
Communications in
Commun. Math. Phys. 117, 49-77 (1988) Mathematical

Physics
© Springer-Verlag 1988

On the Asymptotics of Nodes of Z,2-Solutions of
Schrδdinger Equations in Dimensions ^ 3

Maria Hoffmann-Ostenhof1* and Thomas Hoffmann-Ostenhof2

1 Institut fur Theoretische Physik, Universitat Wien, Boltzmanngasse 5, A-1090 Wien, Austria

2 Institut fur Theoretische Chemie, Universitat Wien, Wahringerstr. 17, A-1090 Wien, Austria

Abstract. Let ΩR = Un\BR, where n ̂  3 and BR = {xeUn:\x\ ^ R}. We investi-
gate the asymptotics of real valued solutions φeL2(ΩR) of the Schrόdinger
equation (-Δ+V-E)ψ = 0, where £ < 0 and V(x)-+0 for | x | ^ o o : Let D
denote an unbounded nodal domain of φ (i.e. a component of ΩR\{x:φ(x) = 0}),
and let S(r) = {yeSn~1:ryeD} with Sn'1 the unit sphere in Un. Under suitable
assumptions on V it is shown that for some γ > 0,

limrmV j φ2dσ J ι > 2 J σ > 0 a n d
r^oo S(r) I sn-i

liminfln(Volume(Dn5,))/lnr ^ (n + l)/2.
r-* oo

Results of this type are already non-trivial for radial problems with φ satisfying
non-radial boundary conditions on dΩR or for excited states of the Hydrogen
atom if one considers linear combinations of different /-waves.

1. Introduction and Statement of the Results

In [17] we investigated, in collaboration with J. Swetina, the asymptotics of
L2-solutions of Schrόdinger equations in exterior domains. For dimension n = 2
the asymptotic behaviour of nodal lines has been studied in [16] and in [14] by
the first author. In this paper we investigate the asymptotic behaviour of nodal
surfaces of such solutions for n ̂  3.

We start by describing the problem in the n-dimensional setting: We consider
real valued VF2'2-solutions φ{x) of

(-Δ+ V-E)φ = 0 for xeΩR,

ΩR = {xeUn:\x\=r>R}, R>0, n^3. (1.1)
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Here the Sobolev space W2'2(ΩR) is defined as in [12]. Throughout the paper we
assume that

£<0, (1.2)

and that V(x) satisfies the following assumptions in ΩR:

V(x) is real valued and continuous, and (A.I)

lim V(x) = 0. (A.2)
|x|->oo

Equations (1.2), (A.I) and (A.2) imply that we can choose R so that

inf {V(x)-E)>0. (A.3)
xeΩR

These conditions on V imply that CQ(ΩR) is a form core for the quadratic form
associated to — A + V — E and its Friedrichs extension is a positive definite
selfadjoint operator denoted by HΩ -E. This guarantees that given φ on dΩR, say
φ = φ on δΩR with φ continuous in a neighborhood of dΩR, the corresponding
problem (1.1) has a unique solution [12].

We split V so that

V{x)=V1(r)+V2(x), (A.4)

and assume that V1 and V2 satisfy the assumptions (A.I-A.3) separately.
Furthermore we assume that in ΩR,

V1 is continuously differentiable, and that

dVx(r)
for some ε, c>0, (A.5)

dr

and that

\V2\^cor~1~γ for some c0 and y>0. (A.6)

Suppose
(-Δ+V1-E)υ = 0 inί2Λ (1.3)

with 0 < veL2(ΩR) and v(x) = v(\x\). It was shown in [15] that

c.v(r)^ψaΰ(r) (1.4)
and

\Φ\^c+υ{r\ (1.5)
where

/ \l/2

Ψav(r)=[ J Ψ2dσ) (r),

with 5"" 1 the unit sphere in Un and Jσ normalized integration over it.
Upper and lower bounds to φav have been subject of many investigations under

various conditions on V (see [15,17,22,24] and references therein). In view of (1.4)
and (1.5) it is natural to investigate the function

ΦF=f- (1 6)
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But let us first state our assumptions on V2. To do so we write V2(x)= V2(ry)
so that y = x/reS"'1. We require that

r1+aV2(ry)eCω{S"-1)

uniformly in r for r ^ R > R for some R> R, (B)

where α > 1/2 and Cω(Sn~1) means real analytic.
In Sect. 2 we shall recall some regularity results for F(ry), which were obtained

in [17] and which are the basis of the proofs of the following theorems. These
results concern the asymptotic behaviour of F in relation with the asymptotics of
its nodal surfaces.

To begin with let us define a nodal domain of φ. Let ro^R and let

A component Dro of the set Ωro\J^ro will be called a nodal domain of φ in Ωro.
This definition differs slightly from the usual one because φ cannot vanish
identically on dDrondΩro, for this would imply φ = 0 in Dro by the positivity of
- A + V— E on Q?(Dro) as a quadratic form.

We shall consider only unbounded nodal domains Dro, and we call for each

&ro = {unbounded nodal domains Dro}. (1.7)

We also introduce the sets S(r) for Droe@ro,

S(ή = {yeS"-1:ryeDro}. (1.8)

Its measure on S""1 will be denoted by

\S(ή\= ί dσ.
S(r)

After these definitions we can state our main results.

Theorem 1.1. Let φ φθ be a real valued L2-solution to (1.1) and assume that V, Vx

and V2 satisfy the assumptions A and B and that E < 0. Then there is a β > 0 and
a constant c>0 not depending on r0 such that MDroe&)ro,

\F2dσ) =±^ . J ^cr-β. (1.9)
S(r) J Φav

We shall discuss this result and the following one in the next section and we
shall also illustrate them with examples.

Theorem 1.2. Let φ be as in Theorem 1.1 and let Br = {xeUn:\x\ < r}, then Vr0 > R
and VD Γ o e® r o ,

i n C V o l u m c ^ n B ) ) ^ ^
2lnr 2

Remark 1.1. Theorem 1.2 tells us that in an averaged sense the sets DrondBr are
not too "narrow" near infinity. A lot more was shown for n = 2 in [16] and
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especially in [14]. For instance it was shown there for this case that the limit in
(1.10) exists and equals either 3/2 or 2.

The next result is a spectral one.

Theorem 1.3. Let φ be as in Theorem 1.1. Fix any ro^R and consider a DroeΘro.

Then the self adjoint operator HD , which is the Friedrichs extension of the quadratic

form associated with — Δ+V on C^(Dro) satisfies

inf essential spectrum HD = 0 . (1.11)

Since this theorem follows quite directly from Theorem 1.1, inequality (1.4) and
known results [2,20] we only sketch its proof.

