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Abstract. This is a study of the equilibrium thermodynamics of the Huang-
Yang-Luttinger model of a boson gas with a hard-sphere repulsion using large
deviation methods; we contrast its properties with those of the mean field
model. We prove the cxistence of the grand canonical pressure in the
thermodynamic limit and derive two alternative expressions for the pressure as
a function of the chemical potential. We prove the existence of condensate for
values of the chemical potential above a critical value and verify a prediction of
Thouless that there is a jump in the density of condensate at the critical value.
We show also that, at fixed mean density, the density of condensate is an
increasing function of the strength of the repulsive interaction. In an appendix,
we give proofs of the large deviation results used in the body of the paper.

1. Introduction

Since London’s proposal [1] that the super-fluid phase-transition in He* is an
example of Bose-Einstein condensation, it has been of interest to know how, in
theory, interparticle forces affect the condensation of bosons. London himself
conjectured [2] that, as a manifestation of quantum mechanical complementarity,
the momentum-space condensation of bosons is enhanced by spatial repulsion
between the particles; we know of no proof of this general proposition.

Huang et al. [3] introduced a model of a boson gas with a hard-sphere
repulsion which displays enhanced condensation. The model may be described
thus: Let 4,, 4, ... be a sequence of regions in R? and denote the volume of 4, by
V;; we assume that V,— o0 as [—co. We associate with the region 4, the sequence
e(1)<g2)< ... of ordered real numbers, where ¢j) is the j™* eigenvalue of the
single particle hamiltonian of the non-interacting system in the region A;; the free-
gas hamiltonian H{ is given by

HY = 2 alim), (1.1)
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where n,(j) is the occupation number of the ;™ level. The Huang-Yang-Luttinger
model is described by the hamiltonian

HY:=H} + W{Wz Z”z(jf}, (1.2)
l jz1

where N, = Z ny(j)1s the total number of particles and ¢ > 0. The HY L-model is to

be comparcd w1th the mean-field model described by the hamiltonian

HYF = HO + WN, . (1.3)
1

In the mean-field model, the interaction may be understood classically: the term

2_V N?isan “index of refraction” approximation to the interaction energy in which

we imagine each particle to move through the system as though it were movingina
uniform optical medium and so receiving an increment in energy proportional to

IT/L. The HYL-hamiltonian differs from the mean-field hamiltonian by the term
1

nz(j)z} (1.4)

which is a purely quantum mechanical contribution to the interaction energy and
reflects the boson statistics. It is smallest when all the particles are in the same
energy-level; we expect, therefore, that any tendency to condense in momentum
space which is displayed by the free-gas will be enhanced by the presence of this
term in the interaction.

Huang et al. [3] motivated the introduction of their model by reference to first-
order perturbation theory. Thouless, in his book [4], offered an alternative
approach: he started from the full pair-potential interaction, and, as a first step,
discarded those terms which are not diagonal in the occupation numbers {n(j):
j=1,2,...}; the remaining terms can be grouped as the mean-field part, the term
(1.4) and a correction term involving the pair-potential function. Formally, the
correction term vanishes in the delta-function limit so that we recover the HYL-
hamiltonian, while in the van der Waals’ limit it cancels with the term (1.4) to give
the mean-field hamiltonian; details of this can be found in [5].

While arguments which point to a resemblance between the HY L-model and
an actual hard-sphere gas are only heuristic, the properties of the model are
nevertheless of interest provided their derivation is rigorous; the method of large
deviations, Varadhan’s theorem [6] in particular, enable us to give such proofs.
Huang et al. [ 3] argued that the condensate, if any, would occupy the ground state
and concluded that (1.4) could be replaced by

ﬁ-{N m(1)*}. (1.3)

They then used the method of the largest term (Laplace’s method) to obtain an
expression for the free-energy; their derivation gives the following expression for



Large Deviations and Interacting Boson Gas 63

the grand canonical pressure pY:(y):
a
P )= JSup {/Jxo —flxg—x1)— 5 (2x5— Xf)} ) (1.6)

where f(g)is the canonical free-energy density of the free boson gas at density ¢. In
Sect. 4, we give a rigorous derivation of (1.6) starting from the hamiltonian

a m )
HIYL =[O 4 Z_V,{ZNZ— }\:/:] n,(])z}, (1.7)

where {m;: [=1,2, ...} is any sequence of positive integers satisfying

lim m,/V,=0. (1.8)
-

[1deally, we would like to remove the condition (1.8); we have been unable to
surmount the technical problems which this change introduces.] The only
conditions we require on the free-gas hamiltonians H{ are those introduced in [7]
to ensure the existence of the free-gas pressure; for example, the cases in which the
single-particle hamiltonian has a spectral gap above the ground state [8] or
includes an external potential [9] are covered by this treatment. We give also (in
Sect. 6) a full discussion of the phenomenon of condensation in the HY L-model,
using the method introduced in [107; this requires an explicit expression for the
pressure in terms of the integrated density of states of the single-particle
hamiltonian, and we provide this in Sect. 5 by solving the variational
problem (1.6).
The first step in our proof is to bound the interaction term (1.6) above by

4y
21!

a 5 me N2 \
ﬁ {Nz - (j;ﬁ ”t(.l)) } (1.9)

The principle of large deviations provides a compact way of making rigorous the
method of the largest term; applied to the upper bound on the hamiltonian it yields
the expression (1.6) for a lower bound to the pressure p™¥*(u). To deal with the
lower bound (1.9) we have first to estimate the entropy involved in grouping
together the first m, levels; this is achicved by an inequality proved in Sect. 4; the
method of large deviations applied to the lower bound (1.9) then yields the
expression (1.6) for an upper bound to the pressure p"¥*(u) and the proof is
complete.

The method of large deviations is still not well-known in the theoretical physics
community; for this reason, we introduce the technique first in Sect. 3 by means of
a simple example, using it to prove the existence of the pressure in the mean-field
model.

