though it were moving in a
uniform optical medium and so receiving an increment in energy proportional to
AT

—-. The HYL-hamiltonian differs from the mean-field hamiltonian by the term

£τW- Σ Hj)2] (1.4)
2 ^ ( j * ι j

which is a purely quantum mechanical contribution to the interaction energy and
reflects the boson statistics. It is smallest when all the particles are in the same
energy-level; we expect, therefore, that any tendency to condense in momentum
space which is displayed by the free-gas will be enhanced by the presence of this
term in the interaction.

Huang et al. [3] motivated the introduction of their model by reference to first-
order perturbation theory. Thouless, in his book [4], offered an alternative
approach: he started from the full pair-potential interaction, and, as a first step,
discarded those terms which are not diagonal in the occupation numbers {n^j):
j = 1,2,...} the remaining terms can be grouped as the mean-field part, the term
(1.4) and a correction term involving the pair-potential function. Formally, the
correction term vanishes in the delta-function limit so that we recover the HYL-
hamiltonian, while in the van der Waals' limit it cancels with the term (1.4) to give
the mean-field hamiltonian; details of this can be found in [5].

While arguments which point to a resemblance between the HYL-model and
an actual hard-sphere gas are only heuristic, the properties of the model are
nevertheless of interest provided their derivation is rigorous; the method of large
deviations, Varadhan's theorem [6] in particular, enable us to give such proofs.
Huang et al. [3] argued that the condensate, if any, would occupy the ground state
and concluded that (1.4) could be replaced by

-2~-{W2-«((l)2}. (1.5)

They then used the method of the largest term (Laplace's method) to obtain an
expression for the free-energy; their derivation gives the following expression for
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the grand canonical pressure pnYL(μ):

P

HYHμ)= sup j^ 0 -/(x 0 _ X l )_^(2xg-xf) l (1.6)

where /(ρ) is the canonical free-energy density of the free boson gas at density ρ. In
Sect. 4, we give a rigorous derivation of (1.6) starting from the hamiltonian

(1.7)

where {mf. Z=l,2,...} is any sequence of positive integers satisfying

UmmJV^O. (1.8)
J-

[Ideally, we would like to remove the condition (1.8); we have been unable to
surmount the technical problems which this change introduces.] The only
conditions we require on the free-gas hamiltonians H? are those introduced in [7]
to ensure the existence of the free-gas pressure; for example, the cases in which the
single-particle hamiltonian has a spectral gap above the ground state [8] or
includes an external potential [9] are covered by this treatment. We give also (in
Sect. 6) a full discussion of the phenomenon of condensation in the HYL-model,
using the method introduced in [10]; this requires an explicit expression for the
pressure in terms of the integrated density of states of the single-particle
hamiltonian, and we provide this in Sect. 5 by solving the variational
problem (1.6).

The first step in our proof is to bound the interaction term (1.6) above by

-?-{ΛΓz

2-nz(l)2} (1.9)

and below by

The principle of large deviations provides a compact way of making rigorous the
method of the largest term; applied to the upper bound on the hamiltonian it yields
the expression (1.6) for a lower bound to the pressure pHYL(μ). To deal with the
lower bound (1.9) we have first to estimate the entropy involved in grouping
together the first mι levels; this is achieved by an inequality proved in Sect. 4; the
method of large deviations applied to the lower bound (1.9) then yields the
expression (1.6) for an upper bound to the pressure pHYL(μ) and the proof is
complete.

The method of large deviations is still not well-known in the theoretical physics
community; for this reason, we introduce the technique first in Sect. 3 by means of
a simple example, using it to prove the existence of the pressure in the mean-field
model.

For the convenience of the reader, we close this section with a summary of
those results on the free-boson gas, proved in [7], which we will make use of in this
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paper. A minor, but technically important remark has to be made at this point: the
thermodynamics of each of the three models described here depends only on the
subtracted eigenvalues

and not on the eigenvalues e/y) themselves; this is discussed fully in [7] for the case
of the free gas and the discussion carries over easily to the HYL and mean-field
models. This being said, the free-gas pressure pt(μ) in A z at chemical potential μ can
be written, for μ < 0, as

ι Σ lnα-e**-^)-1. (1.11)

Defining the partial pressure

eβ{μ~λ))~ι (1.12)

and the distribution function

FM-W-^lJ'.λti^λ}, (1.13)

we may re-write (1.11) as

Pι(μ)= J PiμlλWλ). (1.14)
[0,oo)

To ensure the convergence of the sequence {pι(μ}} we must impose some conditions
on the single particle spectrum. Define

j (1.15)
[0,oo)

and introduce the conditions
(SI): φ(β)= lim φt(β) exists for all β in (0, oo).

l~* CO

(S2): φ(β) is non-zero for at least one value of β in (0, oo).
When (SI) holds, there exists a unique distribution function F such that

φ{β)= I e~βλdF(λ) (1.16)
[0,oc)

and Fl),)-*F(λ\ at least at the points of continuity of F. The function F is the
integrated density of states. When in addition (S2) holds, we can say more:

Proposition 1. Suppose that (SI) and (S2) hold; then the limit

P(μ)= limpid) (1.17)

exists for μ>0, and p(μ) is given by

p{μ\λ)dF\λ). (1.18)j
[0,oc)

The critical density ρc is defined as follows: if λh->p'(O\λ) is integrable on [0, oo)
with respect to F, put