Proof of Theorem 1.3. Taking into account that

(1.12)

(this follows from (1.3) by standard estimates, see e.g. [2]) inequality (1.4) together
with Theorem 1.1 implies that

e^φφL2(DJ for β>y/\E\. (1.13)

Now let Dr = Dro\Br and denote

inf f α w + y μ x and 2 , s l i m
<pecS(Dr) \\φ\2dx

Following the results of Persson [2] and Agmon [22] we have Σ = inf σessHDr

and further we obtain easily that Σ ^ inf σessHΩ . Since due to the assumption on
V, infσessHΩ = 0,Σ ^ 0 results. Now suppose indirectly that Σ > 0. Then due to
the foregoing considerations

Vr^:r(r large enough) with a = Σ + \E\ — ε(r) and ε(r)-»0 for r-> oo. Using this

positivity of the quadratic form and the fact that φ satisfies Eq. (1.1), φeH\oc(Dro)r\

L2(Dro) and φ = 0 in dDro\δBro, it follows by the same methods as developed by

Agmon [22, p. 19 and 55] that φexp(^/a-δr)eL2{Dro\ V ^ > 0 small. Therefore

ι/^exp(λ/|E| + vr)eL2(Dro) for some v > 0 , which is a contradiction to (1.13) and

hence Σ = 0. •
In the following section we shall discuss these results in the light of earlier

findings [16,17]. Sections 3 and 4 will be devoted to proofs. Some of the main
ingredients of the proofs will involve lower bounds a la Davies [9] together with
the derivation and analysis of some non-linear differential inequalities. We will
also prove an upper bound to positive solutions of a linear differential equation
(Theorem 3.1) which is quite different from the usual ones following from the
maximum principle.
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2. Discussion of the Results and Previous Results

In this section we first recall some results from [17]. We will then give a "heuristic"
explanation of Theorems 1.1 and 1.2 and try to point out why the case n ^ 3 requires
new techniques and is in some respect qualitatively different from the 2-dimensional
one. We shall also discuss the radial case, i.e. nonradial solutions to (1.1) if V2 ΞΞ 0.

Let us first introduce polar coordinates and an atlas on S""1.

= r cos Sl9 Xj = r [ ] sin 9t I cos 9j9 2 ^ j ^ n — 2,
\ i l J

[]
i = l

ίn-\ \ /n-ί \

xn-1=r[ I] sin 9t cos φ, xn = r( f ] sin 9t sinφ,
\ί=l / \i=l /

with 0 ^ i9j g π, 1 ̂  7 ̂  n — 2, — π ^ φ ^ π. For our purpose it will be advantageous
to replace these angles 3t by

We denote by ξ = (ξί9..., ξn_x) a vector in Q, where

and define for

1 + 2 p + A fl8111! ξi + ϊ J c o s ( ξ j + 1 + 2rj'

ί Π s i n ^ i + -l(cos^_ 1en_ 1+sin^_ 1eJ,Π
£ = 1

where the ^ are the canonical basis of IR", i.e.

e i = ( l , 0 0), e2 = (0,1,0,...),..., βπ = (0,...,0,l).

Let 1/ = Φ " x (β), then Ό = Sn~ \ and we obtain from the chart (U, Φ) by rotations

the charts (Ui9 Φ^, isl for some index set /, so that (J C/f = S""1. The collection
£e/

of these charts is our Cω (real analytic) atlas.

We now restate assumption B for V2 in terms of these local coordinates.

Assumption B'

There is an α > 1/2 such that r1+aV2:ΩR^U1 is continuous and that V# o > R,

is a uniformly bounded set of Cω(Q) functions.

Let now

(2.1)
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where v was introduced in (1.3). The main regularity result in [17] was the following

Theorem A. Suppose that φeL2(ΩR) is real valued, φ ψ 0, and satisfies (1.1). Assume
that V, V1 and V2 obey the assumptions A and B and that E<0. Then for every Ro > R,

u(ry)eCω(Sn~1) (2.2)

uniformly in r for r^R0. A(y) = lim u(ry) exists with
r-> oo

AeCω(S"-1) (2.3)

and does not vanish identically. Furthermore for every multi-index β there is a C^ < oo
such that VξeQ, Vie/, Vr ^ Ro,

(2.4)

where α = min(l,α).

Remark 2.1. In [17], weaker regularity properties of u and A were derived under
weaker assumptions on V2.

Theorem A also implies the following

Corollary 2.1. If in Theorem A, u is replaced by F = φ/φav, then its conclusions
remain true.

This follows from Theorem A, and by noting that

F = — = — —
Φav V φav

and that v/φav has a limit according to Theorem A. In [17] all statements were
formulated in terms of M, though F is a more natural function to consider. But u
satisfies the following differential equation:

- Δu -2i^-Vu +V2u = 0 (2.5)

that was used in the proof of Theorem A.
The following consequence of Theorem A will be helpful for the proof and the

understanding of Theorem 1.1.

Proposition 2.1. Let Droe@ro, then either

lim inf | S(r) \ ̂  c> 0 for some c
r-> oo

or

lim|S(r)|=0. (2.6)
r~* oo

Proof of Proposition 2.1. Let jtf = {yeSn~1:A(y) = 0}, where A was defined
in Theorem A and let siz = {yeSn~1:\A(y)\ <ε}. Clearly | j / | = 0 and
lim ε i 0 | jtfε\ = 0. Now suppose there is a Dro such that the corresponding S(r) satisfies
limsup|iS(r)| ^ c1 > 0 and lim inf I S(r) | = 0, then there is a sequence of η tending to
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infinity so that | S(rt)\ > cx — δ > 0 and for sufficiently small ε, there must be yfeSfo)
with yieSn~1\s/ε. Now take an accumulation point y^. But then MOOI ^ ε and
the continuity of A together with (2.4) implies a contradiction to lim inf | S(r) | = 0.

r-* <x>

D
We give now a heuristic "explanation" of Theorems 1.1 and 1.2 with the help

of an asymptotic expansion of M, that was obtained in [17].
Since AeCω(Sn~1) it can be expanded locally in a Taylor series. We write for

simplicity A(ξ) and u(r, ξ) instead of A(Φ " x (ξ)\ respectively u(rΦ ~1 (ξ)), and expand
A near ξ = 0 in a Taylor series, so that

A(ξ) = f Pm«) + O(|£|M l + 1), M ^ M ^ O , (2.7)
m = M

w h e r e t h e Pm a r e h o m o g e n e o u s p o l y n o m i a l s of d e g r e e m i n t h e ξί9...,ξn_ί9 i.e.

Λn= Σ CU-^l1^-"^-!- ( 2 8 )
lι+l2 + •ln-ι=m

We introduce the following asymptotic regions for r > r large, any K > 0,

ί |<ιcr- / ϊ } , j8e(0,1/2].

The following theorem describes how the asymptotic behaviour of u (and hence
of F) in these regions is related to PM, the first nonvanishing term in (2.8).

Theorem B [17]. Suppose A is given (2.7) and PM by (2.8). Then in D^ for some ε > 0,

where b = (| E |/4)1/4 and the Hι are the usual Hermite polynomials. Here a = min(l, α).