For the convenience of the reader, we close this section with a summary of
those results on the free-boson gas, proved in [ 7], which we will make use of in this

N —n(1)*} (1.9)

and below by
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paper. A minor, but technically important remark has to be made at this point: the
thermodynamics of each of the three models described here depends only on the
subtracted eigenvalues

AN =elj)—ef1) (1.10)

and not on the eigenvalues ¢ j) themselves; this is discussed fully in [ 7] for the case
of the free gas and the discussion carries over easily to the HYL and mean-field
models. This being said, the free-gas pressure p,(u) in 4, at chemical potential x can
be written, for <0, as

piw)=(BV)~ Zln(1 —fumaon L, (1.11)

Defining the partial pressure

pulA)=p""In(1 — =)~ (1.12)
and the distribution function
F(A=(V) " 4 {j: (NS4}, (1.13)

we may re-write (1.11) as
plw= [Oj‘ )P(uli)sz(l). (1.14)

To ensure the convergence of the sequence {p (1)} we must impose some conditions
on the single particle spectrum. Define

()= N e VdF(2), (1.15)

L 0)

and introduce the conditions
(S1): o(p)= llim ¢dp) exists for all B in (0, o).

(S2): ¢(P) is non-zero for at least one value of 5 in (0, o).
When (S1) holds, there exists a unique distribution function F such that

()= [Of )e‘“dF(A) (1.16)

and F(2)—F(1), at least at the points of continuity of F. The function F' is the
integrated density of states. When in addition (S2) holds, we can say more:

Proposition 1. Suppose that (S1) and (S2) hold; then the limit
plp)=lim p{p) (1.17)
exists for u>0, and p(u) is given by

p(w)= [Of ‘)P(#M)dF (4). (1.18)

The critical density g, is defined as follows: if A+ p'(0|2) is integrable on [0, oc)
with respect to F, put

0.= [ pOIA)dF(2); (1.19)
[0, o)
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put 9.= o0 otherwise. For fixed [, the function u+ pj(u) is strictly increasing on
(— 00,0y and py(1)—0 as u— — oo while pj(p) = oo as u—0 since 4,(1)=0. It follows
that the equation pj(u) = ¢ has a unique solution p(g) in (— co, 0) for each ¢ in (0, o).
On the other hand, the function u— p’(u) increases from zero to g, as u ranges
through (— o0, 0). It is convenient to define u(p) for ¢ in (0, o0) as the unique root of
p'(w)=gif g <g, and zero if g = ¢,. Defining m,(g), the pressure at mean density g, by

(@)= (p;° t)(0)
and 7n(g) by

m(@)=(p° (o),
we have:

Proposition 2. Suppose that (S1) and (S2) hold; then

(i) lim p(0) = ple).
(i) lim 7(¢)=n(0).

The canonical free-energy f(o) at mean density g, defined by f(o)
= sup {po—p(w)}, is given in terms of pu(-) and n(-) by
u<0
J(@)=opu(0)—nlo). (1.20)

Notice that ¢ +— f(p) is constant on the segment [g,., 00) so that, for g. < oo, there is a
first-order phase-transition.

In the proof of the large deviation result in the Appendix, we require a more
technical result: Define

pO(ulA) = p(ul2),

k

d
(k) /‘ = L 2
p(ul4) o pluli), k=1,

we have
Proposition 3. Suppose that (S1) and (S2) hold; then for each k=0,1,2, ... and each
u>s the sequence p{(u; s) s [ p®(uA)dF (7) converges to

[s, o0)

def . \
p®u; ) = . ] )p("’(ul/»)dF (4),

provided s is a point of continuity for F. Moreover, the convergence is uniform in p on
compacts in (— o0, s).
Defining
Sless)= sup {ue—plus )} (1.21)
and
Ao=1inf {4: F(2)>0},
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we have
o oup) —p(u(@); 4o),  0=0=0,,
s Ao)= (1.22)
/@3 4o {zoe—puo; . aze.

where

o= I PUlFG)Z | 00,
and u(g) is the unique root of p™(u; Ay) = ¢. Furthermore, the derivative of f(¢; /)
with respect to ¢ is given by

Flo do)= {u(@)a 0<e=o,. (1.23)

/'O’ Q>Qn'

2. Summary of Results

In this section we summarize our principal results and comment on their
significance. In Sect. 4, we prove the existence of the pressure in the HY L-model,
settling doubts expressed by van Hove [11] about the model’s stability. The
conditions on the single-particle spectrum which we assume are almost the same as
those under which we proved the existence of the free-gas pressure in [7].

In Sect. 5, we solve the variational problem (1.6) to get the following alternative
expression for the pressure:
inf {(u—0)?/4a+p(2);, pEpt,
HYL( x<0

P = (2.1)

sup {(u— 0% /da — 220+ p)) . pzpt.

where p* is the unique value of y for which the two expressions on the right-hand
side of (2.1) are equal; p(«) is the free-gas pressure. Using this expression, we prove
in Sect. 6 that the total amount of condensate at chemical potential u is given by

HYL, _ ~9‘(#)/‘1’ M>/J*,
AL = {0, i (2.2)

where ofy) is the unique value of « at which sup {(u—a)*/4a—ao?/2a+ p(=)} is
<0

attained. A rough calculation of the energy-entropy balance in this model led
Thouless [4] to predict a jump in the total amount of condensate as a function of
the chemical potential. A calculation by Critchley [12] using a variational
principle based on a restricted class of states found further evidence for such a
jump. We show that in the case 2ap”(0)<1 we have

lim A" (u)=0. (2.3)

wlp*

So that there is no jump; however, in the case 2ap”(0)>1 we have

lim AN (0 = —a*/a> —o,/a>0, (2.4)
wlpx

where o, is the unique root of 2ap”(2) = 1, so that there is a jump in A7 (y) at u* and
the prediction of Thouless (p. 156 of [4]) is confirmed.
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It is interesting to consider the total amount of condensate at fixed mean-
density ¢. We can identify a(u) as the lowest root of the equation

p)=¢o+upw/a, o>0; (2.5)

for fixed o, o) decreases as a increases since o +— p'(«) is increasing; hence — a(u)/a
increases with increasing a so that the total amount of condensate at fixed mean
density is an increasing function of the strength of the repulsive interaction. This
supports London’s conjecture [2] that spatial repulsion between bosons enhances
phase-space condensation.
We recall that in the mean-field model [10] the total amount of condensate is
given by
MMy =(e(w—2.) ", (2.6)

where o(u) is the mean-density at chemical potential u. In this model, there is no
jump in AM¥(u); moreover, at fixed mean-density it is independent of the strength of
the repulsive interaction and equal to the total amount of condensate in the free
boson gas at the same mean-density.

