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Abstract. We extend the methods of Pressley and Segal for constructing
cocycle representations of the restricted general linear group in infinite-
dimensions to the case of a larger linear group modeled by Schatten classes of
rank 1 ̂  p < oo. An essential ingredient is the generalization of the determinant
line bundle over an infinite-dimensional Grassmannian to the case of an
arbitrary Schatten rank, p^l. The results are used to obtain highest weight
representations of current algebras (with the operator Schwinger terms) in
d -f 1-dimensions when the space dimension d is any odd number.

1. Introduction

In this paper we generalize some results of Pressley and Segal [PS] on the
determinant line bundle over infinite-dimensional Grassmannians and on central
extensions of infinite-dimensional linear groups. The ultimate aim is to obtain
linear representations of current algebras arising in quantum field theory in
3 + 1-dimensions. In particular, we want to construct a generalization of the
fermionic Fock representation of current algebras in 1 + 1-dimensions (including
the Schwinger term), adapted to the 3 + 1-dimensional case. We have a partial
resolution to this problem.

We are able to construct a highest weight representation for the 3 + 1-
dimensional current algebra, including an explicit realization of the highest weight
vector (= vacuum) as a section of the dual Det* of the determinant bundle, Det2

over a Grassmannian Gr2, which contains the Grassmannian Grx studied in [PS]
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as a dense subset. In fact, this construction can be generalized without difficulties
to current algebra in any odd-dimension. (The even-dimensional case seems to be
different and we shall comment briefly on it in Sect. II.)

However, we have not been able to prove the unitarizability of our represent-
ation.

Current algebras were introduced in particle physics [A] in the study of strong
interactions. The observables of a strongly interacting system (such as the proton)
can be thought of as the currents that couple to other forces such as electro-
magnetism or weak interactions. The hope was that the algebra of these current
operators and their representations would provide a theory of strong interactions.
But this rather abstract approach fell out of favor when it was realized that
Quantum Chromodynamics (QCD) provided a field theoretic description of strong
interactions [MP]. However, the current algebra point of view has seen a revival
in recent years since it has proved to be too difficult to describe low energy
properties of hadrons in terms of QCD. In fact, understanding the meson and
baryon physics in terms of QCD is one of the outstanding challenges of particle
theory. Meanwhile, current-algebras and effective Lagrangians provide a more
direct description of hadrons [B, Tr]. It is also hoped that studying current-algebras
and their anomalies (Schwinger terms) as predicted by QCD will provide a way
of unraveling the low energy properties of QCD [R].

Consider a Dirac field in d + 1-dimensions coupled to an external Yang-Mills
field A. We can choose space to be a compact d-dimensional spin manifold (such
as Sd), and A is then locally a Lie algebra valued one-form. At the first quantized
level, where the Dirac field φ is thought of as a Grassmann number (and not an
operator), the currents satisfy the algebra

{Ji(x\Ji{y)} = iCUJk(x)δ{x-yl (1.1)

the bracket is the fermionic analogue of a Poisson-braeket (pseudo-Poisson bracket)
following from

{Ψa(^Φβ(y)}=Kβδ(x-yl (1.2)

and Jι{x) = ψJλιψ(x) is the charge density (the time component of the current-
density).

If we define
), (1.3)

where f:Sd-*g are functions valued in the Lie algebra,

[J(/),J(Sf)] = J([/,gf]). (1.4)

So the current algebra in this case is just the infinite-dimensional Lie algebra

Actually, we have a unitary representation of Map(Sd;g) on the Hubert space
of square integrable spinors ["first quantized" representations], given by

λι being the representation matrices of g.
However, this is not the representation of interest in quantum field theory.
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There is no vacuum state (highest weight-vector) in this representation. The Dirac
Hamiltonian is not bounded below.

So, one constructs the fermionic Fock space, following Dirac [second quanti-
zation]. The Dirac field ψ(x) is an operator on this space, providing a representation
of the infinite-dimensional Clifford algebra. One then looks for a representation
of Msnp(Sd;g) on this Fock space with the Dirac vacuum state as the highest
weight-vector. But it is well-known that the operator product Ji(x) = φτ Λ^(X) is
not well-defined due to the ultraviolet divergences of quantum field theory.

If d = 1, we can define this product by normal ordering. This involves subtracting
the vacuum expectation value from </[/]. After this subtraction, it is well defined.
But the price we pay for this is that we do not obtain a representation of Map(S'1, g\
but a central extension of it.

Even this will not work for d > 1. Even after subtracting, the vacuum expectation
value of the squares J [ / ] 2 are not well-defined. In the language of renormalization
theory, J [ / ] requires a multiplicative renormalization for d = 3. This means that
there is no meaning to J [ / ] within the fermionic Fock space. Since this point does
not seem to have been appreciated in the literature, we shall show this explicitly
in the next section.

What happens is that (even after normal ordering) the operator </[/] creates
states of infinite-norm out of the vacuum. One might try to redefine the inner
product so that the fermionic states do not form a complete set. Then, we can add
to the Fock space new states created out of the vacuum by J [ / ] . There might be
a unitary representation on this larger Hubert space. Note that these new states
we have to add are bosonic; they have the same quantum numbers as a two fermion
state. However, they have no meaning as a linear combination of two-fermion
states. In this sense they are "condensates" of fermion pairs.

We have constructed a linear representation with a highest weight vector,
essentially including these bosonic states. But we have not been able to find an
invariant inner product.

Instead of a central extension for d > 1, we find the representation of an Abelian
extension of Map(Sd;#),

[J(/),Jte)] = J ( [ / ^ ] ) + c(/,gf;A). (1.6)

Here, c is the Schwinger term which, for d > 1, is a function of the gauge field A.
c is to be thought of as a linear operator in some Hubert space [M1,F].

There is a group corresponding to this current algebra, [M2] which is an
Abelian extension of SdG = Map(Sd; G) by the group Map(jz/, C x ) , where d is the
space of gauge potentials.

The action of gauge transformations in Dirac field, (1.5), defines an embedding
of SdG into the infinite-dimensional general linear group GLp modeled on Schatten
classes of type I2p{2p ^ d + 1) which will be described in Sect. II. Our strategy will
be to find a representation of an Abelian extension of GLp, which will automatically
give a representation of an Abelian extension of SdG. The representation we look
for will be a generalization of the wedge representation of GLγ constructed in [PS].
This was just the representation of fermion bilinears on the fermionic Fock space,
as discussed in detail in [BR], for example.
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The fermionic Fock space is an infinite-dimensional generalization of the
exterior algebra of the one particle Hubert space H. It is well-known [W] that in
the finite-dimensional case, the exterior algebra of a vector space can be thought
of as the space of holomorphic sections of a line bundle over the Grassmannian
associated to the vector space. This point of view was generalized by [PS] to the
infinite-dimensional case. They defined a determinant line bundle over the infinite-
dimensional Grassmannian Gr 1 ? modeled on the Schatten class I2 This was
possible because the determinant involved was that of an operator of type 1 + Iλ.

We will instead have to deal with Grassmannian Gΐp modeled on I2p. The
Grassmannian Gr x of [PS] is a dense subset. However, it will not be possible to
define the determinant line bundle as they did, because the operators will be of
type 1+ Ip. There is a modified ("renormalized") definition of a determinant for
such operators [S] which we use to define a holomorphic line bundle Detp on Gΐp.
We describe this modified determinant in Sect. III. It satisfies most of the properties
of the ordinary determinant, except that

The group GLp acts holomorphically on Grp. But this action does not lift to Detp.
Instead, there is an Abelian extension GLp by the group Map(Grp; C x ) which does
act on Detp. The pull-back of this extension under the embedding SdG a^GLp

defines an extension & of Sd G which is the one we want.
Thus, any linear representation of GLp automatically gives one for &. In

finite-dimensional (as well as for p = 1, in the infinite-dimensional case) the space
of holomorphic sections of the dual line bundle Det* provides a representation of
the general linear group. The line bundle Det has no (non-constant) holomorphic
sections, but Det* does. This is just the antisymmetric tensor representation
(fermionic Fock representation in the infinite-dimensional case with p = 1).

We might try to find a representation of GLp on the space of holomorphic
section of Det*. Here an important new phenomenon appears for p > 1 (and hence
for d > 1). The holomorphic structure of Det* is not invariant under the action of
GLp. This is related to the failure of the usual method of finding a representation
of the current algebra on the fermionic Fock space. We can still think of the
fermionic Fock space as the holomorphic sections of Det*. But the action by an
element in ^ c GLp will take us out of this space, because it produces a
non-holomorphic section out of a holomorphic one.

To see this, recall that GLp is an extension of GLP by Map(Grp; C x ) . The only
holomorphic functions on the Grassmannian are constants. So the action of an
element of Map(Gr p ;C x ), on a holomorphic section will in general give a
non-holomorphic section.

For the case d = p = 1, we do not need to worry about this, since already the
smaller extension of GLγ by C x (the constant functions ontSr^) acts on Det t .

For d, p > 1, we can therefore find a representation of GLp on the space of all
sections (not just holomorphic ones) of Det*. There will be a holomorphic section
which is a highest weight vector, which represents the vacuum state.