Remark 2.2 Obviously, up to a multiplicative constant (2.9) holds also for F.
Now let z = (zi •• Z Π _ 1 ) G [ R / 1 " 1 . Theorem B [17] implies that for \z\ finite

n-1
α/i-/B-i 1=1 ̂ ϊĵ jV - ^ Λ ί ^

(2.10)

We also observe that

i=ldzf J M M

so that β" | z | / 2 Jf M(z) is an eigenfunction of the (n — l)-dimensional isotropic
oscillator. Equations (2.9) and (2.10) show a specific y/r-scaling. Let us consider
a bounded nodal domain of Jf M(z), i.e. a bounded set in Un~x which is a component
of Un~ι\{zeRn~1\3fM(z) = ϋ}. Then this would correspond to the limit of some
S(r), so that \S(r)\ ~ r~

(n~1)/2 (see the proof of Corollary 2.2) and this would imply
Theorems 1.1 and 1.2 for this case. For n = 2 such an argument can be made
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rigorous because then A depends only on one angular variable, has only isolated
zeros of finite multiplicity, and consequently in (2.9) and (2.10) only a single Hermite
polynomial turns up. This made it possible to give a characterization of the
asymptotics of nodal lines in [14]. There it was shown, roughly speaking, that
near infinity nodal lines look either like branches of parabolas or like straight lines.

For n ^ 3 the situation is more complicated and the arguments which work
for n = 2 do not apply in general: J / 5 i.e. the zero set of A will be usually an
n — 2-dimensional object. It turns out that more accurate asymptotic expansions
for u than (2.9) are necessary. But even with such improvements of (2.9)
uncontrollable cancellations can occur making such an approach inappropriate.
However, for many cases one can make explicit statements on nodal domains using
Theorem B, and Theorem 1.1 or 1.2, respectively. For instance,

Corollary 2.2 Suppose that yoeSn~1,A(yo) = 0 and that for some ε > 0, A(y) > 0 for

0 < I y — yo I < ε Then there exist nodal domains Droe^ro with the following properties:

(i) I y(r) - y0 \ -> 0 for r -• oo for y(r)eS{r), S(r) corresponding to Dro.

l n ( V o l u m e ( Z ) r o n B r ) ) n + 1
hm = — - — . (2.12)
r^oo lnr 2

Proof of Corollary 2.2. Without loss we assume yo = en-ί. We write again A(ξ)
instead oϊA(φ-ι{ξ)\ so that A(0) = 0, and A(ξ) > 0 for 0 < \ξ\ < ε' for some ε' > 0.
Now in a neighborhood of ξ = 0, A{ξ) = PM(ζ) + O(\ξ\M+1\ according to (2.7). So
PM(ξ) must satisfy PM(ξ) > 0 for |ξ\ > 0 and M must be ^ 2. The function 3tfM(z)
defined in (2.10) and the polynomial PM are connected by the following relation
proved in [17, Lemma 3.2]:

Hence there is a p > 0 such that Jf M(z/2) > 0 for \z\ ̂  p and the same is true for
2f?M(z) by scaling. This implies that the set {z: Jf M(z) < 0} is contained in a bounded
region in IR""1. But exp(— |z|2/2)jfM(z) was shown to be the eigenfunction of the
(n — l)-dimensional isotropic harmonic oscilator corresponding to an excited
eigenvalue and must change sign. This together with (2.10) implies that there exist
Dro with the property (i) of Corollary 2.2, and the corresponding S(r) satisfy
\S(r)\r{n~1)/2^ const, so that Volume (DronBr)^crin + 1)/2. Combining this result
with Theorem 1.2 we obtain (2.12). •

With such considerations many specific cases can be discussed. For instance
it can be easily shown that if n = 3 and A = sin2 ξ2, then there is a Dro such that
the limit in (2.12) exists and equals 5/2.

We now illustrate our findings with the classical example of quantum mechanics,
namely the Hydrogen atom. Its Hamiltonian is in suitable units

H — A-2-
r
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on L2(U3). An eigenfunction φn satisfies (here n labels the energies not counting
degeneracies)

The eigenvalues En are n2-fold degenerate and a general (real valued) eigenfunction
reads (see any textbook in quantum mechanics)

Ψ» = "Σ Σ c\%f\">(r)Y\"»(y)9 ycSn-K (2.13)
1 = 0 m= - I

Here the 7jm) are the usual surface harmonics, i.e. the restriction of the homogeneous
harmonic polynomials in U3 to S2. They satisfy L2Y\m) = 1(1 + 1)Y{Γ\ me[-/ ,/] ,
where — L2 is the Laplace Beltrami operator on S2. The f\n)(r) satisfy, on (0, oo),
the ordinary differential equation

dr r r

These f\n} show the same asymptotics

Now if r > 2/\En\, fff does not change sign, and we can investigate

u = - ~ and A(y) = lim u(ry).
J 0 r-»αo

Since the restriction of any polynomial in U3 to S2 can be expressed by a finite
linear combination of Y\m) [23] one can construct explicit examples with it. For
instance, one can construct an A as in Proposition 2.1 and so forth. Since highly
excited Hydrogen atoms have been prepared recently in laboratory (there are
numerous experimental and theoretical papers in the last few years for instance in
Phys. Rev. Lett.) our findings might be of some interest for the understanding and
analysis of these states. It would be also interesting to give a more detailed analysis
of these hydrogenic wave functions, starting from the present results using
Theorem B.

For other radial problems say on L2(IR3) we will not usually encounter these
phenomena" since then the eigenvalues do not show this /-degeneracy. The

eigenfunction will look like ψ\n) = f\n)(r) ]Γ Y\m)(y) and the corresponding nodal
m = - I

domains will show that the left-hand side of (2.12) equals 3. But with exterior
problems as the exterior Helmholtz equation ( — A + κ2)φ = 0 for r > R we find
all the complexity as for the hydrogenic case.

Our considerations following Theorem B lead us to the following

Conjecture. Pick a Droe@ro, then

lnr 2
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This would imply that the limit in Theorem 2.2 exists and is in the interval
[n+l/2,n].

Finally a few words on the literature. Most of the relevant work on the
asymptotics of wave functions has been cited in Sect. 1 or in [2,22]. We should
mention the recent results of Herbst [13] and Froese and Herbst [11] which show
the surprising complexity of the asymptotics of solutions of Schrόdinger equations
in cones.

We should also try to relate our work with the literature on nodal properties
of solutions of elliptic partial differential equations. Closest in spirit are perhaps
the local results of Bers [5], Cheng [8] and Caffarelli and Friedmann [6]. But we
are not aware of any investigations on the asymptotics of nodes. It might be also
possible to investigate generic properties of the asymptotics of nodal surfaces in
the spirit of the results of Albert [3] and Uhlenbeck [25]. We hope to investigate
such questions in future work.

3. Proof of Theorems 1.1 and 1.2

3.1. Proof of Theorem 1.1. We consider a Droe@ro. By Proposition 2.1 the
corresponding S(r) satisfies lim |S(r)| ->0 or liminf \S(r)\ > 0. But if \S(r)\ does not

r-> oo r-> oo

tend to zero Theorem A and the arguments in the proof of Proposition 2.1
imply that

J u2dσ^c (3.1)
S(r)

for some c>0 and large r. The same holds for J F2dσ due to (1.5), and there is
S(r)

nothing to prove. Therefore, in the following we assume lim \S(r)\ = 0.
r—> oo

Let — L2 be the Laplace Beltrami operator o n ^ " " 1 and let

. (3.2)
σ

For simplicity we shall write λ2(r) instead of λ2(S(r)). Thus, for each r, λ2(r) is just
the lowest eigenvalue of the selfadjoint operator L2(r), which is the Friedrichs
extension of the corresponding quadratic form with form core C£(S(r)). |S(r)|->0
implies, for instance by the Faber Krahn inequality [4,7], that

\imλ2(r)=oo. (3.3)
r-* oo

The following two lemmas will enable us to reduce the proof of Theorem 1.1
to the investigation of various one dimensional relations.