The difference in behaviour of the condensate in the two models reflects the
difference in origin of the phase-transition. In the mean-field model, as in the free
boson gas, condensation is a consequence of the balance between entropy and
kinetic energy; in the HYL-model with 2ap”(0)> 1, condensation is a result of the
balance between entropy and interaction energy. This difference has a further
consequence: in the mean-field model, condensation occurs if and only if it occurs
in the corresponding free-gas (g, finite); in the HYL-model, there is always
condensation for g sufficiently large, even when g, is infinite in the corresponding
free boson gas. It is to be expected that inclusion of off-diagonal terms in the model
hamiltonian would lead to depletion of the condensate; effort expended in solving
this difficult problem is likely to prove very rewarding.

3. The Probabilistic Setting

In the models considered in this paper, the hamiltonians are diagonal in the
occupation number operators; it follows that it is possible to regard the
occupation numbers as random variables rather than as operators. We shall do
this because it enables us to adopt a powerful method from probability theory.

The probability space on which we define our random variables is the
countable set Q of terminating sequences of non-negative integers: an element w of
Qis a sequence {m(j)e N: j=1,2,...} satisfying Y w(j)< oo. The basic random

<

J=
variables are the occupation numbers {o;: j=1,2,...}; they are the evaluation
maps o;: 2NN defined by o,(w)=w(j) for each w in Q. The total number of
particles N(w) in the configuration w is defined by

N(w)= ‘Zx aiw). (3.1)

Motivated by the discussion in Sect. 1, we define, for each integer [ > 1, the free-gas
hamiltonian H, by
H{w)= 421 o), (32)
jz
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and the mean-field hamiltonian HM" by

Y ()= H{)+ 5, N©), (33)
14

where a is a strictly positive real number. Since Q is a countable set, we may specify
a probability measure on 2 by giving its value at each point of w of Q. The free-gas
grand canonical measure P} ] is defined by

le‘[co} = pftuN(@) = Hy(w) = Vaipp)y (3.4)

Here p/(p) is the free-gas pressure given in terms of the A/(j) by (1.11); it satisfies
PV ipi(w) — 2 ePuN(w) —Hy(o)}; (3'5)

weN

The large deviation method which we are going to employ in proving the
existence of the pressure in the HYL-model is illustrated simply in the case of the
mean-field model. The mean-field pressure pM¥(u) satisfies

PV — Y BN (@)~ HMF (@)} (3.6)

wef
Introducing the particle number-density X,=N/V|, we can re-write (3.6) as
PV iy — Y PV XD @)pPluN©) i)} (3.7)
wef
where u(x)= —ax?/2; using (3.5), we have

PV iPMT (W) — oBV i) Z eﬁV’(WX”("’)]Pf‘[w]. (3.8)

wef

Introducing the probability measure K on [0, c0) by

Ky =Py X, ", (3.9)

we can re-write (3.8) as
eﬂth?‘F(u):eBVzm(u) I eﬂV’“(")]Kf‘[dx] , (3.10)

[0, )
so that
1
p (W =pw+ o In [ P OKE[dx]. (3.11)
BVI [0, «)

This expression for p)¥(u) suggests the use of Laplace’s method to complete the
proof that pMF(u)= llim pMF(u) exists. Varadhan’s theorem [6] provides an efficient

way of doing this; the conditions on the sequence {K{:1=1,2,...} are stated
abstractly:

Let E be a regular topological space and {V}: [=1,2, ...} a sequence of positive
numbers diverging to +occ. Let {K;: I=1,2,...} be a sequence of probability
measures on the Borel subsets of E. We say that {KK,} obeys the large deviation
principle with constants {V;} and rate-function I1:E—[0,c0] if the following
conditions are satisfied:
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(LD1) I(-) is lower semi-continuous.
(LD2) For each m< o the set {x: I(x)<m} is compact.

1 ‘
(LD3) For each closed set C, llim supvln]K,[C] <- 1rle I(x).
o l

.. .
(LD4) For each open set G, Ihm inf Vln]K,[G] =>— 12f I(x).
- 1
We are now ready to state

Varadhan’s Theorem [6]. Let {IK,} be a sequence of probability measures on the
Borel subsets of E satisfying the large deviation principle with constant {V;} and rate-
function I(-). Then, for any continuous function G : E—IR which is bounded above,
we have
.1
lim —In | " ™K [dx]= sup {G(x)—I(x)} . (3.12)
-V, E E
Returning to the proof of the existence of the pressure in the mean-field model,

we make use of a large deviation result for the free-gas measures {K{'} defined at
(3.9); the proof is given in the Appendix:

Theorem Al. Suppose that (S1) and (S2) hold; then for each u<Q the sequence
{K{: 1=1,2,...} of probability measures on [0, ) satisfies the large-deviation
principle with constants {V;} and rate-function

I(x) = p(u) + fx) — px. (3.13)
Applying Theorem A1 and Varadhan’s theorem, we have

lim 1 In | e/"OKidx]= sup {u(x)—I"x)}
[0, @)

=0 1 [0, 00)

