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Abstract. The algebraic properties of exactly solvable evolution equations in
one spatial and one temporal dimensions have been well studied. In particular,
the factorization of certain operators, called recursion operators, establishes
the bi-Hamiltonian nature of all these equations. Recently, we have presented
the recursion operator and the bi-Hamiltonian formulation of the Kadomtsev-
Petviashvili equation, a two spatial dimensional analogue of the Korteweg-
deVries equation. Here we present the general theory associated with recursion
operators for bi-Hamiltonian equations in two spatial and one temporal
dimensions. As an application we show that general classes of equations, which
include the Kadomtsev-Petviashvili and the Davey-Stewartson equations,
possess infinitely many commuting symmetries and infinitely many constants
of motion in involution under two distinct Poisson brackets. Furthermore, we
show that the relevant recursion operators naturally follow from the underly-
ing isospectral eigenvalue problems.

1. Introduction

In recent years a deep connection has been discovered [1, 2] between certain
nonlinear evolution equations in 1 + 1, i.e. in one spatial and one temporal
dimensions, and certain linear isospectral eigenvalue (or scattering) equations.
These isospectral problems play a central role in developing methods for solving
several types of initial value problems of the associated nonlinear evolution
equations. The most well known such method, the celebrated inverse scattering
transform (1ST) method, deals with initial data decaying at infinity. However, the
isospectral problem is also crucial for characterizing periodic [3] as well as self
similar solutions [4].

It is quite satisfying, from a unified point of view, that the isospectral problems
are also central in investigating the "algebraic" properties of the associated
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nonlinear evolution equations: The isospectral problem algorithmically implies a
certain linear integrodifferential operator Φ, called the recursion operator. This
operator has remarkable properties: Φ maps symmetries into symmetries; Φ has a
certain algebraic property [5] which Fuchssteiner [6] calls hereditary and thus
generates commuting symmetries; Φ*, the adjoint of Φ, maps gradients of
conserved quantities into gradients of conserved quantities; Φ, admits a
symplectic-cosymplectic factorization and thus generates constants of motion in
involution [7]; Φ times the first Hamiltonian operator produces the second
Hamiltonian [8], hence the associated nonlinear evolution equations are bi-
Hamiltonian systems; the eigenfunctions of Φ are also symmetries, which actually
characterize the JV-soliton solutions [9] the eigenfunctions of Φ form a complete
set [10].

Well-known scattering problems in | + | are the Schrόdinger scattering
problem, the so-called generalized Zakharov-Shabat (ZS) or Ablowitz-Kaup-
Newell-Segur (AKNS) system, and their natural generalization, i.e. the GeΓfand-
Dikii operator, and the N xN AKNS. These isospectral problems are related to
several physically important equations, the Korteweg-deVries (KdV), sine-
Gordon, nonlinear Schrόdinger, modified KdV, Boussinesq, iV-wave interaction
equations, etc. The above eigenvalue problems have been thoroughly inves-
tigated with respect to both the 1ST method and the associated algebraic
properties. The 1ST of the Schrόdinger was investigated in [1, 11], of the AKNS
in [12], of the N x N AKNS in [13-15], and of the Gel'fand-Dikii in [16]. The
1ST of special important cases of the above systems were investigated in [17]
(nonlinear Schrόdinger), [18] (modified KdV), [19, 20] (Boussinesq), [21]
(3-wave interactions). The recursion operator associated with the Schrόdinger
equation was obtained by Lenard, of the AKNS in [12], of the Gel'fand-Dikii in
[22] and of the N x N AKNS in [5] and [23]. The general theory of recursion
operators and their connection to bi-Hamiltonian formulation has been devel-
oped by Magri [8], GeΓfand and Dorfman [24], and Fokas and Fuchssteiner [7].
Other relevant works include [25].

It is also well known that certain two-dimensional generalizations of the above
scattering equations are related to physically interesting nonlinear evolution
equations in 2 +1 dimensions. In particular, a generalization of the Schrόdinger
equation is related to the Kadomtsev-Petviashvili (KP) equation (a two-
dimensional analogue of the KdV). Similarly, the two-dimensional version of the
NxN AKNS is related to JV-wave interactions in 2 + 1, the Davey-Stewartson
equation (DS) (a two-dimensional analogue of the nonlinear Schrόdinger) and the
modified KP equation. The 1ST for the above two scattering problems has been
only recently studied [26]. (For other interesting results in this direction see also
[27].) In spite of this success, the question of using the scattering equations to
obtain recursion operators had remained open. Actually, Zakharov and Konopel-
chenko [28] have shown that recursion operators of a certain type, naturally
motivated from the results in 1 + 1, do not in general exist in multidimensions.
Recursion operators in 2 +1 dimensions were only known for straightforward
examples like the 2 +1 dimension Burgers equation, that can be linearized via a
generalized Cole-Hopf transformation [30b]. For a brief review of the literature of
the various attempts to obtain recursion operators in 2 +1, we refer the reader to
[29]. Here we only note that Konopelchenko and Dubrovsky [30a] were the first
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to establish the importance of working with w(x9y1)w + (x9y2), as opposed to
w(x,y)w+(x,y), where w(x9y) and w+(x,y) denote the eigenfunctions of the
associated scattering problem and of its adjoint, respectively. They also found a
linear equation satisfied by w(x9yί)w+(x9y2). However, they failed to recognize
that this equation could actually yield the recursion operator of the entire
associated hierarchy of nonlinear equations. Instead, they used the above equation
to obtain "local" recursion operators. Thus, the question of studying the
remarkably rich structure of the recursion operator, in particular, its connection to
symmetries, conservation laws and bi-Hamiltonian operators was not even posed.

Using a suitable generalization, we have recently presented the recursion
operator and the two Hamiltonian operators associated with the KP equation
[29]. In this paper we present the theory associated with these operators. In
particular, the notions of symmetries, gradients of conserved quantities, strong and
hereditary symmetries, Hamiltonian operators are generalized to equations in
2 + 1 . Also a simple algorithmic approach is given for obtaining the recursion
operator from the scattering problem. As examples of the above theory we study
the two-dimensional Schrόdinger problem and the 2 x 2 AKNS problem in two
spatial dimensions. The following concrete results are given:

i) The linear eigenvalue problem

y 0, (1.1)

where α is a constant parameter, gives rise to the hereditary recursion operator

Φ12 = D2 + qt2 + Dqt2D-ί + q;2D-ιq;2D-1, (1.2a)

where the operators q*2 are defined by

1i2±<Ii±<l2 + <x(D1+D2)9 Di=—9 qt = q(x9yi)9 i = l , 2 . (1.2b)

The operator Φ 1 2 admits a factorization in terms of compatible Hamiltonian
operators, Φ π ^ C ί O " ^ where Θ{γl = D and Θf} are skew symmetric
operators satisfying an appropriate Jacobi identity.

The KP equation

qt = qxxx + 6qqx + 3α2Z) ~ ιqyy (1.3)

is the second member, n= 1 (βλ = 1/2) of the following hierarchy generated by Φ12

Qu = βn 1 dy2δ(yi-y2)Φn

12σ[°l rc = 0,1,2,..., (1.4)

where σift = {Φ12D) i=qlχ + q2χ + {q1-q2)D-1{q1-q2) + uD-1{qlyι-q2,I) and
(5(j>! —y2) is the Dirac delta function. The KP is a bi-Hamiltonian system:

qu= 1 dy2δ(yι-~y2)Θ{1^= J dy2δ(yi-y2)Θ[ψ?l (1.5)
— 00 — 00

where

yfl=D-^l yW-D-iφ^}. (1.6)
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The KP equation possesses two infinite hierarchies of time-independent commut-
ing symmetries and constants of motion. For example, (Φ\2

σii2)i i>n = 0,1,2,... are
symmetries of the KP.

The operator Φί2 is the adjoint with respect to an appropriate bilinear form
(see Sect. 4) of the "squared eigenfunction" operator. One may verify that

φ * 2 w l W 2

+ = 0 , W f Φ φ j i ) , (1.7)

where w+ satisfies the adjoint of Eq. (1.1) (see Sect. 4).
ii) The linear eigenvalue problem

Wx = JWy + QW, (1.8)

where J = ασ, σ = diag(l, — 1), and Q is a 2 x 2 off-diagonal matrix containing the
potentials qγ{x,y\ q2(x9y), gives rise to the hereditary recursion operator Φ 1 2

defined on off-diagonal matrices, where

Φu^σiPii-QΐiPπQΐi), (l 9a)

and the operators P 1 2 , Qf2

 a r e defined by

Q29 (1.9b)

and Qi = Q(x,yi), ι = l,2. The operator Φ 1 2 admits a factorization in terms of
Hamiltonian operators, Φι2 = Θf2\Θ{i2

))~ι, where © ^ ^ σ .
The DS equation

faxx + α 2 ^ y ) = ^ - k l 2 ) ; Φxx-κ2Φyy = 2\q\2

xx> (1.10)

corresponds to q2

 = qι=q^ βi= — τ> and rc = 2 of the following hierarchy

Qu = βΛίdy2Φ^2Qϊ2σ. (1.11)
]R

The DS equation is also a bi-Hamiltonian system with respect to the two
Hamiltonian operators Θ ^ = σ and Θψ2 = Φΐ2σ defined on off-diagonal matrices.
It also possesses two infinite hierarchies of time independent commuting
symmetries and constants of motion.

In more detail, this paper is organized as follows: In Sect. 2 we review the
algebraic properties of equations in 1 + 1. The KdV equation is used as an
illustrative example. This is in a sense a summary of [7, 8, 24] although we follow
the notation of [7]. In Sect. 3 we derive algorithmically the recursion operators
(1.2), (1.9). This derivation is simpler than the one given in [29]; we now use
expansions in terms of d*δ(yί—y2)/d/l9 where δ denotes Dirac's function, as
opposed to expansions in terms of λ*. In Sect. 4 we show how Φ 1 2 generates
extended symmetries σl2 and extended gradients of conserved quantities γί2. We
then show that σlί9γίί are symmetries and gradients of conserved quantities,
respectively. Furthermore, the remarkably rich theory associated with the bi-
Hamiltonian factorization of Φ 1 2 is developed in this section. In developing this
theory we use two important notions: a) The role of Frechet derivative is now
played by an appropriate directional derivative, which is naturally motivated from
the underlying isospectral problem, b) An extended symmetry σί2 can be written
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as σί2 -1, where σ1 2 is an appropriate operator. The Lie algebra of these operators
is closed provided they act on appropriate functions H12. Thus in 2 + 1 one is
dealing with a Lie algebra of operators as opposed to a Lie algebra of functions. In
Sect. 5 we give concrete illustrations of the notions introduced in Sect. 4.