There are similarities between our construction of the action of GLp on Detp

and the renormalization theory of quantum fields. In the case p = 1, the Lie algebra
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extension g/1 of the Lie algebra glxoϊ GLt, corresponding to the group extension
GLγ can be described as follows. The Lie algebra glι consists of operators of
the type

acting in a Hubert H = H+®H_ such that b://_->iί+ and c:H+-+H_ are
Hilbert-Schmidt. The central extension i s ^ / ^ ^ Θ C and the commutators
in g[x are defined by the Kac-Peterson cocycle

(1.7)

where ε = I. By a simple computation,

) = tv(b(X)c(Y) - b(Y)c(X)\ (1.8)

Note that the product be is a trace-class operator, since b and c are Hilbert-Schmidt.
In the case p = 2(d = 3) (1.8) does not make sense, because b,cel2p and bcelp is
not of trace-class. The points on Gvp can be parametrized by idempotent operators
F such that the diagonal blocks of F — ε are in Ip. In particular, the diagonal
blocks of F — ε are Hilbert-Schmidt operators for p = 2 and the following formula
makes sense in that case:

/? 2 =itr[[e,X],[ε,Γ | ](ε-F). (1.9)

To check the cocycle property of η2 one has to take into account that the group
GL2 acts on F; infinitesimally, this is given by the commutator [X, F] for
Xegl2. (Strictly speaking, this is true only for the unitary subgroup U2cGL2.
However, one can define a complexified Grassmannian C Grp such that the action
of Xeg2 is still given by the commutator. The real Grassmannian Grp c CGr p is
parametrized by Hermitian operators F.) Restricting to the dense subalgebra
gl1agl2(a,nd F e G r J the difference ηι — r\2 becomes a trivial two-cocycle. It is a
coboundary of the one-cocycle α = — ŷ  tr[X, ε][F, ε]. The form α diverges in the
case p = 2. Formally, ηί is a sum of f/2 and of — ̂  tr [ [ε, X], [ε, Γ] ] F, but the point
is that separately these two terms become infinite for p = 2 and only the sum makes
sense. The latter term can be understood as an infinite charge renormalization in
the field theory terminology (the elements of gί^ correspond to local charges in
3+ 1-dimensional QFT). There is also another renormalization which we shall
meet. There is a natural embedding Grx c Gr2 as a dense subspace. A section of
Detf defines thus a section of Det*; the structure of Det* obtained by a restriction
from Detf differs from the canonical Det^ (of [PS]) in such a way that the sections
of Detf are obtained from sections of Detf by multiplying by certain function.
When approaching points in Gr 2 \Gr x both the section of Detx and the multiplier
become infinite but the product converges. We call this the wave function
renormalization since the sections of Detf can be thought of as wave functions in
the Schrδdinger picture of the quantized Dirac field coupled to external Yang-Mills
field.
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Instead of defining a representation of GLp on non-holomorphic sections of
Det* ; we could try to find some line bundle on which GLp acts preserving the
holomorphic structure. Then we could find a representation of GLp on the
holomorphic sections of that line bundle.

We can do this by considering as base space CGr p , which is roughly speaking
utwice as big" as Grp(i.e. it is modeled on I2p®hp rather than I2p). Unlike
Gr^, this space does have non-constant holomorphic functions. In fact, C G r p can-
be thought of as a complexification of Gr p (thought of as a real analytic manifold).
Holomorphic functions on C Grp are then analytic continuations of real analytic
functions of Grp. There is a holomorphic line bundle CDet* over CGr p and it
does admit an action of GLp preserving the holomorphic structure.

C Grp can be thought of as a holomorphic bundle over Grp with fiber I2p. Then
we can find a holomorphic vector bundle over Gΐp with fiber Hol(/ 2 p; C) on which
GLp acts preserving the holomorphic structure. This point of view is analogous to
the "Bargmann" picture for the bosonic fields, while considering non-holomorphic
functions on Gr p is like the "Schrδdinger" picture.

II. Embedding of the Current Group in GLp

We assume space to be a compact Riemann manifold, X. If periodic boundary
conditions at infinity in Rd are chosen, X = Td. (We will assume this is the case
for the moment.) The group of interest to us is the group Map(X G) of smooth
maps {g:X->G},G being a compact Lie group. This may be thought of as the
group associated to the current algebra

U(f),J(gΏ = J(U,θ']), (2.1)

where f eMap(X ^ g) is a function valued in the Lie algebra g. We are interested
in finding representations of this group Map(X G).

One representation (the "first quantized" representation) is easy to construct.
Consider a free fermion field φ carrying a unitary representation p of G. The set
of such φ's form the "first quantized Hubert space" H. More precisely, H = L2(X; V)
is the space of square integrable functions on X valued in a finite-dimensional
complex vector space V. V is the tensor product of the space of spinors on X with
the representation space of p. Now define a representation

lM(f)φ^(x) = p(f(x))φ(x) (2.2)

by pointwise multiplication. If f:X->G is smooth, M(f)\H->H is a continuous
unitary operator.

Using the Dirac operator D on X, we can in fact refine this statement somewhat.
The Dirac operator is a self-adjoint operator with discrete spectrum. Let H + be
the space spanned by eigenstates of non-negative eigenvalues and H _ that by
eigenstates of negative eigenvalue. Since the set of eigenstates of D is complete, we
have an orthogonal decomposition

W e c a n n o w d e c o m p o s e m a t r i c e s i n t h e g e n e r a l l i n e a r g r o u p o f H i n t o 2 x 2
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blocks,
a: H+-+H +

c a] c: fί+-»H_

d\ # _ - > # _

It is clear that if f:X->G is a constant function, it will commute with the Dirac
operator D. So it will map H+ to H+ and //_ to //_:

More generally, if / is a smooth function, we expect that the off-diagonal elements
b and c are not "too large." What we need to make this notion precise is a norm
on the space of operators in a Hilbert space. If dim X = 1, (i.e. X = S1) it is known
that trb + b and tr c + c are finite for smooth functions / [PS], More generally, we
will show that tr (b + b)p and tv(c + c)p are finite for 2p > d. The proof was already
given in [PS] for the case X — Td and sketched for the general case; for the sake
of completeness we shall explain the full proof here. This, and some results in
Sect. 4 also appear in Conne's non-commutative geometry [C]. But since we don't
need his full machinery we have chosen to develop the theory from scratch.

The Banach space of operators on a Hilbert space with norm

is called the Schatten ideal I2p [S]. An equivalent norm that is easier to compute
in practice is

eι being vectors in H forming an orthonormal basis.

Proposition 2.1. Let H = HΛ © / / _ be the space of Dirac spinors on Td carrying a
finite-dimensional representation p of G. Let M{f) be the operator on H representing
/ e M a p ( Γ d , G), a smooth function on Td as in {2.2) and b,c as in {2.3). Then \\b\\2p

and || c \\2p exist for 2p > d. The only functions f for which these exist for 2p ̂  d are
constant.

Proof. Define ε = I ) on H+ ®H.. t: may be thought of as the sign of
\0 — 1 /

the Dirac operator. Then,
0 b

and it is sufficient to consider

Let φk(keZd) denote the Fourier components of φ:L2(Td, V). Then

Dφk = jkφk,
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d

where |έ = ]Γ aiki and the αf's are the Dirac matrices acting on the spinor

components of φ. Clearly

\k\

= φk,

Also,

where

is the Fourier coefficient. Then

and

The trace inside the summation is just a finite-dimensional trace in V. Now, by
properties of the Dirac matrices α.

Redefining k-+k + q, the right-hand side is equal to

Consider first, Sp(k) = ]Γ(1 — (fe + q)'q/\k + <̂ | | ^ | ) 2 p . We are interested in this sum
P

as g -> oo as any finite number of terms will produce a convergent sum in fc. Now

(k + qy^ (q-k)2 k2 / l

1/c + c / l k Γ k l 4 2|<:y|2

Thus the sum on g behaves as \q\ ->• oo, like

~\k\2']d\q\\q\i-1\qr2".

Here, ~ means modulo a finite constant factor. This is convergent if 2p > d. In this
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case

The sum on k is convergent because, for smooth functions, \f(k)\ decreases faster
than any power of |fc| as \k\-> oo.

If 2p fg d, the sum on q diverges unless fc = 0. But this happens only for constant
functions /(x), and these are the only ones of finite-norm in that case. Π

Let H = H+@H_bean orthogonal decomposition of a Hubert space into two
infinite-dimensional subspaces. We are led to consider invertible operators g:H -> H

a b

c a

such that tr(b +b)p < oo and Xv(c + c)p < oo (equivalently, such that [β,g]el2p). These
form a group which we will denote by GLp. The dependence on the splitting
H+®H^ will be suppressed, since it will be obvious from the context which one
we mean. As an abstract-group, GLP is, of course, well-defined independent of these
choices. That GLp is a group (i.e., closed under multiplication and inverse) follows
from the fact that I2p is a two-sided ideal in the algebra of bounded operators [S].
In Sect. IV, a brief discussion of the main properties of GLp is given. GLP is a
Banach Lie group, with topology given by the norm

\\a\\ + \ \ b \ \ 2 p + \ \ c \ \ 2 p + \ \ d \ \ ,
where

| | α | | = sup \\aψ\\.