Qc= 1 p'(O\λ)dF(λ); (1.19)
[0,00)
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put ρc — oo otherwise. For fixed /, the function μi—»p[(μ) is strictly increasing on
(—oo,0) and pi(μ)-»O as μ-> — oo while pj(μ)-»oo as μ-»0 since ^(l) = 0. It follows
that the equation p\{μ) = ρ has a unique solution μz(ρ) in (— oo, 0) for each ρ in (0, oo).
On the other hand, the function μ h-» //(μ) increases from zero to ρc as μ ranges
through (— oo, 0). It is convenient to define μ(ρ) for ρ in (0, oo) as the unique root of
p'(μ) = ρ if ρ < ρc and zero if ρ §; ρc. Defining πt(ρ), the pressure at mean density ρ, by

and π(ρ) by

we have:

Proposition 2. Suppose that (SI) ami (S2) hold; then

(i) limμ/(ρ) = μ(ρ)5

Z^oo

(ii) lim πz(ρ) = π(ρ).
Z->oo

The canonical free-energy f(ρ) at mean density ρ, defined by /(ρ)

= sup {μρ — p(μ)}5 w g/^w m ίβrm^ of μ(-) and π(-) by
0μ<0

/(ρ) = ρμ(ρ)-π(ρ). (1.20)

Notice that ρ H->/(ρ) is constant on the segment [ρc, oo) so that, for ρc < oo, there is a
first-order phase-transition.

In the proof of the large deviation result in the Appendix, we require a more
technical result: Define

dλk

we have

Propositions. Suppose that (SI) and (S 2) hold; then for each /c = 0,1,2,.. . and each
def

μ > 5 ί/ie sequence p\\μ; s) = j p( }(μ|/l)ύLFj(/l) converges to
[s, oo)

ef

[s. oo)

provided sis a point of continuity for F. Moreover, the convergence is uniform in μ on
compacts in (—00,5).

Defining

/(ρ;s)=sup{μρ-p(μ;s)} (1.21)

and
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we have

Λ x fρμ(p)~p(μ(ρ)? ^0)5 0 = ° = ρ«> (Λ ~~x

y(ρ; /0) = \ (1.22)

where

/ ) ^ j p;(oμ)dFμ)=ρc
[Λo, GO) [Λ O> ° C )

and μ(ρ) is the unique root of p{1)(μ; λ0) = ρ. Furthermore, the derivative of /(ρ; Ac

with respect to ρ is given by

λ09 ρ>ρn.

2. Summary of Results

In this section we summarize our principal results and comment on their
significance. In Sect. 4, we prove the existence of the pressure in the HYL-model,
settling doubts expressed by van Hove [11] about the model's stability. The
conditions on the single-particle spectrum which we assume are almost the same as
those under which we proved the existence of the free-gas pressure in [7].

In Sect. 5, we solve the variational problem (1.6) to get the following alternative
expression for the pressure:

inf {(μ-α)2/4
α<° ()
sup {(μ - a)2/4a - a2/2a + p(a)}, μ ^ μ*,
α < 0

where μ* is the unique value of μ for which the two expressions on the right-hand
side of (2.1) are equal; p(α) is the free-gas pressure. Using this expression, we prove
in Sect. 6 that the total amount of condensate at chemical potential μ is given by

I (2.2)
μ < μ * ,

where α(μ) is the unique value of α at which sup{(μ — a)2/4a — a2/2aJtp(a)} is
α<0

attained. A rough calculation of the energy-entropy balance in this model led
Thouless [4] to predict a jump in the total amount of condensate as a function of
the chemical potential. A calculation by Critchley [12] using a variational
principle based on a restricted class of states found further evidence for such a
jump. We show that in the case 2ap"(0)^l we have

limΛHYL(μ) = 0. (2.3)

So that there is no jump; however, in the case 2ap"(0)> 1 we have

lim A HYL(μ) = - α*/α ̂  - at/a > 0, (2.4)
βiμ*

where αt is the unique root of 2ap/'(a) = 1, so that there is a jump in AHYL(μ) at μ* and
the prediction of Thouless (p. 156 of [4]) is confirmed.
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it is interesting to consider the total amount of condensate at fixed mean-
density ρ. We can identify α(μ) as the lowest root of the equation

p'(α) = ρ + α(μ)/α, α > 0 ; (2.5)

for fixed ρ, α(μ) decreases as a increases since α i—> p'(α) is increasing; hence — a(μ)/a
increases with increasing a so that the total amount of condensate at fixed mean
density is an increasing function of the strength of the repulsive interaction. This
supports London's conjecture [2] that spatial repulsion between bosons enhances
phase-space condensation.

We recall that in the mean-field model [10] the total amount of condensate is
given by

M ρc)\ (2.6)

where ρ(μ) is the mean-density at chemical potential μ. In this model, there is no
jump in AMF(μ); moreover, at fixed mean-density it is independent of the strength of
the repulsive interaction and equal to the total amount of condensate in the free
boson gas at the same mean-density.

The difference in behaviour of the condensate in the two models reflects the
difference in origin of the phase-transition. In the mean-field model, as in the free
boson gas, condensation is a consequence of the balance between entropy and
kinetic energy; in the HYL-model with 2ap"(0)> 1, condensation is a result of the
balance between entropy and interaction energy. This difference has a further
consequence: in the mean-field model, condensation occurs if and only if it occurs
in the corresponding free-gas (ρc finite); in the HYL-model, there is always
condensation for ρ sufficiently large, even when ρc is infinite in the corresponding
free boson gas. It is to be expected that inclusion of off-diagonal terms in the model
hamiltonian would lead to depletion of the condensate; effort expended in solving
this difficult problem is likely to prove very rewarding.

