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Abstract. A perturbative renormalization procedure is proposed which applies
to massive field theories on a space-time lattice and is analogous to the BPHZ
finite part prescription for continuum Feynman integrals. The renormalized
perturbation theory is shown to be universal, i.e. under very natural assumptions
the continuum limit exists and is independent of the details of the lattice action.

1. Introduction

In perturbation theory of a local quantum field theory there exist well-known
renormalization procedures which remove ultraviolet divergencies. The BPHZ
finite part prescription makes subtractions directly in the integrand of each
Feynman integral in momentum space [1]. Divergencies of every subdiagram are
subtracted by application of a Taylor operator in the external momenta of the
subdiagram, which in position space is a local operation. The renormalized
Feynman integral is defined in such a way that the ultraviolet (UV) divergence
degrees of all subdiagrams are negative. There exists a power counting theorem
due to Hahn and Zimmermann [2], which states the convergence of integrals
having this property.

Unfortunately, these methods assume a rational structure of the Feynman
integrands and hence do not apply to diagrams with a lattice cutoff. In this case,
instead of being rational, the integrand is periodic with the Brillouin zone.
Removing divergencies by subtraction of Taylor polynomials is very unnatural in
a lattice description, and in fact such a procedure does not work, due to violation
of periodicity. In a recent paper [3], we have proposed a lattice version of the
power counting theorem of Hahn and Zimmermann by generalizing the well-known
notion of a UV-divergence degree. Having such a theorem at our disposal, we are
able to construct a generalization of the BPHZ finite part prescription which
applies to diagrams with a lattice cutoff. Due to power counting conditions, the
combinatorics of subtractions are given by the forest formula of Zimmermann [1].
As will be seen, the important modification consists in replacing Taylor operators
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by appropriate lattice subtraction operators. This class contains as a special case
Taylor polynomials in "lattice momenta" (sin(qa)/a etc.), but is in fact much more
general. Lattice diagrams renormalized in such a way are convergent when the
cutoff is removed. The limit itself is universal, i.e. it does not depend on the lattice
action chosen, and it is given by continuum Feynman integrals which are
renormalized by the continuum BPHZ prescription.

To avoid infrared singularities, we have assumed that all fields are massive. At
first we introduce in Sect. 2 a couple of notations concerning Feynman diagrams
and integrals on the lattice. In Sect. 3 the important notion of a lattice subtraction
operator is introduced, and its most important properties are given. The lattice
version of the BPHZ renormalization is defined in Sect. 4. It is shown that
subtractions, if appropriately chosen, can be written as counterterm contributions
to the lattice action. General conditions are stated which guarantee power counting
renormalizability of a lattice field theory. In Sect. 5 the convergence proof of the
renormalization scheme is given, using Zimmermann's method of "complete
forests." For simplicity, all formulas are written for scalar fields only. In Sect. 6,
the modifications necessary to include fields carrying internal symmetries and spin
are briefly described.

Throughout this paper, we will use the notations of [3]. These are listed for
completeness in Appendix A, and there are also given some general examples of
subtraction operators. The Appendices B and C contain some lemmas used in the
text.

2. Feynman Diagrams and Integrals

2.1. Topology of Feynman Diagrams. We define topological notions of Feynman
diagrams and Feynman integrals. In part, our notations are those of Zimmermann
[1] and Nakanishi [5].

A (Feynman) diagram or (Feynman) graph I" is a structure

Γ = (J?Γ,£Γ,@Γ,φΓ,ψΓ) (2-1)

having the following propert ies : j£? Γ,SΓ,^Γ are mutual ly disjoint sets,

i f Γ = { L 1 ? . . . , L P ( r ) } internal lines of Γ,

$Γ= {Eί,...,Emn} external lines of Γ,

@Γ={Bί9...,BMiΓ)} vertices of Γ.

φΓ and φΓ are the incidence relations of Γ, i.e. they are mappings of the form

0 Γ : i f Γ - * ^ Γ x ^ Γ , φΓ(L) = (AL,BL), ψΓ:£Γ-^@n ψΓ(E) = AE.

AL is called the outgoing endpoint and BL the ingoing endpoint of LeS£ Γ. Both
AL and BL are called endpoints of L. If AL = BL, then L is called a loop line. If
Ae J* Γ and there exists an EeSΓ such that φΓ(E) = A, then A is called an external
vertex of Γ. Otherwise, A is called an internal vertex of Γ.

Let γ and Γ be diagrams, γ is called a subdiagram (or subgraph) of Γ (Fig. 1), if
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r y
Fig. 1. A diagram γ as a subdiagram of Γ

(i.e., φy is the restriction of φΓ onto ϊ£y. Especially, φy(^y) ^
2. Every EeS Γ satisfying ψΓ(E)e&γ is in Sy, and

The set of these lines is denoted by d>*yfr)-
3. Every E e i f Γ\ify, which has exactly one endpoint BE in
and

under φΓ, is in Sy

»ext ~ r &Ίnί \
γ(Γ) 0 Γ ώy(Γ))

\, which have

The set of these E is denoted by Sy

n^Γ).
4. The remaining external lines in Sy (i.e. those which are not in
are obtained in the obvious way by cutting in to the lines LeJ? Γ\
both endpoints in ggy. Every such line is called a loop line of Γ relative to y.
Furthermore, we set eyi°r) = ^y\(^>1

y

l(tr)u^yfr))
If every Be$y is an endpoint of at least one line in if'y, then y is called the

subdiagram spanned by i^ y (This is the definition of a subgraph in the sense of
Zimmermann [1].)

A diagram Γ is said to be connected, if for all pairs of vertices B1,B2e^Γi

B1 Φ B2 there is a set of lines

{I . L c } g i ? Γ

such that Bi is an endpoint of Lί, B2 an endpoint of Lc, and for all i = 1,..., c — 1
the lines Lt and Li + 1 have one endpoint in common. A subset if' ^ i f Γ of lines
is called a connected set of lines, if the subdiagram oϊΓ spanned by S£ is connected.
Two connected subgraphs yl9y2 are said to be disjoint, if they have neither vertices
nor internal lines in common. A graph is disconnected, if it is not connected.

A graph Γ is called 1PI (one-particle irreducible), if i f r # 0 , and there exists
no line Leϊ£Γ such that the diagram spanned by ^Γ\{L] is disconnected.

Let Γ be a Feynman diagram and y a connected subdiagram of Γ. The reduced
diagram

Γ/y = {ϊ£Γ/y, S'pjγ, &r/γ> Φr/yi Φr/γ)

is defined as follows (Fig. 2):

Cί?
~Z Γ/y —

Γ is called a reduced vertex. For every
Γ / y,
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Fig. 2. A reduce diagram Γ/γ

(AL,BL) if AL,BL

(AL,B)
(B,BL)

(B,B)

BE,

1
BEICQ

if
if

if

if

if

ALφSSy,BL

ALe@γ,BL

AL,BLe@y

BβΦ^y

BEel%;

and for every EeSΓj ,ψΓ(E) = BE,

By induction, a reduced graph can be defined for mutually disjoint, connected
subdiagrams 7i,...5yc of Γ. To every yt there corresponds exactly one reduced
vertex Bt in 7"/% « yc.

Let £ G ^ Γ and if c if Γ . Then the line number D(B, Se) of if with respect to
5 is defined as the sum of the number of lines in 5£, having B as its outgoing
endpoint, and the number of lines in ̂ £, having B as ingoing endpoint. Especially,
loop lines are counted twice.

Let BuB2e@Γ,B1 φB2. <£ <Ξ, ϊ£Γ is called a path between Bλ and B2, if ^ is
connected, D(BU^) = D(B2,^)= \ and D(5,i^)e{0,2} for all other
% c if Γ is called a loop in Γ if # is connected and D(B,W)e{0,2} for all

Let Γ be a connected diagram. A tree in 7" is a maximal set ̂  ^ if Γ of lines
containing no loop. J Γ * = if r\^ r is called the chord set of 3Γ in Γ. ^ * has
m(Γ) = P(Γ) — M(Γ) + 1 lines, where P(Γ) is the number of internal lines of 7"
and M(Γ) is the number of vertices of 7". m(Γ) is called the number of loops in
7" [5]. It is independent of the tree chosen. ^ * contains all loop lines.