We note that Fuchssteiner and one of the authors (ASF) introduced an al-
ternative way for generating symmetries, the so-called mastersymmetry approach.
In particular, it is shown in [31] that for the Benjamin-Ono equation ut = K,
the map [ , τ]L, where the bracket [, ] L is defined in (2.16b), τ = xK + u2 + \Uux,
and H denotes the Hubert transform, maps symmetries into symmetries. This
approach has been applied to KP in [32], and its general theory has been
developed in [33] (for other applications see [34]). However, the τ has certain
disadvantages: a) The relationship between τ and the eigenvalue problem has not
been established, b) τ is not hereditary, c) It is not known if τ can be used to obtain
the second Hamiltonian. In [35] we develop further the theory presented here. In
particular, we: i) analyze further the Lie algebra of the starting symmetries and use
Φ 1 2 to generate time-dependent symmetries, ii) use an isomorphism between Lie
and Poisson brackets to show that all these symmetries correspond to extended
gradients and hence give rise to conserved quantities, iii) show that the τ
mentioned above comes from a time dependent symmetry, and since it corre-
sponds to a gradient cannot be used to generate Φ 1 2, iv)fmd a non-gradient
mastersymmetry (for KP it is Φ( ̂ δ12) which can be used to generate Φ 1 2 ,
v) motivate and verify some of the results presented here and in [35] by
establishing that equations in 2 +1 are exact reductions of certain nonlocal
evolution equations, of which the algebraic properties are straightforward.

Since two central aspects of integrable equations in 2+1, namely the 1ST
method and the associated algebraic properties, have now successfully been
studied, we speculate that essentially all aspects of equations in 1 +1 will be
successfully studied for equations 2 +1. (For example, asymptotics and action-
angle formulation of KP have been studied in [36].)

2. Review of Algebraic Properties in 1 + 1

We consider evolution equations of the form

qt = K(q), (2.1)

where q is an element of some space S of functions on the real line vanishing rapidly
for |x| -• oo, and K is some differentiate map on this space depending on q, and on
derivatives of q with respect to x. We use the KdV equation as an illustrative
example:

(2.2)

Equation (2.2) admits the following four-parameter Lie-group of transformations
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The above transformations (space and time translations, Galilean and scaling
transformations) are uniquely characterized by the following infinitesimal gen-
erators of symmetries [37]:

(23)

Actually, the KdV possesses infinitely many symmetries

where Φ, the recursion operator (a strong symmetry) of the KdV, is given by

Φ = D2 + 2q + 2DqD~\ (D*1/^)^ ] f(ξ)dξ. (2.5)
— oo

It turns out that Φ has a certain algebraic property, called hereditary, which implies
that σi9 Gj commute. KdV also possess infinitely many constants of motion; the first
few are

oo ^ 2 2

/ = J ρndx, Qo = q , Qi = -^~, Q2=—^+^3 (2.6a)

— oo Z Z

It is more convenient to work with the gradients of constants of motion:

. δ— , where (/,i})= j fυdx

is an appropriate scalar product. The functionals / l 5 / 2 imply

yi=q> y2=qXχ+3q2' (2.6b)

Equations (2.3), (2.6b) suggest that σ = Dy, i.e. D is a Noether operator for the KdV
(it relates symmetries to constants of motion). This follows from the fact that KdV
is a Hamiltonian, actually a bi-Hamiltonian, system:

°° a2

J \dx. (2.7)

The two Poisson brackets associated with the above are

{/ί,/J.} = <grad/i,β,grad/J.>, / = 1 or 2,
(2.8)

Θι=D, Θ2 = D3 + 2qD + 2Dq.

It can be verified that {,} is skew symmetric and satisfies the Jacobi identity.
The notion of a conserved covariant γ is a mathematical generalization of the

gradient of a conserved quantity. Namely, if the functional / is conserved with
respect to a given evolution, then y = grad/ is a conserved covariant. Conversely, if
y is a conserved covariant and if y is a gradient function, then its potential I is a
conserved quantity. For example Σγ implies a conserved covariant Γί=x — 6tq
which is a gradient function, hence it implies a conserved quantity

00

I= ί (xq — 3tq2)dx. However, Γ2, corresponding to Σ2, is not a gradient and
— oo

hence does not correspond to a usual conservation law.
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The above discussion motivates the following definitions:

Definition 2.1. (i) A function σ is a symmetry of (2.1) iff

σ'iK-]-K\σ) = 0, (2.9)

where prime denotes Frechet derivative, i.e.

(ii) A function y is a conserved covariant of (2.1) iff

γ'lK] + Kt + [y']=09 (2.11)

where K'+ is the adjoint of K', namely, (K'+f, g> = </, K'g}.
(iii) An operator valued function Φ is a recursion operator (strong symmetry)

for (2.1) iff

•[X/,Φ] = 0, (2.12)

(2.10)

where [, ] means commutator.
(iv) An operator valued function Θ is called a Noether operator of (2.1) iff

Θ\K]-ΘK'+ -K'Θ = <d. (2.13)

(v) An operator valued function Θ is called a Hamiltonian operator iff it is skew
symmetric and it satisfies

(a, <9'[<9fc]c> + cyclic permutations = 0. (2.14)

vi) An operator valued function Φ is called a hereditary operator iff

Φ'[Φv]w — ΦΦ'[v]w is symmetric with respect to v,w. (2.15)

(vii) Equation (2.1) is of a Hamiltonian form if it can be written as qt = Θy,
where Θ is a Hamiltonian operator and y is a gradient function, i.e. γ' = yf + .

Proposition 2.1. (i) // y is a conserved covariant of (2.1) and if y is a gradient function,
then I, the potential of y, is a conserved quantity for (2.1).

(ii) Φ maps σ's to σ's, Φ + maps y's to y's, and Θ maps y's to σ's.
(iii) // (2.1) is of a Hamiltonian form, then Θ maps y's to σ's. Furthermore, there

is an isomorphism between Lie and Poisson brackets:

Θy2y, (2.16a)

where

la,b-\L = a'[b-]-b'la], (2.16b)

and Ji,y2 we gradient functions.
(iv) // Φ is hereditary and Φ is a strong symmetry for σ, then Φnσl9 form an

abelian algebra.
(v) // (2.1) is of a bi-Hamiltonian form, then Φ = Θ2Θγι is a recursion operator

of (2.1).
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(vi) // (2.1) is a compatible bi-Hamiltonian system, i.e. if it is bi-Hamiltonίan and
if Θx+Θ2 is also a Hamiltonian operator, then Φ = Θ2Θγl is hereditary.
Furthermore, if yί is a conserved gradient of (2.1), then Φ + nyι are also conserved
gradients. Thus (2.1) possesses infinitely many commuting symmetries and infinitely
many conserved quantities in involution.

Given the isospectral eigenvalue problem associated with (2.1) there is an
algorithmic way of obtaining Φ. Furthermore, if Φ has a complete set of
eigenfunctions it must be hereditary:

Proposition 2.2. Let

Vx=U(q,λ)V (2.17)

be a linear isospectral eigenvalue problem associated with (2.1). Let Gλ denote the
gradient of the eigenvalue λ. If Gλ satisfies

ΨGλ = μ(λ)Gλ, (2.18)

then Φ=Ψ+ is a hereditary operator (provided Gλ form a complete set).

3. Derivation of Recursion Operators

A. The Schrδdinger Eigenvalue Problem

Proposition 3.1. The Schrδdinger equation (1.1) is associated with the following
equation:

Tι2-2q;2a12, (3.1)

where qγ2 are given by (1.2b), δ denotes the Dirac delta function, T, a are arbitrary
functions of the arguments indicated,

<5i2^<5(JΊ-J>2)> ^ φ Γ f c j / ! , ^ ) , ctί2=a{yί9y2)9 (3.2)

and Ψί2 is given by

Ψl2=D2 + qΐ2 + D-'qΐ2D + D-ιqϊ2D-'q-l2. (3.3)

To derive the above result first write Eq. (1.1) in matrix form

WX=UW, W=(W), U=( ° *Y (3.4)

Equation (3.4) is compatible with

Wt=VW, V={^ 2^j (3.5)

if

Ut=Vx-lU,Vl. (3.6)



Recursion Operators and Bi-Hamiltonian Structures. I 383

The operator equation (3.6) implies

Ex=-B-2qC, 2CX = E-A,
X ,

(3.7)
qt=-Bx-qA + Eq, q D

The above equations yield

A=-CX + D-1IC9Q]+AO9 AOx = 0,
(3.8)

B=-cxx-tc,qy,
E=Cx + D-\C,q\ + AQ,

q, = Cxxx + ίή, CYX + ίq, CJ + + IID ~ *[q, C]] + Aoq - qA0 ,

where [, ] + is the usual anticommutator of two operators. We represent the
operator C by:

{Cf)(x,yx)= Sdy2T(x,yι,y2)f(x,y2), (3.10)
IR

similarly,

Then

(qiC±Cq1)fί=jdy2(qt2Tί2)f2,

q-ι2D-ιq-l2Tl2)f2, (3.11)

R

Hence applying the arbitrary function / to the operator equation (3.9) we obtain

. (3.12)

Remark 3.1. It is easily verified that the following important commutator operator
relationships are valid:

feΓ2JΛi2] = 0, lqΪ2,hi2l = 2*h'12, [ϊ r

1 2,Λ 1 2]=4αΛ /

1 2; (3.13)

hereafter h12 is any arbitrary function h(y1 —y2) and h'l2 denotes its derivative with
respect to yλ.

Proposition 3.1 can be used to derive nonlinear evolution equations related to
(1.1). One needs only to assume appropriate expansions of Tl2, a12. We give two
examples:

Example 1.

Ά2=Σδ{2TH\ Tin2] = Cn9 α 1 2 = 0, (3.14)
j = o

where δj

ί2 = djδl2/dy{, Cn an arbitrary constant. Then

'-U n = ί,2,.... (3.15)
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To derive (3.15), use Eqs. (3.14) in (3.12) and use (3.13c) with h12 = δ12,

0 j=l

Equating the coefficients of δn

12~* and δ{2, 1 ̂ j^n to zero, we obtain

1
Ύ(n) __Q γ(j-l)=. ψ

Hence

Thus (3.15) follows with the normalization {-\)nβn = {Aa)~nCn.

Example 2.

Γ 1 2 = Σ ^ 1 2 T ^ , Tft> = 0, α 1 2 = - ^ C π ( 5 " 1 2 . (3.16)

j = o I

Then

D-ιq-l2 1, n = 1,2,..., (3.17)

with the normalization Cn = (-l)n(4oc)nβn.