3. The Probabilistic Setting

In the models considered in this paper, the hamiltonians are diagonal in the
occupation number operators; it follows that it is possible to regard the
occupation numbers as random variables rather than as operators. We shall do
this because it enables us to adopt a powerful method from probability theory.

The probability space on which we define our random variables is the
countable set Ω of terminating sequences of non-negative integers: an element ω of
Ω is a sequence {ω(7") e N: 7 = 1,2,...} satisfying Σ ωU) < °° The basic random

variables are the occupation numbers {σy 7 = 1,2,...}; they are the evaluation
maps σ^Ώ-^N defined by σfω) = ω(j) for each ω in Ω. The total number of
particles N(ω) in the configuration ω is defined by

N(ω)= Σ σj(ω) (3-1)

Motivated by the discussion in Sect. 1, we define, for each integer /_• 1, the free-gas
hamiltonian Hι by

(ω), (3.2)
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and the mean-field hamiltonian HfF by

HfF(ω) = Hiω) + -~ N(ω)2, (3.3)

where a is a strictly positive real number. Since Ω is a countable set, we may specify
a probability measure on Ω by giving its value at each point of ω of Ω. The free-gas
grand canonical measure Pf [ ] is defined by

JP'TftΠ = eβ{βN(ω) - Hι(ω) ~ Vιpι(μ)} β ^\

Here p^μ) is the free-gas pressure given in terms of the λt(j) by (1.11); it satisfies

eβVιpi(μ)_ y eβ{μN(ω)-Hι{ω)} ^ β <n

ωeΩ

The large deviation method which we are going to employ in proving the
existence of the pressure in the HYL-model is illustrated simply in the case of the
mean-field model. The mean-field pressure pfF(μ) satisfies

eβVιP^(μ)= y eβ{μ

ωeΩ

Introducing the particle number-density X^N/V^ we can re-write (3.6) as

eβVιpMF(μ)= y eβVι(uoX1)(ω)eβ{μN(o^)-Hι(ω)} /g η\

ωeΩ

where u(x)= —ax2/2; using (3.5), we have

eβVιp^(μ)^eβVιPι{μ) y eβVι(ucXι)(ω)ψμrω-\ β g\

ωeΩ

Introducing the probability measure Kf on [0, oo) by

Kΐ = ΨΐoXf\ (3.9)

we can re-write (3.8) as

eβVipΓ^ = eβvιPι(μ) i e

βVιU{x)Kΐldx], (3.10)
[0, oo)

so that

^ l n f e^v^Kf [dx\ . (3.11)
pVi [0,oo)

This expression for pYF(μ) suggests the use of Laplace's method to complete the

proof that pMF(μ)= lim pf F(μ) exists. Varadhan's theorem [6] provides an efficient

way of doing this; the conditions on the sequence {Kf: 1=1,2,...} are stated
abstractly:

Let E be a regular topological space and {Vt: I— 1,2,...} a sequence of positive
numbers diverging to +oc. Let {Kf. Z=l,2,...} be a sequence of probability
measures on the Borel subsets of E. We say that [K^ obeys the large deviation
principle with constants {V^ and rate-function 7:£->[0, oo] if the following
conditions are satisfied:
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(LD1) /(•) is lower semi-continuous.
(LD2) For each m<oo the set {x: I(x)^m} is compact.

(LD3) For each closed set C, lim sup — l n K ^ C ] ^ -inf I(x).
l-*co V\ C

(LD4) For each open set G, lim inf — l n K ^ G ] ^ -inf I(x).

We are now ready to state
Vχ

G

Varadhan's Theorem [6]. Let {KJ be a sequence of probability measures on the
Borel subsets of E satisfying the large deviation principle with constant {Fj and rate-
function I( -). Then, for any continuous function G: £—>IR which is bounded above,
we have

lim Un J eVιG{x)ΊKι\_dx~] = sup {G(x)-I(x)}. (3.12)
h o c K; £ E

Returning to the proof of the existence of the pressure in the mean-field model,
we make use of a large deviation result for the free-gas measures {Kf} defined at
(3.9); the proof is given in the Appendix:

Theorem Al. Suppose that (SI) and (S2) hold; then for each μ<0 the sequence
{Kf: 1=1,2,...} of probability measures on [0, GO) satisfies the large-deviation
principle with constants {Ĵ } and rate-function

(x)-μx. (3.13)

Applying Theorem Al and Varadhan's theorem, we have

lim - L In j e^ ίM(x)Kf [ώc] = sup {u(x)-P(x)}
l->ao pVi [0,oo) [0,oo)

sup tμχ-f(χ)-—-ί. (3.14)
[0,oo) I 2 )

Combining this with the conclusion of Proposition 1, (3.11) yields the existence of

the limit pMΈ(μ)= lim pM¥(μ) and the following formula:
l

pMF(μ)= sup \μx-f(x)- ^ j . (3.15)
[o,oo) I I )

So far this has been proved only for μ < 0 ; nevertheless, the pressure pM¥(μ) exists
for all real μ and is given by (3.15). To prove this, we use a device which we will need
later. Fix α < 0 ; then a straightforward manipulation yields

Λ (3 16)
ωeΩ

where ua(x) = (μ — a)x~ax2/2, so that

4u\n f e>v*'"°x>Hχ>KRdχ-]. (3.17)
P I [0,oo)
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Proceeding as before, we get (3.15) for all real μ.
A simple exercise yields the following alternative expression for pMF(μ):

(3.18)p(μ)inffc
α<o I la

This result was obtained earlier [10] by other means; in that proof, the subleties
arising from the first-order phase-transition in the free-boson gas were all too
evident; in the proof we have just given, they are tidied away in the verification of
the large deviation principle for the measures {K": ί = l , 2 , . . . } .