Lemma 2.1 [5]. A tree 3~ in Γ has the following properties:

a. D(B,3~)φ§ for each
b. 2Γ is connected.
c. For any Bl9B2e$Γ,B1 φB2, there is a unique path & ^ *Γ between Bγ and B2.
d. The number of lines in 2Γ is M(Γ) — 1.

2.2. Momentum Distributions. Having defined the topology of Feynman diagrams,
we will now discuss momentum distributions and the structure of Feynman
integrals on an infinite space-time lattice. First of all we define incidence numbers.

Let Γ be a Feynman diagram and LGJZ?

Γ,ΦΓ(L) = (B1,B2),B1 ΦB2. Then, for

every Be&Γ, we define incidence numbers by

lB1:L]=-ί9 = 0 if BΦBUB2.
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If Bx — B2, then L is a loop line, and we set

[JB:L] = O for all BG@Γ.

For every external line EeS*Γ,ψΓ(E) = B1e$Γ, we set

[JB:L] = 0 if BΦBX, [B1:L']=+1 or - 1 .

The choice between + 1 and — 1 is arbitrary. If y is a subdiagram of Γ, we define
induced incidence numbers of y by

[B:L] y = [fl:L] if

[B:L] y = + 1 or - 1 if

Again, the choice between — 1 and + 1 is arbitrary.
A momentum distribution in 7" is a map

so that
= 0 for all 5 e ^ Γ . (2-2)

This means momentum conservation at each vertex. lL flows from the outgoing
endpoint B ([B:L] - - 1) to the ingoing endpoint B' of L ([£':L] = + 1). The
momenta of loop lines are not restricted by (2-2).

Let Γ be a connected diagram. Then the only relations between the incidence
numbers are

£ [ 5 : L ] = 0 for all LeJδfΓ. (2-3)

For every external line EeS* Γ set

(the sum contains exactly one element). qE are called external momenta of Γ. They
are flowing into the diagram. If (2-2) is summed over all vertices Be&Γ, we get
conservation of the overall momentum

Σ 3E = 0. (2-4)
EsS Γ

We shall assume all qE,Esir, are given momenta, such that (2-4) is satisfied. Then
(2-2) is a system of equations for the line momenta / L ,Le i? Γ :

= O for all Be®Γ. (2-5)

The system (2-5) is solvable, the matrix

having rank srf Γ = M(Γ) — 1, and because of (2-4).
In what follows let Γ be a 1PI diagram. We shall define a partition of line

momenta into internal and external momenta. At first, we choose a basis of the
external momenta. Fix EoeS'Γ. Then define
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qEo is given by momentum conservation. For every L e i ? Γ we write lL = kL + qL,
defined as follows:

1. We choose an arbitrary tree ?Γ in Γ. For Li,...,Lme$~*,m being the number
of loops in Γ9 we define

lLι = kh i.e., qLι = 0, i = l , . . . , m
and set

k = k = (/c1?..., km).

Remember that m is independent of the choice of a tree. (kί,...,km) is called a
basis of the internal momenta of Γ for the following reason:

The endpoints of any LeέF* can be connected by a unique path 0>L in 2Γ.
3?Lu{L} is a loop in Γ (if L is a loop line, then 0>L = 0, and the loop is {L}). For
every LeZΓ the internal line momenta kL are defined as the unique solution of

Σ lB:U]kL = 0 for all

and are of the form

m

kL = kL(k)=Σ(CL)jkj9 (CL)JEZ for all LeJ?Γ. (2-6)
7 = 1

This is the general homogeneous solution of (2-5) in a form dependent on a chosen
tree. We remark in passing that this shows that the line momenta are natural in
the sense of [3].
2. External line momenta qL = qL(q\ Le^, are now defined as the unique solution of

ΣlB:LlqL+Σ\ίB-El\qE(q) = O for all Be@Γ. (2-7)
Le3T EeSΓ

In summary,
for all LeJ?Γ. (2-8)

We now define an (unrenormalized) Feynman integral of Γ by

fΓ(q;μ,a) = "f dAk,-d4kjr(k,q;μ,a), (2-9)
-π/α

where m is the number of loops in Γ. The unrenormalized Feynman integrand IΓ is

ΐΓ(k,q;μ,a)= Π VB({lL}B;μ,a)- \[ ΔL(lL;μ,a). (2-10)

For every LeJ£Γ the propagators are of the form

where n(L)eN and
lL;a). (2-12)

The (L-dependent) sum is finite, P ( ι ) are polynomials in the masses μ and
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^ m i e Z , periodic in lL with the Brillouin zone (BZ) [ — π/α, π/α]4. The
function classes ^c

m are define in [3] (see Appendix A). In most applications the
sum contains one term only. Furthermore,

eLj(lL; a) = ~ηLj{lLa\ (2-13)

y 0 if /Le[-π/α,π/α]4,

ηLj is (2π/α)-periodic in every component of /L,

\imeLj(lL;a) = ll.
0»0

This means that ΔL belongs to the class 3F of functions which is defined in [3],
Especially, the propagators have only one pole in the BZ. For every vertex Be&Γ

the functions VBe^c are of the form (2-12) in variables {lL}B, which are the momenta
of the lines LeS£Γu$Γ having B as one of its endpoints. For uniqueness, we
consider VB to be a function of the momenta flowing into the vertex B. Furthermore,
we always assume VB to be periodic with the BZ, in all momentum variables. As
discussed above, all line momenta lL are written as

for all L e i ? Γ . (2-8)

The integrand IΓ belongs to the function class 3F.
Next, we define internal and external momenta of a 1PI subgraph y of Γ. For

every external line EeSy let qy

E be a momentum flowing into the diagram, and such
that

Σql = 0. (2-14)
EeSy

Fixing EOy£$y, we get a basis of the external momenta of y,

We define a momentum distribution in the diagram y:

Jiy\<£yκj&y-*^, L->ll for Le^Γ E-+qy

E for v

such that

Σ LB:L]γll+ Σ \LB:E]γ\ql(qη = 0 for all Be®v (2-15)
LeSey EeSy

where now the line momenta ly

L

li(kW) = kl(W) + qi{q*) (2-16)

are partitioned as follows:

1. For a tree 3Γ in Γ,3Γ nJ£y is not necessarily a tree in y. But it can always be
completed to such a tree Fr The chord set ^ * = if y\$~y in y contains m(y) lines,
where m(y) is the number of loops in y. For these lines Lt we define
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and we set

AC = ( & ! , . . . , / C m ( y ) j

as a basis of the internal momenta of y. Note that for every i = 1,..., m(y) there is
a S(j)e{l,...,m(Γ)} such that

kj = ks(i)i (2-17)

and {S(i)|z = l,...,m(y)} contains m(y) elements. For every Le3Γy we define fc£ as
the solution of

Σ lB:L]γk
γ

L = 0 for all 5 ε « y , (2-18)

so that

kv

L = ky

L(ky) for all LeJS?r (2-19)

By (2-17), (2-18), (2-19), the set

v

is natural in the sense of [3], where the union is over all 1PI subgraphs y of Γ
(Γ included).
2 qKq^Le&'γ, a r e defined as the unique solution of

Σ LB:L]yql+ Σ \lB:E]y\ql(qγ) = 0 for all BeΛr

LeFy EeSy

Having defined internal and external momenta k\ qy, of y, we will later need
their relation to k9q. Set kΓ= k,qΓ= q and l[= lL for Le^Γ. We define ky(kΓ) by
(2-17) and qy(kΓ

9q
Γ) by identifying every qy

E,Eeiy, with the momentum ±l[ of
the line L e i ? Γ u < ί Γ which corresponds to £ by considering 7 as a subdiagram of
JΓ. The sign is determined by the condition that qy

E always flows into the subdiagram
y. It will be convenient to represent this map by a linear substitution operator S Γ [ 1 ]:

SΓ:k
y-+ky{kΓ) (independent of ql)

v v/ϊ Γ Γ\ (2-ZUj

^ ^ ( / c Γ , 4 Γ ) .
Note that the fcΓ-dependence of qy is only by the explicit fer-dependence oϊqy

E(kΓ, qΓ)
of external lines of y. Furthermore, ky is independent of the external momenta q
of Γ. From (2-5) and (2-15) it follows that

ly

L(ky(kΓ\qy(kΓ,qΓ)) = l[(kΓ,qΓ) for all Le^r (2-21)

The definition of internal and external momenta can be generalized to an
arbitrary subdiagram τ of γ (μ of τ etc.). In the formulation above, we have only
to substitute y -+ τ, Γ -> 7, and we get linear functions

lτ

L(k\ qτ) = kτ

L(kτ) + ql(qτ) = ly

L(ky, qy) for all

k = ( / c 1 ? . . . , /cW( τ)),

where m(τ) is the number of loops in τ and EOτeSτ is a fixed external line of τ.
kτ,qτ are functions of /cy,qγ via Sγ:

Sγ:k
τ = kτ(kΊ qτ = qτ(kW), (2-22)
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where again /cy-dependence of qτ via Sγ is only by explicit ^-dependence of qτ

E(kγ, qγ)
of external lines of τ. Applied to a function / in k\ qτ

Syf(k\ qτ; a) = f{kτ{W\ q\k\ q?); a). (2-23)

We will need a definition of internal and external momenta for arbitrary sequences
of ordered 1PI subdiagrams. It is important to determine internal momenta of a
subdiagram y always in the same way, independent of other diagrams in the
sequence, i.e., always the same chord set ̂ ~* to define kγ = (k\,..., ky

m{y)) has to be
chosen. This must be done in such a way that (2-22) is always satisfied. For arbitrary
1PI subgraphs γ, τ of Γ9 τ being a subgraph of y, we choose

^ * c ^ *njSfy, (2-24)

i.e. all lines in the chord set of τ are also in the chord set of y. This can always be
achieved. Let P be the number of lines in a connected graph Γ and Jδ?Γ =
{L1,..., Lp). For every connected subdiagram y of Γ we define ^ * ^ J5?y as follows:
LjG^* if and only if ^y\{L1,...,Lj_1} contains a loop Ή such that ^ ^ {L7 }. In
Appendix B it is shown that ^~y is indeed a chord set in y (i.e., 3Γ' y = J£y\3Γ* is a
tree in y). Apparently, (2-24) is a direct consequence of this construction. Also, an
arbitrary chord set ?Γ*Γ of Γ can be achieved by this way. For, if m is the number
of l o o p s i n Γ a n d 3Γ*Γ = { N ί 9 . . . , N m } , s e t L i = Ni, f o r i=l,...,m.

If γ is a subgraph of μ and μ a subgraph of Γ,

Sμ(Syf(k\ 4τ; a)) = /(fcτ(n q\k\ q»); a\

or in shorthand notation Sμ Sy = Sμ,
For a 1PI subdiagram y of /" we define a Feynman integrand fy by

ΐy(k\qv;μ,a)= f ] F5({/I}ΰ;μ,α) J] 4L(/I;/x,4 (2-25)

{Ί}β represents the momenta qE,EeS>

y and ± ly

L, LeJ£y flowing into the vertex
B. We always have

SΓVB({ly

L}B;μ,a)=VB({lL}B;μ,a\ (2-26)

and the line momenta are given by (2-16).
Let y be a 1PI subdiagram and y1,...,yc mutually disjoint, connected

subdiagrams of y. We define the Feynman integrand I- of the reduced graph

ϊ-(k\qy;μ,a)= Π VB({ll}B;μ,a) [ ] ΔL(ll;μ,al (2-27)

where for the reduced vertices Bt one sets

VEι=ίe%c for all i = l , . . . , c .

The internal and external momenta of y are given by (2-16).

2.3. Divergence Degrees. We now proceed to define UV-divergence degrees for
Feynman integrals on the lattice. Let y be a 1 PI subdiagram of Γ. Then the
UV-divergence degree of y is given by
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ω(y)= Σ ω(4L) + Σ ω(ί>β) + 4m(y), (2-28)
Le&y Be&y

where

(2-29)

ω(VB) = degr£]BVB({lL}B;μ,a)9 (2-30)

and m{y) is the number of loops in y. The lattice degrees degr- are defined in [3]
(see Appendix A) and must be distinguished from the usual UV-degrees degru of
[1], which are defined for rational functions only. In (2-30), they are determined
with respect to all momenta entering the vertex B. If the functions do not vanish
in the limit a -• 0, the UV-degrees on the lattice coincide with the corresponding
degrees, defined for rational functions, of the α->0-limits of the functions. If the
continuum limit of VB vanishes and VBe^mo, then ω(VB) = m0 [3].

Similarly, for a reduced diagram y = γ/γ1 •• /yc, we set

ω(y) = Σ ω(^L) + Σ ω (^β) + 4m(y), (2-31)

where m(y) is the number of loops in y, and ω(ΔL\ω(VB) are defined as above.
For a reduced vertex Be$f we have co(VB) = 0 because of VB= 1. Furthermore

c

m{y) + Σ m(yi) = m(y)>

Finally, we repeat the definition of a forest [1]. Let Γ be a 1PI diagram. A
/"-forest U is a set of 1PI subdiagrams of Γ which do not overlap, i.e., for any
γί9γ2eU either γ! is a subdiagram of y2 ory2 is a subdiagram oΐy1 ory1 and y2 are
disjoint. In the last case, yx and y2 have neither lines nor vertices in common. The
simplest forest is given by U = 0.

Let U be a /"-forest and yeU. y is called maximal in U, if there is no y'eU
such that y is a subgraph of y' y is called minimal in (7, if there exists no y'eU
such that / is a subdiagram of y. Maximal elements of a forest are disjoint and
minimal elements of a forest are also disjoint.

For any 1PI subdiagram y of Γ the set of 1PI subdiagrams

JJ(y) = {y'eU\y' is a subdiagram of y and y' Φy)

is a /"-forest as well as a y-forest. We define

where y1,..., yc are the maximal elements of U(y).

3. Subtraction Operators

Renormalization of Feynman integrals in momentum space can be described by
a well-defined procedure of subtractions applied to Feynman integrands. We now
define the structure of such subtractions and state their most important properties.
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In the following, let F be a function of the momentum variables ( ί l 5 . . . , ί Λ ) ,
(v1,..., Vχ\ (qι,...,qs) and of the lattice spacing a. (t) are the parameters of an affine
subspace of the loop momenta, (v) are the complementary loop momenta, and (q)
represents the external momenta.

Definition 3.1. Let δeN0 = {0,1,2,...} and let tδ be defined by

(3-1)

for every function F which is C 0 0 in q9 where Pni ...,. e ^ are totally symmetric
in il9...,in9 (2π/α)-periodic in every ql9...9qs9 and l i m Λ ^ 0 P Π > I i . . . I ( | ( ^ 1 , . . . , ^ ; α ) =
qu ~qin. If for every such F

[(l-ϊδ

q)Fl(t,υ,λq;μ,a) = O(λδ+1) as Λ^O, (3-2)

ίδ is called a subtraction operator of order δ.

If the function F is periodic, then so is ίδF. In the limit a-+0,ίδ reproduces

the Taylor operator tδ of order δ. Note that degr^P^ ln(q;a) = n and degrf Pn>ii...in

(g; a) = 0. ?^F can also be written as

where P^e^ is periodic in ql9...9qs and lim^o

The inner sum in (3-3) is constrained by Yj=1ij = n.

In the following, let Fe <F be of the form

EY, v V(t9υ9q;μ9a)
F(t9 v, q; μ9 a) = C(t9v9q;μ9a)

VeW, C=f\lei(li;a) + μfl μf>0, (3-4)
t = l

I h s
h= Σ ^ ^ + Σ <Vj+ Σ ^ ^ ?fc=l j=l Λ = l

(feίi^.-jftίO^O or ( c i l , . . . , c i Λ ) / 0 for all i = l , . . . , n .