=—p(u)+ sup {ux—f(x)— ajw}- (3.14)

[0, ) 2

Combining this with the conclusion of Proposition 1, (3.11) yields the existence of
the limit pM¥(u) = llim pM¥(n) and the following formula:

P o= sup {ux —f(x)— ‘L}} (3.15)

So far this has been proved only for u<0; nevertheless, the pressure pM¥(u) exists
for all real y and is given by (3.15). To prove this, we use a device which we will need
later. Fix a<0; then a straightforward manipulation yields

PV IPMT W) — BV 1pi(@) Y elWx(uanz)(w)]p?[w]’ (3.16)
wef
where u,(x)=(u—a2)x —ax?/2, so that

1 ,
—In | M XIOKIdx]. (3.17)

ME() = pylo) +
P (W =pl) gvin g
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Proceeding as before, we get (3.15) for all real pu.
A simple exercise yields the following alternative expression for pMf(pu):

P)= inf {‘-“;a“) +p(oc)}. (3.18)

This result was obtained earlier [10] by other means; in that proof, the subleties
arising from the first-order phase-transition in the free-boson gas were all too
evident; in the proof we have just given, they are tidied away in the verification of
the large deviation principle for the measures {K}: [=1,2,...}.

4. The Existence of the Pressure in the HYL-Model

In this section, we obtain the main results of this paper: we prove the existence of
the pressure in the HYL-model, and we derive an expression for the pressure as a
function of the chemical potential. Motivated by the discussion in Sect. 1, we
define, for each integer 1> 1, the HYL-hamiltonian HIYL by

HYYw)=H)(w)+ ﬁ {2N(w) gl Jj(a))l} 4.1)

for a>0and {m;: [=1,2,...} a sequence of positive integers such that m;/V;—0 as
|- o0. Recall that 4, was defined to be inf {A: F(2)>0}.

Theorem 1. Suppose that (S1) and (S2) hold and that 4, is a point of continuity of F;
then the pressure

P ()= lim pi™ ()
exists for all real values of w and is given by
PHYL(N)z 0<Su£) {on —f(xo— X135 4o)— ‘(zxo )} (4.2)

The proof makes use of Varadhan’s theorem and a large deviation results for
the joint distribution of ¢, and } ¢;. Define the vector-valued random variable
X,;:Q-R? by J>1

X)=V "), XPlo)=y"! _Zl oo}, (4.3)
IS
and, for <0, define the sequence {IK}': [=1,2, ...} of probability measures on IR?
by
Ké=ProX 1. (4.4)
In the Appendix, we prove
Theorem A2. Suppose that (S1) and (S2) hold and that J(2)= ,1‘32 A2) exists and is a
point of continuity of F. Then, for each u <0, the sequence {IKK}: |=1,2, ...} satisfies
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the large deviation principle with constants {V}} and rate-function I*(-) given by

Iy =plp)+ [0 A2)—plxy +x5), %, 20, x,20. (4.5)

Proof of Theorem. Define H(w) by

Hw)= Z Aj)o UJ)+ — ’2N(w) —ay(w)*}, (4.6)
where
T { j=1,
)= max {;“0’ /LI(J) . Jj=22,
so that

lhm 2)=7y and Hjw)zH" ).
It is easy to check that (S1) and (S2) hold for the new double sequence {4,(j)} and
that the integrated density of states is unchanged. Let p,(u) be the grand canomcal
pressure corresponding to the hamiltonian H,; an application of Varadhan’s
theorem together with Theorem A2 yields

plu)= lim ()

sup {u(xl +305) = 33 )= § 2%, +xz)2—xﬂ}

x120, x22

sup {/‘xo —flxg—xXy3 A0)— [on_xz]} (4.7)

0<x;=Zx0

i

Since H(w)= HYY(w) we have p,(u) < pt¥(u) so that
p) < lim inf pi™H(u). (4.8)
-
The proof of the upper bound to the pressure is less straightforward and makes

use of the following entropy estimate:

Lemma 1. For n=0,1,2,... and k=1,2, ...
("‘[‘k‘—l) ée‘“"k)uz, (49)

n

Proof. The proofis by induction on k. Evidently (4.9) holds for k= 1. Suppose that
(4.9) holds for all k" less than or equal to some fixed k; then

n+k 11::1? n+k—1
n k n
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But
84,,1/2((k+1)1/2_](1/2):64"1/2/((](4_1)1/2+kl/2§
geZn‘/z/(kJr 1)‘/2> )(Zn/k)‘/'2
2n 1/2n n
=1+ + 21+ .
k 2\ k k
Hence

<n:—k> <e 4n‘/2(k+1)1/2 0

Returning to the proof of Theorem 1, define k,=max {m,, V,F(4,)} and put

o, j=1,.0k,
)c :%\ . . ’
~l(~]) ;”I(J)’ J:~>_.kl_l_1 )

and
H(w)= Z 410 u))—i— {ZN(w <Z o(w)> } (4.10)
since A(j)Z A()) for all j and

Ky 2 m 2 m;
(}Z 0;(@))) = <_Z Gj(w)> = ¥ afw),

we have H/(w)< H}~w) and p(u) = pi"™¥(u), where p,(p) is the grand canonical
pressure corresponding to the hamiltonian H,.