4. The Existence of the Pressure in the HYL-Model

In this section, we obtain the main results of this paper: we prove the existence of
the pressure in the HYL-model, and we derive an expression for the pressure as a
function of the chemical potential. Motivated by the discussion in Sect. 1, we
define, for each integer / ^ l , the HYL-hamiltonian HfYL by

HΓ\ω) = Hf(ω) + — J2iV(ω)2 - £ σ/ω)2 j (4.1)

for α > 0 a n d {m,: /=l,2, . . . } a sequence of positive integers such that mJV^O as
/->GO. Recall that λ0 was defined to be inf{/: F(/)>0}.

Theorem 1. Suppose that (SI) and (S2) hold and that λ0 is a point of continuity of F;
then the pressure

p H Y L ( μ ) = l i m P r L ( μ )

exists for all real values of μ and is given by

p H Y L (μ)= o Sup^

The proof makes use of Varadhan's theorem and a large deviation results for
the joint distribution of σι and £ σy Define the vector-valued random variable

and, for μ < 0, define the sequence {Kf: / = 1,2,...} of probability measures on 1R+
by

Kΐ = Ψfoχ-1. (4.4)

In the Appendix, we prove

Theorem A2β Suppose that (SI) and (S2) hold and that λ(2) = lim λz(2) exists and is a

point of continuity of F. Then, for each μ < 0, the sequence {3Kf: I = 1,2,...} satisfies
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the large deviation principle with constants {V^ and rate-function Iμ( ) given by

P(x) = p(μ) + f(x2;λ(2))-μ(xι+x2), x ^ O , x 2 £ 0 . (4.5)

Proof of Theorem. Define Ht(ω) by

Ht{ω)= Σ ^( ;)σ j (ω)+^ / {2iV(ω) 2 -σ 1 (ω) 2 } , (4.6)

where

7ίfl=ί0' i = 1 '

so that

Iiml/(2) = AO and H,(ω) ̂  Hf Y L(ω).

It is easy to check that (S1) and (S2) hold for the new double sequence {JH{j)} and
that the integrated density of states is unchanged. Let pz(μ) be the grand canonical
pressure corresponding to the hamiltonian Hx\ an application of Varadhan's
theorem together with Theorem A2 yields

p{μ)= limpj(μ)

sup

= sup Iμxo-ftxo-xilλoϊ-^&xl-xΐ]}. (4.7)

Since Hz(ω) ̂  HfYh(ω) we have pz(μ)^pfY L(μ) so that

p(μ)^liminfpfY L(μ). (4.8)
/->• OO

The proof of the upper bound to the pressure is less straightforward and makes
use of the following entropy estimate:

Lemma L For n = 0,1,2,... and fc = l,2,...

'n + fc-1
(4.9)

Proof. The proof is by induction on k. Evidently (4.9) holds for fc = 1. Suppose that
(4.9) holds for all fc' less than or equal to some fixed fc; then

n + k/n + k-:
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But

2n^2/(k + I ) 1 / 2 > e(2n/k)

lnV12 \(2n

Hence

/*, J_ iΛ
' 4«1/2 ( f c + 1 )l/2

Returning to the proof of Theorem 1, define fc^maxjmj, V^^λjj) and put

[λtij), j^kt + l,
and

2
(4.10)

since λι(j)^λι(j) for all j and

V
] σ/ω) ^ ( Σ σ/ω)) ^ £ σ/ω)2,

2 m;
2

we have Hz(ω) g HfYL(ω) and pz(//) ̂  p^^μ), where p^μ) is the grand canonical
pressure corresponding to the hamiltonian Ht.

Now

pι{μ)= y

ωeΩ

ω)~ Hι(ω)}

where

ί - α Γ / \, 2 Ί |

ZHm)= Σ / r + ^ - ί ^ ^ ^ " ^ Γ L Γ ^ ^ i T " 1 " ] ! . (4.12)

By Lemma 1, we have
00

put

2Vt{ [jh *

(4.14)
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where Q χ

k h (4-i5)

and let p^μ) be the grand canonical pressure corresponding to the hamiltonian Ht.
It follows from the definitions that

eβvιpι(μ)= £ e^^^Zlm). (4.16)
m = 0

Hence, using (4.13), we have

Eι(μ)^Pι(μ)^pΓHμ)- (4.17)

It is straightforward to show that the new double sequence {λt(j)} satisfies (S1) and

(S2) with the integrated density of states unchanged, and that lim /z(2) = /l0. To

complete the proof of Theorem 1, we use Theorem A2 together with the following
version of Varadhan's theorem which can be deduced from Sect. 3 of [6] when E is
a complete separable metric space:

Let {Gt: /=1,2,...} be a sequence of continuous functions uniformly bounded
above which converges uniformly on bounded subsets to G. Let {Kz: /— 1,2,...} be a
sequence of probability measures which satisfies the large deviation principle with
constants {V^ and rate-function /(•). Then

lim \-In \eVιGιix)Kι[dx^ = sup{G(x)-I(x)}.
1-+O0 V\ E E

Applying this with Gt(x) defined by

we have

p(μ)= limpt

I ^ O , x2^0

= sup \μxo-f{xo-xι\λQ)--[_2xl-x]~]

= p(μ), by (4.7). v ;

Since pz(μ) ̂  p?ΎL{μ\ we have

p(μ) ̂  lim suppfΎh{μ). (4.20)

Thus we have, using (4.8),

/-> oc

p H Y L ( μ ) = lim pfYL(so that, by (4.19), the limit p H Y L (μ)= lim pfYL(μ) exists and is given by (4.2). •
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5.1. The Grand Canonical Pressure

In this section, we solve the variational problem which arises when we try to
express the pressure pHYL(μ), given by (4.17), in terms of the free-gas pressure p(α),
α<0. We prove the following theorem:

Theorem 2. Let μt = inf {2ap'(cή — α} and let μc = 2aρc; then there exists a unique
α<0

value μ* of μ in the interval (μf} μc) such that

inf {(μ-α)2/
α < 0

sup {(μ - α)2/4α - α2/2α + p(α)} , μ ̂  μ* .
I α<0

Remark. The point μ* is the unique value of μ for which the two expressions on the
right-hand side of (5.1) become equal.

(χ) = |M2/2α + ax2 - μx, 0 rg x £ μ/2fl,

[ αx2 + μx x>μ/2a,

Proof. Put

and
r (Ύ\— f(x ^ (ς. Ί.)

Taking the supremum over the set {x{ ^0} and replacing x 2 by x, we have

pHYL(μ)= sup < - ^ [ 2 ( x 1 + x 2 ) 2 - x 2 ] + μ(x1 + x 2 ) - / o ( x2)

= sup{g(x)-/0(x)}. (5.4)

The functions / 0 and g are differentiable on (0, oo); on (0, oo), g' is non-positive
while /ό is non-positive on (0, ρc] and non-negative on [ρc, oo), so that the equation
g'(x) —/o(x) = 0 can only be satisfied in (0, ρc]. Since g(x) —/0(x) decreases to — oo as
x->oo, the supremum of g— f0 is attained either at zero or at a stationary point in
(0, ρ j ; however, /ό(x) decreases to — oo as x JO while g'(χ) remains finite so that the
supremum cannot be attained at zero. We have

/ I Y L (μ) = sup (g(x)-/o(x)} = g(x0) -/o(^o) > (5 5)

where x 0 is a point of (0, ρc] at which /ό(x) = g'(x) We must distinguish two cases:
(i) For μ > 2αρc we have g(x) = μ2/2a + αx2 — μx, x e (0, ρc], so that a stationary

point is a root of the equation

/ό(x) = 2αx —μ. (5.6)

Since ρc^ρn, we have /ό(x) = α(x)^0 where α(x) is the unique real root of p'(a) = x.
Putting h(a) = 2ap/((x)--(x, Eq. (5.6) becomes /i(α(x)) = μ. Now αh-»/z(α), α ^ 0 , is
convex; since h(<x) increases to + oo as α-» — oc and h(0) = 2aρc<μi the equation,
h(cή = μ has a unique solution on (—oo,0]. Thus, for μ>2αρ c,

, (5-7)

where cqrgO is the unique root of 2ap'((χ) — o> = μ.
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(ii) For μ ̂  2aρc, we define μt by μt = inf h(a); this occurs at the unique point at
α<0

[because ou-+h(a) is strictly convex] where

α f°' 2αp(0)gl,
[the unique real root of 2α/?"(α) = l , otherwise.

Note that μt^h(0) = 2aρc. For μ < μ ί ; the equation h(oή = μ has no solution in
(—oo,0] so that the supremum of g—f0 must be attained on [μ/2α,ρc]. At a
stationary point we have

2ax + β(x) = μ (5.9)

or, equivalently,

fc(α) = μ, α^O, (5.10)

where

fc(α) = 2αp'(α) + α. (5.11)

Since απ->/c(α) is strictly increasing from — oo to /c(0) = 2αρ c>μ ί 5 the equation
fc(α) = μ has a unique solution α2 and x2 = p'{^2) must lie in [μ/2α,ρj. Thus, for

) - inf fc^- +p(α)l. (5.12)
α<o I 4a J

When 2αp"(0)^l, we have μt = 2aρc and so we have exhausted all cases; we
conclude that pHYL(μ) is given by

α<o I Aa I
(5.13)

μ>2αρ c .