A lattice Feynman integrand /y belongs to #". We have assumed all propagators
to be massive, hence a subtraction operator tδ

q

{

y

y) applies to ΐr The condition (3-2)
means that by application of a subtraction operator UV-divergencies are in fact
subtracted. It restricts the functions Pni ..., and their derivatives at q = 0. As will
be shown in Appendix A, Taylor polynomials in "lattice momenta" satisfy the
constraints, i.e. they are special examples of subtraction operators. Actually,
Definition 3.1 is much more general.

Besides being linear with respect to scalar multiplication and addition in #",
a subtraction operator has the following important properties.

Lemma 3.1. Let tδbe a subtraction operator of order δ and FeέF of the form (3-4).
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T h e n

^ ^ δ

q F + δ . (3-5)

2. d e g r ^ F g d e g r ^ F . (3-6)

If for all i = l , . . . , n : ( c ί l , . . . , c ί Λ ) = 0 = > ( d i l , . . . , d i s ) = 0, then

3. degr^F^degr^F. (3-7)

4. d e g r ? ( l - ? ^ ) F ^ d e g r r g F - ( < 5 + l ) . (3-8)

Proof. To get some experience with lattice degrees, we will do the proof in detail.
Especially, we remind the reader of the properties of a UV-degree as stated in
[3], Lemma 2.2 (see Appendix A). We will also use multi-index notation. Let
be of the form (3-4). Note that for arbitrary V(t9 v, q μ, a)e^\

degr? V\qssQ = degr r ? V\q = 0 ^ degr^ V.

1. Write ΊqFe^ as

V'(t9v9q;μ9a)

C(t9v;μ9a)

Vf(t9υ9q;μ9a) = ̂  Σ_ -—-Plί...ls(qu...9qs;a)Vli...ls(t9υ;μ9a)9

where the sum is constrained by Yfj= i h = ^J a n ( l Λ «• (̂ » o)^c

n f° r n = Σi= i ^'
l im^oP^ ls(q;a) = q[1"-qi% and V;̂  ^ e ^ . Because of degr,-C = degrf C", it is
sufficient to show

In fact,

~Pi,..Λq',aYVlΛ Λt9v9μ9ay]

= 5 + degr? F(ί, ι;, q; μ9 a).

2. Set ! = (/ 1 }...,/ s)eN s

0. Then

—-ι F(t9 v, q; μ9a)\ ^ degr? —-t F(ί, t;, g; μ, a) ̂  degrf F(ί, t;, q\ μ9 a)9oq _\q = 0 oq

hence

dι

degr? PΠ j I i. ln{q\ α)ί ^ ^ ( ^ ϋ» ̂ ' ^ α ) ) -

3. All propagators which depend on q are also dependent on t. Hence
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dι ,
τrq J Ί F ( ^ v> 4> f*>a) ^ ά Q & ( q F-\l\.

Consequently, for |/| = n

degr^P n , l v . . l n (q ;a) l jiF(t,v,q;μ,a)\ ^n + d e g r r - F - \ l \ = d e g r , - F .

4. (1 —Vq)F can be written as

Vδ(t9υ9q;μ9a)

where J / ^ . Using (3-3) and K^eC00, we get F ^ ^ ^ ^ α J ^ O μ ^ 1 ) as A^O,
hence

degr jK^deg^Ka-ίa+l) . (3-1 la)

By assumption,

degr? C(ί, υ, ήf; μ, a) = degr(- C(ί, ϋ, q; μ, α). (3-11 b)

Consequently,

degrf (1 - Vq)F = degr? VΛ(t, v,q;μ,a) - degr? (C(t, v,q;μ,a) C{t, v,0;μ,a)d+1)

= degrrq(l-tδ

q)F-(δ + l)

F-(δ + l), (3-12)

where we have used Lemma 3.1.3. •

4. Renormalization

We now proceed to give a renormalization prescription for lattice Feynman
integrals with massive propagators. Let

be a 1PI diagram having m loops, and βΓ(q;μ,a) the corresponding Feynman
integral (2-9). The renormalized Feynman integral of Γ is defined by

JΓ(g;μ,α)= "f d4kr-d4kmRr(Kq;^al (4-1)
— π/a

where

RΓ(Kq;μ,a) = SΓ £ [1 ( - ί ? y ) S y ) / r(l7) (4-2)

is given as follows:

a. Sy are the substitution operators defined in (2-20), (2-22).
b. Ψ* is the set of all /^-forests.
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c. ΐΓ(U) is the unsubtracted Feynman integrand

ϊΓ(k9 q; μ, a)

with the following substitutions depending on a forest U: For every line Lei f Γ

(vertex Be^Γ) there is at most one yeU such that L e i ? y (Be08y% but L$£Pγ,
(Bφ&γ,) for all y'eU(y). If such a yet/ exists, ΛL(VB) is written in variables qy,ky

as in (2-16). Otherwise, ΛL(VB) is written as a function of k, q as in (2-8).
d. For every y, ί^ ( y ) =ΐ^ 7 ) is a subtraction operator of order δ(y) in external
momenta qy of y. (5(y) is constrained by

ω(γ), (4-3)

where ω(y) is the UV-divergence degree of y, and for every /"-forest U

where yx,..., yc are the maximal elements of U(y). These conditions are automati-
cally satisfied if δ(γ) = ω(y) for all γeU. If δ(y) < 0, we set tfy) = 0.
e. In the product

the factors are ordered as follows: lϊγ1,y2eU,yί subdiagram of y2, then (— tδ

y[
yύSγi)

is ordered to the right-hand side oϊ( — tf?2)Sγ2). If yuy2 are disjoint, the order is
irrelevant.

More explicitly, £ Γ can be written as

RΓ(Kq;μ,a)= £ Ru

Γ(k,q;μ,a)9 (4-5)

where RU

Γ is defined through the following recursion. For minimal yeU, set

and for every yeUu {Γ}, yx,...,yc being the maximal elements of U(γ),

Ru

y(k?,qy;μ,a) = ϊm(k\q>;μ,a) Sy fl (-t^)K^ ,q»;μ,a).

Then RU

Γ is given by ^

Λ?.= Λ?. if ΓφU9

Ru

Γ=-tδfnRu

Γ if Γeί/. l ' j

We now state our main result.

Renormalization Theorem. The continuum limit

\im& Γ(q;μ, a)

of the renormalized Feynman integral &Γ(q;μ,a) exists and is given by

00

lim@Γ(q;μ,a)= J d4k1---d4kmRΓ(k,q,μ), (4-7)
a->0 — oo
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where
RΓ(k, q, μ) = lim RΓ(k, q; μ, a).

Remember that we have assumed all the propagators to be massive. The theorem
states that if limα^ofΓ(/c, q;μ,a) φ 0, RΓ is equal to the BPHZ-renormalized
continuun limit of IΓ [1] (with a different choice of internal momenta). If
limβ_o/r(fc,g;μ,α) = 0, also RΓ(k,q,μ) = 0. This means that lattice Feynman
integrals, which have at least one vertex function with vanishing α-> 0-limit, do
not contribute to the continuum limit after renormalization. These vertex functions
result from contributions to the lattice action which vanish in the (naive) a -• 0-limit.
Such terms do not contribute to the continuum limit in every order of perturbation
theory. In this sense, renormalized perturbation theory is universal.

The theorem states that the combinatorics of renormalization of diagrams
with a lattice cutoff are given by Zimmermann's forest formula [1], with
Taylor subtractions replaced by subtraction operators. The theorem becomes wrong
if we would use Taylor operators, since the periodicity of the Feynman integrand,
an important convergence condition [3], would be violated. The continuum limit
of a renormalized diagram exists and is given by the universal limit resulting
from the a-> 0-limit in the integrand. However, it could happen that over-
subtractions are necessary, and the higher the loop order, the higher the subtraction
degrees. To state conditions which exclude this possibility, we shall write divergence
degrees in dependence on terms in the lattice action. Consider an action of the form

S0(A) + Sint{A), (4-8)

S0(A) = a4Σ AiincήλΓjHniάiAjfna), (4-9)
neZ4

Sint(A) = a*ΣΣ9jLM>na)9 (4-10)
neZ4 j

where L,- are polynomials in the lattice spacing a, the basic fields A at na and
neighboring lattice sites, and they are homogeneous in A. Let

be an arbitrary connected Feynman diagram of a field theory described by S. To
every line LeJ£y of γ there corresponds a pair of basic fields AhAk. We call L an
/fc-type line, having i-type and fc-type legs. For every At we define a UV-dimension
dt such that

4 + ω(ΔL

(in four dimensions), i.e. for i = k

The number of loops in y is given by

m(γ) = 1 +

Hence
ω(y) = 4 + V (ω(ΔL)

,) ̂  ^ + 4

( 4 ) + 4].