We can now restate Proposition 2.1 as follows

Proposition 2.2* There is a continuous injectiυe homomorphism

for 2p > d.
Let us now see how far we can generalize this situation. We would like to replace

Td by an arbitrary compact Riemannian manifold X. In order to have spinors, X
must be a spin manifold. The Hubert space H is now well-defined, once
a spin structure on X is chosen. A representation of Map(Z G) on H can
be defined. Given a choice of connection on the spin bundle, we have the Dirac
operator on H. This is a self-adjoint operator with finite-dimensional kernel, so
the orthogonal decomposition H = H+@H_ into non-negative {H+ ) and negative
(H _) eigenspaces goes through as before. The operator ε is now a pseudo-differential
operator [T] on X, and we can investigate whether [ε, M(/)] belongs to I2p(H)
as before. We know that only the asymptotic behavior of ε and M(f) as the
momenta go to infinity is relevant. So we are interested in the short-distance
behavior of the integral kernel associated to [ε, M(/)] . Since X is a smooth
manifold, locally it resembles Td and we expect that the results such as 2.1 to
continue to be valid. The calculus of pseudo-differential operators provides us with
a precise language to prove this.
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Before doing that, let us imagine an even more general situation. Let £ be a
Hermitian vector bundle over X with structure group G. The earlier case
corresponds to the trivial case

E = X x V.

To this is related the bundle of automorphism of £, Aut E. Aut E is a fiber bundle
with fiber G, but is not necessarily the principal fiber bundle associated to E [FU].
The principal bundle may not admit smooth global sections, Aut E does. Smooth
sections of Aut E form an infinite-dimensional group C^Aut E), the group of gauge
transformations of E. These are the bundle maps of E that reduce to the identity
on the base space X. In the trivial case C°°(Aut£) = Map(X; G).

Let H be the Hubert space of squares integrable sections of the bundle E © S.
(S is the spin bundle over X) Pointwise action gives a representation of C°°(Aut E)
onH.

Given a connection on E, we can define the Dirac operator on H, and hence
the decomposition H — H + © H _. We may then ask if there is a homomorphism

M: C00 (Aut £)c^GLp.

We now establish that this exists.
Let us begin by recalling a few definitions [T]. Let Ωa Rd be an open subset

and C™(Ω\Rn) the space of smooth functions. Sm(Ω;Rn) is the set of smooth
functions.

φ:Ωx Rd-*End{Rn)

such that for multi-indices oc,βeNd and any compact subset KczΩ, there exist
constants Cκ ajj8 with

for xeK. Given φ, define an operator φ on C°°(ί2, Rn\ by

f(q) being the Fourier transform, φ extends to a continuous operator on L2(ί2, Rn).
φ is called a pseudo-differential operator of order m and φ is its symbol. The space
of such operators is called PSm(Ω;Rn). What is mostly of interest is the "most
singular" part of φ. The principal symbol of φ is defined as the equivalence class
of φ in Sm/Sm~1. We denote some representative of this class by σφ and call it the
principal symbol also by a slight abuse of language.

Now let E be a vector bundle over a compact manifold X (of dimension d)
with fibers of dimension n. An operator φ on C00 (E) is in PSm(E) if for any coordinate
neighborhood U in X with chart (and trivialization) χ:E\u-+Ω x Rn, the operator
χoφoχ-i on C°°(Ω;Rn) is in PSm(ί2;jR"). This definition is then invariant under
change of coordinates.

Note that the principal symbol of a pseudo-differential operator on E, is a
function on the cotangent bundle T*(X) valued in End(Rn).
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For the massive Dirac operator on X,

D w = α V + mβ = D + mβ.

The principal symbol is,

σDm(x,k) = 0L k.

(x, fc)eT*X and α, (x) are the Dirac matrices with the given metric tensor on X.
In an orthonormal basis

GM,] + =0; J82 = l; [«,•,«,]+=<5y.

Obviously, the Dirac operator on a vector bundle with connection is of order one

Let us define
εm = Dm[£>2 + m 2 r 1 / 2 .

We are considering the massive Dirac operator to avoid headaches with zero modes
of D. Since what is relevant is the behavior at short distances, this does not matter
[C].

Clearly, ε^= 1. Now we note that εm is also a pseudo-differential operator.

Proposition 2.3O εm is a pseudo-differential operator of order zero with principal symbol

σεm(x, k) = 7τ^-^-2ΰ72(/r + r ) 1

Proof. If C is a contour surrounding the spectrum of D,

Within a trivialization, the connection on S (x) E is a smooth one-form. Then

D = -a- [-oίΆ = D0 + a Ά.
i

Now (l/z-D)ε(PS~1(E)) may be written as

z-D z-D0 z-D0 z-D (zφSpec(D)

The second term is a pseudo-differential operator of order — 2. So the principal
symbol of 1/z — D is

k)\x9k) τ .
z-Dj z — oί k

The result for σsm then follows upon multiplication by / and integrating over the
contour C. Π

Proposition 2.4 Y = [εm,M(/)] is in PS~X(E) with principal symbol
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1 1

Proof. Within a coordinate neighborhood, we can write

dk e + ίk'xa-k
εmM(f)φ(x) ^ { k + m ψ

where ^ denotes equality modulo terms of lower order and

dk oc k

M(f)smφ(x) ~ p(Jix)) J _ e * * _ _ φ(k),

φ being the Fourier transform, so

i.e.

(2π)d ll(k + q)2 + nι2~]1/2 (q2 •

Now,

Γ dk jk-xϊ ccik + q) oc-q

LLv^ + g)2 + m 2 ] 1 / 2 {q2 + m2)112

r dk

- 1 17.1/2

|2

dq e**

/ / 2 , 2 \ l / 2 / 2 , 2 \ l / 2 / 2 , 2 \ l / 2 ^ ^ ^ ^ ^ ' \ I \1

(q2jrm2)112 i (q2 + m 2 ) 1 / 2 (q1 + m1)1'1 \\q\'
Thus,

Let us now find the relation between the order of a pseudo-differential operator
and the Schatten class to which it belongs.

Proposition 2.5. // ψePSm{E\ then φeI2p{L2{E)) for

d
p> - 0 - -

2m

d being the dimensionality of the base manifold of the vector bundle E.
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Proof. Let ί / c l b e a coordinate neighborhood, mapped into ΩaR. On L2(E\V)
we have the expression

dk

w
The compact manifold X can be covered by a finite number of coordinate neighbor-

hoods X = (J Ua. To such a covering is associated a partition of unity, i.e. there
α

are functions fa:Ua->R with £ /α = 1, and Supp /α is contained in a compact subset
α

of ί/α. If φeL2(E), the maps

are projections I}{E)-^I}(E\U ). Since

we have an injection

Now we can consider the projections φ(X:l}(E\u)-*L2(E\u).lt is clearly sufficient
to estimate | |φ | | 2 p o n each subspace. By definition,

The plane wave states form a complete set on L2(E\V ) so

Cα being a constant depending on α. The integral over fc is convergent if

d + 2pm < 0. Π

Since YePS~1(E), we see immediately that

Corollary 2.6. [εm,M(/)]6/ 2 p(L 2(£)) /or p > d/2.
By combining the above results we have,

Proposition 2.7. Let E be a Hermitian vector bundle with connection over a compact
Riemannian spin manifold X. Let H be the space L2(E®S) of square integrable
sections, were S is a spin bundle of X. Then H admits an orthogonal decomposition
H = H +®H_ into non-negative and negative eigenspaces of the Dirac operator.
There is a continuous embedding of the group of gauge transformations C°°(Aut£)
into unitary operators in GLp for p > dim X/2.

We have used Dirac spinors rather than Weyl spinors for simplicity. The
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embedding using Weyl spinors is more fundamental and will be discussed briefly
in Sect. VI.

We will be mostly interested in the case of odd d. In the even-dimensional case,
a further refinement is possible. Consider for simplicity again X = Td, and define
ε as the sign of the massless Dirac operator. (The result again, generalizes to any
Hermitian vector bundle with connection over an even-dimensional spin manifold.)
Then there is an operator Γ (chirality, y5 in the case d = 4) that anticommutes
with D and has square one. So,

Γ2 = l; Γε=-εΓ.

Γ acts on the spin indices alone and not on the representation indices of p.
Therefore,

[Γ, M(/)] - 0; /eMap(T d ; G).

It is convenient to choose a decomposition into positive and negative chirality,

1 0\ _ / 0 1

o - \ y ε ~ \ ι o
Then,

U(f) 0
0 M2(f)

But we already know that

This means simply that

MΛf)-M2{f)eI2p.

So we are led to consider a Hubert space H with two anticommuting orthogonal

decompositions H = H1®H2 and H = H+®H^ given by Γ = I j and

Γ M. Define GL^ c G L ^ J x GL(H2) by (g1,g2)sGL^ iϊgι-g2el2p.