When 2ap"(0)> 1, it remains to consider the case in which μ lies in the interval
(μr, 2αρJ. In this case, the equation h(cή = μ has two solutions α', α" with α' <α";
/ί(α) — μ is positive for α in (— oo, α') and (α", 0) and is negative for α in (α', α/;) so that
there is a local maximum at a and a local minimum at α". Notice that x' = p'(α')

^ — since 2ap\a') = μ + a' <̂  μ. On the other hand, the equation fc(α) = μ has a

unique solution α w ; since /r'(α)>0, there is a local maximum at α'" = p'(oc'") > μ/2a.
Put

) (5.14)

and

P2(μ) = (μ - αΊ 2 /4α + p{*'") (5.15)

then

H Y L (5.16)
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We shall prove that, for μt<2aρc, there is a unique value μ* of μ for which
and that

Pι(μ), μ*^μ^2aQ

 l j

Since

2apf(oι') = μ + oίf (5.18)

and

lap'{<*!") = μ-u!" (5.19)

we have

p'(α') - p'(α'") = (α' + α"')/2α < 0, (5.20)

so that oc' <oc"f since αι-»p'(α) is strictly increasing. Now

^ i ( μ ) = (μ_α')/2α, (5.21)

(5.22)

so that —r^(μ)< —-^(μ), which implies that μ^r-^pΛμ) — p2(μ) is strictly increasing,
α/x dμ

Thus it is sufficient to prove that

pM)-p2(μt)<Q (5.23)

and

Pί(2aρc)-p2(2aρc)>0. (5.24)

Let <5f be the unique value of α for which fe(α) = μt\ we know that αt satisfies /z(αf) = μt

so that, by the above argument, ott<δt. Thus

pt{μt) = (μt - at)
2/4a - ocf/la + p(αf)

(5.25)

where we have used the fact that

α I—> (μf — α)2/4α — α2/2<2 + p(α)

is increasing. Let yt be the unique root of h(a) = 2aρ in (— oo,0); then

p,(2αρc) = (2aρc - yt)
2/4a - y?/4a + p(yt) > aρ2 + p(0) = p2(2aρc), (5.26)

since α h^ (2αρc — α)2/4α — α2/2α + p(α) is decreasing. •
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6. The Condensate

In order to investigate the phase-transition more closely, we compute the total
amount of condensate A(μ). Let Xι(λ; ω) be the random variable defined by

Xι{λ;ω)=Vι~
1 Σ σ/ω); (6.1)

{ j λ ( i ) ^ λ }

it presents the density of particles with kinetic energy less than λ in the
configuration ω. The total amount of condensate A(μ) is defined by

A(μ) = lim lim Ef[Xz(λ)] , (6.2)
λ|0 ί

where Ef [ ] denotes the expectation with respect to the grand canonical measure
determined by the hamiltonian H{.

Y F(ω)eβ{μN{ω)'Ill{ω)]

Ef [F] = ^ - ^{^(ω)-Hz(ω)} (6 3)

ωeΩ

It is evident that (6.2) is a way of making precise the notion of the "density of
particles with zero kinetic energy." To avoid complicating the discussion, we
assume in this section that the integrated density of states is continuous.

Theorem 3. In the HYL-rnodel, the total amount of condensate A(μ) is given by

| - α ( μ ) / α , μ>μ*

(0 μ<μ*

where a(μ) is the unique value of α at which sup < 1-pW r i>s attained.

α<o I 4α 2a J

Proof. The idea of the proof is this: by introducing a gap into the spectrum of the
kinetic energy term in H^Y L, we can compute a modified pressure which, up to
normalization, is the cumulant generating function of XP). The expectation of
Xι{λ) is then computed by differentiation and a standard convexity argument used
to prove the convergence of the derivative.

Using (6.3), we have

= (βVιr
1~eβV ^"-'s λ>^^\ = 0, (6.5)

where p,(μ) is the pressure corresponding to the hamiltonian Ht and p,(μ; s, λ) is the
pressure corresponding to the hamiltonian Ht{s, λ) = Hι — sV,Xι(λ). Hence we have

^ , A ) U 0 . (6.6)
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Putting H^Hf + V^, where H° is the free-gas hamiltonian, we have

eβVι~pι(μ s, λ) _ y eβ{(μN(ω) + sV,Xι(λ) - tf °(ω) - Vm{ω)}

ωeΩ

_ y eβ{(μ + s)N(ω)-Hι(s,λ;ω)} /£ γλ

ωeΩ

where Hι(s,l) = Hf(s9λ)+Vιuι and Hfaλ) is defined by

/ Σ (s + λ^σ^ω). (6.8)
U' h(j)^j} ϋ λι{j)>λ}

In other words, the hamiltonian if °(s, λ) is the free-gas hamiltonian with {/'H)} in
place of {λ^j)}, where

, if Λ ( J ) ^ ; . ,

Λ(./), if λij)>ι ( 6 9 )

It is easy to check that if 0 = ̂ (1 )_Uj(2)_\.. satisfies (SI) and (S2), then so does
0 = λ\(l) ̂  λ[(2) ̂  ... . Applying these considerations to the HYL-model we have, by
Theorem 1, pHΎL(μ; s,λ)= lim pfYL(μ; s,λ) exists. By Theorem 2, we have

inf
4a

(6.10)

sup ^ - — — _ — + p(α; s, λ) f , μ ̂ μ*(s, λ),
α<0

where μ*(s, /I) is the unique value of μ for which the two expressions on the right-
hand side of (6.10) become equal. We note that s, λ H-> μ*(s, x) is continuous. Here
p(α; 5,2) is the free-gas pressure computed with Hz(^, /; ω) in place of Hf(ω); since
p(α) can be expressed in terms of the integrated density of states F(-) as

p(α)= J p(α|A')dW), (6.11)
[0,oo)

we have

p(α;s,/l)= j p(a\λ')dF(λ') ~\- j p(α|s + //)ίiF(^/). (6.12)
[0,λ) [λ,oc)

SincQSh^pfΎL(μ; s, λ) is convex by a standard argument using Holder's inequality
and s^-+pUYL(μ; s, λ) is differentiable at s = 0 provided μ+μ*(0, /) we have, by
Griffith's inequality in the form proved by Hepp and Lieb [14],

l i m ^ ^ ί 5;) | - - H Y L

 s ; i
hoo 5s ds s " ° '

Using (6.6), (6.13), and (6.10), we have finally

(6.14)

where α(μ) is the unique value of α at which the supremum in (5.1) is attained. •
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Appendix. Large Deviation Results for the Free-Boson Gas

In this section, we provide the proofs of the large deviation results used in Sects. 3
and 4.