Σ i - Σ
,εSey Be@γ

+4>+ y

1.

(ω(VB)~ 4).

(4-11a)

(4-lib)

(4-12)

(4-13)
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After some elementary manipulations, using (4-11), we get (cp. [6])

ω(y) ̂  ώ(y\

ω(7) = 4 + Σ (ω(β) ~ 4 ) -Σek(y)dk, (4-14)

where
ω(B) = Σnk(^)dk

Jr ω(VB). (4-15)
k

nk(B) is the number of fe-type legs entering the vertex B or synonymously is the
power of fe-type fields Ak in the action term corresponding to the vertex B. ω(B)
can be determined directly from this part of the action. ek(y) is the number of
external fe-type lines of γ.

From these expressions, it is directly seen that the constraints (4-3) and (4-4)
are satisfied if we choose

δ(γ) = 4+ Σ(δ(B)-4)-Σek(y)dk with δ(B)^ω(B). (4-16)

Consequently, a field theory on the lattice is renormalizable by power counting if
for every vertex B the UV-divergence degree of B satisfies ω(B) ^ 4. (Renormalizable
by power counting means that with increasing number of loops the order of
subtractions needed does not increase.) In particular, we can state the following

Theorem. Let the coupling constants g^ in (4-10) be dimensionless. Take the limit
β->0 of (4-8) and denote the resulting continuum action by SC(A). If for every vertex
B of SC(A) the continuum UV-divergence degree ωc(B) [6] satisfies ωc(B)^4, then
the lattice theory is renormalizable, and its continuum limit is given by the field theory
which is described by the action SC(A\ and is renormalized by the BPHZ finite part
prescription.

As an example, consider the scalar Φ4-theory with an additional Φ6-interaction:

S(Φ) = a4 Σ lΦ(na)(~ U + μ2)Φ(na) + gΦ4(na) + λa2Φ6(na)l (4-17)
πeZ4

The propagator in this example is given by

Δ(k) = ~2

 λ

 2 , (4-18)

where

The only Green functions to be renormalized are the two- and four-point functions.
In fact, any vertex B satisfies ω(B) = 4, and (4-14) shows that the divergence degrees
of six-point and higher functions are smaller than zero. The four-point Green
function has divergence degree ω = 0. Hence subtraction of a constant is sufficient
to absorb its overall divergence. The two-point function is quadratically divergent,
and to renormalize it, we should choose as a subtraction operator t\ a Taylor
operator of order two in the lattice momenta g. If g would be periodic, this is an
always allowed choice (as shown in Appendix A). However, q is anti-periodic with
the BZ, barring at the first sight t2 to be a proper subtraction operator. Actually,
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the model (4-17) is invariant under inversion q-> — q. This means, the first and
mixed second derivatives to external momenta of diagrams vanish at zero momenta.
The "effective" subtraction operator is given by

which is periodic. The renormalization theorem states that the α—•0-limit of the
renormalized model of (4-17) exists and is described by the action

SC(Φ) = \d*xl<D{x){- • + μ2)Φ(x) + gΦ4(x)l

and renormalized by the BPHZ finite part prescription. The limit is independent
of the coupling λ.

If at any order the overall subtractions of diagrams could be written as
counterterms in the lattice action, then they subtract in higher orders divergencies
of corresponding subdiagrams. However, for a lattice cutoff, the situation is a bit
more involved. To apply Ίδ

q\
γ) to a diagram y, we have to choose a basis of the

external momenta of γ. By momentum conservation, one line is omitted, but which
line is arbitrary. A similar arbitrariness holds for the coefficient functions Pnι ι

in ίδ

q

{?\ The differences are always of order O(a\ and by the renormalization
theorem, they do not have any influence on the continuum limit. Note that in the
continuum the problem does not occur, subtractions being Taylor polynomials
and hence independent of a basis.

To get a counterterm in the action, we have to respect Bose and Fermi
symmetries under exchange of equal-type external lines. This can be achieved as
follows. First of all, we have to choose the same subtraction operator for all
diagrams y, which differ by an exchange of equal-type external lines only. This
subtraction operator must be chosen to be symmetric, i.e. if it is written in a form
(3-3), then for any permutation π of equal-type lines

for all ίί9...JN9 where TV H- 1 is the number of external lines of y. Finally, we have
to take the arithmetic mean over all possible bases, or at least over those bases
omitting an external line of the same type. Then the counterterm which results by
integration over all loop momenta has the same permutation symmetries as the
unsubtracted y. Summation over all diagrams, which differ by an exchange of
equal-type external lines, yields a counterterm having the desired Bose or Fermi
symmetries, and it can be written as a contribution to the action.

Furthermore, if the functions

pw lN(ql9...9qN;a)

are chosen to be symmetric and polynomials in lattice momenta (see Appendix
A), the counterterms are always local, i.e., they are of the form

nεZ 4

where P(A, nd) is a homogeneous polynomial in the fields A at na and neighboring
lattice sites.
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5. Convergence Proof

To prove the renormalization theorem, we will show that (4-1) satisfies all criteria
of the power counting theorem of [3]. The subtracted integrand (4-2) can be written
as

β n ^ V(k,q;μ,a)
RΓ(k, q; μ, a) = —— — — -, (5-1

B1(k,q;μ,a)B2{k;μ,a)
where

n(L)

B, (k, q; μ,a)= Yl f\ (eLj(lLa) + μ2

Lj),

n(L)

B2(k;μ,a) = Π Π Π (euikla) + μ2

Lj)"^\ (5-2)

all masses μLj are nonvanishing, Πj(L, y)eN0 = {0,1,2,...}, and the outer product
is over all 1PI subdiagrams y of Γ. Furthermore,

lL(k9q) = kL(k) + qL(q), kl = kl(k)9 (5-3)

and Ve(€c
9 i.e., RΓ belongs to 3F (see Appendix A). By definition of the subtraction

operators and of Sγ9 RΓ is periodic in the loop momenta kί,...,km.
Let if be the set of all /L,Leif Γ , and of all k\ for 1PI subdiagrams y of Γ and

Le«Sfr By construction of ky

L, the set i f is natural in the sense of [3]. All that
remains to be shown is that the power counting conditions of [3] are satisfied. Let

tl9...9th9 v l 9 . . . 9 v m - h (5-4)

be an arbitrary basis of if, i.e. ί l 5 . . . , ί Λ , ι; 1 , . . . , ι ; m _ Λ ei?, and the Jacobian satisfies
det(d(ί,v)/d(k)) φ0. By fixing vl9...,vm-h9 one defines a Zimmermann subspace H,
i.e. a class of affine subspaces of the space of loop momenta (k1,...,km).k = k(t9 υ, q)
and kγ = ky(t,v,q) for every 1PI subdiagram y of Γ are linear functions,
(ί) = (t1,..., th) is called the parametrization of H. The set of all such Zimmermann
subspaces H, for all bases (5-4), is denoted by J-f. We will show that for every

, parametrized by (ί) = ( ί t , . . . , th) with respect to a basis (5-4) of i f

4/z + degr? R Γ(fc(ί, υ, q\ q; μ, a) < 0. (5-5)

Then all the conditions are met for the power counting theorem to apply
to the renormalized Feynman integral (4-1). This concludes the proof of the
renormalization theorem.