Lemma 3.1. Let

and let

\ l / 2

φo(r) = ( J ψ2dσ) (r), (3.4)
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U(r)= inf V2(ry\
yeS(r)

then in the distributional sense for r>R,

^ V o W ^ 0 . (3.5)

Remark 3.1. Lemma 3.1 will be proved in the next section. It certainly holds under
less restrictive conditions on V. We note that with ψo = r(n~1)/2ψo, (3.5) can be
transformed so that

(3.6)

and from this we infer that for r > R,

-Γ Ao^O, (3.7)

a Π d d2 -
—~\l/0 ^ 0 almost everywhere. (3.8)
drA

Consider now A(y) = lim u(ry) as defined in (2.3). If yoestf, the zero set of A,
r-> oo

then y0 can only be a zero of finite order, say M(y0), due to the real analyticity

of A. Let
(3.9)

Lemma 3.2. Let u be as defined in (2.1). Then VD r oG^ r o and the corresponding S(r)'s,
there is y ^ 1 depending only on M such that

\ l / 2 χL

\u2dσ) {r) = γ->c0λ{r)-2y (3.10)

KU J υ(r)
for some c0 > 0.
Remark 3.2. The proof of (3.10) is rather involved and will be given in Sect. 4. The
actual value of y will show up in this proof but we do not need it.

It will be advantageous to work not with the function φo/v but with

(3.11)

where υx is a radial positive L2-function, such that

(-Δ+V1-E+ U)υ1 (r) = 0. (3.12)

We are going to show that w^.cr~γ , and from the following it will be clear that
this immediately implies Theorem 1.1. We collect first some properties of w and
we assume always \S(r)\ —>0 for r —• oo.

Proposition 3.1. There are positive constants cl9c2,c3, so that

w^c^(r)-2\ (3.13)
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d2 , d λ2(rγ
;0, (3.14)

and

\ dr2 2dr r2

for r>R. {3.14) and (3.15) hold in the distributional sense and w is continuously
differentiable and with ' denoting d/dr

w'^0, r>R. (3.16)

Proof of Proposition 3.1. (3.15) follows from (3.13) and (3.14). To show (3.13) we
have to show that for some c\c" < oo,

0<c'5^c" (3.17)

v

for r > R. First we observe that v = r(n~ 1>/2v and ΰt = r(n~1>/2v1 satisfy

(«-! )(„-3) , τ, = 0, (3.18)
\ ar~ <+r~ /

and

~dr2+ 4? +V1-E+UJυ^ . ( .

Since by assumption B, UeL1(R, co\ Theorem 3.1 of [15] implies (3.17). Next we
combine (3.6) and (3.19) so that (since wvγ — φ0)

d2 (n-l)(n-3) „ „ „ λ2(

= - v1 W - 2v\ W + —ψ-wv1 ^ 0

in the distributional sense. Now ϋ\ < 0, and from the maximum principle [21] we
infer that also w' < 0. Hence, dividing the last inequality by ϋγ and noting that
— v'ι/ΰ1^c2 for some constant (see [16]) we obtain (3.14) and the proof is
complete. •

Lemma 3.3.

lim inf < oo (3.20)
r-> oo r

Remark 3.3. By Proposition 3.1 this means that there is a sequence {rj tending
to infinity so that

w^^^c^rry. (3.21)

Proof of Lemma 3.3. Suppose that (3.20) does not hold, that means for any m there
is an jRm so that for r>Rmi

^ ^ m . (3.22)
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We shall derive a contradiction to (3.22). Equations (3.22) and (3.14) imply

m
— w + cow H—w < 0

r "

in the distributional sense for r> Rm. Since w->0 a function ΛOT > 0 with

- h'ή + c2 Â  + — hm ^ 0, (3.23)

and hm(Rm) ^ w(K J will satisfy Am ^ w for r > Rm. Pick Am = cmr~k, then we have
(left-hand side of (3.23)) =-k(k+ l)Rm

 1 - c2k + m > 0 if fc < m/c2 and Km large
enough. Therefore for any m there is a cm such that for r> Rm,

w<cmr~m. (3.24)

Using (3.15) this implies (the m was arbitrary) that for every finite /,

- w" + c2 w' + c/w ^ 0 (3.25)

for r> Rt. We can use again the maximum principle to infer that for any j > 0
and some Cy,

w ^ c ^ ~ r J (3.26)

for r > Rj sufficiently large. Now this implies, via (3.13), that

λ2 w~ίly

- J ^ ^ r - = φό1/yr-2ΰ\/y^cδφo1/γe-δr

for r sufficiently large, say r>Rδ>Rh and δ < ̂ J — E/γ, where we used that

vx ^ c ε e x p [ - ( , y - £ — e)r] for ε > 0 and suitable c£. Since ί ^ — £ + ((n—1)

(n — 3)/4r2) + U is bounded away from zero, we see that for any α with 2α < 1/y,

γ E 1 ( π ~ 1 ) ( w ~ 3 ) , u , A 2 ( r ) > ι r - 2 α
4r2 r2 = °

and hence from (3.6)

—2+Φo2<x jΦo^O (3.27)

follows for r> Rδ sufficiently large.
We now show that (3.27) implies that φ0 = 0, but this cannot be true because

of unique continuation and because Dro is unbounded. Hence (3.22) cannot hold
and the Lemma is proven. So let

δ
then

-Φ" + φ~2«φ= -otφ-v-'φ'cΦ^O, (3.28)

since φ'o ^ 0. If φ0 ψ 0 then there is a c> 0 such that Φ ̂  cφ0 for r > Rδ by the
r ^

maximum principle. Let μ = J φ^dx, then
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so that for some C > 0,

Integration leads to

μ'e-*μ= ~-d^e-^>C>0. (3.28)
adr

- [exp( - aμ(Rδ)) ~ exp( - αμ(r))] ^ C(r - R,).