Theorem Al. Suppose that (SI) and (S2) hold; then, for μ < 0 , the sequence

of distributions of the particle number density Xι = NιIVι in the free-boson gas
satisfies the large deviation principle with constants {V^ and rate-function

F(x) = p(μ) + f(x)-μx. (Al)

Proof. It follows from (3.6) that the following formula holds provided μ and μ +1
both lie in (— oo,0):

J eβVιtxKfldx]=eβVι{pιiμ + t)-pιi^; (A2)
[ O . o o )

by Proposition 1, we have

σ(t)=lim^- j eβV*txKΐίdχ-]=p(μ + t)-p(μ). (A3)
l^co p V\ [0, x )

The verification of (LD1), (LD 2), and (LD 3) is now routine (see [5] for a review
of the general principles); to make the paper self-contained, we sketch the proof.
The rate-function (Al) is the Legendre transform of Cμ(t), given by (A3):

F(x)= sup {tx-Cμ(ή}. (A4)
{ί: r + μ<0}

The properties (LD1) and (LD2) follow from (A4). To verify (LD3), consider first
the case in which the closed set C is an interval J1 — [0, ρ x ] with ρ x < p'(μ) for each /
and each α < 0, we have

[O,oc) [0,oc)

— gβVι{pι(μ +a)-pι(μ)-aρ1}

It then follows from Proposition 1 that

^ f C J J ^ inf {p(μ + x)-p(μ)~zρ,} = - / ^ J , by(A4).
< 0

It follows in analogous fashion, in the case in which C is an interval [ρ2, oo) with
ρ2>p'(μ\ that

lim sup — InJKf [ J 2 ] ^ - F(ρ 2 ) .
z->oo pVi

A simple argument (see p. 8 of [5]) then shows that for an arbitrary closed subset C
of [0, oo)

lim sup — lnKf[C] ^ - inf Iμ(x).
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It remains to prove that (LD4) holds. First note that the measures !Kf,IKf + ί, with
μ < 0 and μ + ί<0, are mutually absolutely continuous:

Kf + tldx~] = eβVιCϊ{xttyKΐldx] , (A5)

where

;t) = tx + pt(μ) - pt(μ + ί). (A6)

[To check this, compute the Laplace transforms of both sides of (A5).] Now let G
be an arbitrary open subset of [0, oc); let y be an arbitrary point of G and choose
δ > 0 so that Bδ

y = (y — δ, y + δ) is contained in G. Then

Bj]. (A7)

Now, for 1=1,2,..., choose tι so that p\(μ + Q = y using (A5) we have

Kf[B?]= f Kf[dx]= J e-pVlCt{x;tl)Kf + tlldx']
By By

By Proposition 2, μ + t^μty) and Pι(μ + tι)-^p(μ(y)) as /->oo; hence Cf(j;; ^)
)-y). Thus

We will show that

l iminf^ 7 lnKf + " [βα = 0; (A8)

it will then follow that (LD4) holds.
For arbitrary open G, we have

liminf-—lnKf[G]^ -inΐIμ{y), (A9)
ί->oo βVι G

because δ > 0 was arbitrarily small and y was an arbitrary point of G. To prove (A8)
we distinguish two cases: if y<ρc then the convexity of μ\-^pι(μ) together with
Griffith's lemma in the version proved by Hepp and Lieb [14] allows us to
conclude that

lim J esxKΐ + tι[dx']=esp'iμ{y)) = es\ (A10)
Z->oc [ 0 , oo)

so that {Kf+tι} converges weakly to the degenerate distribution concentrated at y
and hence, for / sufficiently large, !K{t + ί I[βJ.]>i and (A8) follows; if y^ρc then
μ(y) = 0 and we must proceed differently.

Lemma Al. Let Nt and N2 be independent non-negative integer valued random
variables with means m1 and m2, respectively. Suppose that N1 is geometrically
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distributed and that δ^ί; then

Proof. First note that the interval B^ll + W 2 = (m1 + m2 — l 5 m 1 + m 2 + l) contains a
unique integer greater than mι + m2 which we denote by n0. Now

Clearly, nι->P[A/'1 = n] is a decreasing function so that

= » ] . ( A 1 2 )

Since, by assumption, Λ^ is geometrically distributed we have

(A13)

(A 14)

^ 2 ^ n 0 ] . (A15)

But, by Markov's inequality, we have

yyi
ι ( A 16)

substituting from (A13), we have

no Ί / m

YYl j ~τ~ ^

Hence

• (A17)