Now
PV ipiw) — Z ePluN(w) — Hi(w);
we
X = Mi(J -4 2 ;:‘l 2 [

- Z eﬂ{}él(u 2i(m, m[l(]);:lm)**(]:‘na }f
ny,no, ...
© (m+k,—1

=Yy ! Z(m), (4.11)
m=0 m

where

—aion, — = N2 2
D I L L e o (R e | PR

LR PR

By Lemma 1, we have

PVir < z ek 27 (m) ; (4.13)

put

H{o)= ¥ 4(j)o (w)+—{2<2 O-j(w)2>—o-1(w)2}

iz 2V U=

~ Sl o), @.14)
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where )
o, -1,
)= { / (4.15)

Akt =1, jz2,

and let p,(u) be the grand canonical pressure corresponding to the hamiltonian H,.
It follows from the definitions that

PVt — ZO ek Z (m). (4.16)

Hence, using (4.13), we have

P Z pl) Z P H(w). (4.17)

Itis straightforward to show that the new double sequence {4,(j)} satisfies (S1) and
(S2) with the integrated density of states unchanged, and that lim £,(2)=4,. To
[Aade]

complete the proof of Theorem 1, we use Theorem A2 together with the following
version of Varadhan’s theorem which can be deduced from Sect. 3 of [6] when E is
a completc separable metric space:

Let {G;:1=1,2,...} be a sequence of continuous functions uniformly bounded
above which converges uniformly on bounded subsets to G. Let {IK;: [=1,2,...} bea
sequence of probability measures which satisfies the large deviation principle with
constants {V,} and rate-function I(-). Then

lim 1 In | " CMK, [dx] = sup {G(x)—I(x)} .
- V) E E
Applying this with G(x) defined by
a 4 [k \'?
G(x)=(p—a)(x; +x,)— b [20x; +x,)° —xi]— B <V> xi?, (4.18)
!

we have

p(u)=lim p(u)

= 0=

i

A
sup {ﬂ(xl +x,) = (X33 Ag) — '2‘[2()‘1 +x2)2—xf:|}

X120, x320

a
= sup {on_f(xo_xlé)vo)_i[zx%’“xﬂ}

0=x;=<x0

=p(u), by 4.7). (4.19)

Since py(u) Z pi"*H(u), we have
p(w) 2 lim suppi™*(u). (4.20)
Thus we have, using (4.8),
HYL

piw)Z lim suppi™ () 2 lim inf pi"™ (1) 2 pls)

so that, by (4.19), the limit p"¥*(u)= lim p{"Y*(u) exists and is given by (4.2). []
1=
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5.1. The Grand Canonical Pressure

In this section, we solve the variational problem which arises when we try to
express the pressure p"YX(), given by (4.17), in terms of the free-gas pressure p(a),
o <0. We prove the following theorem:

Theorem 2. Let w,= inf {2ap'(«)—a} and let u.=2ag,; then there exists a unique
<0
value u* of p in the interval (u,, u.) such that

inf {(u—o)?/4a+p(a)}, TR
HYL( 1<0

P W= (5.1)

sup {(u—0)?/da—a?2a+pla)}, pzp*.
2<

Remark. The point p* is the unique value of u for which the two expressions on the
right-hand side of (5.1) become equal.

Proof. Put
2 2
u2a+ax®—ux, 0=x=p/2a,
O — 5.2
8x) {~ax2+ux, x> u/2a, (52
and )
Jox)=10x; 40). (5.3)

Taking the supremum over the set {x, >0} and replacing x, by x, we have

PME= sup {— 5 1206, +0, =]+ ax, +x2)~f5(xz)}

X120, x220

= sup 18(x)—fo(x)} . (5.4)

The functions f,, and g are differentiable on (0, o0); on (0, o0), g’ is non-positive
while f; is non-positive on (0, g.] and non-negative on [g,, 00), so that the equation
g'(x)— fo(x)=0 can only be satisfied in (0, g.]. Since g(x)— f,(x) decreases to — oo as
x— o0, the supremum of g — f, is attained either at zero or at a stationary point in
(0, 0.]; however, fj(x) decreases to — oo as x| 0 while g'(x) remains finite so that the
supremum cannot be attained at zero. We have
P = sup {8(x)— fo(x)} = glxo) — folxo) s (5.5
Qe
where x, is a point of (0, ¢.] at which fj(x)=g'(x). We must distinguish two cases:
(i) For u>2ag, we have g(x)=u*/2a+ax*— ux, x€(0, ¢.], so that a stationary
point is a root of the equation

Jolx)=2ax—p. (5.6)

Since g, =< 0,, we have fi(x)=o(x) =<0 where o(x) is the unique real root of p'(«) = x.
Putting h(z)=2ap'(2)—ao, Eq.(5.6) becomes h(o(x))=u. Now ot h(x), <0, is
convex; since h(o) increases to + oo as o— — o and h(0)=2ap, < i, the equation,

h(e)=p has a unique solution on (— oo, 0]. Thus, for u>2ap

c®

PP M) = p?/2a + ap' (o)) — (i + o )p(ory )+ plery) (5.7)

where o, <0 is the unique root of 2ap'(o) — = p.
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(i) For u=2ag,, we define y, by u, = inf h(o); this occurs at the unique point ¢,
a<0
[because o h(x) is strictly convex] where

//OS
. {0, 2ap"(0)=1,

. 5.8
the unique real root of 2ap”()=1, otherwise. (5:8)

Note that u, Sh(0)=2ag,. For u<u,, the equation h(z)=pu has no solution in
(—0,0] so that the supremum of g—f, must be attained on [u/2a,0.]. At a
stationary point we have

2ax+ fo(x)=p (5.9)
or, equivalently,
k(z)=un, o=0, (5.10)
where
k(o) =2ap' (o) 4. (5.11)

Since «+> k(o) is strictly increasing from — oo to k(0)=2ap,>pu,, the equation
k()= has a unique solution a, and x,=p'(a,) must lie in [u/2a, ¢.]. Thus, for
U=y,
HYL(, \ _ 2 o J(u—a)?
PYHu) = (=) A+ plas) — inf 45 4 pla) (5.12)
When 2ap”(0)<1, we have u,=2ap,. and so we have exhausted all cases; we
conclude that p"¥%(u) is given by