The left-hand side of this inequality remains bounded, but the right-hand side
tends to infinity for r->oo. Hence ψ0 must vanish identically and the proof of
Lemma 3.3 is complete. •

Taking into account (3.17) and (1.5) it becomes clear that Theorem 1.1 will
follow from

Lemma 3.4. Let y be given according to Lemma 3.2. Then for some c> 0 and r large

w(r)^cr~y. (3.29)

Proof of Lemma 3.4. Let

gd{r) = dr~\ (3.30)

then for sufficiently small positive d, say d0,

ή (3 3i)

Now suppose that (3.29) does not hold, then there is a sequence {r,} tending to
infinity so that

w{rj)<dorp. (3.32)

We pick d0 < c4, where c 4 was defined in (3.21). Combining (3.15) and (3.31) we
obtain

- (w - gj" + c2(w- gdj + ^ ( w 1 " " y - g*-^) ^ 0. (3.33)

Due to (3.21) we know that w(r) ̂  gdo(r) cannot hold for all r^f, where r is large,
which together with (3.32) implies that w — gdo must have a positive maximum for
some f>f. But this cannot be true because of the maximum principle [21]. So
there is no sequence {r7} such that (3.32) holds and the Lemma is proven. •

3.2 Proof of Theorem 1.2. We start with a one dimensional estimate, which might
be of independent interest.

Theorem 3.1. Let V be continuous, real valued, and let

lim V(r) = 0. (3.34)
r->oo

Suppose E<0, and that for r > R > 0, V - E > 0. Let for r > R

-h" + (V-E)h = 0 (3.35)
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with 0 < heL2(R, oo). Suppose

W{x) ^ 0,

and uniformly locally integrable so that

r + ε/2

sup j W(x)dx = m(ε) < oo /or ε>0. (3.36)
r^R+^ε r-ε/2

Let 0 < feL2(R, oo) be a distributional solution so that

VE \+VE + w\f = 0, (3.37)

and suppose that f(R) = h(R). Then there exists a constant C > 0 depending on the
I) -properties of W and on h so that for r>R + 2,

Wdx). (3.38)
)

C may be chosen for instance

C = - inf £Cε , N with 0<cε=mih^ή. (3.39)
2εe[l/2,l]? 6 (fΛ A W

+ 2 C ε

Remark 3.4. It seems difficult to optimize this constant. We note [22] that our
conditions on V and W imply that / is absolutely continuous.

Proof of Theorem 3.1. h is monotonically decreasing and therefore we have, for

h2(r) = C ε > '

since ft;/ft ̂  — c1 for r > R and some cί depending on E and V (see [16]). g satisfies

r oo Zj2 /y\

g{r) = g{R) - j j ττ^\ W{y)g{y)dydx. (3.40)
R x n \X)

Equation (3.40) makes sense since ft' ̂  0, g ^ 1 (by standard comparison arguments
[21]) and due to (3.36). Note that (3.40) implies that g(r) decreases. For ε > 0 we have

~ ί ί J ^ β g{R + ε)W(y)dydx
r x

R + εR + ε

j j W(y)dydx
R x

R

R + ε

) ί W(x)dx,
R + ε/2



64 M. Hoffmann-Ostenhof and T. Hoffmann-Ostenhof

so that

•^cε f W(x)dx) . (3.41)
2 R + ε/2 )

Iteration of (3.41) gives for k = 1,2,...,

- 1

We take logarithms so that

ε

j = 0\ έ R + (j+l/2)ε

Fί F θ) \

^ - Σ l n ( l + k J W(x)dx). (3.42)

To get rid of the logarithms on the right-hand side of (3.42) we use that, for y > 0
[19, p. 273]

-y)^γL~, (3.43)

and that by (3.36)

so that

1 g(R + kε)

j W(x)dx^m[- ), (3.44)

< ^V^-Σ ί WMΛt (3.45)

To replace the sum in (3.45) by a single integral we use that, for k ^ 2,

(3.46)

so that we obtain by combining (3.45) and (3.46),

T<™* (,47)s

Now let r ^ R + 2 and pick εe[l/2,1] so that r — R = kε. The proof of Theorem 3.1
is complete by noting that

C:=- mf

so that (3.38) and (3.39) is implied by the above. Π

Remark 3.5. Theorem 3.1 is quite different from the usual results obtainable by
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subsolution estimates. We first tried to obtain a bound like (3.38) by looking for
a supersolution to (3.37). But if W does not show any explicit form, so if only (3.36)
is known, this seems to be difficult. Note that if WEL1(R, OO), then there are lower
bounds [15] showing that (3.38) is optimal (except for the constant). If W tends
to infinity so that m(ε) = oo, then WKB arguments show that bounds like (3.38)
will not describe the asymptotics correctly.

With the help of Theorem 3.1 we shall prove the following Lemma, from which
Theorem 1.2 will follow easily.

Lemma 3.5. Pick R large enough, then

limmϊr-1\{xe(R,r):xlnx^λ2(x)}\>0, (3.48)
r-+ oo

where |{ } | means measure of {-}.

Proof of Lemma 3.5. In order to apply Theorem 3.1 we make the following
identifications:

so that

For W we pick

TT/ . / In r Λ (r) \

W = m m ^ — , - j ^ - l . (3.50)

Hence a positive L2-solution /, so that

d2 ~
= 0 (3.51)

will be an upper bound to φ0 by the maximum principle (see (3.6))

^U->t^ (3.52)
f(R)~φo(R)

for r ^ #. Now by Theorem 3.1,

g = {ψ-^exp( -C ] Wdx\ (3.53)
Vl(r) \ R+l/2 J

and since with our choice W->0 we have from (3.39) that for given small δ there
is an Rδ so that m(ε) ̂  δε and C ̂  (1/8 — <5)cε. According to Theorem 1.1 (formulated
in terms of w defined in (3.11)) we conclude via (3.52) and (3.53) that

\ ] (3.54)
L Λa + l/2 J

for positive constants cί and c 2 . Now let

&-δ)cε ] Wdxλ
Λa + l/2 J
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Equation (3.54) implies that for large r and some constant c3

c3 + β\nr^{^-δ)cε ] Wdx

ε J ^-
Mι(r) X

( 3 . 5 5 )

Since Rδ > 1, ln(r — | M 1 ( r ) | ) > 0 , and we have

2)5 > r

Hence again for large r

(lnr

and this implies that for some c6 < 1 and large r, | M 1 ( r ) | ^ c 6 r . Let M2(r) =
(Rδ + 1/2, r)\M1(r), then r " 1 |M 2(r) | is bounded away from zero for r-> oo, verifying
Lemma 3.5. Π

We can now prove Theorem 1.2. According to the Faber-Krahn inequality
[4,7] we have for some c7 > 0

i2(r)^7|S(r)r2/("-1},
and therefore

From this inequality and from Lemma 3.5 we obtain for r large

^ c 9 J \S(x)\xtι'1dx

^c9 J xin

M2(r)

] xin-1)/2{\nx)~{n-1)/2dx
δ + ί/2

and therefrom

proving Theorem 1.2.