The general idea of proof can be found in [1] and uses the method of so-called
complete forests. What is different here is the form of the integrand, a new kind
of subtraction and the definition of a UV-divergence degree. However, as will be
seen below, (5-5) is based on general properties of the divergence degrees [3], and
of the subtraction operators (Lemma 3.1). This allows us to use the ideas of [1]
(cp. [4]). Especially, the combinatorical part of the proof can be taken over literally.
At first, we have to repeat the definition of a complete forest. A .Γ-forest UeHf is
called complete on H, parametrized by (ί), if ΓeU, and if for any yeU: all lines of
γ(U) are constant on H relative to y, i.e.

kγ

L(t,v,q) is independent of t for every Leif^(u), or
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all lines of y(U) are variable on H relative to y, i.e.

ky

L(t,v,q) is dependent on t for every Leϋ?-(f/).

y(U) is said to be constant or variable on //, respectively. The forest formula (4-2)
can now be written in a form dependent on a given Zimmermann subspace //.

Lemma 5.1 [7]. Let Γ be a 1PI diagram and HeJtf. Then

RΓ(k,q;μ,a)= ]Γ Xv(k,q;μ,ά), (5-6)

w/zere ^ f is the set of all Γ-forests which are complete on H. Xυ is recursively
determined by

Xu(k,q;μ,a) = (l -tδfΓ>)ΫΓ(kΓ,qr;μ,a)\kr^qr=q, (5-7)

where for minimal yeU
Ϋy(k\ qy;μ, a) = ΐy(k\ q* μ, a) (5-8a)

and for any other γeU

Ϋy{k\q<;μ,a) = ϊm{k\q->;μ,aySy f\ /(y;) Yy,(^\<f ;μ,α). (5-8b)
i= 1

y1,..., yc are the maximal elements of U(y). /(y) is defined by

l - ί * " > if

- ί * ( y ) if y

I is the set of all yeU, which have y(U) variable on H and in addition are maximal
element of U(τ) for some τeU having τ(U) constant on H.

All functions Ϋγ,XU9RΓ are in #". The //-dependent form (5-6) of /£ r allows
an estimation of degr ?KΓ by induction through a complete forest. As will be seen,
every single term in the sum (5-6) already satisfies the desired bound on the
UV-degree. The proof of Lemma 5.1 can be found in [1]. What is different here
are the structure of the functions and the definition of internal and external
momenta of subdiagrams. However, this does not have any influence onto the
validity of Lemma 5.1 which is mainly a combinatorical statement. Of importance
is that the internal momenta of subdiagrams are determined always in the same
way. This is guaranteed by (2-24).

For every Uei^^ and every yeU we set

Mv(y) - 4£m(f(t/)), (5-10)
τ

where τe t/(y)u {y}, τ(U) variable on //, and where m(τ(U)) is the number of loops
in τ(L7). MV(Γ) sums up the number of independent parameters of H, i.e.,
Mυ(Γ) ^ Ah. This is proved in Appendix C. We now state the important

Lemma. 5.2. Let HeJ^ with parametrization (t) = (tί,..., th\ U a Γ-forest which is
complete on //, and RΓ, Yγ as in Lemma 5.1. Then for every yeU:

1. degvrYy(kγ (t,v,q\qγ;μ,a)^ - Mυ{y) for y(U) constant, (5-11)

equality holding only if Mu(y) = 0.
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2. degr,v Ϋγ(W(t9 v, q), qy; μ, a) ̂  δ(y) - Mv(y) for y(ί/) variable. (5-12)

From 1. and 2. we get

degrίRΓ(k{t,υ9q),q;μ,a)^ - 4 / z - l . (5-13)

Note that the dependence of ky on the external momenta q does only occur
through the parametrization of a Zimmermann subspace H. Differentiations and
UV-degrees with respect to qY refer only to the explicit ^-dependence. Statement
(5-13) is the desired power counting condition. Because H is an arbitrary subspace
in J>f, all conditions of the power counting theorem of [3] are satisfied. Hence,
from Lemma 5.2 the renormalization theorem follows.

Proof. By induction through the forest U. We will permanently use the degree

properties of Lemma 2.2 of [3] without explicit reference. ty

iy) is a subtraction

operator to which Lemma 3.1 applies. Note that the numerator V(t,υ9q;μ,a) of

a function V/CeέF satisfies degr,- V ̂  degr^ V9 and if V is independent of ί, then

degr? V ̂  0. If y is minimal, then y(U) = y and Ϋy = ϊy9 hence

degr? Yγ(ky{t, v, q\ qy;μ,a)Sΰ if y(C7) is constant,

degr-y Ϋy{kΎ(t9 v9 q\ qy; μ9 a) g ω(γ) - 4m(y) ̂  δ(y) - Mv(y) if y(U) is variable.

Now we assume that the inequalities 1. and 2. hold for all maximal elements
yieΌ(y\ i = 1,..., c, for some non-minimal γeU. Then Ϋy is given in (5-8b). Sγ means
a linear substitution

ky^kyikyl qlι^qy\ky,qy).

1. Let y(U) = y/y1 --yc be constant on H. Then

a.

b. yi(U) constant. Then/(y ι) = — ίδ

y

iyι). According to the hypothesis of induction

(equality holding only if Mu(yi) — 0). Hence

— ty[
yι))Yγι(kyi(t, v, q), qyι;μ, a) ̂  — Mu(yi) by Lemma 3.1.2,

= degr?[5y( - ί£»>) 7 y J(^( ί , ι;, ^), ^ μ, α) ̂  - Mv(yi)

( = holding only if Mυ(yi) = 0).

For, qyι depends via Sy only on those ky which are constant on H relative to γ, i.e.,
qyι is independent of t.

c. yi(U) variable. Then f(y^ = 1 - tfjl\ and according to the hypothesis
of induction

d e g V Ϋyι(ky*(t, v, q\ qy*;μ, a) ^

Ϋyι is of the form
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Ϋ7,(k\q>;μ,a) = I . ,Jk\«»;μ,a)SΊι f[ ( - ί *->) YyiJ{k^,q">;μ,a).
7 = 1

All lines of ^(L/) — y^y^ yid are variable on H relative to yi9 and the denominator of

does not depend on qγ\ k7lJ = kγιJ(kyι) being independent of qyι via Sγr Hence Lemma
3.1.4 applies to Ϋyτ:

Again, in qyι only those ky occur which are constant on //, hence

In summary

degr? Yy(W(t, v, q\ ^ μ, a) £ - Λί^y) ( = holding only if Mv(y) = 0),

where we have used

Mv{y)= Σ Mυ(yi) (y(U) constant).

2. Let y(U) be variable on H. For all i= \,...,c\f(yi)= — ίδ

y\
yι).

a.

/.,/„ . „, (ky(t, v, q\ qy; μ, a) ̂  ω(y(U)) — L

by definition of ω(y(U)) and m(y(U)).
b. 7i(/7) constant.

degr? Yyi(kyit, υ, q\ <fι; μ9a)^- M^y. ) ( = only if M ^ ) = 0),

-tδ

γ^
ι))Ϋy.(kγί(t,υ,q),qγι;μ,a)^ —Mu(yi) by Lemma 3.1.2,

-ίy[
yι))Yγ.(kγι(t, v, q\ qγί;μ, a) ̂  δ(yi) — Mu(yi) by Lemma 3.1.1.

The denominator does not depend on qy\ and linear Sγ can only decrease the
degree with respect to (t,qy):

r/p Sy( - f ^ ) yyi(feyί(ί, t;, ̂ ), ^y'; μ, α) ̂  (5(7ί) - M^fo).

c. ^(L/) variable.

'^Yi Ϋyι(kyi(t, v, q), qyi;μ, a) ̂  δ(yf) — Mu(yi) (induction hypothesis),

ty

(yi)) Ϋy (kyi(t, v, q\ qγι;μ, a) ̂  δζγi) — Mu(yi) (Lemma 3.1.3),

using the same arguments as for l.c,

degr^ Sy( - tfj^) Ϋyι(kyι(t, υ, q\ qγι;μ9 a) ̂  5(y£) - M ^ ) .