Then we have

Proposition 2.8. For even d, there is a continuous homomorphίsm Map(Td, G) CL> GLi2p)

for p > dβ.
GL{2p) is a subgroup of GLp, but it is of a different homotopy type. In fact,

consider GL2p = (J + I2p)nGL.

Proposition 2.9. GL(2p) is contractible to GL2p.

Proof. GL2p can be thought of as the subgroup of GL{2p) of the form {{ίjή}. But
we may write
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so we have a fiber bundle

ϊ
GL2p

The fiber is contractible, being the general linear group of an infinite-dimensional
Hubert space [K]. So GL{2p) is contractible to GL2p. Π

It is known [PS] that GL2p and GLp are related to Fredholm theory on even-
and odd-dimensional manifolds, respectively. We have a more complete realization
of this idea, but the relevant groups seem to be GLi2p) and GLp. GLi2p) is connected,
but π^Gli2^) = Z. Its second cohomology vanishes. It is interesting to construct
its universal covering group and representations of this extension of GL{2p\

Groups such as GLP,GLP and GL{2p) play an important role in the non-
commutative differential geometry of Connes [C].

We conclude by explaining why the standard methods of quantum field theory
fail to produce a highest weight unitary representation of Up for p > 1. (Up is the
unitary subgroup of GLp.) We can restrict to the Lie algebra up to see this point.

Let us recall how such a representation can be found for p = 1. (See [BR] for
example). Let H = H +®H_ be the one-particle Hubert space and uk a basis for
H+, and vk for //_. Any element of up can be written as

g= Σ(φkk>uk®<' +Λkk,uk®v£ + Λ'kk,vk®uk

+. + Ψkk>υk®υk

+),
k,k'

where

and

As is well-known, this representation of up is not a highest weight representation.
(There is no vacuum state, since the Hamiltonian is not bounded below). We now
define the Fermionic Fock space following Dirac.

Introduce operators Λk,Bk corresponding to uk and vk, respectively.

LAk,Ak.-]+ = lBk,Bk.]+=lAk,Bk-]+ etc. = 0.

A representation for this Clifford algebra is found by starting with a vector |0>

("vacuum") satisfying

This says that the annihilation operator for positive energy and the creation
operator for negative energy vanish on the vacuum state (i.e., the vacuum state
has neither "particles" nor "holes").

Now consider the space of finite linear combinations of
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We can declare these to be orthonormal to get an inner product and then complete
this normed vector space to get a Hubert space, the fermionic Fock space.

If H+ were finite-dimensional,

r(g)=Σ(φkk>AΪAk. + Λkk.AΪBk. + Λ'kk.BΐAk.+ Ψkk.BΪBk.)
~ k,k'

would produce a representation of the Lie algebra. But in the infinite-dimensional
case, this does not make sense because the infinite sum of operators does not
converge. For example <0|r(#)|0> is divergent in general: <0|r(#)|0> = tr Ψ.

If p = 1, this can be avoided by the process of normal ordering. Define

r(g) = Σ(ΦkkΆk

+ Ak. + Akk.A + Bk. + A'wBk

+ Ak. - Ψkk.Bk.BΪ).
~ kk'

Then, <0 |%) |0> = 0. Also, ||r(#)|0> | |2 = 2tr/l + /l < oo since Ael2. In fact, we
can show in This case that f(g) acting on any state produces a vector of finite length,
f does not provide a representation of up but rather of its central extension. This
extension is determined by the Kac-Peterson cocycle [KP, Bill-

But this will fail if p > 1. After normal ordering, the vacuum expectation value
is well-defined

However, now \\r(g) | 0 > | |2 = 2 tr A + A is not convergent in general. If we consider
the embedding oflvlap(X g) in up, for d i m X > 1, the only maps for which this
converges are the constants JΪ.Q. global transformations). There is no representation
of the algebra Map(X, g) in the fermionic Fock space. We will find a representation
of its Abelian extension on a larger vector space.

This kind of divergence has physical consequences. For example, anomalies
arise from precisely such divergences of quantum field theory. However, the
divergences we find here persist even if the anomalies cancel, and are related to the
renormalization of the composite operator φ + ?J\j/(x).

III. Properties of Generalized Determinants

The ordinary determinants is defined only for linear operators of the type 1 + A,
where A is a trace-class operator. However, there is a generalization detp for ecah
integer 1 ̂ p < oo such that detp(l -h A) exists for Aelp and shares some of the
basic properties of the ordinary determinant; an account of these properties together
with references to the original papers can be found in [SI. Here we shall give the
definition of άetp and list some of its properties for the convenience of the readers.

For each bounded linear operator A let

RJA)=-l+(l+A)exp
J=i J

for any peN + . By expanding RP(A) as a Taylor series of the powers A", one sees
that the first non-vanishing term is of order p. Thus, in particular Rp(A)eIι if

Aelp. It follows that

(3.2)
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exists for any Άelp. Since Rp is analytic and det is continuous, and detp is a
continuous function of A (in the Ip topology).

Note that

log detp(l +A) = log det(l + RP(A))

= tr log(l + Rp (A)) = tr log(l + A) +

L
Ap Ap+1

iγ { i γ + 1 r+ (3-3)

V P + 1 /
Thus logdetp(l + A) can be thought of as a regularization of det(l + A), where the
first p — 1 terms have been subtracted in the expansion of log(l -f A). The following
proposition has been proven in [S], p. 107.

Proposition 3.1. Let Aelp. Then

(a) 1 + A is invertible iffdetp(l +A)Φ0.
(b) IfAeIp-l9 then

In particular from (b) it follows that det2(l + A) — det(l + A) e~trA for Aelγ\
det t(l +A) = det(l + A) by the definition (3.1)-(3.2) above.

Proposition 3.2. For each peN+ there is a symmetric polynomial yp(A,B) of two
variables A,Bel + Ip such that

detp AB = detp A detp B e

γp{A>B\

Proof. This is clear for p = 1, since detj A = det^; yx = 0. We prove the equation
by induction on p. Suppose A,Bel 4- / p _ : . Then

(— l ) ^ " 1 t r v }

p- 1

(AB —
^) + { Wit^{A^) + { Wit

yp^(A,B) + (-iy-'trK- '-

p —]

Pi P- 1

by the induction hypothesis. Denoting the expression in the square brackets by
yp(A,B) we have proven the claim for the index p in the case A,Bel Jtlp^1. Using
the continuity of detp this same relation must hold for any pair A,Bel + Ip

(/p_! c / p i s dense). •
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In the case p = 2, we have

det2AB = det2A det2B e-tr{A-1){B-1\ (3.4)

Proposition 33. Define ωp{A,B) = άetpB eγp{A>B). Then ωp(A,BC) = ωp{AB,Q
ωp(A,B)for all A,B,Ceί + Ip.

Proof. If A is invertible we may write

p detp A

and thus for invertible A and B the claim is trivially true. However, both sides of
the equation to be proven are continuous functions of the variables A, B, C. Since
the space of invertible linear operators is dense in 1 + Ip, the equation holds for
al\A9B,Ce\+Ip. •

IV. The Determinant bundle and the Abelian Extension of GLp

Let H be a complex separable Hubert space with an orthogonal decomposition
H = H + © H _ to a pair of closed infinite-dimensional subspaces. In this section
we shall study in more detail the properties of the group GLp acting in H, and
associated homogeneous spaces and line bundles. The index p is an arbitrary
positive integer. In addition, we define GL0 to consist of invertible bounded
operators

such that the blocks b and c are finite rank operators; we define GL^ to consist
of operators with b and c compact. Then we have the inclusions

GL0 cr GL, a GL2 cz ... cz GL^. (4.1)

Each GLp is dense in GLpl for p ̂  p\ with respect to the topology of GLp,. Let

g = I )EGLP. Using the fact that g is invertible and b, c are compact, it follows

that the diagonal blocks a and d are Fredholm operators. Now gt = \ J is
\tc d J

a Fredholm operator for all 0 ̂  t ̂  1, gx = g is invertible and go = l ). Thus,

index g0 = 0 and therefore index a = — index d. The group GLp can be split into
disconnected components labeled by n = index α,

In this and the following section we shall denote shortly by GLp the connected
component GLf\ In Sect. VI we shall make some remarks about the full group.

There is another infinite sequence of linear groups, closely related to (4.1). We
denote GΠ = GL(H + )n(\ +IP)9 where peNujoo}; J o = {finite rank operators}
and 1^ = {compact operators}. Then
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GL° c= GL1 c GL2 cz . c GL00. (4.2)

The group GL(H) is contractible (when dim// = oo), [K]. However, GU and GLp

have non-trivial topologies [P]. To understand the relation between (4.1) and (4.2)
it is useful to define the group

$P = {(g>q)\geGLp, qeGL(H + ), aq~ι — le/ p} c= GLp x GL(H + ),

where # = I I. The group multiplication is (g1,q1)(g2,q2) = {QiQiAiqi)- The
Vc dj

topology is not the product of space topology, but the topology given by the norm

11(0,3)11 = He II + N i l + \\b\\2p+\\c\\2p+\\a-q\\p. (4.3)

The group GU acts from the right on Sp by {g,q)-t = {g,qt). The quotient SJGU
is GLp. Thus $p can be viewed as a principal GU bundle over GLp. As shown in
[PS], the group $p is contractible. From this follows

πI (GL p )-π ί _ 1 (GL p ) (4.4)

for the homotopy groups. The homotopy properties do not depend on the index
p: all the spaces GLp are homotopy equivalent for 0 ^ p ^ oo, [PS, P].