4. Proof of Lemmas 3.1 and 3.2

4.1. Proof of Lemma 3.1. Instead of (3.5) we shall verify inequality (3.6). We
reformulate Eq. (1.1) in terms of ψ = r(n~1)/2ψ, multiply the equation obtained from
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the left by φ and integrate over S(r). This implies immediately that

- J ψ^ψdσ + (v1 + U-E + r-2λ2(f') + {n~ί)j;n~3\-2)po£0. (4.1)
s(r) or \ 4 )

Let φD denote the restriction of φ to the nodal domain Dro. Since φeC1 (ΩR), φ = 0

in dDro\dBro and \dDro\ = 0, it follows that (d/dr)φD is continuous a.e. in Ωκ and

(d/dr)φDeL£c(Ωκ) for # > r 0. Therefrom we conclude that VφeCo((R, °°))>

00 ~ d2 ~ °° c*2

-ί(p(r)ίΦ-^Φdσdr=- ί
R s(r) or sn-

(4.2)

Now note that \j/'QeL£c((R, oo)) (' denoting d/dr).
Next suppose we can show that V<pεC^((.R, oo)), φ ̂  0

ϊ ί f |<? f l )^(^ AD)^rfr^ί(φl?0)>^r, (4.3)
RS"-ΛClr Jϋr R

then (4.2) and (4.3) imply that in the distribution sense

-φoΦ'όύ- \Φ~φdσ, (4.4)
s{r) or

which together with (4.1) yields inequality (3.6).
Hence we are left to verify (4.3): Given feC2(ΩR\ real valued, it follows easily

by partial integration and application of Cauchy-Schwarz's inequality that

/ \l/2

with / 0 = ί [J2dσ\ . (4.5)

Finally by regularization we shall proceed from (4.5) to (4.3): We first note that
ΦD^^\OC{ΩR) (see e.g. [1]). Now let fε with ε > 0 denote a mollification of φD

defined according to [1] e.g. If Ω'czczΩ^, then fε converges for ε->0 to φD in
Wίt2(Ω')9 and since φD is continuous, fε^>φD for ε->0 pointwise uniformly in Ω'.

( y/2

Denoting fε0 = \ J f2dσ I , we conclude further that fε0-+φ0 for ε-»0
\sn-l j

pointwise uniformly in r and in W^2((R9 oo)). Therefrom it is straightforward to
show that VφeC^((Λ, oo)),

J J \^rf. \UΦL) -1 ^Ψn \^(φψn) dσdr
RSn~l
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d

\\φ'(fe-φD)

for ε->0 with some c(R) > 0, and where
we have

d
+

d ~

(

denotes the norm in L2(ΩR). Similarly

ί l(φ/ε,o)7;,o - (φΦoϊΨΌ\dr S II (φfε,oϊ II II (fs,o - Ψoϊ II
R

+ IIΦΌII (II Φ ( / . . O - Φoϊ II + II φ'We,o - Φo)

denoting the norm in L2((R, oo)).

>0

for ε->0 with
Since (4.5) holds with / = fε, Vε > 0, we conclude by the foregoing considerations

that for ε->0 inequality (4.3) follows, finishing the proof of Lemma 3.1. •

4.2. Proof of Lemma 3.2. According to Proposition 2.1 either liminf \S(r)\ > 0 or
\S(r)\ -»0 for r-> oo. However in the first case inequality (3.1) holds, and inequality
(3.10) holds in a trivial way. Hence we have to consider the case lim \S(r)\ = 0.

Without loss we assume u > 0 in Dro.
The basic ideas which lead to (3.10) can be indicated fairly easily for the

2-dimensional case: Using polar coordinates x = rΦ~1(ξ) we write u = u(r,ξ),
S(r) c S1, and we assume that S{r) is simply connected and shrinks to a point yeS1

for r-^ oo. Let in polar coordinates Φ(S(ή) = (ξ{1)(r\ ξ{2)(ή) c U with ξU)(r)-+O for
r-> oo for j = 1,2. Equation (3.10) in Lemma 3.2 then reads

ζ(2)(r) \ 1/2

J u2(r,ξ)dξ
ζ(i)(r

Now by Theorem A, since Λ(ξ) = lim u(r, ξ) has a zero of some order M ^ 1 in
r-> oo

ξ = 0, \(dM/dξM)u(r,ξ)\ is bounded away from zero for large r and small \ξ\. By

elementary estimates (see Proposition 4.3) this implies

But λ2(r) = c\S(r)\"2 (with some c> 0) for the 2-dimensional case, hence inequality
(3.10) follows with 2γ = M + 1/2.

Unfortunately for the rc-dimensional case various complications arise. In order
to make the procedure of the proof more transparent it will be convenient to treat
first the special case that the nodal domain Dro under consideration shrinks into
a point for r-»oo, i.e.

lyeS"'1 such that l y(r)-j; |->0 for r ^ o o Vy(r)eS(r). (4.6)

Without loss we shall take y — en_1. By ^ ( ^ . J we denote the geodesic disc in
Sn~1 with center en-γ and radius ε. Clearly, due to assumption (4.6) we have for
ε > 0 and R(ε) large enough, S(r) c Bε(en_ x), Vr ^ R(ε). Using the local coordinates
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ξ = φ{y\yeBε(en^1) introduced in Sect. 2, we have Φ(en_1) = Oi the Laplace
Beltrami operator reads

-^^S-^-^tan^-^+ΣΪΠcos^ *

dξl
--(n-j-2)tanξj+1

i=l

d

ί |Lφ|2

ί/σ=
dφ°Φ~ 2 n-2 j dφ°Φ~

n-2

Since |ξ | < c(ε), eπ_i)) with c(ε)-+0 for ε-^0 we obtain

) > ( l - c n ί ε ) ) inf

Vr ^ Λ(β) and some co(ε) small for ε small.
Next we apply a result of Davies [9,10], namely:

Proposition 4.1. Let & be a domain in IR""1, let

and

and

^ J d(ξ,eΓ2dμ(e)
sn-2

with μ(e) denoting the usual normalized invariant measure on Sn 2. Then

|| || ̂  denotes the Lx-norm on Ή.
Taking <& = Φ(S(r)) and applying inequality (4.11) to (4.9) we obtain

Lemma 4.1. For some c(n,έ)>0 and R large enough

where

and ||-|j„ denotes the I?-norm on Φ(S(r)).

(4.7)

(4.8)

(4.9)

(4.10)

(4.11)

(4.12)

Lemma 4.1 and the following lemma imply Lemma 3.2 under the assumption
(4.6).

Lemma 4.2. There exist M , c > 0 such that Vr^iR(R large enough),

(4.13)
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To prove Lemma 4.2 we start with

Proposition 4.2. Let R large enough and δ0, v > 0 small. Then Vr^iR there exists
ξ(r)eΦ(S(r)) and Jv>r c Sn~2 with |/VtΓ| ^ 1 - v2(l + δ0)

2 such that

v2qi(r)Sd2(ξ(ή,e) VeeJϊ>r. (4.14)

Thereby d(ξ,e),qQ0(r) are given according to (4.10) and (4.12) and | / v r | = J dμ.