In summary

degrς, Yy(V(t, v, q), q^ μ, a) S ω{y(U)) + Σ Wi) ~ Mv{y),



100 T. Reisz

where we have used Mv(y) = Am(y(U)) + £•= 1M^). According to the condition
(4-4) this implies

degrf^ Ϋy(W(t, υ, q\ q?; μ, a) g δ(y) - Mv(y).

To prove the last statement of the lemma, we must distinguish between Γ(U)
variable and Γ(U) constant. If Γ(U) is constant on H, then

degrr YΓ(kΓ(t9υ,q),qΓ;μ,a)^ -Mυ{Γ)- 1 ̂  -Ah- 1,

hence, using Lemma 3.1.2

degr, Xv(k{t9 v, q\ q; μ, a) ̂  degr? (1 - ?^/Γ)) 7Γ(/cr(ί, v, q\ qΓ; μ, a) ̂  - 4h - 1.

If Γ(U) is variable on H,

?Γ(/cΓ(ί, ϋ, ̂ U Γ ; μ, a) ̂  δ(Γ) - Mυ(Γ) ^ δ(Γ) - Ah.

Using Lemma 3.1.4 and the same argument as for l.c, we get

degr? XΌ(k(t, v,q\q;μ,a) ^ degr? (1 - ί δ f Γ ) ) YΓ(kΓ(t,υ,q\qΓ\μ,a)^-Ah-L

Hence in both cases

degrfΛΓ(fe(ί, v, q), q; μ,a)^-4h- 1,

and Lemma 5.2 is completely proved. Π

6. Generalizations

Until now, we have discussed Feynman integrals for scalar fields only. This we
have done for simplicity. There is no essential change if we include fields carrying
spin and internal symmetries like Lorentz, colour, spinor indices etc. The
diagrammatic notations introduced in Sect. 2 are supplemented by the notion of
an index distribution.

Definition 6.1. Let Γ be a Feynman diagram as given in (2-1). An index distribution
is a collection of two maps j^ l J t β/ 2 > defined by

L-^-+ΛlxΛ2

L for all LeJ^ Γ , E-^ΛE for all EeSΓ. (6-1)

All /l's are finite sets.
The index sets A are carrying the symmetry labels. Note that to every internal

line there correspond two indices, one for each end of the line. In calculations, these
indices are summed over. Propagators and vertex functions are now dependent
on momenta and indices. A Feynman integral has the form

fΓ(q,oc(<?Γ);μ,a)= £ T d*kx d*kjΓ(k,qM*r),*β(&r)',μ,a)>

Γ(KqMδrUβ{&r)\μ>a)= Π VB({lL}B9{zL}

(6-3)
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where

(x(£Γ) = (aF\Ee£Γ\ otEeΛE for all Eeδn

aβ{^Γ) = ({aLJL)\Le^Γ), <xLeΛlβLeΛ2

L for all ( " ^

Propagators are of the form

where ocLeΛl,βLeΛl, and for every pair (αL, βL) the numerator is of a form (2-12).
Vertex functions VB are also of a form (2-12), and {αL}β represents the indices of
the line ends at the vertex B. Similarly, the integrand of a subdiagram γ of 7" is
given by

ΐy{k\q\aL(gy\aLβ{Seylμ,a)= \\ VB{{li}B,{al}B;μ,a) f] ΔL(ll,otL,βL;μ,a),

(6-6)
where

*{$.,) = (al\Ee£y), aβ(^y) = ((aL,βL)\Le^y). (6-7)

An "induced index" aγ

E for EeSy is equal to the index of the line ending of LeJ£Γ

or LES Γ , which corresponds to E by the imbedding of 7 as a subdiagram of Γ
(see Sect. 2). For Lei? y , α£ = αL. Analogous statements can be made about reduced
diagrams.

Internal momenta are defined as before. However, divergence degrees are
modified to be independent of symmetry labels. For every 1PI subdiagram y of
Γ,ω(y) is defined as in (2-28). However, ω(ΔL) and ω(VB) are now given by

ω(ΔL) = max degrΓL ΔL{lL, αL, βL\ μ, a), (6-8)
*LεΛl

L,βLeΛ2

L

ω(VB) = maxdegΐ ώ β VB({lL}B;μ,a). (6-9)

The same holds for reduced diagrams.
Finally, the forest formula is changed to

X f r);^a\ (6-10)

Leifr

where

RΓ(k9qM*rUβ(&r)',μ,a) = SΓ Σ U(-t*»Sy)'Ir(U), (6-11)

and the only restrictions to the subtraction degrees δ(γ) are given by (4-3) and
(4-4). The convergence proof of (6-10) is identical to the above, the only
modifications being that divergence degrees are now determined by (6-8) and (6-9).
Finally, all comments we have made in Sect. 4 remain essentially unchanged.

A further generalization is to choose a subtraction point q different from zero.
But all statements and calculations above are insensitive to such a choice. This is
because the choice of normalization has no influence on the convergence properties
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of the Feynman integrals. A change of normalization conditions can be described
by the addition of finite counterterms to the action which do not destroy
renormalizability.

Conclusions

We have shown that the BPHZ renormalization procedure can be generalized in
such a way that it applies to momentum-space Feynman integrals with a lattice
cutoff. The generalization is that the counterterms, instead of being polynomials,
are functions which are periodic with the Brillouin zone. They result from the wide
class of lattice subtraction operators. This class includes as a special case
polynomials in lattice momenta. In this case, after appropriate symmetrization in
external momenta (as described in Sect. 4), they can be written as local counterterm
contributions to the lattice action. Note that this symmetrization is necessary due
to dependence of the counterterms on a chosen basis of external momenta.

The continuum limit of a massive lattice field theory which is renormalized in
this way exists and is given by the field theory which is described by the (naive)
a -> 0-limit of the lattice action, and which is renormalized by the BPHZ finite part
prescription. This means that perturbation theory is universal, i.e., the continuum
limit does not depend on the lattice action chosen. Also, the usual power counting
renormalizability conditions of a field theory can be maintained, the only
modification being that for all vertices of the theory the lattice UV-divergence
degrees have to be less than or equal to four (in four-dimensional space-time).
Especially, if all couplings are dimensionless, a lattice field theory is renormalizable
if and only if its (formal) continuum limit is renormalizable (by power counting).
Also, the choice of zero momentum as a subtraction point in the BPHZ procedure
is of no importance. Any other choice is possible and corresponds to a change of
the normalization conditions, which can be described by the addition of finite
counterterms to the lattice action.

There are some general restrictions on the structure of Feynman integrals in
momentum-space imposed by the renormalization procedure. In particular, the
integrands have to be periodic with the Brillouin zone, a property which is reflected
by the fact that the counterterms must also be periodic. In the formulation
of the lattice power counting theorem [3] and the renormalization procedure for
lattice Feynman diagrams, we have always assumed that the propagators have
exactly one pole in the Brillouin zone, i.e. the denominator of every propagator
takes its minimum at vanishing momentum only. Especially, lattice fermions
with propagators having poles on the boundary of the Brillouin zone are
excluded, whereas the renormalization procedure works e.g. for Wilson fermions.
Furthermore, we have always assumed the numerator and denominator of the
integrand to be C00. This condition can be weakened in that the propagators should
have this property at least in a small neighborhood of zero momentum, and
globally they should be differentiable to such a degree that all differentiations
necessary to subtract divergencies can be done without problems.

So far, we have discussed massive field theories in order to avoid infrared
singularities. This allowed us to concentrate on the problems specific to the lattice
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as a UV-cutoff. If massless fields occur, we have to take into account possible
infrared singularities very carefully. However, they are not specific to the lattice
and are expected to be tractable by the methods which were developed for
continuum Feynman integrals many years ago [6-9]. We will discuss this problem
in a forthcoming paper and shall see that one only has to supplement the ultraviolet
power counting conditions by infrared power counting conditions.