Returning to the proof of Theorem Al, we see that for supSj< — μ we have

from which we conclude that {σ; : j = l , 2 , . . . } is a sequence of independent
geometrically distributed random variables. Applying Lemma A1 with N1=σ1

and N2 = N — σl9 so that 1 — =eβ(v + tι) a n d WΪJ +m2 = Vιy, we have

for Fz^l/(5. It follows that
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lim inf 4~ In Kf + tι [BδJ = 0 (A 19)
ί-oc βVχ

since, for y^ρc, μ + ίz->0. Thus we have, in both cases,

liminf-UnlKf[G]^ -p{μ)-f(y) + μy= -Iμ(y) (A20)
ι-+cc pVι

for all y in G, since (5 was arbitrary. Hence

^ ^ sup (-/"()>)) = -inf F(y). D
l-*π μVl G G

The large deviation result established above enables us to apply Varadhan's
theorem to suitable functions of X^N/V^ to deal with functions of the two
variables σί/Vι and N/Vh we prove a large deviation result for the sequence of
probability distribution of a vector-valued random variable. Define the vector-
valued random variable X 2 :Ω-+R 2 by X\i)=Vι~

iσu X^^V^1 X σp with
cumulant generating function Cf[ ] by J~2

Cΐtt] = (βVιy
1lnΈΐ[eβVι<UXι>']. (A21)

In order to prove a large deviation result for JKf = Pf o X ~ \ it is necessary to make
a further hypothesis about the single-particle spectrum.

Lemma A2. Suppose that (S1) and (S2) /zo/d and ί/iaί lim ΛZ(2) = λ{2) exists and is a
ϊ->00

o/ continuity of F; then the cumulant generating function Cμ[f] = lim Cι\j^
exists for μ<0 and all t in 1R+ and is given by

(oo, otherwise,

where

3>μ=-{teWL2

+: μ+f 2 -A(2)<0, μ + ί} < 0 } .

Proof. We have

where

p} 1 ) (α)=-(/?^)- 1 ln( l -e- / ! a ) , α < 0 ,

and

j1)(α) =clearly lim/?j1)(α

Define Iz(j) = /lz0'-l-l)-λ2(2), ; = l,2,.. .; then {^(j): ; = 1,2,...} satisfies (SI)
and (S2) and the corresponding density of states F is given by F{λ) = F(λ + λ(2)).



Large Deviations and Interacting Boson Gas 83

Since

p<2>(«)= J p{0L-λi2)\λ)dFlλ),
[0,oo)

we have, by Proposition 3 of Sect. 1,

limpS2)(α)= ί p(a~λ(2)\λ)dF(λ)= j p
l^oo 10.30) [Λ(2), oo)

for a<Λ(2). It follows that

for tin Θμ\ put Cμ[t] = oo for tin the complement of^μ; then th^Cμ[f] is a closed
proper convex function on R 2 with domCμ = ̂ μ . Put

7μ[x] = sup {<x, t) - Cμ[ί]} (A23)
ίeR2

then we have

Theorem A2. Suppose that (SI) and (S2) hold and that λ(2) = Γim/li(2) exzsfs αn<i is a
point of continuity of F. Then, for each μ < 0, the sequence {Kμ: / = 1,2,...} satisfies
the large deviation principle with constants {V^ and rate-function /μ( ) given by

Proof. The proof that (LD1) and (LD2) hold follows, as in the proof of
Theorem Al, from the fact that Iμ( •) is the Legendre transform of Cμ( ). To prove
that (LD3) holds, we follows Ellis [13] and adapt to our situation

Gartner's Lemma. Let K be a non-empty closed subset of IR2 define / μ [ X ]
— inf Iμ(x). If 0<Iμ\_K]< oo then there exists a finite set τ(ί\ . . . , τ ( r ) of non-zero

vectors in R 2 such that, for ε>0 and c = Iμ[K'] — ε,

KC U ff5_(τ(/);c), (A24)

where H\(τ\ c) = {x: <x, τ> - C μ(τ)^ c} ί/ 7μ[K] - + oo then, for each R>0, there
exists a finite set τ ( 1 ), ...,τ ( r ) of non-zero vectors in R 2 such that

KC [j Hμ

+(τij);R). (A25)

First suppose that K is such that 0</ μ [ iv] < GO; then

r

By Markov's inequality,

(A27)
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hence

lim sup ~ l n K f [ # ΐ ( τ ( i ) ; c)] = - J μ [ K ] , (A28)

since £ > 0 was arbitrary and Cμ(t)-+Cμ(t) by Lemma A2. It then follows from (A26)

that (LD3) holds in the case 0 < F [ i Γ | < o o ; if / " [ £ ] = + 0 0 then

limsup—-lnIKf[K]^ ~R for each J R > 0 and again (LD3) holds.

It remains to verify (LD4); let G be an arbitrary point in G and choose δ>0

such that (y1—δ,yί+δ)x (y2 — δ, y2 + δ) C G. Then

where Kp ) ? μ is determined by

J eβ
vιhχΊj£ϋhβ[dx^ = eβVι{pϊn{μ + tj)~ptJHμ)]. (A29)

[0,oo)

Now

\immi(βVι)~1\nK{

ι

2)>μt{y2-δ,y2 + δ~]^-I{2)<μ(y2), (A 30)
J->00

where

J ( 2 ) *(x) = sup {p(μ)-p(μ + ί2)-hί2x}=p(μ) + /(x;Λ(2))-μx? x^O,
, + ί2<A(2) ( A 3 1 )

by the reasoning used in the proof of Theorem Al. Finally,

ι[^ ~Iil)'μ(yι), (A32)

by direct calculation, where I{1)'μ(x)= — μx, x^O and (LD4) holds since y was

chosen arbitrarily in G. Π
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