Proof of Proposition 4.2. Obviously for δo>0 small, there exists ξ(r)eΦ(S(r)) for
r^R with q(ξ(r))^(l + δo)~1qaD(r). Now let for small v = 0

Bv,r = {eεS"-2\d2(ξ(r\e)<v2q2

00(r)},
then

Define IVt, = Sn~2\Bv>r, then |/VfΓ| ^ 1 - v2(l + δ0)
2 and Vee/V,r (4.14) holds. •

Remark 4.1. Now consider ϊov r^R and small v > 0

/ ; > r c / v r with | / ; j ^ c o ( v ) for some c o(v)>0, (4.15)

and define

q?vr = {^GIR""1!^ = ξ(r) + te, te[0, vq^r^eeΓ^}, (4-16)

where ξ(r) is given according to Proposition 4.2. Then due to (4.14) Φ ~x (^v>r) c S(r)
and

\S(r)\^c(ε) J dξ ^c(n,v, ε)qQ0 (r)"" 1 Vr^R (4.17)

for some constants c(ε), c(n, v,ε)>0. Since |S(r)|->0 for r ^ o o , (4.17) implies

<7oo(r)->0 f° r ^ ^ o o . (4.18)

Now we are ready to prove Lemma 4.2: Due to our assumption (4.6) Vj eS(r),
\y(r) — βn-^^0 for r-^oo and A(en_1) = 0. Since A is real analytic (due to
Theorem A) there exists MeN such that

Aoφ~1(ξ) = PM(ξ) + O(\ξ\M+1) for \ξ\ small, (4.19)

where PM is a homogeneous polynomial of degree M. Denoting ξ = pe with e = ξ/\ξ\
it follows that

- M! PM(e) + 0(p) for p small. (4.20)
dpM

Since PM(e) # 0 for a.e. eeSn~2, and since q^ή-^O for r-> oo (due to (4.18)) there
exists some εf > 0 and Jε, c Sn~2 with | J ε,| ^ 1 - c(εr) > 0 such that

= const in

j^Aoφ-\pe) >εf \JeeJε,. (4.21)
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Having in mind Proposition 4.2, where the existence of IvraSn 2 with | / v r | ^
1 — v2(l + δ0)

2 and inequality (4.14) was shown, we can choose v > 0 small such
that \IVtt.nJε,\ ^ c0 >0, Vr ^ R large enough. Hence we can define # v > r as in (4.16)
by taking

l v r = l v rΓ)Jε'.

Now let ξ(r) be given according to Proposition 4.2 and define

g{r,t)= \ \
/'v,r

then obviously Mr^-R

g(r,t)Z0 Vte[0,v9 o o(r)].

Noting that for some c(n, v) > 0,

ItfJScίM^C )"-1 Vr̂
we conclude by Cauchy-Schwarz that

\ l / 2

J ^ ί r φ - H ί M J ^Φ,v) ίoo(r)-(l |-1)/2

for some c(n, v) > 0. Next we shall bound the right-hand side of (4.26) from below

by (δM/dpM)Aoφ-1(pe\ using

Proposition 4.3. Let J aUbe a bounded interval, M ^ ί,feCM(J) and/bounded in
J. Let {Ji91 ^ f ̂  3M} denoίe α partition of J in intervals Jt with | J. | = | J | 3 " M and

3Λί

J = U Jh then

«oc(r)

J g{r9t)f-2

(4.22)

(4.23)

(4.24)

(4.25)

dt (4.26)

inf
dt1M / W (4.27)

i = 1 ί

Proof of Proposition 4.3. For M = 1 inequality (4.27) reads

I J \ i = 1 ίeJ,

which is easily verified. For arbitrary MeN (4.27) can be easily shown by induction.
See for instance [19, p. 140] for a related inequality. •

Now we choose a partition {Ji91 ^ i ^ 3M} of [0, vg
and conclude via the above proposition that \fr^R,

w i t h \Jt\ =

] Σ
i=lteJι

i = 1 teJi

inf
ίe[0,v4oo dt

(4.28)
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for some c = c(M, n, v) > 0. Nothing that

Γ

1 v r

and taking into account Theorem A, we have for some δ > 0 and c(M) > 0,

a?7

(4.29)

S c(M)r -1/2-5 (4.30)

VtelO,vqao(r)'], VeeS"-2,Vr^ R (R large enough).
Furthermore, since due to our assumption (4.6) Φ^1(ξ(r))->en-1 for r->oo,

f(r)-> 0 for r->oo and therefore

(4.31)

with (^ (r) -^ 0 for r -+ oo.

Collecting the above findings (4.29), (4.30) and (4.31) we arrive at

(4.32)

Vte[0,vqao(r)']9 with δ2(r)^0 for r^ oo.
Now we take into account (4.21) and obtain from (4.32) for some 0 < c < ε / ,

Vr ^ JR with JR sufficiently large

dtA ^c Vte[0,vqao(r)'].

Combining (4.26), (4.28) and (4.33) we get

J u2{rφ-ι(ξ))dξ

(4.33)

(4.34)

Having in mind (4.16), where # v > r is defined, the foregoing obviously implies (4.13).
Hence we have proven Lemma 4.2.

Combination of this result with Lemma 4.1 verifies Lemma 3.2 under the
assumption (4.6) with 2y = M -\-(n— l)/2.

So finally we have to verify Lemma 3.2 for the general case, when |5(r)|~>0
and loosely speaking "Dro does not shrink into a single point": Let

s/0 = {yeS"-1!); = lim y{r) for some y(r)eS(r)}9
r-> oo

then due to Theorem A, A(y) = 0, Vyej/ 0 and | J / 0 | = 0 since A is real analytic.
In order to proceed in an analogous manner as before we need

Proposition 4.4 Given a geodesic disc Bδ on S*1'1 with \Bδ\ = δ and δ>0 small, then
Vr^iR(R large enough) there exist 0t(r)eO(n) (the rotation group ofSn~ι) such that
for some c>0,

X2{r)Zcλ2{G{r)\ (4.35)
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where λ2(G(r)) is defined analogously to (3.2) with G(r) = BδMr)r\S(r) Φ φ. BδM{r)

denoting the geodesic disc obtained from Bδ by the rotation 0l(r).

Proof of Proposition 4.4 Applying a result of Lieb [18] it follows that there exist
0l(r)eO(rί) such that λ2(r)> λ2(G(r))-λ2(Bδ). Since |S(r)|-»0 for r ^ o o , |G(r)|->0
for r->oo, and we conclude by Faber-Krahn's inequality (see e.g. [4,7]) that
λ2(G(r)) -+ oo for r -• oo. Hence the above inequality immediately implies (4.35). •

Now we consider the geodesic disc ^ ( ^ . J , define the local coordinates
ξ = φ(y) as before and denote Uo = Φ~1(Bε(en_1)). Then by suitable rotations we
obtain from the chart (ί/0, Φ), charts (Uh Φt% 1 ^ i ^ N for some N = N(ε) < oo
such that

G(ή c U [/f.

Thereby R is taken large enough, such that Vr^K, G(r) a Ut for some
ie{0,1,...,N} (having in mind that G(r) = Bδmr)nS(r), this is possible provided δ
is chosen sufficiently small relatively to ε). So for each i for which G(r) a Ut we
can apply Proposition 4.1 with ^ = Φ^Gir)). Thereby d(ξ,e)9 q(ξ) and q^ir) clearly
depend on i (which will be suppressed in the notation for simplicity). Further
analogous to Proposition 4.2, there exist ξ(r)eΦi(G(r)) and lvr such that (4.14) holds.

Consider now sequences {rm} with rm—>oo for m—>oo with the following
properties:

There exist ΐe{0,1,..., N} such that G(rm) a OtMm. Further lim ξ(rm) = ξ exists
_ r-> oo

(where ξ(rm) is defined as before). (4.36)

If we can show that for some Mef^J,

for every sequence {rm} with property (4.36), (3.10')

then Lemma 3.2 is proven with 2γ = M + (n — l)/2: For assume indirectly that
VKeN there is a sequence R^^oo such that

^(R^)λ(R^)κ + {n~^2^0 for m^oo,

then clearly VK we can pick a subsequence {R^} of {R™} which has the property
(4.36). But due to (3.10') there exist MεN such that

Hence for X = M we have a contradiction.