Appendix A. Examples of Subtraction operators

We give some general examples for Vq to be a subtraction operator. At first, we
repeat the definition of the function classes ζ€m etc. of [3]. For meZ,^m is the class
of functions V of the form V(u;a) = F(ua)/am, where FeC00. If in addition
limβ_>0 V(u;a) exists, we get the class %>c

m. c€(c€c) is the set of functions which are
finite sums of functions in some ^m{^c

m). For V(u, w a) = F(ua, wa)/ame^miru =
m — degr- V is the largest non-negative integer such that

dbF(u,w)
EΞO for \b\<ru9dwb

where \b\ is the length of the multi-index fo, i.e., the sum of its components. If

m. and mi Φ mk for i Φ k, then degr- V= maXj degr- Vt.
$F is the set of all functions of the form F = P/C, where Pe%>c and the

denominator Ce^c is a finite product

l( are linear functions in momentum variables, and et are functions as defined in
(2-13). Note that

2 if lt depends on u
degr8 (*,(/,;«) + ,!?)

and this is equal to degrtt(/f + μf) (see [1]). The UV-degree of F with respect to u is
defined by

degr^ F = degr^ V- degr^ C = degr^ V-2nu,

where nu is the number of lt depending on u. For F , F 1 , F 2 G J Γ , degr- satisfies

^ (Fi + F2) ^ maxίdegr^ Fl9 degr^ F2\

degr^ F ^

These are the "degree-properties" of [3], Lemma 2.2.
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Having reviewed general notions, we shall now state some general examples
of subtraction operators. Let us introduce a special subset M of ^ c . Jί denotes
the set of functions P satisfying

lim P(q; a) = q,
α->0

where q is a real variable. If in addition P is a finite product of sin and cos functions
and is (2π/α)-periodic in q, then P is called a "lattice momentum". For instance,
[sin(gα)/α] or [(2/α)sin(gα/2)cos(gα/2)] are lattice momenta.

For <5eN0 = {0,1,2,...} consider the following construction: For every
j=l9...9s and i = (il9...9is)eNs

θ9i1 H \-is^δ9 let P^q\a)eJί such that

s

Yl Pjyiqy, a)ij is (2π/α)-periodic in q1,..., qs.
7 = 1

Set

(A-l)

This means that in application to a function F, which is C00 in g, derivatives are
taken at q = 0.

Lemma A.I. ///or every j = 1,..., s and euery Z ^ (5 ί/iβre ex/sίs a constant clj9 so that

(A-2)

/or all U then for arbitrary function F which is C00 in q

\n\^δ. (A-3)
Γ dn Ί

— Γ (1-?|)F =0 forall

This means that ?^ is a subtraction operator of order δ.

Proof For a fixed ZeNJ, ix + ••• + ίs ^ ^, choose

P/i^^p) (A-4)

for every 7 = 1,..., s. As a consequence of (A-2)

Π Pdλqy,af = Π ^ ( ^ ; «)ίj + O(λδ+1), (A-5)

and

p

ί]i(qί;a)iι dPs]i(qs;a)is Jq = 0 ydP^q^a)11 dPs(qs;a)ls

Hence, using Taylor's formula and that PjβJί, we get for Λ->0,

δ i1 + -- + ιs = n γ
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s "](^+l)/2

.Σl^ ί ^ α)!2

•
As a corollary, we get

Lemma A.2. Let PsJί. Then

is a subtraction operator of order δ.
As an example, set P(q\a) = sin(qa)/a. P is a lattice momentum, and (A-7) is a

subtraction operator. Note that P is a periodic function. If the function class ^
is restricted appropriately, then we are allowed to use anti-periodic functions like
(2/α) sin(gα/2) without violating (A-3). For instance, this can be done in the
Φ4-theory as shown in Sect. 4.

Appendix B. Chord Sets

Lemma B.I. Let y be a connected Feynman diagram, P the number of lines in y and
&y = {Ll9...9LP}. Define P*cseγby

Lje#'*o£e7\{Lu...,Lj-1} contains a loop # 3 {Lj,

for every j = 1,..., P. Then ?Γ* is a chord set in y.

Proof We have to show that 3~ y = &y\^~* is a tree in y, i.e., ^~y contains no loop,
but £Γyκj{L) is not a tree, i.e., contains a loop, for every Le£Γ*.

If (€(^ZΓy is a loop in ?Γ y, then there exists a fc such that Lke%^<S?γ\
[Lx,...,LΛ_ x}. But this is in contradiction to Lke$~r Hence, ̂ ~γ contains no loop.
To prove the second condition, let

We have to show that &~γv{Lik} contains a loop, for every k = 1,..., m. If Lik is
a loop line, this is trivial. Let Bk,Cke^γ be the endpoints of Lik. We show that
there is a path Θ>k c ^ y between £fc and Cfc. Then ^ f c u {Lίk} is a loop in FΊ u {LIk}.

If k = m, then by construction

contains a loop (€m such that Liγne^m. 0>

m = ^m\{Lirn} c ^ y is a path between
and Cm in ^ r Assume the assertion holds for k + 1,..., m.

contains a loop <#k9 and Like^k. ^k\{Lik) is a path in ify\{L l 5...,L i f c _ J between

Bk and Cfc. Replacing for every L^eΉ^L^}, j = k+l,...9m9 {L^} by &>j9 the
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resulting set

is a connected set of lines in &~γ. This set always contains a path ^k between Bk

and Ck. Π

Appendix C. Complete Forests and the Dimension of Zimmermann Subspaces

Let Γ be a 1PI Feynman diagram, H an arbitrary Zimmermann subspace,
parametrized by (t) = (tί,...,th) (and complementary parameters (v)), defined by
(5-4), and U a complete JΓ-forest on H. For every yeU

Mu(γ)^4Σm(τ(U)l (5-10)
τ

where the sum is over all τε£/(y)u{y}, τ(U) variable on H, and m(τ(U)) is the
number of loops in τ(U). We prove that

Mu(Γ)^4k (C-l)

Let ?Γ*Γ be a chord set in Γ. Every /cL,Le^~^, has a representation

h

kL(t,υ,q)= Σ CLJtj+VL(v9q),
7 = 1

where rank(CL J) = /z. For every if c ^r*, we define

rank, i f = rank (CLj)Le^,

i.e., the rank of C restricted to the rows LeJ£. rank, i f is the maximal number of
momenta kL,LeJ? which are linear independent with respect to t.

Lemma C.I. For every γeU
M [ / (y)^4 rank ί e r* . (C-2)

For Γ this means MV(Γ) ^ 4 - r a n k , ^ = 4k

Proof. By induction through the forest. For any i f ^ i f Γ let # i ^ be the number
of lines in JSf. First, let y be minimal in U. If y is constant, then Mv(y) = 0. But all
lines of ^ * are constant, i.e., rank, ϊ7~* = 0. If y is variable,

Mv(y) = 4m(y) = 4-#3T* ̂  4 rank, ^ .

Next, let ye U and y x,..., yc be the maximal elements of U(y), so that y(U) = y/yί γc.
By construction of chord sets in Sect. 2, ^~* ^ «̂ "*. Note that

The number of loops in γ (U) is given by

m(y(U)) = m(γ)-Ym{

If y(t/) is variable, then
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i = 1
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Mv(γ) = 4m(γ(U))+ £ MB(Tί)^4 # ( ^ n ( ^ / ϊ r ,\]U^y)) + 4 £
ί = 1 i 1

^ 4 rank((^*n(ify/yr.TcUί=i^r.)) + 4 Σ rankt^* ^ 4 r
i = 1

where we have used that for ̂ /, J* c ^ * :rankt J / + rank, ̂  ^ rank,(j/ u J*). If y (£/)
is constant, then

Mυ(γ)= t Muiγ^t rank,̂ *.
i = l i = l

a. For L e ^ * n Jδfy/Vl.. y , kL is constant, hence r a n k ^ ^ * n ^y/Vl ..y) = 0
b. For L3r*$~J

γ, hence q% is of the forϊn

1ΐ= Σ d
Ee^y/yv-yc

i.e., #£ is independent of t. Furthermore,

Consequently
kL(t,v,q)= Σ cLMkM(t,v,q) + fL(v,q),

and
rank, .T* = rank f (^* u («T* n ^ y f ) ) .

In summary

k,̂ "*. D
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