Remark 3.2. 1. The operators Φ 1 2 , ! P 1 2 defined by (1.2) and (3.3), respectively, are
related via

Φl2D = DΨ12. (3.18)

Hence the hierarchy of Eqs. (3.15) can be written as

Qxt = βnldy2δ12DΨ\+

2

ι l=βnldy2δ12Φ
n

12(Φ12D) l. (3.19)

The KP equation corresponds to n=ί and β1 = \; the next equation of the class
({β ^i

+ 5<*2{2qyyx + D- \q\y + 2 ^ D " 2 ^ , + 4 ^ D ^ ι q y + 4qD- ιqyy) ^ J O T

2. Similarly, the hierarchy of Eqs. (3.17) can be written as

. (3.20)

For n = l and βί = ^ the above becomes q^^oiq^ , i.e. it corresponds to
^-translation.

Proposition 3.2. Equation (1.8) is associated with the following equation:



Recursion Operators and Bi-Hamiltonian Structures. I 385

where V12o denotes an arbitrary off-diagonal matrix and the operator Ψl2 (acting
only on off-diagonal matrices) is given by

Ψί2^(Pl2-QΪ2Pl21Ql2), Pι2F12ΦF12χ-JFl2yrFl2y2J. (3.22)

To derive the above note that (1.8) can be written as

WX = &W9 Q = Q + JDy. (3.23)

Equation (3.23) is compatible with Wt= VW if

Qt=Vx-ίQ,n. (3.24)

We represent the operator V by

(VF)(x,yι)= Sdy2V(x,yi,y2)F{x,y2). (3.25)

Then [ β , P] = $ dy2(Ql2Vl2)F2, where Ql2F12 = Q1Fi2-Fί2Q2 + JFl2y

-\-F12yJ. Hence (3.24) implies δί2Qίt = (D — Ql2)Vl2. Splitting this equation
into diagonal and off-diagonal parts we obtain

δi2Q2t = Pi2V12o-Q;2Vl2D, P12V12D-Q;2V12O = 0. (3.26)

where Vί2n and Vί2o are the diagonal and off-diagonal parts of V12. Hence
Eq. (3.21) follows.

Remark 3.3. The operator Ψί2 satisfies the following important commutator

relationship:

lΨl2,hl2]Fl2o=-2xh'l2Fl2o, (3.27)

where Fl2ois the off-diagonal part of the arbitrary matrix function Fί2 and prime
denotes differentiation with respect to yx.

The above relationship follows by considering the diagonal and off-diagonal
parts of the following equation

lD-Q12,hl2-]F12=-2ah'ί2σF12o. (3.28)

Remark 3.4. Assuming

Vχ2O= Σ%2V{Δ, ^off-diagonal, (3.29)
j=o

Eq. (3.21) implies

Qu = σ!dy2δ12Ψ
n

12Qί2υl2D; P12V12D = 0, (3.30)
R

where V12D is any diagonal matrix solving (3.30b).

To derive (3.30) note that Eqs. (3.21) and (3.27) imply

Σ Σ ι \ (3.31)

Equating the coefficients of δ\ \\γ, δ{2, n ^ j ^ l , to zero we obtain

Ό \ 2 — U 5 Ό \ 2 — (2 \n- 1 1 2 1 2 ' Z α i ; i2 —^12^12- \D.DΔ)
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Equation (3.32c) can be written as

2ασι;?2-
1> = P 1 2 t ;?>-βΓ 2 t ; 1 2 D , 0 = Pi2v12D-Qϊ2v[n

2, (3.33)

where v12o is an arbitrary diagonal matrix. Hence (3.32c) and (3.32a)

imply υ[n

2~
1}= ί—~) σQ^2v12D, where V12Ό solves P12V12D = 0. Hence

\2(x J

vψ)= -l/(2a)nΨn

12-
 ισQ;2v12D and the coefficient δ°12 imply (3.30).

Remark 3.5. Let Φ 1 2 be defined by (1.9a), then one easily verifies that

Φl2σ = σΨ12. (3.34)
Equation (3.30), for special choices of V12D yields hierarchies of integrable

equations:
Example 1. Let v12n = σ, then (3.30) implies

Qu=-βn\dy2δί2σΨ\2Ql2l = βn\dy2δl2Φ\2Q-l2σ. (3.35)
R R

To derive (3.35) note that Qϊ2σ = - σQX2. Also (3.34) implies that Φn

12σ = σΨn

ί2.
Hence the integral of Eq. (3.30) implies

-σΨ"l2Qt2I = - Φ\2σQt2l = Φ\2Q~12σ.

Remark 3.6. Equations (3.35) for π = 0,1,2 become

Q, = σQ, βo=~i, (3.36a)

Q, = QX, ^i = - i , 3.36b)

(3.36c)
(Dx - JDy)A = - 2(DX + JDy)σQ2 J

Equations (3.36c) under the reduction q2 = q~ι=q yield the DS equation

φxx-oc2φyy = 2\q\2

xx.

Example 2. Let V12D = I, then (3.30) implies

Equations (3.38) for n = 0,1,2 become

β, = 0, (3.39a)

e t = «G,, j»i = - i , (3.39b)
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Equations (3.39c) under the reduction q2 = Qι=Q yield (β2 = — 4)

qt = 0Lqxy + uq,
(3.39d)

uxx-cc2uyy = 2(x\q\2

xy.

C. Motivation

A crucial step in deriving the recursion operator associated with the Schrόdinger
equation was to use an integral representation of the operator C [see Eq. (3.10)].
Also in deriving the theory for recursion operators we will need an appropriate
Frechet derivative. Both, the integral representation (3.10) and the above Frechet
derivative can be motivated as follows:

Consider

wxx + qw + otwy = O; {qf)(x, y) = | dy2q{x, y, y2)f(x, y2) (3.40)

Equation (1.1) can be thought of as the reduction of (3.40) under q(x,yl9y2)
= δί2q(x,yί). It is clear that q satisfies an equation similar to (3.9) where q is
replaced by q. Since the operator q has the integral representation (3.40b), one is
lead to consider a similar integral representation for the operator C [Eq. (3.10)].
An equation similar to (3.12) is also valid for q, where q*2 are replaced by q^2,

f12. (3.41)

The Frechet derivative of qχ2f12 in the direction σί2 yields

qΪ2lσ12]f12 = ^dy3(σl3f32±f13σ32). (3.42)

This is precisely the directional derivative we use in Sect. 4. More details on the
concept of equations in 2 + 1 dimensions as exact reductions of nonlocal evolution
equations are presented in [35, Sect. V].

4. Algebraic Properties in 2 + 1

The theory of algebraic properties in 2 + 1 is based on the following concepts: a) A
crucial step in deriving the recursion operator associated with a given two-
dimensional eigenvalue problem is the use of an integral representation of
operators depending on q and d/dy. In KP for example q = q + ad/dy is represented
by

(4.1a)

The above mapping between an operator and its kernel induces a mapping
between derivatives:

1 3 / 3 2 , (4.1b)

where qld\_σ12] denotes the directional derivative of the operator valued function
qx in the direction σ12. Using an appropriate bilinear form [see (4.7)-(4.8)]
Eqs. (4.1) imply

13σ32. (4.2)
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The recursion operator Φ 1 2 depends only on q1 and qf, thus one is able to define
Φ 1 2 d [ σ 1 2 ] . b)The theory of symmetries for equations in 1 + 1 is based on the
existence of "starting" symmetries K°, which via Φ generate infinitely many
symmetries. For example, for the KdV K° = qx. For equations in 2 + 1 we find that
the starting symmetries K°12 can be written as K®2Hl2, where K\2 is an operator
and H12 is a suitable function [for the KP H12 = H12(y1,y2y\. The operators K°ί2

depend only on qu g* and thus K°l2d is well defined. The Lie algebra of the starting
operators K°12 acting on Hl2 is closed. This fact, which is of fundamental
importance for the theory developed both here and in [35], can also be traced back
to the integral representation of the fundamental operator q. For example,
Eq. (4.1b) implies:

# i j > i 2 ] / i 2 ~ 4iJL/i2>i 2 = I dy3(σί3f32 - / 1 3 σ 3 2 ) .

Also using

ί ^ 3

it follows that

The above equation can be written as

where the following brackets have been motivated from the above example:

(4.3a)

(4.3b)

In 1 + 1 , one considers the Lie algebra of functions; in 2 -f 1 one, instead, considers
the Lie algebra of operators, thus equations in 2 + 1 have richer algebraic structure
than equations in 1 + 1. c) The recursion operator Φ12 and the starting operators
K\2 have simple commutator relations with δ12 or more generally with
hi2 = h(yi-y2)

Notation. We will consider exactly solvable evolution equations of the form
qt = K(q), where q(x, y, t) is an element of a suitable space S of functions vanishing
rapidly for large x, y. Let K be a differentiable map on this space (we assume for
convenience that it does not depend explicitly on x, y, t). The above equation is a
member of a hierarchy generated by Φ 1 2 , hence more generally, we shall study
qt = K{n\q). Fundamental in our theory is to write these equations in the form

1u= ί dy2δ12Φ\2K°12 1 = J dy2δ12K<ft = K<ft (4.4)π
R R

(in the matrix case, 1 is replaced by the identity matrix /), where K{ι)

2(ql9 q2) belong
to a suitably extended space S, and Φ 1 2 , K°l2 are operator valued functions in S.
For an arbitrary function Kl2(qίiq2) we define the total Frechέt derivative by

^ - ] , (4.5a)
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where Kl2p denotes the Frechet derivative of Kί2 with respect to qh i.e.

, i, ./=1,2, i+j. (4.5b)

We also define a special directional derivative, dictated by the underlying
isospectral problem and denoted by K12d. This derivative is linear, satisfies the
Leibnitz rule and is related to the above Frechet derivative by

f (4.6)

For arbitrary functions / 1 2 e S and g 1 2 e S*9 where S* denotes the dual of S, we
define the following symmetric bilinear form

<gi2>fi2>^ ^dxdyldy2traceg21f12, / 1 2 ,g 1 2 matrices, (4.7)

where obviously the trace is dropped if f12,g12 are scalars. The operator L\2 is
called the adjoint of L 1 2 with respect to the above bilinear form, iff

<Ή2gl2,/l2> = <g l 2 .Wl2>. (4.8)

For arbitrary functions feS and geS*, we define the following symmetric
bilinear form

( & / ) = F ί dxdytraceg/, /, g matrices. (4.9)

The operator L + is called the adjoint of L with respect to the bilinear form (4.9) iff

(L+gJ) = (g,Lf). (4.10)

Remark 4.1. Definitions (4.7) and (4.9) imply

<^12gl2>/l2> = <«12^ 1 2 / 1 2 >=(g 1 1 , / 1 1 ) . (4.11)

Let / be a functional given by

/ = J dxdyίtτacQρίl= J dxdyλdy2δl2Xv?iCQQl2, ^12 = ^ ^ 1 ^ 2 . 0 ^ ^

(4.12)
(if ρ 1 2 is a scalar, then omit trace).