. 2
{ inf {(“ - +p(a)}, j< 2.,
pHYL(’u) — 5.13
(u—w)?®  2? >4
MR da e PPN 7R

When 2ap”(0)> 1, it remains to consider the case in which u lies in the interval
(i, 2ag.]. In this case, the equation h(x)=p has two solutions o', o” with o' <a”;
h(et) — wis positive for o in (— o0, o) and (2", 0) and is negative for o in (o, o”) so that
there is a local maximum at o’ and a local minimum at «”. Notice that x'=p'(«')

= —2% since 2ap’(a)=pu+o' <. On the other hand, the equation k(¢)=pu has a

unique solution «"; since k'(«) >0, there is a local maximum at «” = p'(«") > p/2a.
Put

Py =(u—o')/Aa—o'*/2a+ p(or) (5.14)
and

pa(p)=(u—ao")?/A4a+ p(«”); (5.15)
then

P () =max {p,(w), p,(w)} . (5.16)
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We shall prove that, for u,<2ag,, there is a unique value u* of u for which
D1(#)=pa(n) and that

TS Kt 517
Since
2ap' (0 )=pu+o (5.18)
and
2ap'(e”)=pu—o" (5.19)
we have
P (@) —p' @) =("+a")/2a<0, (5.20)
so that o <« since a+— p'(a) is strictly increasing. Now
=20, (521
% (W=(u—ao")2a, (5.22)
so that fidp—z(,u) < %(u), which implies that p— p (1) — p,(w) is strictly increasing.
Thus it is'u sufficienltt to prove that
P1(u) —pa(u) <0 (5.23)
and
p1(2a0.)—p,(2ag,)>0. (5.24)

Let 6, be the unique value of o for which k(«) = p,; we know that o, satisfies h(a,) = p,
so that, by the above argument, o, <9,. Thus

pl(,ut) = (:ut - O‘t)2/4'a - O(,z/za + p(“r)
<(,—9,)*/4a—07/2a+ p(d,)
<1, =06, /4a+p(3)=pau,), (5.25)

where we have used the fact that
o> (u,— o) /4a —a*/2a + p(o)
is increasing. Let vy, be the unique root of h(x)=2ag in (— o0, 0); then
pi2ag)=(2ag.—y,)*/Aa—y?/4a+p(y)>agl + p(0)=p,(2ag.).  (5.26)

since o (2ag, —x)*/4a—a*/2a + p(x) is decreasing. []
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6. The Condensate

In order to investigate the phase-transition more closely, we compute the total
amount of condensate A(x). Let X,(2; w) be the random variable defined by

X2 0)=V"" Y afo): (6.1)
(D=2

it presents the density of particles with kinetic energy less than / in the
configuration w. The total amount of condensate A(u) is defined by

A =lim lim E{LX,(2)], (6.2)
Al - w0

where IT'EQ‘[ -] denotes the expectation with respect to the grand canonical measure
determined by the hamiltonian H;:

z F(w)eﬂ(uN(w)—Hz(w))

o wef
EiLF]= Y PN Hen (6.3)

we

It is evident that (6.2) is a way of making precise the notion of the “density of
particles with zero kinetic energy.” To avoid complicating the discussion, we
assume in this section that the integrated density of states is continuous.

Theorem 3. In the HYL-model, the total amount of condensate A(u) is given by

Mm:{~wmm, >yt

0, <, €4

o 2
( i %’ — % +plo )} is attained.

where o(u) is the unique value of o at which sup{
a<0

Proof. The idea of the proofis this: by introducing a gap into the spectrum of the

kinetic energy term in H'" we can compute a modified pressure which, up to

normalization, is the cumulant generating function of X (/). The expectation of

X () is then computed by differentiation and a standard convexity argument used

to prove the convergence of the derivative.

Using (6.3), we have

~ A 0 ~
ELX(A)]=(BV)~ 1% Kol [
1 0 BY ipi(us s, A) = pi()}
=By e R, (63)

where p,(u) is the pressure corresponding to the hamiltonian A, and j(x; s, 2) is the
pressure corresponding to the hamiltonian H (s, 1) = H,—sV,X (2). Hence we have

E{LX (2] = =Pl 5. Dl=o - (6.6)

a)’ (o))
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Putting H,=H? + Vju,, where H? is the free-gas hamiltonian, we have

eﬂVli?l(lt:SJ)___ Z eﬁ((uN(w)+SV1X1(/'~)‘H?(<'))—Vzur(w)}

weN
— e Pl +S)N(m)~Hz(s,2;w))’ 6.7
oo 7
where H(s,[)=HP(s,2)+ Vju, and H(s, 2) is defined by
Hs/;0)= Y Aofo)+ Y  (s+ij)ofo). (6.8)
U (= 3y (s (> 2)

In other words, the hamiltonian H{(s, /) is the free-gas hamiltonian with {/{(j)} in
place of {4())}, where

sHA0), if )=

It is easy to check that if 0=4,(1)</,(2)<... satisfies (S1) and (S2), then so does
0=7(1H)Z4(2)=... . Applying these considerations to the HY L-model we have, by

Theorem 1, p™YHu; s, /)= llim pHYL(u; s, 2) exists. By Theorem 2, we have

ot s—a)? . L

1nf T +p(a’ S, /") s l'téll*(ss /‘),

%<0 4a

pHYL(,M; S, /1): ( n )2 ) (610)

p+s—o a . .
s e % . > %

iglg{ 4a 2a +p(:x’s’/")}’ :u:lu (S’/“)9

where u*(s, /) is the unique value of u for which the two expressions on the right-
hand side of (6.10) become equal. We note that s, 2+ u*(s, 4) is continuous. Here
plo; s, 2) is the free-gas pressure computed with Hy(s, 2; @) in place of H(w); since
p(o) can be expressed in terms of the integrated density of states F(-) as

p(o)= [Of \)P(OtI/”»')dF(fl’), (6.11)

we have
plas s, )= | pld2VdF(Y+ | plojs+2)dF(X). (6.12)
[0, 2) [A. )

Since s+ pi¥*(u; s, 2) is convex by a standard argument using Hélder’s inequality

and s+ p™(u; s, /) is differentiable at s=0 provided u=pu*(0,/.) we have, by
Griffith’s inequality in the form proved by Hepp and Lieb [14],

- :
Hm (s 8, A emg = = PP us s, M)y (6.13
o 55 (.u S )!S—O asp (,U Sa/)ls—() N )

Using (6.6), (6.13), and (6.10), we have finally

0’ ‘U<‘Ll*,

where o(y) is the unique value of o at which the supremum in (5.1) is attained. []
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Appendix. Large Deviation Results for the Free-Boson Gas

In this section, we provide the proofs of the large deviation results used in Sects. 3
and 4.