We denote by Bp the subgroup of GLp consisting of operators of the type
a b'

0 ά,
Grassmannίan Gr p can be thought of as infinite-dimensional planes WaH.
(Gτp means here the connected component, corresponding to the block a of g
having Fredholm index zero.) To each gBpeGLp/Bp we associate with plane
W = g H+.Let

pr±:W->H±

be the orthogonal projections. Using the fact that the off-diagonal blocks of gr are
in I2p9 it follows that pr_ is in the class I2p; because the diagonal blocks of g are
Fredholm, the projection pr + is a Fredholm operator. Using the fact that Bp is
contractible and the homotopy equivalence GLp&GLp>, we see that G r ^ G r ^
for all p, p' ^ 0. More important than the homotopy in our discussion will be the
cohomology of these spaces. In particular, the group extensions we shall construct
are related to the Chern class c1eH2(Gΐp,Z). The Chern classes of Grp were
recently derived in [Q]. Actually we shall not use his results; instead, one can
derive a form for c1(Gΐp) from the group extension GLp of GLp below.

fa β\
We define the Stiefel manifold Sίp = Sp/Bp, where the action of k = I jeBp

on £p is given by

(g9q) k = (gk,q<ή.

L e t {e1,e2,...,} b e a n o r t h o g o n a l bas i s of H + a n d {β o ,e_ 1 ,β_ 2 •••} a bas i s of//_.
L e t { w 1 ? w 2 , . . . , } = w b e a b a s i s of W^eGr^. W e c a n w r i t e

p r -
co
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We say that the basis w is admissible if w+ e l + /p. Every WeGrp has an admissible
basis: Let W = g H + with geGLp. Since we are working in the connected
component of the identity in GLp, index a = 0. It follows that a = g + ί, where g
is invertible and t is of finite rank. Now aq~1e\ +Ip and Wί = gq~1ei is an admissible
basis. Any two admissible bases in a given W are connected by a basis
transformation of type l + / p . The mapping ( g f , ^ ) ^ ^ " 1 ^ } defines a 1 — 1
correspondence between Stp and the set of all admissible basis for all W.

The space Stp is a principal GΠ bundle over Grp. The bundle projection is
{wj ι-> the plane spanned by the vectors Wj. The right action oϊteGLP is just the basis
transformation Wi = Σwjtij. It is sometimes convenient to write a basis w as a

column vector I I, w + = pr + w. Then w + e 1 + Jp and w _ el2p • The topology of

S^ is defined by the metric

d(w,w')= \\w+ - w + | | p + ||w_ -w'_||2j,.

The right action of GΠ on Sίn is written shortly as I |ι-»(
μ \W-J \w_ί

Next, we define a right action of GΠ on Stp x C by

(w,λ)'t = (wt,λωp(xv+,tyί). (4.5)

This action is clearly free and we can define

Όetp = (Stp x C)/GLf. (4.6)

As a quotient of two complex spaces, Detp is also a complex manifold. Furthermore,
Detp is a holomorphic line bundle over the Grassmannian Gΐp. The projection is
given by [(w,/)]ι->the plane spanned by {w1,w2,...}. (In general, we denote by
[x] the equivalence class represented by an element x.)

The group GLp acts on the base manifold Grp but the action cannot be lifted
to the bundle Detp for p ^ 1. The obstruction comes from the non-triviality of the
bundle Detp. In fact, already the subbundle obtained by restricting the base to
Gr1 cz Gvp(p Ξ> 1) is non-trivial: If w+el 4- / l 9 then

ωp

 ι(w+, ί) = (detp0" * 'e-y"{w+'t] = (det ί ) " 1 ^ - ^

where we have used the fact that detpA = detA eβpiA) for some polynomial βp,
Ae\ +IX. Thus the cocycle wp(w+it) is cohomologous (in the group cohomology
of Eilenberg-MacLane) to the cocycle given by the inverse of the determinant and
therefore the bundle over Gτ1 is equivalent to the non-trivial line bunle Det studied
in [PS].

In the case p = 1 there is a central extension of GLX which acts in Det l 5 [PS].
Since π1(GL1) = 0, [P], the various central extensions are classified by elements
of H2(GLί,Z) = π2(GL1) = Z. The generator of H2{GL1) can be represented by a
constant coefficient two-form which corresponds to the Lie algebra extension
determined by the two-cocycle
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The general two-cocycle for glx can be thus written as

where λeC and s'.gl^-^C is any continuous linear form. One can check that for
λ^O there is no way to choose s in such a way that the sum above is finite for
all X, Yeglp when p > 1: When restricted to the diagonal blocks, s gives a linear
form on gZ (H + )©gZ (#_), continuous in the operator norm topology. The
diverging terms in η1 (for p > 1) are due to the off-diagonal blocks of X and Y; so
let us assume that X, Y are off-diagonal. Now [X, Y] consists of diagonal blocks,
and therefore s([X, 7]) is necessarily finite for any p. Thus, the divergence cannot
be removed by adding the trivial two-cocycle s. Since any central extension
oϊglpip^l) gives by restriction a central extension ofg/l5 we conclude that glp

(and thus GLp) does not have any non-trivial central extension for p > 1. However,
GLp does have non-trivial Abelian extensions, to be described below.

Lemma 4.1. There are smooth functions ot(g,q;\v) on Sp x Stp such that

oc{g,q;\vt) ωJw + ,t)

ωMgwq
(4.7)

( F F \
for t G GU. Let F = F(w) = I X1 12 jbethe linear operator inH=H+®H_ such

V 21 ^

ί/zαί i 7 ! ^ ^ -f 1 and F\wL= — 1 , w/?̂ re H7 is the plane determined by the basis
w — {wj. A general solution of (4.7) is given by

α(cf, J ; w) = (cf, ύf; VF) -——^ T—- — Λ r- , (4.8)
KU H )detp(gwq-1)+ det p i(F n + 1)

where f\Sp x Gr p ->C X is an arbitrary smooth function.

Proof. If we can find one solution α of (4.7), then the general solution is
clearly obtained by multiplying by a function on Sp x GRp. Formally,
detpw+/detp(ί/w^~1)+ is a solution of (4.7). However, this function has zeroes and
singularities. We can regularize it by multiplying by a function on Sp x Gr^.
Let

be an invertible operator such that W=h-H+ and W1 = hΉ_. Denote

Then F = /ιε/i~ \ where

Ί
ε = o

and in particular FX1 = w + x — au = 2\v + x — 1 and F21 = w_x - βu = 2vv_x.
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Thus
λ)+) - yp{w + ,\q~ι{a{Fu + l) + ί>F21))]

detp (q λaw + + q 1bw) detp (xw +.)

detp w + detp(q ~x aw + x + q~Λ bw _ x)

detp(^~1 flw+xw+ + ^" 1bw_xw+)

det pw+ d e t p t g " 1 ^ ' ; ! ^ ! + 1H

where we have used Proposition (3.2) and the symmetry dεtpAB = dQtpBA. This
shows that the ratio of the determinants in (4.8) is a regular function. •

Let π:Stp-+Grp denote the canonical projection.

Proposition 4.2. The formula

(g, q, μ) (w, λ) = (gwq ~ \ μ(π(w))λot(g, q; w)),

where cc is any fixed solution of (4.7), defines an action ofSp x M a p ( G r p , C x ) on

D e t p ; the multiplication in Sp x Map(Gr p ,C x ) is defined by (gi,qi,μ1){g2,
(i2>ίί2) =

Proof We have to show that (g, q,μ) (w, λ) and (g, q,μ) (wί, λωp(w + ,t)~1) represent
the same class in D e t p = {Stp x C)/GU. But

(gf, q, μ)'{wt, λωp{w+, t ) ~ 1 ) = (gwtq'\ μ(π{w))λωp{w+, t ) ' 1 α ( # , q\ wt))

This represents the class oϊ(g,q,ά) (w,λ) iff

ωp{{gwq~~ *)+, qtq'1)ωp(w+, t)~ιot(g, q; wt) = oc(g, q; w);

this is precisely Eq. (4.7). The triple product of α functions is really a function on
Gr p 5 and not on Stp. To see this one has to replace the basis w by wt(teGLP) and
to show that value of the product does not change; but this is an easy consequence
of a repeated use of (4.7). Π

Theorem 4.3. There is an Abelian extension of GLp by Map(Gr p ,C x ) which acts

on Detp. There extension is

Map(Grp,Cx))/iV,

where N is the normal subgroup consisting of elements (l9q,μq), where μq(w) =
α(l, q, w) ~ι ωp(w +, q ~1) ~ \ qeGLP, and the action on Detp is given by Proposition 4.2.