The extended gradient grad 1 27 of this functional is defined by

<grad12/, >==/,[•] = ldxdyidy2δ12ρ12di-l. (4.13)

The gradient of /, grad/, is instead defined by

(grad/, ) = Ifl • ] = J 2 d x d W / [ ] (4.14)

It is easily seen that a function y12eS* is an extended gradient function (i.e. it has a
potential I) iff

ΊMd = Ί\id. (4.15a)

A function γ e S is a gradient function iff

?/ = ?;• (4.15b)
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Some of the above notions make sense only if for certain functions the directional
derivative exists. Such functions are called admissible.

Throughout this paper m, n denote non-negative integers.

A. Basic Notions

Definition 4.1. i) An operator valued function L 1 2 is called admissible if its
directional derivative is well defined.

ii) A function Kl2 is called admissible if it can be written as Kί2 = K12H12,
where Kί2 is an admissible operator and Hi2 is an appropriate function [for KP,

In analogy with Sect. 2 we give the following definitions:

Definition 4.2. Consider the evolution equation

12K12 = K11. (4.16)

i) The function σί2 is called an extended symmetry of (4.16) iff

<Ί2,lK]=(δi2K12)JLσ12]. (4.17)

ii) The function γ12 is called an extended conserved covariant of (4.16) iff

κ12)Kyi2l=o. (4.18)

iii) The admissible operator valued function Φl2 is called a strong symmetry
(recursion operator) of (4.16) iff

Φ i 2 / [ K ] + [Φ 1 2,(<5 1 2K 1 2)J = 0. (4.19)

iv) The admissible operator valued function Θ12 is called a Noether operator
of (4.16) iff

Θ12fίK]-θ12(δl2K12)i-(δ12K12)dθ12 = 0. (4.20)

v) The admissible operator valued function Φ 1 2 is called a hereditary
operator iff

^i2 d [*i2/i2]gi2-^i2^i2 d [/i2]gi2 i s symmetric with respect to / 1 2 ,g 1 2

(4.21)

Remark 4.2. ϊ)σl2 is an extended symmetry of (4.16) iff σ x 2 commutes with δ12K12,

lσl2,δ12Kl2!d = 0. (4.22)

This follows from the fact that σ 1 2 d[<5 1 2K 1 2] = σ 1 2 / [ i£] .
ii) If in (4.12), ρ12 is an admissible function, ρ 1 2 = ρ12H12; then the functional /

depends on H12, I = I(Hί2), and y 1 2 φ g r a d 1 2 7 , defined by (4.13), is also an
admissible function 7i2 = 7 i 2 ^ i 2 ? enjoying the property (4.15a) for every H12. If,
for instance, 1= j dxdyγdy2bl2qX2D~γq[2Hl2 and the directional derivative is

defined in (4.13) [see also (4.1b) and (4.2)], then yi 2 = 4D~1<?Γ2#1 2

 i s the
corresponding extended gradient.
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iii) If y 1 2 in addition to satisfying (4.18) is also an extended gradient function,
then its potential / is a conserved quantity of (4.16). This follows from the
following:

where yi2 = E>rsi(^i2^' The derivative of the above in the arbitrary direction v12 is
zero if (4.18) holds.

iv) Φ 1 2 is a strong symmetry for aί2 iff

Φi2d[βi2] + [Φi2,fli2j=0. (4.23a)

Hence Eq. (4.21) implies that Φ 1 2 is a strong symmetry for (δί2Ki2) (see
Lemma 4.1).

v) Θi2 is a Noether operator for aί2 iff

Θ12dίa12-]-Θί2ar2d-a12dΘ12 = O. (4.23b)

Hence Eq. (4.20) implies that Θί2 is a Noether operator for (δί2Kί2) ( s e e

Lemma 4.1).
vi) In the above definitions we assume that σ 1 2 , y 1 2 , 6 > 1 2 , Φ 1 2 d o not explicitly

depend on t. Otherwise, σ12f[_K] should be replaced by dσ12/dt + σ12f[K~\;
similarly, for γί2f9 Θ12f9 Φί2f.

Remark 4.3. i) Φ 1 2 maps solutions of (4.17) to solutions of (4.17);
ii) Φf2 maps solutions of (4.18) to solutions of (4.18);

iii) Θ12 maps solutions of (4.18) to solutions of (4.17);
iv) if Θ12 solves (4.20) and Φ 1 2 solves (4.19) then Φ"6>12 also solves (4.20).

Definitions 4.2 make sense only if (δ 12Kί2)d exists. For equations generated by

Φi2> (̂ 12-^1 i)d i s w e l l defined:

Lemma 4.1. Assume that the admissible operators Φ 1 2 and K°12 satisfy the following
operator equations

ίΦ12,hl2] = -βh\2, (4.24a)

ίKΪ2,hι2-] = -βί2h'i2, (4.24b)

where /?, β are constants, S12 is some admissible operator, h12 = h(yί—y2) and prime
denotes derivative with respect to y1. Then all notions introduced in Definitions 4.2
are well defined for any Eq. (4.4)π. In particular:

) d , (4.25)

where the operator 2 is defined by

[β,άl2] = 0, 0 ft12 = Λ'12, (4.26)

and άl2 is any admissible operator. Thus

Equations(4.24) imply that δ 12Φ
n

ί2K°ί2 1 = (Φ 1 2 + β@)n(K°12 + /^23>)δ γ 2 which
is an admissible function since Φ 1 2 , Ki 2 , Sl2 are admissible operators.
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Remark 4.4. i) For the two-dimensional AKNS we use two starting operators K°l2\
both of these operators commute with h12 (i.e. fi=0). For the two-dimensional
Schrδdinger we also use two starting operators K°ί2; one of them commutes with

n

hί2, the other implies fi= —, S12 = D.

ii) It is clear that the theory presented here, suitably modified, is also valid for
more general commutator relations than the ones given by (4.24). In investigating a
new eigenvalue problem one first computes the commutator of Φί2 and K\2 with
hί2; one then builds a general theory based on these commutator relations.

iii) We remark that Eq. (4.24a) could be derived directly from the underlying
isospectral problem without using the explicit form of Φ12. As an example, in
Sect. 4.E we show that the equation ΦXjWγW^ =AλWxW2 (which is a direct
consequence of the spectral problem Wxx + qW=λW) implies Eq. (4.24a), with
β=-4oc.

The usefulness of the extended symmetries and the extended gradients follows
from the fact that their reduction yields symmetries and gradients, respectively.

Theorem 4.1. Assume that the admissible operators Φ 1 2 , K®2, satisfy

[<Z\2A 2]=-/^2, (4.28a)

ίK°ί2,δ12]=-β12δ'ι2, (4.28b)

where β, β are constants, Sx 2 is such that

and prime denotes derivative with respect to yγ. Then:
i) // σ12 is an extended symmetry of

l l 2 K [ » 2 = K [ n i , (4.29)

σ n is a symmetry of (4.29).
ii) Similarly, if y12 is an extended conserved covariant of (4.29), y n is a

conserved covariant of (4.29).
iii) If y12 is the extended gradient of a conserved quantity of (4.29), y11 is the

gradient of a conserved quantity of (4.29).

Proof We first note that Eqs. (4.28) imply

ai) Φ ί 2 /[ ¥i2gi2-δ12Φi2fί ]g12 = 0, (4.30a)

a2) Φi2d[^i2 ] δ 1 2 g 1 2 - < 5 1 2 Φ 1 2 d [ . ] δ 1 2 g l 2 = 0, (4.30b)

a3) (δ12K°12 1),[ ] = δ12(K°12 1),[ ] , (4.30c)

a4) (δl2K°l2 - \)lδ12 ] = δί2(δ12K°ί2 1),[ ] . (4.30d)

Equations (4.30a), (4.30b) follow from (4.28a) (see Appendix A). Using (4.28b) and
the fact that S 1 2 / [ ] # i 2 = £i2d[ ] # i 2 = (), Eqs. (4.30c), (4.30d) take the form of
(4.30a), (4.30b) (with Φ 1 2 replaced by K°12). However, these equations follow from
(4.28b) following a proof similar to the one given in the Appendix A.
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a) Equations (4.28a), (4.30a), (4.30c) imply

(δ12Φ\2K°l2 1),[ ] = δi2(Φ\2K°12 - 1),[ ] . (4.31)π

We derive Eq. (4.3\)n by induction: Eq. (4.31)0 is (4.30c). Let subscript Ldenote any
derivative, such that the Leibnitz rule holds. Then

Hence

(δ12K^+1))Lί ] = Φ 1 2 i [ ] 5 1 2 M 1 + * I 2 ( 5 I 2 M 1 ) L [ ] + ^ ' I 2 M 1 ) L [ ]• (432)

We assume that (4.3l)n is valid, then applying Θ on it, it follows that

{δ\2^2)fί^=δ\2K%U (4.33)

is also valid: To derive Eq. (4.33) note that Eqs. (4.26) imply

S)δ12ά12-l=δ'ί2ά12-i.

Applying the L-derivative on the above we obtain

The above equation for L—f, and (4.26) imply (4.33). Equation (4.31)π+1 is valid iff:

The first terms of the left- and right-hand sides of the above equation are equal
because of (4.30a); the second and the third terms are equal because of (4.31 )„ and
(4.33), respectively.

b) Equations (4.28a), (4.30b), (4.30d) imply

(δ12Φ\2K°ί2-l)lδί2^ = δ12(δ12Φl2K°ί2 l)l^. (4.34),

To derive Eq. (4.34)π we use again induction. Equation (4.34)O is (4.30c). Assume
that (4.34)π is valid, then applying the operator Q) on it, it follows that

2(δl2κr2)l • ] . (4.35)

Using (4.35) it follows that Eq. (4.34)B+1 is valid if

The first term of the left- and right-hand sides of the above equation are valid
because of (4.30b); the second and the remainder terms because of (4.34)n and (4.35),
respectively.

c) Equations (4.28), (4.30), (4.34),,, (4.31)n, and (4.6) imply:

δi2(δ12ΦΊ2KΪ2 \)dί-]=(δ12ΦΊ2K°12- ί)d[δ12 ]=(<51 2ΦΪ2K?2 •!)/[•]

= δί2(Φ"l2K°12 •!),,[•]. (4.36)
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Using the definitions of symmetries and extended symmetries and Eq. (4.30c-d),
the first part of Theorem 4.1 follows:

°ut= Sdy2δί2σί2t= J dy2δί2(δί2Φ
n

12K°ί2 1)J> I 2 ]
R R

12(Φn

12KΊ2 • \),\σ] = K ? ί , [ σ n ] .