Theorem Al. Suppose that (S1) and (S2) hold; then, for u<O0, the sequence
(Ki=ProX, ":11=1,2,...}

of distributions of the particle number density X,= N/V in the free-boson gas
satisfies the large deviation principle with constants {V;} and rate-function

I"(x) = p(p) + f(x) — px.. (A1)

Proof. It follows from (3.6) that the following formula holds provided yx and p+1
both lie in (— o0, 0):

j eﬁv’thKfl[dX] = PViiplu+ 1) = prwit : (A2)

{0. )
by Proposition 1, we have
()< lim B, MK Ldx] = plu+0)—plp). (A3)
[Andco} 1 [0, x)

The verification of (LD 1), (LD2), and (LD 3) is now routine (see [ 5] for a review
of the general principles); to make the paper self-contained, we sketch the proof.
The rate-function (A1) is the Legendre transform of C¥(t), given by (A3):

I"(x)=sup {tx—CH1)}. (A4)

{t:it+pu<0}

The properties (LD 1) and (LD 2) follow from (A4). To verify (LD 3), consider first
the case in which the closed set Cisaninterval J; =[0, ¢, ] with o, <p'(n); for each [
and each « <0, we have

K/, 1= [Of )110,911(X)1K§‘[d><] < [Oj )e““"""“Q"]K;‘[dx]

= PV itpil+2) = Py —a01)

It then follows from Proposition 1 that
. 1 .
lim SUP[TVIHIK?[JJ = inf {pluto)—plu)—o0,j=—1"0,), by (Ad).
=0 1 a<
It follows in analogous fashion, in the case in which C is an interval [g,, c0) with
0,>p'(w), that

lim su
1= pﬂV

A simple argument (see p. 8 of [5]) then shows that for an arbitrary closed subset C
of [0, c0)

InIK{[J, 1< —1%0,).

limsup—— InK{[C] < — mf I(x).

[Sadee ﬁV
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It remains to prove that (LD4) holds. First note that the measures K{, K} **, with
u<0 and p+t<0, are mutually absolutely continuous:

K+ dx] =PV iK1 dx ], (A5)
where
Cilx; )=tx+p(w)—plu+1). (A6)

[To check this, compute the Laplace transforms of both sides of (A5).] Now let G
be an arbitrary open subset of [0, oc); let y be an arbitrary point of G and choose
6>0 so that B)=(y—0d,y+9) is contained in G. Then

K{[G]z K{[By]. (A7)
Now, for [=1,2, ..., choose t, so that pj(u+1t,)=y using (A5) we have
]K;l[Bi]= j" ]K‘f[dx]: f g'/WIC‘,‘(x:tr)IKéHtl[dx]
B B¢

=BV {CH(y; 1)) + 6]t +1
> o BVHCHYT) Izl)][qt [By].

By Proposition 2, u+t,—»u(y) and plu+t)-p(p(y) as [—-oc; hence CHy;t,)
—C*(y; u(y)—y). Thus

L1 .
hlm inf Wlani‘[GJ 2 —Cy; p(y) —y)—olu(y) —
- o0 1

o1

We will show that

1
li}n inf7 InK{*"[B)]=0; (A8)
- !
it will then follow that (LD4) holds.
For arbitrary open G, we have

lilm inf——%ln]K;‘[G] > —inf I4(y), (A9)
S ] G

because § >0 was arbitrarily small and y was an arbitrary point of G. To prove (A8)
we distinguish two cases: if y<g, then the convexity of u+ p(u) together with
Griffith’s lemma in the version proved by Hepp and Lieb [14] allows us to
conclude that
lim | ™K [dx]=er 0 =, (A10)
1= [0, )
so that {IK}' "'} converges weakly to the degenerate distribution concentrated at y
and hence, for ! sufficiently large, IK{' *"[B?] >4 and (A8) follows; if y =g, then
u(y)=0 and we must proceed differently.

Lemma Al. Let N{ and N, be independent non-negative integer valued random
variables with means m, and m,, respectively. Suppose that N, is geometrically
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distributed and that 6 >1; then

1 ml my tmy+ 2
IP[N,+N,eB R . Al
[ + 2e m1+m2]_m1+n12 <}n1+1> ( )

Proof. First note that the interval B, ,,,=(m, +m,—1,m +m,+ 1) contains a
unique integer greater than m, +m, which we denote by n,. Now

PN, +N,6By, ]~ ¥ 3 PIN,=m—n]PLN, =]

meBm‘ m, 1=0

Z P[N,;=no—n]P[N,=n]. (A12)

n=0

Since, by assumption, N, is geometrically distributed we have

- my \"
PN, =n]=(m +1) 1<m141r1> : (A13)
Clearly, n—IP[N, =n] is a decreasing function so that

Y PIN, =ng—nJP[N, =n]Z PN, =n PN, S0l (A14

substituting from (A13), we have

no 1 ml my+my+1
Z P[N=no—n]P[N,=n]2 p— (E:—T) PN, =n0]. (A15)

But, by Markov’s inequality, we have

PN, <n 2PN, <m, +my]= — (A16)
m; +m,
Hence
]P N 1 ml my+my+2 A 7
Ny B = ——— . 1
[ + ZE m1+m2] m1+m2<m1+1> D ( )
Returning to the proof of Theorem A1, we see that for sups;< —pu we have
jz1
1 — ePle—2)