Proof An element (g,q,μ)eSp x Map(Gr p ,C x ) belongs to the kernel of the group
action on Detp iff g = 1 and (wq~1,ot(l9q;w)μ(π(w))) = (w, I)-*?"1. The last relation
is equivalent to

α(l, q; w)μ(π(w)) = ωp(w+ .q'1)'1. •
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We shall study the Abelian extension in the case p = 2 in more detail This
case corresponds to the physically important problem of obtaining representations
of current algebras in 3 ~f-1 space-time dimensions, as we mentioned in the
Introduction. For p — 2 one can adjust the function / in (4.8) in such a way that

oί = exp-tτt(ί~q-ϊa)(w+~l) + q-1b£F21-w^l (4.9)

For this choice of α the group N consists of elements ( l , ^ , ( d e t 2 ^ " 1 ) " 1 ) ,
since now α(l,g;w) = exp — tr( l — q~1)(w + — 1) = det 2 w + d e t 2 g ~ 7 d e t 2 w + q~x —
ω2(\v+,q~1)~1-det2q~1. We shall compute the local two-cycle corresponding to
the extension GL2. Near the unit element ^ = 1 we can define the local section
Γ\€ϊ:2->GL2 by"

= (g,a,l)modN. (4.10)

The two-cocycle is defined by

Γ(g1)Γ(g2) = Γ(g1g2)(l9lξ(gug2))9 (4.11)

where ξ(g1,g2)eMa.p(GL2,C
x). From Proposition 4.2, we get

Γ(gί)Γ{g2) = (gιg2,a1a2,oι(gua1;g2wq2

 1)%{g2,a2; )(x(g1g2,a1a2; )~1).

On the other hand,

Όί{gίg29aίa2; )~ίoί(l9a{g1g2)~ίa1a2; ))modN.

Therefore,

'Gc{l,a(g1g2y
1a1a2;w)cc(gua1;g2\vq2

1)a(g1g2,a1a2;w). (4.12)

In particular, if gι and g2 are of the type

a 0

c d

then ξ(g1,g2)= l I n general, the expression for ξ is rather complicated but the
corresponding cocycle for the Lie algebra commutators is much simpler. The Lie
algebra of tTΐ>p is as a vector space equal to #/p©Map(Grp,C), where glp

is the Lie algebra of GLp. The commutator in gίp can be written as

[(x,μ),(y,v)] = ( [ x , y ] , z v - y /i + f/(z,y; )), (4.13)

where η is an antisymmetric bilinear form on glp taking values in Map(Grp,C)
and the Lie derivative of a function v on Gΐp to the direction of the vector field
X (defined by the GLp action on Grp) is denoted by X-v. From the Jacobi identity,
it follows that η has to satisfy the equation

(4.14)
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Let QxptX and oxptY be two one-parameter subgroups in GLp. Then

— (4.15)

We do not have a closed formula for η valid for an arbitrary p ^ 1. However, in
the case p = 1 OΪIQ gets

which is the Kac -Peterson cocycle, [KP]. For p = 2we have derived for the Lie
algebra of the unitary subgroup U2 <= GL2 the formula

- F ) , (4.16)

where X, Y are anti-Hermitian operators (the off-diagonal blocks are in J 4 and the
diagonal blocks are bounded operators). One can define a two-cycle for gl2 by
a complex extension from (4.16); however, this does not correspond to our choice
of the group cocycle ξ defined by our choice (4.9) for α.

Remark. Because the action of GLp on Gr p is smooth, it is easy to define different
topologies on Map(Gr p ,C x ) which make the extension GLp a topological group.
In fact, in the cases p = 1,2 (and probably for higher p, too) the extension can be
defined in such a way that it becomes a Banach Lie group. In the case p = 1 we
have the known central extension by C x , which is a Banach Lie group, [PS]. In
the case p = 2, we can choose α in such a way, that the extension of GL2 is by the
functions / exp tr ξ(F — ε), where

2 U/3

s .-/3 * 2

acts on Det 2 . The parameter space of these functions is I2 x I2 x / 4 / 3 x 74 / 3 x C x ,
which is a Banach space with a smooth Up action (the action is ζH>gξg~1,gεUp).
The choice of α needed is precisely the choice leading to the affine form (4.16) of
the infinitesimal two-cocycle.

Next we shall construct a metric on the bundle Detp. Define a function

l:Stp^R+ b y I(w) = e~y;2yp{w+ΛV<+).
Note that

|detpwH

(4.17)

where we have used the property detp/l' = detp/ί of the generalized determinant;
the latter follows by induction from Proposition 3.1(b).

Proposition 4.4. Let eeΌQtp be represented by a pair (w, /), where weStp is a unitary
basis and λeC Then, \e\ = \λ\l(w) defines a metric in Detp which is invariant under
the subgroup Up a GLp corresponding to triplets (g, q, λ) such that g and q are unitary
and

\λ{F)\ = -^Ί-\*{g,q;w)\-\
l(gwq ι)
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Proof. Suppose that e — [(w', )!)\ where w' is another unitary basis. Then w' — wt
and λ' = λωp(w91)'1 for some unitary te\
l(w')\λ'\ = l(w)\λ\\ this is equivalent to

Ip. The metric is well-defined if

l(wt)
UQtpW+t

= /(w), (4.18)

but the latter follows immediately form (4.17).

The condition \(g,q,λ)-e\ = \e\ can be written as

l(gwq-1)\a(g,g;w)\\λ(F)\ =

The proof is completed by showing that μ(giq;w) = l(w)l(gwq~1)~1\%\~1 is really
a function of F = π(w) and not of w. Again, using (4.18) we get

μ(g, q; wt)

μ(g,q;w)

detpw+t

det p w f

deUgwq

detp(gwtq~

cc(g, q; w)

g; wί)

The right-hand sude is = 1, by (4.7). •

Suppose there is an invariant measure m on Gr p . Then we could define a unitary
representation of ί/p in the space of L2-sections of Det* as follows. A section of
Det* is a function φ:Stp-^C such that

An inner product for L2-sections is defined by

(4.19)

\ d m . (4.20)

From (4.19) and (4.20) it follows that φ1 φ2 Γ2 is invariant under the transformation
wι-»wί, thus being really a function on Grp. The action of Up on sections is

Using the invarianee of the measure and the invarianee of the metric under ύp it
is easily seen that the inner product (4.20) is invariant. Quasi-invariant measures
have been recently studied by Pickrell [Pi] in the case p = 1, but we do not know
at the moment if his results can be extended to higher values of p; quasi-invariance
is really all we need, since in that case the loss of unitarity due to non-invariance

of the measure can be compensated by adding a factor under the integral

sign in (4.20), where mg is the Radon-Nikodym derivative of m with respect to ge Up.
Even without the inner product, the representation of GLp in the space of

sections of Det* has the important property that there is a vacuum vector:

Theorem 4.5. Suppose (for the sake of simplicity) that the extension GLp is defined
by the choice f = 1 in (4.8). Let φ:Stp-+C be the section of Det* defined by

Then= άelpw

for any g = ( ) in GLn.

T(g,a,l)φ =
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Proof. It follows directly from the fact that with the above choice oc(g, a;w) = \
and that detp a ~ι w + a = detp w +. In the general case one must consider the subgroup
consisting of elements (g, a, μg), μg{F) = f(g, α; F)~ *. Π

Remark. In the case p = 1, the vector φ is the highest weight vector in the Fock
representation of#/ l 5[PS]. The vector of highest weight (in the mathematical
terminology) is the state of lowest energy (in physics language).

V. Holomorphic Bundles and Group Actions

The action oϊ GL2p on Detp constructed in Sect. IV does not preserve the
holomorphic structure of Detp. This is because the function a\Sp x Stp->CX is not
holomorphic.

However, the holomorphic action of a complex Lie group on a line bundle is
a useful notion in representation theory. The well-known Borel-Weil theory [W]
produces the antisymmetric tensor (wedge) representation of a finite-dimensional
general linear group using its action on the Det line bundle over the Grassmannian
[PS]. This has been extended to GLί by Pressley and Segal [PS].

A highest weight-vector in a representation of a Lie algebra is one that is
annihilated by the "step-down" operators. This notion makes sense only on a
complex Lie algebra. The analogous notion for a group therefore involves a
holomorphic representation of a complex Lie group. One defines a higher weight
vector as one that spans a one-dimensional representation of a parabolic subgroup.
We will be able to construct such a highest weight representation in this section.

We will show that there are no non-trivial holomorphic functions on Gvp. So
it will not be possible to choose the cocycle of S to be a holomorphic function on
Gτp. However, we will finite another coset-space C Gr p (which is a complexification
of Grp), which does admit non-trivial holomorphic functions. The action of GLp

on CGvp lifts to an action of an Abelian extension GLp of GLp by Hol(CGrp) on
CDet p . This action preserves the holomorphic structure on CDet^.

We will then also construct an infinite-dimensional vector bundle on Grn

admitting an action of GLp that preserves the holomorphic structure. There is a

linear representation of GLp on the space of holomorphic sections of this bundle.
Let us begin by recalling a similarity between Gr p and a compact complex

manifold [PS].

Proposition 5.1. Any holomorphic function on Gr p is constant on each connected
component.