The derivation of ii) is similar to the derivation of i): It follows from the
equations

(δ12Φ12K°12 • i)% ]=δ12(Φ"12K°ι2 1)*[ ] , (4.37a)

(δ12Φ12Kfl\)tίδ12^ = δ12(δ12Φ12K
0

12 iU^, (4.37b)

which are direct consequences of Eqs. (4.31)B, (4.34)π, (4.6), (4.7), and (4.8). Then

7u,= Idy2δ12γί2t= - J dy2δ12(δ12Φ"12K°12 •

The derivation of iii) follows from ii) and the fact that if y 1 2 is an extended gradient
function y1 ί is a gradient function: Recall that yl2 is an extended gradient iff yΐ2d[_ ]
= 7i2dC ] ? namely iff <7 1 2 d[g 1 2],/ 1 2> = <g 1 2,y 1 2 d[/ 1 2]>. Letting/1 2->(51 2/1 2 and
gi2-+<5i2gi2> we obtain (7u /[gu],/ii) = (gii,7ii /[/ii]) which implies that
ynf

 = yΐif (711 i s a gradient). Moreover, one could easily show that if
y1 2 = grad12/, then y n = g r a d / .

Another important property of the extended symmetries is given by the
following theorem:

Theorem 4.2. // σ 1 2 is an extended symmetry of Eq. (4.29), then σ12 = 0 is an auto-
Bάcklund Transformation for Eq. (4.29). In equation σ12 = 0, qι and q2 are viewed as
two different solutions of (4.29).

Proof If σ12 is an extended symmetry of Eq. (4.29) and σ12 = 0, then Dtσ12

= , 1 2 + σ 1 2 ΓK] =0, which implies the result.
ot ί

Remark 4.5. Theorems 4.1 and 4.2 show that the symmetries and the auto-
Backlund Transformations of an equation originate from the same entity: the
extended symmetry. This remarkable connection between symmetries and auto-
Backlund Transformations exists also in 1 + 1 dimensions. If we consider as an
example the classes of evolution equations in 2 +1 dimensions (3.19), (3.17), (3.35),
and (3.38), then extended symmetries and gradients for the corresponding 1 + 1
dimensional systems are still defined by Eqs. (4.17) and (4.18), in which the
operators (δ12Kί2)d and (δ12K12)^ a r e evaluated at α = 0. For α = 0 Φί2 is indeed
the operator that generates Backlund Transformations in 1 + 1 dimensions [38].

The above theorems imply that it is useful to have an effective way of
generating extended symmetries and extended gradients of conserved quantities.
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For equations in 1 + 1 one makes fundamental use of the following two notions:
a) if Φ is hereditary it generates infinitely many commuting symmetries, b) If Φ
admits a factorization in terms of compatible Hamiltonian operators it generates
infinitely many constants of motion in involution. Both the above notions are
extended to equations in 2 + 1.

B. Characterization of the Starting Symmetry K°ί2 Ήί2

through the Recursion Operator Φl2

Fundamental role in the theory presented in this paper is played by a hereditary
operator Φ 1 2 and a starting symmetry K®2Hί2. It is interesting that the recursion
operator Φί2 algorithmically implies K°2H12. Furthermore, if Φ12 is hereditary, it
is also a strong symmetry for K°ί2Hl2.

Definition 4.3. A starting symmetry associated with the recursion operator Φ 1 2 is
K°2H12, where the admissible operator K°l2 and the function H12 satisfy

§12Ή12 = (4.38)

and S12 is an invertible operator, of course, on a space of functions excluding
KQTS123H12.

Examples. 1. For the KP hierarchies, Sl2 = D and/or S12 = D(qϊ2) ~ ιD. This implies

° t ' §ί2 = D, (4.39a)

yιD, (4.39b)

(4.40)

with H12 any solution of DHί2 = 0.
2. For the DS hierarchies S12=(Q^2y

iP12. This implies

K\2 = Qϊ2σ and/or K°l2 = Q^2,

with H12 any diagonal matrix solving P12H12 = 0.
For the results presented in this paper we only use a subclass of solutions of

DH12 = 0 and Pi2H12 = 0, given by H12 = h12=h(y1—y2) and Hl2 = hί2(al + bσ\
a, b constants, respectively. More general solutions of the above equations are used
in [35] and give rise to time-dependent symmetries.

Lemma 4.2. // K°12H12 is a starting symmetry associated with the hereditary
operator Φ 1 2 , then Φl2 is a strong symmetry of K°l2Hl2.

Proof. Since Φ 1 2 is hereditary,

Letting g 1 2 = £12 Ήί2 we obtain

symmetric i n / 1 2 , g 1 2 . (4.41)
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Using Φ12S12H12 = K^2H12, Sί2H12=0 and its consequence Sl2d[f12]H12 = 0,
for every fl2, we obtain

(^? 2 H 1 2 ) < I [/ 1 2 ] = 0, V/12,

(4.42)
thus Φ 1 2 is a strong symmetry of K°12H12.

C. Hereditary Symmetries

Theorem 4.3. Assume that the admissible hereditary operator Φί2 and its associated
starting symmetry K°2Hί2, defined via

Φ12§i2H12 = &ϊ2H12, S12Hϊ2=0 (4.43)

satisfy
ίΦ12,h121=-βh\2, (4.44a)

LK°12,h12]=-β12h'12, (4.44b)

where β,β are constants, S12 is an admissible operator, hl2 = h(y1~y2) and prime
denotes derivative with respect to yλ. Further assume that

lKΪ2HγlK°12H[2ttd=O, for IHΪlHψU^O, (4.44c)

where [ ] d , [ ] z are defined by (4.3) and hl2 belongs to H12. Then

lΦ?2£
o

12HγLΦΊ2K°12H[2nd = 0, for lHγLtffflt = 0. (4.45a)

Furthermore,

^12^12 ' 1 a r e extended symmetries of {4Λ)n, (4.45b)

for all nonnegative integers m, n.

Proof In analogy with the results of 1 + 1 one easily verifies that if K{$, Kf2

]

commute, Φ 1 2 is hereditary and Φ 1 2 is a strong symmetry for both K^ and Kf2\
then Φ\2K

{H, Φ™2K
(Q also commute, for all m,n. Using these results with

KΫ^K^HΫl Kfl^K^Hfl one immediately proves (4.45a) above. To prove
(4.45b) we note that (4.44) imply

<5i2*?l= Σ K^Γ/K°12δ{2, (4.46)

where bnJ depend on /}, jϊ (see Appendix B). Hence

T2X?2 I, Σ K^Γ/K^ δύ =o.^ o J
(4.47)

Equation (4.47) follows from (4.45a) since [1, b\2~\i = 0 for all nonnegative integers
L The left-hand side of Eq. (4.47) equals

but the first term of the above equals (ΦT 2 ^? 2 l ) / [^ ( n ) ] , hence (4.45b) follows.
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It turns out that the recursion operators associated with both the two-
dimensional Schrόdinger and the two-dimensional 2 x 2 AKNS are hereditary.
Actually, isospectral eigenvalue equations always yield hereditary operators (see
Sect. 4E).

Remark 4.6. If Φi2 generates two classes of evolution equations (4.4)n, correspond-
ing to two different starting points M 1 2 and N 1 2 , and if, in addition to (4.44), we
have

ίM12H\ίlN12H[2i]d = 0, for [ i / ^ J / ^ O , (4.48)

then Φ™2M121 and Φ ^ π ' ^ a r e extended symmetries for both classes of
evolution equations.

D. Bi-Hamiltonian Systems

Definition 4.4. i) An admissible operator Θί2 is called a Hamiltonian (inverse
symplectic) operator iff

a) 6 > * 2 = - Θ 1 2 , (4.49a)

b) it satisfies the Jacobi identity with respect to the bracket

{ai2,bί2,cί2} = (al2,Θl2d[Θ12bl2]c12y9 (4.49b)

for arbitrary α 1 2 , bl2, c12.
ii) An Eq. (4.16) is of a Hamiltonian form (or is a Hamiltonian system) if it can

be written as

9 i t = ίdy2δ12θ12γ129 (4.50)
R

where <912 is a Hamiltonian operator and y12 is an extended gradient function of
the form yί2 = yί2 1 [with, of course, (y\2H l 2)d = (yl2H12)f],

The associated Poisson bracket is given by:

(4.51)

where the functional I{i) is given by 7 ( ί )= J dxdyίdy2δί2^l2Hψ2.
R3

Remark 4.7. If Θ12 satisfies a), b) above then the Poisson bracket (4.51) is skew
symmetric and satisfies the Jacobi identity.

Proposition 4.1. Let

Gi2 = Θ\ifi2> ®\i s^ew symmetric. (4.52)

Then for arbitrary a12,bί2 the following identities are valid.

(4.53)
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Let Θ12 be Hamίltonian and let α 1 2 , bl2 be extended gradient functions. Then

a2) \β12a129 Θ12bl2]d = Θ12 grad 1 2 <α 1 2 , 6>12fc12>. (4.54)

These identities imply:
a3) If Θ12isa Hamiltonian operator and fγ 2 is an extended gradient, then Θ12is

a Noether operator for G 1 2 .
a4) If Θ12is a Hamiltonian operator and it is a Noether operator for G12 then

fί2 is an extended gradient function.

The above results are exactly analogous to those in 1 +1 and thus their
derivation is omitted.

The above results can be used for any Hamiltonian system as soon as the
commutator [Θl2,Hi2] is specified. However, for a completely integrable
Hamiltonian system additional results are valid.

Proposition 4.2. Let

Mm) ̂ _ (φ* \mfii - 1 £0 Am) ̂ _ Mm) . Λ &(n) _^ φn £θ (Λ cς\
/12 — \ψ\2) ^ 1 2 ^ 1 2 ? /12 — /12 *> ^ 12 ~ ^12^12 {^.JJ)

Assume that Θl2 is Hamiltonian, its inverse exists and that y{™2Hι2 are extended
gradients. Further assume that Eqs. (4.4) are valid. Then

ii) {y{™lK{?l) = O, if [M 1iM 22 )]/ = 0. (4.57)

Proof. Since the hereditary operator Φ12 is a strong symmetry for the starting
symmetry K°l2Hί2 that satisfies (4.4c), then [K^H^lK^H^^O if
lH[ί

2\H[2

2

y]I = 0. Then (4.56) follows from Proposition 4.1a2). Equation (4.57)
follows from (4.56) choosing H^ = ί and H{^2

] = δ{2:

(/u ),M1)=<) ;i2 )^i2^ (Γ2>= <y(Γ2 t Σ bnίSΦ
n

12

sκ°12δ
s

ί2y = o .

Theorem 4.4. Lei Θ-^, Θi22, Θi^ + ®i22 be Hamiltonian operators and assume that
Θ{ιl is invertible. Then

i) Φi2 = ®i22)(®i12))~1 ί 5 β hereditary operator.

ii) Φ\2Θ
{γl, are Hamiltonian operators.

iii) 7/ yςl2Hl2=(Θ{ι2

))~ιKςl2Hι2 is an extended gradient function and if Eqs.
(4.44) hold, then Eq. (4Λ)n is a bi-Hamiltonian system having Θ^, Θf2

] as Noether
operators.