]E;t[e/)(sla'l +s202+ )] — I—I _

izl

P )
from which we conclude that {g;: j=1,2,...} is a sequence of independent

geometrically distributed random variables. Applying Lemma A1 with N, =g,

and N,=N-—g,, so that — +] =P and m, + m,=V,y, we have
my

1
]K;ri—tl[Bz] > V§ PP+t (Vip+2) (A18)

1

for V,=1/6. 1t follows that
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lim 1nfB— InKy " [B)]=0 (A19)
-0

since, for y=g,, ,u+tl~>0. Thus we have, in both cases,
tim inf 27 llan"[G] = —p(W)—f(y)+py=—TI"Y) (A20)
for all y in G, since 6 was arbitrary. Hence
hzn_l,;nfﬁ IlnIK“[G]> sup( I“(y))=~i2fl“(y). |

The large deviation result established above enables us to apply Varadhan’s
theorem to suitable functions of X,=N/V;; to deal with functions of the two
variables o/V, and N/V,, we prove a large deviation result for the sequence of
probability distribution of a vector-valued random variable. Define the vector-
valued random variable X,:Q-R?* by X{"=V,"'a,, X{¥=V""' ¥ ¢, with
cumulant generating function C{[ -] by iz2

CHLE1=(6Y) " InTE{[e? 0] (A21)

In order to prove a large deviation result for IKf =1P¥ - X, !, it is necessary to make
a further hypothesis about the single-particle spectrum.

Lemma A2. Suppose that (S1) and (S2) hold and that lim 2(2)=2) exists und is a

point of continuity of F, then the cumulant gener alzng funcnon CHt]= hm Cit]
exists for p<0 and all t in R% and is given by

ot
CH[1]= { plut1)—=pl), ez, (A22)

0, otherwise ,

where

G'={1eRy: i+, A2)<0, pu+1,<0}.
Proof. We have

Cit]= =)+ pi(+ 1) +pi?(p +15).
where

@)= —(BV) ' In(1—e P, 2<0,
and

(2 ()= —(BV))~ Z Blo— ?x(m) a<(2);

>

clearly hm pi(e) =0.

Defme )L,( N=Aj+1)—2(2), j=1,2,...; then (),(]) j=1,2,...] satisfies (S1)
and (S2) and the corresponding density of stdtes F is given by F()x) F(44+ A2)).
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Since

pPe)= [ plo—42)AdF (),

[0, )

we have, by Proposition 3 of Sect. 1,

lim pi?a)= [ plo—2QAFG= ( plal)dFE)=p()

I [4(2), o)

for o< 2(2). It follows that
lim C{Te]=plu+ ) —ply)

for t in 9*; put C*[t]= co for t in the complement of Z*; then 1 +— C*[ ] is a closed
proper convex function on R? with dom C*=%*. Put

I"[x] = sup {{x, 1) —C"[1]}; (A23)
teR?
then we have

Theorem A2. Suppose that (S1) and (S2) hold and that A(2)=1im 2,(2) exists and is a
point of continuity of F. Then, for each u<O0, the sequence {IK}': [=1,2, ...} satisfies
the large deviation principle with constants {V;} and rate-function I'(-) given by

I'(x)=p(u) + f(x535 A2)) — pulxy +x5), x; 20, x,20.

Proof. The proof that (LD1) and (LD2) hold follows, as in the proof of
Theorem A1, from the fact that I*(-) is the Legendre transform of C*(-). To prove
that (LD 3) holds, we follows Ellis [13] and adapt to our situation

Girtner’s Lemma. Let K be a non-empty closed subset of R? define I"[K]
= inf I(x). If 0<I*[K] <o then there exists a finite set TV, ....t") of non-zero
k
vectors in R? such that, for e>0 and c=1"[K]—e,
¥
Kc (J H (x5 0), (A24)
=1
where HY (t; ¢) = {x: {x,1) — C*x)= ¢}, if I"[K] = + 0 then, for each R>0, there
exists a finite set ™V, ..., 1 of non-zero vectors in R? such that
R
Kc () HA (<5 R). (A25)
i=1

First suppose that K is such that 0 <I*[K] < c0; then
Ki{K]l= ¥ Ki[H%(«7;c)]. (A26)
ji=1

By Markov’s inequality,

IK;’[H’:L(IU’; ]l e ~PVHCHEI) +o) lRi BV idx. T””]Kf‘[dx]

§e“gyl{cu(t(j))+04("I‘(T(J))}; (A27)



84 M. van den Berg, J. T. Lewis, and J. V. Pule

hence

lim sup '{;f/ InKIHY (<Y ¢)]= — I"[K], (A28)

= 1
since ¢ >0 was arbitrary and C}(t)— C*(t) by Lemma A2. It then follows from (A26)
that (LD3) holds in the case O<I*[K]<oo; if I"[K]=+o0 then

lim sup —3117 InK{[K]< —R for each R>0 and again (LD3) holds.
1

It remains to verify (LD4); let G be an arbitrary point in G and choose 0>0
such that (y; — 0, y, +9) x (y,— 9, y,+)CG. Then

2
Kitelz T K4 [(y; =0, y;+0)],
=

where K/ is determined by

§ eﬂszJx]IqJ)-,u[dx] = PVip Mt ) — I (A29)
[0, c0)
Now
liminf (8Y) ! InKE (6, v,+ 612 — 124(y,), (A30)
where
[®H4(x)=" sup {p()—plu+t;)+1,x} =p()+ f(x; (2)—px, x=0,
u+tya<A(2) (A31)
by the reasoning used in the proof of Theorem A1l. Finally,
liminf (BV) " InK{“[(y; — 8,y +0)] = —1"(y,), (A32)

by direct calculation, where I'V#(x)= — ux, x>0 and (LD4) holds since y was
chosen arbitrarily in G. [
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