Proof. Gr 0 is a dense subset of Gτp. Any holomorphic function on Gr p will therefore
restrict to one on Gr 0 . However, Gr 0 is the inductive limit of finite-dimensional
Grassmannians. These are compact complex manifolds, and therefore holomorphic
functions are constant on each connected component on them. So any holomorphic
function on Gr 0 is constant on each connected component. •

This leads to the result that for p> 1, there is no interesting holomorphic
solution to the function α of Lemma 4.1. If there were, we would see that the triple
product of function α in Proposition 4.2 is a holomorphic function on Gr p, and
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therefore constant [on the connected component which is all we are interested in
now]. So we would be constructing an extension of GLp by the space of constant
functions, which would be a central extension. For p > 1, GLp has no non-trivial
central extensions.

Now consider the space

CGrp = GLP/GL + xGL_, (5.1)

where GL+ x GL_ — GL(H + ) x GL(H _) is the subgroup of elements of the form

'a 0N

d,

CGτp can be viewed as the space of infinite-dimensional planes (W1,W2) which
are transverse [i.e. W1r\W2 = {0}]. CGr p is the complexification of Gτp. To see
this, note that

Gτp =Up/U+xU. (5.2)

and that GLP is the complexification of Up, Unlike Gr p, C Gr p does admit non-trivial
holomorphic functions. Any such function can be viewed as a holomorphic function

f:GLp^C
satisfying

a

0 °d)jeGL+xGL_. (5.3)

An example is
aa, (5.4)

where

as usual and

Note that detpαα is invariant under GL+ x GL_ but not under &p. So it is a
holomorphic function on C G r p and not on Gτp. We will often talk of functions
on coset spaces as functions on the groups in this fashion without further comment.

Define analogously,

p p x GL_, (5.7)

where the action of GL+ x GL_ on Sp is
p

\eGL+xGL^. (5.8)

Furthermore, consider the right action of GU on Sp,

{J9,q)t^(9,rιq\ (5.9)
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It commutes with the action of GL+ x GL_ and we can verify that it is well-defined
free action on CStp. In fact,

CGτp = CStp/GLp. (5.10)

We denote by π: C Stp -> C Gr p the projection map. Note that in spite of the notation
CStp is not a complexification of Stp. Considered as a GI/-bundle, only the base
has been complexified. Let u denote a point on CStp and u\-*ut the action of GLP.
Define an action on CStpxC by

(u9λ) t = {ut9λω~ι{u,t)), (5.11)

where the function ωp:CStp x GI/->C can be thought of as a function

ωp:£pxGIf^>Cx, {g,q9t)^ωp{g,q,t)9 (5.12)

invariant under the action of

We put

o)p(g, q, t) — ( d e t p i ) ~ ι e ~ y p ^ a q ~lΛ\ (5.14)

where as usual

b

d

A moment's thought will show that this is in fact the same function as in Sect. IV.
Any function on Stp can be thought of as a function on CStp.

ωp is a one-cocycle for GLp. Therefore we can verify that the action (5.11) is
well-defined. Furthermore, the action is free. So we can define the coset space

C Όctp = (C Stp x C)/GU. (5.15)

By construction, CDet p is a holomorphic line bundle over CGr p . We want to
lift the action on GLp on the base to action on CDet p . As before, we will find an
Abelian extension of GLp that acts on CDet p .

Let us find an analogue of Lemma 4.1.

Lemma 5.2. There are holomorphic functions β\SpxCStp^Cx such that

=

β(g,q;u) ωp{{g,q)u,qtq~ι)
forteGU. Let us regard β as a function β\Sp x Sp^Cx invariant under GL+ x
on the second argument. Then, the general solution to (5.16) is,

aa (aa -\-bc)q q

where φeS>

2p x Gr 2 ; ,-^C X is any holomorphic function and g~γ = I -
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Proof. It is obvious that any solution can be multiplied by a non-vanishing function
on C Grp to produce another solution. As before

detp(aά-\-bc)q~1q~1

is a formal solution. The denominator has zeros that are cancelled when this formal
solution is multiplied by

detp(αα -f- bc)aq~ι

detp άa

which is a function on the C Grp. This "regularizes" the formal solution to produce
the claimed result. In fact, we can write (5.17) in a way that shows explicitly that
it is a well-defined function on Sp x Stp:

β(g9 q;g, q) = φ(g, q\g)exp[- yp(dq'\ qS) + y^q'1 (ad + bc]q~\ q$)~\. (5.18)

•
Let Hol(CGr p ;C x ) be the Abelian group of holomorphic functions on CGr p .

Proposition 5.3. The formula

(g, q, V) (M, Λ) = ((g, q)u, v(π(u))λβ(g, q;«)), (5.19)

where β is any fixed solution of'(5.12), defines an action of S° = S°p x Hol(C Grp, C x )
on CDet p . The multiplication in Sp x Hol(CGr p ,C x ) is given by

Proof. As before we need to show that the action (5.19) of 6°p x Hol(CGr p ;C x )
on CStpx C maps point equivalent under GLp to equivalent ones. This, by an
analogous calculation, is just the condition (5.17) on β. That the triple product of
β's in (5.20) is a function on $p x CGr p (rather than Sp x CStp) also follows from
a straightforward use of (5.17). •

Proposition 5.4. There is an Abelian extension GLp ofGLp by Hol(C Gr p, C x ) which
acts on C Detp preserving its holomorphic structure. Hence,

where P is the normal subgroup of elements (l,q,vq) with vq(u) = α(l,g,u) 1ωp(u,q x) x

and the action on C Detp is given as in Proposition 4.2.

Proof. As before, it is enough to show that P is the kernel of the action of
$p x Hol(CGr p ,C x ) . This is a straightforward calculation. Since all the maps
involved are holomorphic, it is obvious that the action leaves the holomorphic
structure of C Detp invariant. •

Let CDet* be the dual line bundle of CDet p . It can also be defined as

* = (CSί p xC)/GL p ,
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where the action of GLP is now

(u9λ) t={ut,λωp(u,t)). (5.21)

A holomorphic section φ of C Det* can be thought of as a holomorphic function

φ\$p-*C satisfying

ψ(g, tq) = φ{g, q)ωp(u, Γ1),
and

ψ{g,q) = ψ{gh,qa') for h = l^ JeGL+xGL-.

A canonical section is

φo(g,q) = detpάq~1. (5-22)

We see that this is just the canonical section of Sect. IV, by the natural
correspondence of sections of Det* to those of CDet*. If χ is any holomorphic
function on

is also a section of CDet*. Let us hold χ to be a fixed nowhere zero function for
the remainder of the paper and regard φ1 as a canonical section of CDet*.

Theorem 5.5. On the space of holomorphic sections Hol(CDet*) we have a linear
representation on T of $p given by

The normal subgroup P of Proposition 5.4 levels all elements o/Hol(C Det*) invariant

so that this is in fact a representation of GLp— S°p/P. The kernel ofφ1 is a subgroup
Γ / π x Λ

Kp of GLp isomorphic to B ~ = < ί

where

χ(gg) . dGtp aMq~l

™<™> d e t p S &

Proof. We know how ip acts on CDet p from Proposition (5.3):

(g, q9 V) (M, λ) = ((g, q)u, v(u)λβ(g, q; u)).

From this, we see that on C Det* = (Stp x C)/GLP we have the action

fer, q, V)(M, λ) = ((g, q)u, v(u)λβ~1(g, q; u)\

A section of C Det* is a map φ:CStp-^C satisfying the condition described earlier.
To see how sections transform, we note that

(̂ , q, v){u,φ(u)) = (to, q)u, (T(g, q, v)φ){{g, q)u))9
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so that

(T(g, q, v)ψ)(gg, qq) = v{g)β~ι (g, q; g, φφ(g, q\

That P leaves all sections invariant is obvious, since it acts trivially on C Detp and
hence on CDet*.

If (g,q,v) is to be in the kernel of φl9 it must satisfy

Φ i (gg> QΦ — v(o)β 1 (#> qi g>ΦΦi (g> <?X

i.e.

χ{gg) dQtp{aά + bc)q'1 = v(^)^"1 (g, q; g, q) det άq~ι-χ{g).