Furthermore, all functions y{™2

]

Mm) _^_Mm) Λ Mm) _j_ ((M)(1)\~ 1 j ^ ( m ) K^ = Φm K® (A 58)

are extended gradients of conserved quantities in involution under the two Poisson
brackets defined by

{/<">, /<">} = (δ12fΠ © 1 2 y ? ] > , 6>1 2 = Θ*/2> or Θ'Λ1 (4.59)

Proof. The derivation of the above results is analogous to similar results for
equations in 1 +1 (see for example [7]). With respect to iii) above we note that
Ki?2Hί2 = Φ'{2Θ[1

2}fί2H12, hence Φ\2Θ
{^2 is a Noether operator for Φn

i2K°l2H12;
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the arbitrariness of H12 and (4.46) imply that Φ\2Θ
{±2

) is a Noether operator for
(4Λ)n; hence (4Λ)n is a Hamiltonian system with Φt[2Θ

{\2 a s a Noether operator.
However, Φ 1 2 is a strong symmetry for K°ί2H12, hence Φ\2 is a strong symmetry
for K°ί2H12. Since Φ ^ ® ^ is Noether and Φ\2 is a strong symmetry Θ ^ is also
Noether. Thus Θ{{ί

2

) = Φi2Θγ2

) is also a Noether operator. Furthermore,
Mn2 = φ i 2 m^i12)y(i2)

?

 a n d the operator Φ"^m6)(

1

1

2

) is both Noether and Hamiltonian,
thus f™2H12 are extended gradient functions (using Proposition 4.1).

It now trivially follows [since Theorem 4.3 implies that K(/§ are extended
symmetries of (4.4)J that y{™2

] are conserved covariants of (4.4)n. Moreover,
Proposition 4.2 implies:

{i{m\ i{n)}H=i

= <y?M^Θ[2ly(Ϊ2l)H[2ly=o, if

and the choice Hψ2 = δ% H[2

2

} = \ yields

or Θ™. (4.60a)

Namely γ("l, are extended gradients of conserved quantities in involution. If
[Θ12,δί2] = 0, then

o. (4.60b)

Combining Theorems 4.1-4.4, we obtain the following important theorem.

Theorem 4.5. Let Θγ£ + vΘ\2

2

] be a Hamiltonian operator for all constant values of v.
Assume that Θ^l is inυertible. Define

Φ π Φ β ' i M r 1 . X?i = Φ"12^?2 l, 7?2=(Θ(

1

1i)-1K?2. (4.61)

Assume that the operator Φί2 and its associated starting symmetry K®2Hl2 satisfy
(4.44). Further assume that y^l is an extended gradient function. Then

i) Equations (4.4)π are bί-Hamiltonian systems.
ii) K ^ φ Φ ^ K ^ l, yi2) = (Φi2)m7i2 a r e extended symmetries and extended

gradients of conserved quantities, respectively, for Eq. (4.4)n.
iii) K^ and y^ are symmetries and gradients of conserved quantities in

involution for qit = K{"{.
iv) K(^ = 0 are auto-Bάcklund Transformations for Eq. (4.4),,.

v) CM m iUΉ]/ = 0, (4.62a)

{/(m),/(»>}Φ<δ127?5,θ127?>> = 0, © 1 2 = β(

1

1

2

) or Θ\2l (4.62b)

where

[_a,b-\f = af[b-]-bf[_a\. (4.62c)

E. Isospectral Problems Yield Hereditary Operators

Section 4.C illustrates the importance of hereditary operators. For equations in
1 + 1, isospectral problems yield hereditary operators. A similar construction is
possible for equations in 2 + 1. Furthermore, this construction also provides us
with a simple commutation relation of the type (4.24a) between Φ 1 2 and hί2.
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Proposition 4.3. Let

dV
— = U&λ)V (4.63)

be an isospectral two-dimensional problem; q is an operator depending on q(x, y) and
d/dy; λ is an eigenvalue. Assume that (Gλ)ί2, the extended gradient of λ satisfies

1 2 . (4.64)

Then if Φι2Φ Ψ*2 has a complete set of eigenfunctions, it is hereditary operator.

Instead of deriving this result we illustrate it by two examples. The interested
reader is referred to [5]. A proof of completeness should follow a two-dimensional
version of the method developed by [10].

The derivation of Eq. (4.24a) from Eqs. (4.63) and (4.64) is also illustrated in an
example.

Example ί. Consider the isospectral problem

*W + (4i+^>i=^i (4.65)

Let 4i =F<ZI +<xDyi and consider the directional derivative of (4.65):

Multiplying the above by vf, where vf satisfies the adjoint of (4.65), with respect to
the bilinear form (4.9), integrating with respect to dy^x, and assuming
J dxdy^VγVi =1 it follows that

tquUi2']vl . (4.66)

Using (4.1b) to evaluate qld[fί2]vι it follows that

Λf[/i2]= ί dxdy1dy2v2vϊfί2.
R3

Hence, using A d [/ 1 2 ]= f dxdy1dy2(gradλ)21f12, it follows that
R3

= ^ι; 2

+ . (4.67)

Since Φ12 defined by (1.2a) satisfies [29]

ΦΐyVivt =4λv,Vy , (4.68)

it follows that Φ 1 2 is hereditary.

Example 2. Consider the isospectral problem

Vlχ-JVίy-Q1V1=λJVl9 (4.69)

where J, Q are defined in (1.8). In analogy with (4.66) and assuming

tr J dxdy1V1

+JV1 = l, we find
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Hence, using QιJFί2]Gl2 = J dy3Fί3G32, it follows that
R

λdίF12] = tτ i dxdyίdy2V1

+F12V2.

Thus

(gradλ)1 2 = V.V+.

Since R12=D — Qί2 satisfies

R12V1V2

+=λJV1V2

+, JFi2ΦJFΐ2-F12J, (4.70)

it follows that {Rϊ2J)* = J*(Rϊ2)* = JRϊ2 is hereditary (see [39] for the analogous
result in 1 -f-1 dimensions).

Now we show that Eqs. (4.65) and (4.68) imply

hί2 = h(yι-y2). (4.71)

First, we recall that Eq. (4.68) follows from Eq. (4.65): Eq. (4.68) and its adjoint
V2

+

xx + (q2-aD2)V+=λV2

+ imply

VlχxV2

+ + (q1+σ.D1)V1V+=λV1V2

+, (4.72a)

Vι V+=λVx V2

+ , (4.72b)

^ VI = λV, VI, (4.73a)

lχV2

+=λVl3cV2

+. (4.73b)

Adding Eqs. (4.72a) and (4.72b), Eqs. (4.73a) and (4.73b), and subtracting
Eq. (4.72b) from Eq. (4.72a) we obtain, respectively,

(D2 + qΐ2)Vί V2

+ = 2VuVl + 2λVγ V2

+ , (4.74a)

^ E>^ V1V2

+ , (4.74b)

Vι K -VίV2

+=D-1qi2V, V2

+ . (4.74c)

Using Eqs. (4.74b-c) into Eq. (4.74a) we finally obtain the eigenvalue equation
(4.68).

Now, by virtue of the commutation relations [qγ + (xDu h12]
= [q2 — ocD2,h12]=(xh'12, Eqs. (4.72) and (4.73) are still valid replacing
Vi^V12 = h12Vl9 V2

+ ^V?2 = hl2V+ and λ^λl2=λ + 2och'l2/hί2; then ΦX2Vl2Vγ

+

2

= ^λί2Vί2Vι

+

2, namely

Using Eq. (4.68) and the completeness of the eigenfunctions of Φf2, Eq. (4.71)
follows.
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5. Applications

In this section we apply the theory developed in the previous sections to the classes
of evolutions associated with the Schrόdinger eigenvalue problem (1.1) and with
the 2 x 2 AKNS problem (1.8).

Some interesting details of the explicit calculations concerning these two
examples are separately presented in Appendix C.

An isospectral problem [e.g. (1.1)] yields a recursion operator Φ12 [e.g. (1.2a)].
This operator must be hereditary (see Sect. 4.E). The isospectral problem also
yields a basic operator ql2; the integral representation of this operator implies a
directional derivative qίd. Using the bilinear form (4.7), 4ί, q*d are also obtained.

i) In investigating the time-independent symmetries of the hierarchies
associated with Φ12 one then needs to: a) Find the starting symmetries K®2Hί2

associated with Φ12 (see Sect. 4.B). b) Calculate the commutator relations of
Φ 1 2 , K°12 with hl2. c) Compute the Lie algebra of the starting symmetries. Then
Theorems 4.1, 4.3 yield hierarchies of infinitely many commuting symmetries.

ii) In investigating the Hamiltonian nature of the hierarchies associated with
Φί2 one, in addition to the above, also needs to: a) Prove that Θ[% Θf2\ where
Φ12 = Θf2\Θ[1

2

y)~1, are compatible Hamiltonian operators, b) Verify that the
starting covariants are extended gradients. Then Theorem 4.4 yields hierarchies of
infinitely many involutionary conserved quantities.

A. The Schrόdinger Eigenvalue Problem

The spectral problem (1.1) yields the hereditary operator

Φl2 = D2 + qt2 + Dqt2D-1 + q^2D-1q^2D-\ (5.1a)

where

ί (5.1b)

The integral representation of the basic operator qγ implies an appropriate
directional derivative:

4i/i2=Hgi+a0i)/i2 = ̂ dy3q13f32, qu[σ12]fl2 = ̂ dy3σ13f32 . (5.2)

The adjoint of Eq. (5.2) implies

4ίfi2 = ((li-κD2)fί2= ^dy3f13q32, 4 ί d b 1 2 ] / 1 2 = \dy3fl3σ32. (5.3)

Combining the above we obtain the following derivative:

«i2WU/i2]= j-aufaϊi + εfii) ,
0 8 ε = 0

(5.4)
32 ±gl3/32)>

which satisfies the projective property (4.6).
i) Let us first investigate the time-independent symmetries of the equations

generated by Φ 1 2 .
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a) Equation (4.33) yields

§ί2 = D, H12 = H12(yl9y2), (5.5a)

and starting operators K\2 given by

Nl2=qii, Ml2=Dqΐ2 + qϊ2D-ιq-2. (5.5b)

b) The commutators of Φί2 with hl2 imply the following operator equations:

[ Φ i 2 A 2 ] = 4 α A ; 2 , [^i 2 s Λ 1 2 ] = 0, [Mί2,h12-] = 2ocDh'l2. (5.6)

Hence, if

N[n

2 = Φ"ί2N12 1, M["2 = Φ\2M12 1, (5.7)

then Eq. (4.46) yields

(j) (5.8a)

K , Σ i T ) (5 8b)

(see Appendix B).
c) The Lie algebra of the starting symmetries is given by

(5.9)

where [ , ] d , [ , ] 7 are defined by (4.3).
ii) We now investigate the Hamiltonian structure of the equations generated

by Φ 1 2 :
a) Φ,2Θψ2 = Θ[1

2

)Φ:f2, where

We first note that both Θ{γ2

] = D and Θf2

] = Φl2D are skew symmetric:

0 a 2 ) * = _ / ) = - 0 ( 1

1

2 ) 5 β ( 1

2

2 ) * = = ( φ 1 2 / ) ) * = - D Φ f 2 = - Φ 1 2 Z ) = = - β (

1

2

2

) .