Therefore it suffices to prove inequality (3.1O7): So let rm-> oo be arbitrary but

fixed with property (4.36) and without loss we shall assume that G(rm) c Uθ9 Mm.

Note that ξ{rm)eG{rm\ Vm implies that ξeU0 and Aoφ-^ξ) = 0. It is obvious that
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in the same way as before by applying Proposition 4.1 with ^ = Φ(G(rm)) the
analog to Lemma 4.1 follows, namely,

Lemma 4.Γ. For some c(n, ε) > 0,

λ(G(rm))^c(n,ε)qQO(rm)~1 for m large,

where {rm} is an arbitrary sequence with property (4.36) and i = 0 in (4.36).
Next we are going to derive the analog to Lemma 4.2:

Lemma 4.2'. There exist M, c > 0 such that for large m

y°(r \> rn (r \M + (n-l)/2
\rm) = C(loo\rm) •>

where {rm} is an arbitrary sequence with property (4.36) and i = 0 in (4.36).

Proof of Lemma 4.2'. Basically we proceed as in the proof of Lemma 4.2. As already
noted Proposition 4.2 remains valid with S(r) replaced by G(rm\ so that Iv Yrn is
given in the same manner as before. Further, in the same way as in Remark 4.1,
l'yrrn and # v > Γ m are defined and we obtain analogously

\G(rm)\^c(n,v)q^(rmΓι for large m. (4.37)

Further we shall derive an analog to (4.21), namely:

Proposition 4.5. Let {rm} be a sequence with property (4.36), where i = 0 in (4.36),
let JVjΓm be given according to Proposition 4.2 and let M denote the highest
order of the zeros of A as in (3.9). Then VξeΦ(Uonstfo) there exist T(ξ) = Twίth
le{l,2,... ,M}, and there exist for m large

ΓVtrJξ)c:IVtrm with \T^rJξ)\^co(v)>0

such that

inf
dτ

dμ(e) ^ c(v) > 0. (4.38)

Proof of Proposition 4.5. Since A is real analytic and A°Φ 1(ξ) =
Vξ"eΦ(L/onj/o), we have

_ M

+1) for p-^0

with alkeU, and where Pξtk(e) is a homogeneous polynomial of degree k. For every
homogeneous polynomial P(e) of degree ^ M define

and

ϊ+ if \M+\>\Jl-\

ϊ- otherwise

Then clearly \Ji(P)\ ^ 1/2. Without loss we assume that for ε > 0 small enough
there exist Jίt(P) c Jί(P) with | P | > ε, MeeJtE(P)Άχγά \Jit(P)\ ^ 1/4. Since |/ v > r J ^
1 — v2 with v arbitrarily small, it follows that for large m
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and therefore

ί P(e)dμ(e)
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(4.39)

(4.40)

Define for KeN

Jίκ = {ξeΦ{Uonstfo)\A°Φ~1(ξ) = 0,ξ is a zero of order K}.

It is easily seen that JίM is a closed set, which implies that

inf \alM\ = kM>0. ' (4.41)

Having in mind the foregoing considerations this yields that for large m

inf ^M
A°Φ~1(ξ+ pe)\p = odμ(e) (4.42)

with

Next we show that for j = 0,1,.. ., M,

inf \,... ,\alM\) = 0. (4.43)

For 7 = 0 this is given in (4.41).
Assume indirectly that for some / _ l,kM-j = O. Then clearly there exists a

converging sequence ξmej\r

M_^ meN with |α ξ m M _ J ->0 for m-> oo V0 rg i ^ 7. Let
lim £m = f, then obviously ξ is a zero of A ° Φ ~1 of order ^ M — 7 and therefore

(4.44)

But since V/^0,

• 0

for m->co, it follows that \aξmtM-i — aξfM_ι\-+0 for m->oo Vz, and therefore
alM-ι = 0 f° r a ^ ι w ^ ^ 0 = ι = Λ which is a contradiction to (4.44). Hence (4.43) is
verified.

From the foregoing we conclude that V'ζe^VM-J there exist l(ξ) = l with
M — 7 ̂  / ̂  M, such that |α^^| ^ kM-j, and for large m

where ΓVtrm(ξ) = Jίε(Pξj)nIVtrm. Taking the infimum over ξeJ^M-j and the
minimum over 1 ̂  7 ̂  M — 1 we obtain finally inequality (4.38), and Γv,rm(ζ) shows
the desired property due to (4.39). This verifies Proposition 4.5. •

Now we are ready to finish the proof of Lemma 4.2/: We recall that we consider
an arbitrary but fixed sequence rm -> 00 having property (4.36), where i = 0 in (4.36)



76 M. Hofϊmann-Ostenhof and T. Hoffmann-Ostenhof

and \ξ(rJ-ξ\-+O for m^oo. Thereby (compare (4Λ4)Jj2q2^(rJ^d2(ξ_(rm),e)
Vee/V5/.w, Vm. According to Proposition 4.5 there exist ϊ(ξ) = I and ΓVtrm(ξ) such
that (4.38) holds. Now we define analogously to (4.23)

g(rm9t)= J uirφ-^ξirj + te^dμie), (4.23')

and clearly the analogs to (4.24), (4.25) and (4.26) hold. So we have

/ \l/2 vqoo(rj

J u2(rmφ-'(ξ))dξ) ^cq^r)-*-1*!2 J g{rm9t)f-2dt. (4.26')

Applying Proposition 4.3 to (dτ/dtι)g(rm,t) we obtain analogously to (4.28),

ί V + n - l inf (4.28')

with c = c(M, n, v). The analogs to (4.29) and (4.30) are evident, and instead of (4.31)

we have Vte[0,vqaD(rJ']9

—τ( (4.31')

with <51(rm)->0 for m^cc. Combining the above considerations we obtain the
analog to (4.32),

Lg(rm9t)= J ^-τ(

VίeCO^^ίrJ] with δ2(rm)^0 for m^oo.

Now we take into account (4.38) and obtain for m large enough

(4.32')

(4.33')

Combining (4.33') with (4.28') and (4.26'), and having in mind the definition of
'ViΓm, we get

\ 1/2

J u2dσ) ^c(M,n,v,ε)qJrJ+{n-1)/2.
\S(rm) )

But ^oo(rm)-^0 for m-+co and T^M, which together with the above inequality
verifies Lemma 4.2'. •

From the foregoing procedure it becomes clear that for the case G(rm) c l/.,Vm
and ί / 0 in (4.36), Lemmas 4.Γ and 4.2' follow in the same way, whereby ^ ( O
is then given with ^ = ( ^ ( G ^ ) ) (compare (4.10)). Hence Lemmas 4.Γ and 4.2' hold
for any sequence {rm} with property (4.36). Combination of the two lemmas implies
that inequality (3.10') holds and, as already noted, this finishes the proof of Lemma
3.2. D
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