This means that we must choose b = 0 and

l ^ ~ 1 %to) , ^.detpααα^' 1

v{g) 7^rp(g><iig><i)A , ~ ~ - i 7 ^ φ { g , q ι q ) Λ . _ .
χ(g) det paq χ(g) det^αα

Now P will obviously leave φ1 invariant. We can represent the elements in
GLp = S)

p/P corresponding to the kernel of φί with the choice q = a. (For a is
invertible if b = 0.) That Kp is isomorphic to Bp can be verified by a simple
computation. •

So \jjγ can be interpreted as the highest weight vector of the representation T.
For the special case p = 2 (which is relevant for 3 + 1-dimensional current

algebras) we can choose the function φ so that the cocycle is an affine function.
Let us digress a little bit to explain what is meant by this. Define stfp to be the

affine space modelled on the vector space of operators in H+ ® H_ of the form

InIP 2P I y^ s c a r r j e s a n affme a c t ion of GLp:

That [g>ε]g ιes$p follows from the following explicit computation:

-λ__ί-by -bδ\
9 ~ g'8 g ~\ ca cβ y

(a b\ _, fa β\
with, as usual g = [ I and g —[

V dj \y δj
The orbit of A = 0 is in fact just C Gΐp. So the map

g (-> A (g) — \_g9 ε] g ~1

gives an affine embedding of CGr p into srfp. (There is of course an analogous

embedding of Gr into the space of skew-adjoint matrices of type ' p 2p

obtained by restricting q to the unitaries.) So to see this, note that q-+q[

leaves A(g) invariant.
An affine function (or a polynomial of degree fe, more generaly), on C Gr p can

now be defined as the pull-back under this embedding of an affίne function (or a
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polynomial of degree k) on <P/P. An affine function on CGrp has the form

f(g) = tr ξA(g) + η for ξ = ( ^ | 9 ' ), where q = p/p - l,q' = 2p/2p - 1 and ηeG

For p = 2, one may verify that the choice

β{g, q;g, q) = exp[y2(<?~1 a, άq^1)- tr q~1bc(q~ί ~ α)]

solves (5.17). Note that for g,geGLu

βλ = exp[y2(q~xa, άq~x) ~ tr q~xbcq~ ^

is a solution with two-cocycle (for Sp) equal to 1, but this fails to be a continuous
function in the GL2 topology. We "renormalize" by multiplying by e~Uq baa and
then β exists even in GL2 because q'1 — α e / 2 . Note that the renormalization is
by the exponential of an affine function. This means (by a straightforward
computation) that the Lie algebra two-cocycle w(X, Y) of g/2 will be an affine
function. Furthermore, the group two-cocycle of i 2

 w n Ί be the exponential of an
affine function. Therefore, we can define an extension of GL2 by the multiplicative
group of functions on C Gr 2 of the form

for

Hence GL2p is now a Banach Lie group modeled on the Banach space

B being the space of bounded operators.
We would now like to find a holomorphic vector bundle over Gr^ which carries

an action of GLp that preserves the holomorphic structure. Also, we would like to
interpret Hol(CGrp) as holomorphic sections of some vector bundle on Gvp.

As preparation, let I2p be the Abelian contractible subgroup of elements in

GLp of the form I I. For simplicity of notation we may denote this element

simply as b. (I2p may be thought of as the additive group of the vector space I2p.)

= a'bdf~ι-bfdf'\ (5.23)

I2p carries an affine action of

0 a

Denote by V the space of holomorphic functions V = Wo\(l2p). V carries by
pull-back a representation of J* 2 p:

\ \ b ) υ ( a b d + a V ) . (5.24)

Define the holomorphic vector bundle over Gr
p
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ϊ

by this action

Now we note the following result:

Proposition 5.6. There is a natural isomorphism between Hol(CGrp) and the space
of holomorphic sections of >ΛK, Hol( f )

Proof. A holomorphic function on C Gxp can be thought of as a holomorphic
function

/:GL P ->C

satisfying
f(gh) = f(g) for heGL+xGL_.

/eHol(^) can be identified as a function

f:GL2pxI2p^C
satisfying

We may identify these by

/ ( ( j ;))• •
Now consider the holomorphic vector bundle on Gr 2 p,Y^® Det*. Since Det*

is a line bundle, the fibers are then isomorphic to V, but this bundle is more
"twisted" topologically. By an argument analogous to that for Proposition (5.5),
we can show:

Proposition 5.7. There is a natural isomorphism between the space Hol(C Det*) and
Holer ®Det*). ^

Then we see that GLp has a representation on the space of holomorphic sections
of Y ®Det* over Qτp. So one could view this as the analogue of the Detf line
bundle over Gr x .

VI. Extensions of the Full Group GLp and Extensions of Map(52"+ 1,G)

Up to this point, we have constructed the Abelian extensions only for the component
of the identity GLp

0) a GLp. We want now to construct the extension for the full
group GLp. We shall generalize the method described in [PS], Sect VL6, to our
case. Let σeGLp be any element such that the Fredholm index of a(σ) is equal to
one. Denote by Z the subgroup of GLp generated by σ. Now

GL p ~ZxGL<, 0 )
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is a semi-direct product, where the action of σ in GLp

0) is given by g\-^σgσ~x;
(nXig1)(n2,g2) — inι + ft2>0iσ"16ί2σ~"1) We extend the action to an endomorphism
of <f p xMap(Gr p ,C x )by

\qaJJrhσ(g,<r,g-1F)\ (6.1)

where λσ{F) = λ(σ~1 Fσ) and hσ is a function on Sp x Gr p taking values in C x ; the
structure oϊ hσ will be determined below. In order that σ~ι Fσ makes sense on the
real Grassmannian Gxp we choose σ to be unitary; for example, σ{ei) = ei+1^ieZ.
The map q\-+qσ in GL(H + ) is chosen in such a way that {g,q)\-^(σgσ~1,qσ) as a
map Sp^ip covers the action g\-+σgσ~ι on GLp°\ For example, with the above
choice for σ, one can define

ι on σ(H+)
q<r = \l on H+θσ(H + ).

The map (6.1) is well-defined even in the quotient GLp

0) = (<ίp x Map(Grp ? Cx))/N.
This follows from the fact that detp qσ = detp q. Using the multiplication rule

2,λ2) = (gίg2,qιq2,λί(g2 F)λ2(F)Ωp(g1,ql9g2,q2;F))

on Sp x Map(Gr p ,C x ), where Ωp is given by Proposition 4.2, the condition that
the map σ is an automorphism on the group GLf] can be written as

_2_^_i2^21_21 --~~ = hσ(g1;g2F)hσ(g2;F)hσ(g1g2;F)~1.
Ωpiσg^ \qίσ,σg2σ ,q2σ;σFσ L)

(6.2)

Equation (6.2) says that the quotient on the left should be a coboundary of a
1-chain hσ of the group GLp

0) (with respect to the natural action on Grp). Thus,
(6.2) has a solution hσ if and only iϊϊΩp and the two-cocycle Ωp

σ) in the denominator
represent the same cohomology class. The cohomology classes of the different
group extensions are determined by the de Rham cohomology classes obtained
by evaluating the corresponding Lie algebra cocycle. We give the proof of the
invariance of the cohomology classes in the case p = 2 (in the case p = 1, Ωp = 1
and we can take hσ = 1); the case p > 2 requires more computation but is essentially
straightforward. The Lie algebra cocycle η{σ) obtained from (4.16) through the
automorphism σ of GL2 is

Thus η(σ} is obtained from η by substituting ε κ £ σ = σ~ 1εσ. The difference c — εσ is
of finite rank. Therefore,

is well-defined; by a simple computation,

η - η^ = δβ.

The extension of GLp for the whole group GLp can now be defined as
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where the action of Z on GLf} is defined by the action of its generator σ,
Eq. (6.1).

As was explained in Sect. II, in the case of a trivial vector bundle, the
group of gauge transformation ^ = Map(Jί, G)(d = 2/7+1 odd, X a compact
manifold of dimension d) can be embedded in GLp for p = n -f 1. On the other
hand, we have a map ̂ ->Gr^ given by g\-+g H+. Thus by pull-back, using the
map ^ x ($-+GLp x Grp, we get an extension # of ^ by Map(^,C x ) from the
extension GLp of GLp by Map(Gr p ,C x ).

The Lie algebra of ^ is Map(X, #), where g is the Lie algebra of G. Let us
compute explicitly the Lie algebra extension in the case X = T3 = S1 x S1 x S1,
G = U(N) and /? = 2. We shall use two-cocycle (4.16) for gl2. To an element ge$
there corresponds F = gεg~1eGΐ2, where g is thought of as a multiplication
operator in the Hubert space H of square integrable spinor fields φ: T 3 —• C 2 (x) CN.
Using the Fourier decompositions

one can write the integral kernel of the operator [#, ε]

where σuσ2 and are the Pauli matrices acting in C2,σiσj +σjσi = 2δίj. Writing
F — ε = gεg ~1 — ε = [g, ε] g ~λ and inserting to (4.16), we get the following expression
for η(X, Y; F):

σ\fp3 σ p4-σ\
Λ J

 (6 3)

where the Xp's and Yps are the Fourier components of X, 7; T 3 -></; the sum is
over all the momenta p^Ί?.

The non-local formula (6.3) can be compared with the local expression for the
extension of Map(X,g) by the Map(j/d,C), where j / d is the space of g valued
one-forms on X. The different cohomology classes of extensions are integral
multiplets of the two-cocycle

η'(X, Y; A) = j tτ(XdY+ YdX) A Pd(A\ (6.4)

where / I G J / ^ and P d is a differential form of degree d—\ which is a polynomial
of A, [Ml],[F],[Si]. For example, P1 = l/4π and P2 = (ί/l2π2)dA. The former
case gives the affine Kac-Moody algebra corresponding to g = M(N) and the latter
is the current algebra of the 3 + 1 -dimensional field theory. In order to compare
with (6.3), we restrict A3 to the space of gauge potentials A = g~1dg,ge($[R~].
Computing (6.4) (for X = Γ 3) in terms of the Fourier components one sees that
ηφη'. However, from the general cohomological classification (see [PS], Sect.
VI.10) of extensions follows that η and η' represent the same cohomology class.
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