Furthermore, the bracket

{a 12, &i2J ^12} = <ai2>

satisfies the Jacobi identity. Also Θ ^ , ̂ i22 are compatible.

b) y°ί2Hu = D~ 1(li2H 12 a n d 7i2 = ^ ~ ^ 1 2 ^ 1 2 a r e extended gradient func-
tions. Thus the Theorems 4.1-4.4 imply:

Proposition 5.1. Consider the two compatible Hamiltonian operators Θ^l = D

= D3 + q
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and define

N(ΐl = Φn

12N12, M^ = Φ"ι2Ml2, f&M&ttr^u and/or (9$)-1

where the starting operator Nί2 and M 1 2 are defined by N12 = qϊ2

M12 = DqΪ2+βΪ2D~1qΪ2- Then
i) M ^ = M{™2

] 1 and Nty = N(™2

} 1 are extended symmetries for both classes of
evolution equations

μδ12N«2 = Nfl (5.10a)

12M[i = M["l; (5.10b)
R

namely

[M?2>,(512X?>L = [Mt5i2M1]d = 0, (5.11)

where K(^2 = N^2 and/or M{&,
ii) y(™2

} = f™2 -1 are extended gradients of conserved quantities of both classes of
evolution equations (5.10), namely

κ["2)*[γ(rn=o, (5.12a)

(fΠH12)d = (f$Hl2)3, Hι2χ = 0, (5.12b)

where * indicates the adjoint operation with respect to the bilinear form

</i2>&i2> Φ J 3 dxdyίdy2f2ίgί2 . (5.13)

iii) The two classes of evolution equations (5.10) are bi-Hamiltonian, namely they
can be written in the form

qu = μ y A ^ / M I = ̂ dy2δ12Θ[2

2Yί 2-
 J>. (5.14)

iv) M ^ and N{^ are infinitely many commuting symmetries of the classes of
evolution equations (5.10), namely

[Mfl>, M[»tif = [M<n>, N ? ί ] / = [Mΐ, M"Π/ = 0. (5.15)

v) 7 ^ are infinitely many gradients of conserved quantities of the equations
(5.10), namely

y ϊ W Π + M i ; Er'ΓΛ=o, (5.16a)

y[%=ΎW;, (5.16b)

where + indicates the operation of adjoint with respect to the bilinear form

(f,g)=^dxdyfg. (5.17)

The corresponding conserved quantities are in involution with respect to the Poisson
brackets

or Θψ2; (5.18a)
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if

©12 = &Ϊ1, <<Wit Dy^}=(y[nl Dy™). (5.18b)

vi) The equations M{$ = 0 and N^ = 0 are Bάcklund Transformations for both
classes of evolution equations (5.10).

B. The 2 x 2 ΛKNS Problem

The spectral problem (1.8) yields the hereditary operator

Φ12 = σ(Pί2-Qΐ2Pΐ2Qΐ2) (5.19)

acting on off-diagonal matrices, where

Q12, (5.20a)

F12yJ. (5.20b)

The integral representation of the basic operator 6 i Φ β i + « / ^ i , implies an
appropriate directional derivative:

12F32, & J > 1 2 ] F 1 2 = f dy3σ13F32 ,
R R

(5.21)

and the adjoint of Eqs. (5.21) imply

&Fl2 = Fi2Q2-F12yJ= Sdy3Fί3Q32, 6 f d [ σ 1 2 ] F 1 2 = J dy3Fl3σ32.

(5.22)

Then the reduction to the space of off-diagonal matrices performed in Sect. 3
induces the following derivative of the operator Φ 1 2 :

PΐiG^), (5.23a)

GΪ2Fl2Φ μy3(G13G32±Fί3G32). (5.23b)

Again the Leibnitz rule and property (4.6) are satisfied.
i) The investigation of the time-independent symmetries of the evolution

equations generated by Φl2 gives the following results.
a) Equations (4.38) yield S12 = (Q±2)~1P12, the starting operators K°λ2 are

given by

#i2=NβΓ2, Ml2 = Q~l2σ, (5.24)

and H12is diagonal and such that Pl2Hl2 = 0.
b) The commutators of Φ12 with h12 imply the following operator equations:

, [ # i 2 A 2 ] = [ Λ ? 1 2 Λ 2 ] = 0 , (5.25)

valid on arbitrary off-diagonal matrices. Hence, if

N?>=Φ" 1 2 tf 1 2 ./, Mf2 = Φ\2Ml2*U (5.26)
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then Eq. (4.46) yields

(") r/N12δ{2 , (5.27a)

Γ2

eM12δ{2 • (5.27b)

c) The Lie algebra of the starting symmetries is given by

(5.28)

ii) We now investigate the Hamiltonian structure of the equations generated

by Φί2'
a) Φi2Θψ2 = Θ^2ΦX2, where

θ{ίi = σ, Φh = ̂ Pi2-Ql2Pl2Ql2) = σ-1Φ12σ=Ψ12; (5.29)

notice that on the space of off-diagonal matrices σF12 = j[[σ,Fί2], Θ{H = σ and
a r e skew-symmetric in the space of off-diagonal matrices:

and

Θ[ψ =(Φ12σ)* = -σΦ*2= -Φ12σ= -Θ[2

2

}.

Furthermore, the bracket {A12,Bί2, C 1 2} = (A12, Θψ2d\_Θψ2B12\Cl2) satisfies
the Jacobi identity and Θ{±2\ Θψ2 are compatible.

b) y?2^i2 = (0 (i12 ))"1^?2^ (K°12 = Nί2 or M 1 2 ) are extended gradients, thus
Theorems 4.1-4.4 imply:

Proposition 5.2. Consider the two compatible Hamiltonian operators Θ^ = σ and
f] = P12 — Qϊ2Pΐ2Qϊ2 acting on off-diagonal matrices, and define

lN^2 and/or

where the starting operators N12 and M 1 2 are defined by i V ^ φ β ^ a n ( i
^ i 2 ^ δ Γ 2 σ Then the results i)-vi) of Proposition 5.1 are all valid for the two
classes of evolution equations

M1 = M"l, (5.30a)

M["2 = MW, (5.30b)

introducing trace in the right-hand side Eqs. (5.13) and (5.17) and replacing (5.18b)
by
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Appendix A

Now we show that the assumptions (4.30a), (4.30b) follow from (4.28a), without
using the explicit form of the operator. We show this for the recursion operator
associated with the Schrόdinger eigenvalue problem.

Admissibility requires Φ12 to depend on q*2, moreover, (4.28a) and (3.13) imply
that Φ12 depends linearly on q±2. Then, without loss of generality we have

where ch dt are arbitrary functions of D, D~ι ps, rs are arbitrary functions of q[2

and / 1 2 are defined in (5.4b).
Then the commutation property [gΓ2>^i2]=0 implies

(A.2a)

Appendix B

In this appendix we show that equations

LΦi2,h12]=-βh'129 hί2 = h(yi-y2), (B.la)

l&°12,h12]=-P§12h'129 (B.lb)

and some additional notions concerning the associated spectral problem, imply

δ12K<&= i bnJΦ\-2

eK\2b\2 (B.2)

for suitable constants bnJ.
We first observe that the case /?=0 is particularly simple; indeed, in this case

(B.3b)

This is the case for the two classes of evolution equations associated with the two-
dimensional AKNS problem and for Eqs. (3.20). For the KP class (3.19),
K°12 = M 1 2 = Dq±2 + qϊ2D~ 1qϊ2, ft=β/2= —2α, S12 = D and the result (B.2) is less
straightforward.

In order to obtain it, we first show that

ΦΛ

12Γ12 1 = 0 , Vrc^O; Γ12 = Φl2D-M12. (B.4)

This result could be easily derived using the explicit form of Φ 1 2 and M 1 2 Here we
give a different derivation using the underlying spectral problem (and the
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consequent eigenvalue equation satisfied by Φf2). This derivation is similar in
spirit to the one of (B.Ia) presented in Sect. 4.E.

From Eq. (4.38), it follows that Γ1 2 can be written as

Γί2 = Aί2D, Ai2H12 + 0. (B.5)

The operator A12, which is part of Φ 1 2 , is admissible depending on D, D~ *, qf2. If
for any admissible operator L 1 2 , we define L ^ as L{^=Ll2\q = 0, then

Φl2Γ12l=Φn

ί2Al2Dl=Φ«2A^Dl=DΨn

12A?lU (B.6)

since Ό~ιqD 1 = 0 and [ L ^ , D] = 0. On the other hand, if q = 0, w = l solves
Eq. (1.1) and its adjoint, then Eq. (1.7) implies that

1 = 0 (and A^ -1=0). (B.7)

Equations (B.7) imply DΨn

ί2Aψ^ - 1 - 0 which is equivalent to (B.4).
Equation (B.4) and Eqs. (B.I) imply (B.2). In fact, multiplying Eq. (B.4) by h12

and using Eqs. (B.I) we obtain

(Φ12 + β@)n + 1D - h12 = (Φl2 + β@)n(Ml2 + β$D) - h12 . (B.8)

The above can be written in the following recursive way:

An+ί{h12) = Bn(h12) + Antfh'12)9 (B.9)

where

i 0, (B.lOa)

Bn(h12)Ψ Σ β'i^Φϊϊ'M^fl, B0(hl2) = M12h12, (B.lOb)

h\n2=~^. (B.10c)

The solution Λn + ί(hl2)= £ Bn_βsh{[\) of Eqs. (B.9) and (B.10) implies Eq. (B.2).

Indeed,

δl2Kψ2 = δl2Φ\2Mγ2Λ=δl2Φ\YD \=An+ι{δl2)

= Σ Bn-sΦsδ\2)= Σ KeΦ\~iMγ2δ\2, (B.ll)
s=0 t=0

where

For example, for the KP equation {M = Dq^2-^q^2D~ιq^2)\

δ\2, (B.13a)
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and for the DS equation (Ml2 = Qϊ2σ)\

(B.I 3b)

Finally, we use again Eq. (B.4) to derive the following interesting equation:

Multiplying Eq. (B.4) by hί2 and using (B.Ia), we obtain

Equation (B.I5) for j = n and Eqs. (B.I) imply

and hence Eq. (B.I4).

Remark B.I. i) Equation (B.14) contains (B.4) if Λ2 = l.
ii) Equation (B.I4) can be used to obtain (B.2), (B.I2) in an alternative way. In

fact,

n Γ €

= Σ Σ

Σ β(
r = o V r

(n\\

\ύ—Sj

since the identity

("ls) =

 v ? s

( ~ 1 ) V " S ( j("-J' s = ̂  = "' ( B - 1 7 >
implies that

y βts(B-βγ(n + 1)= γ β'-ψ(n~S),
s = 0 \/ — Sj s = 0 W — SJ'

Appendix C

In this appendix we define explicitly the directional derivative introduced in Sect. 4
for the KP and DS classes. Then we use it to verify some of the results contained in
this paper.

Cί. Evolution Equations Associated with the KP Equation

The directional derivative of the basic operators qt2=qi+q2 + u{Di+D2) as-
sociated with the non-stationary Schrόdinger problem (1.1) is the usual Frechet
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derivative with respect to the kernel qί2 of their integral representation:

, (C.la)

(Clb)

^ ^dy3(f13g32±gί3f32). (C.lc)

In order to make explicit calculations, it is convenient to use the following basic
identities of this algebra of integral operators

a}2b12=±bϊ2a12, (C.2a) ±

(α1

±

2fc1

±

2-ί?1

±

2α1

±

2)c1 2 = (αΓ 2 fe i2)"c 1 2 =-c 1 ~ 2 α 1 ~ 2 fe 1 2 , (C.2b) ±

f ±f (C.2c)±

where ai2,b12,c12 are arbitrary functions of x9ylyy2 decaying at oo and
a^2, b^2, Cf2 are the corresponding integral operators defined in (C.lc).

The integral representations (C.la) imply that the basic operators q*2 can
replace a*2 (and/or ftf2, c^2) in Eqs. (C.2). For instance, if af2 = / 1 2 , b^2 = q^2, and
c^2 = H^2, the identity (C.2c)_ becomes

fάqΰHπ + qΐifΓiHu + HύqϊJ^O, (C.3)

where we have also used Eq. (C.2a) + to replace f12q12 by the expression qf2fί2 in
which the kernel qί2 does not appear explicitly.

It is worthwhile to remark that formulas (C.2) can also be interpreted as matrix
identities in which a, b, c are matrices and the ± operations denote anti-
commutator and commutator:

a±b = ab±ba. (C.4)

Interpreting the operation a^2bί2 as in (C.4), the recursion operator (1.2) of the KP
class becomes the recursion operator

φ = D2 + q+ +Dq + D~1+q~D~iq~D~i (C.5)

associated with the N x N matrix Schrόdinger problem in 1 dimension and
introduced by Calogero and Degasperis [38]. Then important properties of the
recursion operator of the KP, like its hereditariness (4.21), are equivalent to the
corresponding properties of the matrix operator (C.5)! This important connection
is explained from the fact that the 2 + 1 dimensional systems considered here can be
viewed as reductions of certain evolution equations nonlocal in y. These equations
are directly connected to matrix evolution equations (see Sect. 5 of [35]).

Now we use Eqs. (C.2) to verify some results concerning the symmetries and the
bi-Hamiltonian structure of Eqs. (3.19) and (3.20).

a) Φ12 is a strong symmetry oϊ Nί2H12, where Nί2 = qϊ2 and H12χ = 0 (this
result is a consequence of Lemma 4.2; but here it is verified directly).



Recursion Operators and Bi-Hamiltonian Structures. I 411

ιq;2D
1)fι2Hl2=0, since:

the terms without q*2 give

the terms linear in qγ2 give

(qΪ2Hl2)
+f12 + D(q;2H12)

+D-1f12-(qt2f12)-H12-D(qt2D~1fί2r

ΐ2fi~2H12 + Dqΐ2D ~ 1f{2Hι 2 =f1

+

2qϊ2H12 + qt2f12H12 +H^2q
+

12

using Eq. (C.3);

the terms quadratic in qf2 give

b) The Lie algebra of the starting symmetries is given by the following
equations:

d= -Mλ2Hψ2,

(C.6)
where

Nί2=qϊ2, Mί2=Dqϊ2 + qϊ2D-ιq-2, H12χ = 0.

Equation (C.6a) holds, since,

using (C.2b)_. Equation (C.6b) holds since:

™

The verification of Eq. (C.6c) is left to the reader.
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The notion of an extended symmetry σl2 of the evolution equation

q1 = J dy2δ12K{i)

2 = K{il plays an important role in 2 + 1 dimensions. σ12 is a
R

solution of the equation

σι2fίK^ = (δι2K\"l)dίσί2], (C.7a)

where

^ ^ d (C7b)
*f = 0

Again the use of Eqs. (C.2) and the property

(<5"2)±/l2=W+(-l)"ί>"2)/l2 (C8)

simplify the calculations of the operator (C.7b).
c) σ 1 2 is an extended symmetry of

i) the wave equation qlt = Mf} = 2qlχ iff

σ i 2 / [2 ί , ] = 2Dσ 1 2 ; (C.9a)

ii) the KP equation qu = M[1} = 2(qlχxx + 6qιqlχ + 3a2D~1qly^) iff

(C.9b)

if 12 + Dfx\D ~ * + f{-2D -ιqhD-

+ D2 + q\2 + Dq+2D -1+q;2D~ 'q^D ~ ι){Dfx\ + fΓ2D

since, for instance:

fi2Dqt2δ12=(Dqι2)
+f1

+

2δl2-δϊ2f12q12 = 2(q1

t 2 = 2D/i+

2ί i 2 = 2DqtJ12,

δ\ 2 = D(δ\ 2)
 + /i 2 = i>Φi - ^ 2 ) / i 2
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and we have used, for the first and only time in this appendix, the explicit
representation (C.la) of q12.

In order to investigate the Hamiltonian structure of the equations generated by
Φ 1 2 , in addition to Eqs. (C.2) we use the following properties:

af2*=±a+

Γ2, qϊ2*=±qt2. (CIO)

These properties follow from the definitions (C.lc), (C.la), and (4.8):

<fi2><*i2gi2>= ί dxdy1dy2dy3f2l{al3g32±g13a32)
R4

= J dxdyγdy2dy3(f23a3l±f3la23)gl2
R4

d) fί2Hί2 = D-1£0

ί2Hi 2 {K°12 = Nί2 and M 1 2 ) are extended gradients, namely

Hί2)S = (fi2H12)d.
i) If K°ί2 = Nl2, then {fl2Hl2)d\_gl2]=D-'g^2Hi2 and

ii) lfK°l2 = Mί2, then

and

e) In [35] we show that

ln, (C.lla)

- ( C J l b )

where y ^ φ Z ) " 1 ^ / 1 ^ and K®2 = M12. Here we directly verify this result for n = 0,
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which implies that 7iO2 = grad12/o (I*1 this derivation we have used the property
η.(l)*_«.(l) ^

Ί\id —ri2d )
f) The bracket {a129b129c12} = ia129θ^dlθ^b12]c12\ θf} = Φ12D satisfies

the Jacobi identity for every fli2?^i2?ci2 Here we only display some of the
calculations for the linear terms in qf2-

+ cyclic permutations of α 1 2 ,b l 2 , c ι 2

where

Using Eqs. (C.2), it is possible to show that Ll2(bl2,c12) = 0, Vb12, cl2.

C2. Evolution Equations Associated with the DS Equation

As in the previous case, it is easy to check from their definitions

(C.I 3a)

, (C.13b)

F32), (C.I 3c)
R

that the operators βf2 and F*2 satisfy Eqs. (C.2) and (CIO). Moreover, it is possible
to show that the operator Pl2, defined by

satisfies the following equations

fP12Gl2, (C.15a)

(C.15b)
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Now we use Eqs. (C.I3), (C.2), and (C.I5) to verify some result concerning
symmetries and bi-Hamiltonian structure of Eqs. (3.35) and (3.38).

a) Φ 1 2 is a strong symmetry for K\2Hl2, where K®2 = Nl2 = Qϊ2 and
Pί2Hl2 = 0, H12 diagonal.

-QΪ2P721QΪ2)Fl2)-Hί2 + σ(P12-Qt2P^Qt2)F^2Hl2 = 0ί since:

the terms without Qf2 give

the terms with Q^2 give

(in order to show that Φl2 is a strong symmetry for K°12H12, where
K°ί2 = Ml2 = Q~2σ, it is enough to replace Hl2 by σHi2 in the previous
calculation).

b) The Lie algebra of the starting operators (on H12) is given by the following
equations:

where

Nl2 = Qΐ2, M 1 2 = ρ r 2 σ , P12Hψ2 = 0, / / ^ d i a g o n a l , i = l , 2 , 3 ,

Equations (C.I6b) and (C.I6c) are obtained replacing Eψ2 by σE(l\ and Hψ2 by
σH(l\, i = i,2, respectively, in the derivation of (C.I6a).

c) The operator

\2-Qΐ.P iQΐ,), (CM)

defined on off-diagonal matrices, is hereditary, namely

Φi2ίίΦi2Fi2']G12-Φl2Φ12d[.Fl2']G12 is symmetric in F12,G12. (C.18)

In order to show it, we make use of Eqs. (C.2), (C.I 5) and of

J > Gl2 diagonal,

\σFt2G12, G 1 2 off-diagonal.
ϊ + r JσFΓ2Gi2> Gl2 diagonal,

l2yGl2=\σFtG G offdiagonal ( C 1 9 )
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Here we display the calculations for the terms linear in Q\2:

which is symmetric in F12, G 1 2 , since

d) σl2 is an extended symmetry of
ί) β l t = M<°»=-2σe i,iff

σ12fί-2σQ]=-2σδ12, (C.20a)

ϋ) βi, = Λf<1

1

1

)=-2β lχ>iff

. (C.20b)

r 2 + Φx 2 βΓ 2 d [Λ 2 > ( ί 1 2 + 2αβΓ2ίiC^12lσδ[ 2

= (-2P12-2aσ(Dι-D2))Fι2=-2DF12,

since, for instance,

having used the properties

Gf 2σ= —σGγ2, G 1 2 off-diagonal,

Qf2σ=-σQt2,

12 :

12V£12
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e) 7?2#i2 ^σ j^?2^i2 (^12 = ^i2 and/or M1 2) are extended gradients, namely
(fi2H12)t=(f12Hl2)d.

i) If f12 = σN12 = σQ12, then (γ? 2 H 1 2 ) d [G 1 2 ] = σ G 1 2 / ί 1 2 = -σH12Gι2, and

ii) If yA?2 = σ M 1 2 = σρr 2 <5=-δi + 2, then

(fi2H12)lG12] = - G Γ 2 H 1 2 = -H+2G12,

and
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