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Abstract. The algebraic properties of exactly solvable evolution equations in
one spatial and one temporal dimensions have been well studied. In particular,
the factorization of certain operators, called recursion operators, establishes
the bi-Hamiltonian nature of all these equations. Recently, we have presented
the recursion operator and the bi-Hamiltonian formulation of the Kadomtsev-
Petviashvili equation, a two spatial dimensional analogue of the Korteweg-
deVries equation. Here we present the general theory associated with recursion
operators for bi-Hamiltonian equations in two spatial and one temporal
dimensions. As an application we show that general classes of equations, which
include the Kadomtsev-Petviashvili and the Davey-Stewartson equations,
possess infinitely many commuting symmetries and infinitely many constants
of motion in involution under two distinct Poisson brackets. Furthermore, we
show that the relevant recursion operators naturally follow from the underly-
ing isospectral eigenvalue problems.

1. Introduction

In recent years a deep connection has been discovered [1, 2] between certain
nonlinear evolution equations in 1+1, i.e. in one spatial and one temporal
dimensions, and certain linear isospectral eigenvalue (or scattering) equations.
These isospectral problems play a central role in developing methods for solving
several types of initial value problems of the associated nonlinear evolution
equations. The most well known such method, the celebrated inverse scattering
transform (IST) method, deals with initial data decaying at infinity. However, the
isospectral problem is also crucial for characterizing periodic [3] as well as self
similar solutions [4].

It is quite satisfying, from a unified point of view, that the isospectral problems
are also central in investigating the “algebraic” properties of the associated
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nonlinear evolution equations: The isospectral problem algorithmically implies a
certain linear integrodifferential operator @, called the recursion operator. This
operator has remarkable properties: @ maps symmetries into symmetries; @ has a
certain algebraic property [5] which Fuchssteiner [6] calls hereditary and thus
generates commuting symmetries; ®*, the adjoint of &, maps gradients of
conserved quantities into gradients of conserved quantities; @, admits a
symplectic-cosymplectic factorization and thus generates constants of motion in
involution [7]; & times the first Hamiltonian operator produces the second
Hamiltonian [8], hence the associated nonlinear evolution equations are bi-
Hamiltonian systems; the eigenfunctions of ¢ are also symmetries, which actually
characterize the N-soliton solutions [9]; the eigenfunctions of @ form a complete
set [10].

Well-known scattering problems in |+4| are the Schrodinger scattering
problem, the so-called generalized Zakharov-Shabat (ZS) or Ablowitz-Kaup-
Newell-Segur (AKNS) system, and their natural generalization, i.e. the Gel’fand-
Dikii operator, and the N x N AKNS. These isospectral problems are related to
several physically important equations, the Korteweg-deVries (KdV), sine-
Gordon, nonlinear Schrodinger, modified KdV, Boussinesq, N-wave interaction
equations, etc. The above eigenvalue problems have been thoroughly inves-
tigated with respect to both the IST method and the associated algebraic
properties. The IST of the Schrodinger was investigated in [1, 117, of the AKNS
in [12], of the N x N AKNS in [13-15], and of the Gel'fand-Dikii in [16]. The
IST of special important cases of the above systems were investigated in [17]
(nonlinear Schrodinger), [18] (modified KdV), [19, 20] (Boussinesq), [21]
(3-wave interactions). The recursion operator associated with the Schrodinger
equation was obtained by Lenard, of the AKNS in [12], of the Gel’fand-Dikii in
[22] and of the N x N AKNS in [5] and [23]. The general theory of recursion
operators and their connection to bi-Hamiltonian formulation has been devel-
oped by Magri [8], Gel'fand and Dorfman [24], and Fokas and Fuchssteiner [7].
Other relevant works include [25].

Itis also well known that certain two-dimensional generalizations of the above
scattering equations are related to physically interesting nonlinear evolution
equations in 2+ 1 dimensions. In particular, a generalization of the Schrodinger
equation is related to the Kadomtsev-Petviashvili (KP) equation (a two-
dimensional analogue of the KdV). Similarly, the two-dimensional version of the
N x N AKNS is related to N-wave interactions in 2+ 1, the Davey-Stewartson
equation (DS) (a two-dimensional analogue of the nonlinear Schrédinger) and the
modified KP equation. The IST for the above two scattering problems has been
only recently studied [26]. (For other interesting results in this direction see also
[27].) In spite of this success, the question of using the scattering equations to
obtain recursion operators had remained open. Actually, Zakharov and Konopel-
chenko [28] have shown that recursion operators of a certain type, naturally
motivated from the results in 1+ 1, do not in general exist in multidimensions.
Recursion operators in 2+ 1 dimensions were only known for straightforward
examples like the 2+ 1 dimension Burgers equation, that can be linearized via a
generalized Cole-Hopf transformation [30b]. For a brief review of the literature of
the various attempts to obtain recursion operators in 2+ 1, we refer the reader to
[29]. Here we only note that Konopelchenko and Dubrovsky [30a] were the first
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to establish the importance of working with w(x, y,)w*(x,y,), as opposed to
w(x, y)w " (x,y), where w(x,y) and w*(x,y) denote the eigenfunctions of the
associated scattering problem and of its adjoint, respectively. They also found a
linear equation satisfied by w(x, y,)w*(x, y,). However, they failed to recognize
that this equation could actually yield the recursion operator of the entire
associated hierarchy of nonlinear equations. Instead, they used the above equation
to obtain “local” recursion operators. Thus, the question of studying the
remarkably rich structure of the recursion operator, in particular, its connection to
symmetries, conservation laws and bi-Hamiltonian operators was not even posed.

Using a suitable generalization, we have recently presented the recursion
operator and the two Hamiltonian operators associated with the KP equation
[29]. In this paper we present the theory associated with these operators. In
particular, the notions of symmetries, gradients of conserved quantities, strong and
hereditary symmetries, Hamiltonian operators are generalized to equations in
2+1. Also a simple algorithmic approach is given for obtaining the recursion
operator from the scattering problem. As examples of the above theory we study
the two-dimensional Schrédinger problem and the 2 x 2 AKNS problem in two
spatial dimensions. The following concrete results are given:

i) The linear eigenvalue problem

Wex +4(X, y)W+aw, =0, (1.1)
where a is a constant parameter, gives rise to the hereditary recursion operator
®,,=D*+q,+Dq{,D" "' +4;,D"'q;,D7", (1.2a)
where the operators g, are defined by
_ . d ) :
4i>%4q:19,+oD, FD,), Di;d‘y, gi=4q(x,y), i=1,2. (1.2b)
The operator @,, admits a factorization in terms of compatible Hamiltonian
operators, @,,=03(OY)"!, where @Y=D and @3 are skew symmetric
operators satisfying an appropriate Jacobi identity.
The KP equation

4= qyxx +64q5+ 30D 7 gy, (1.3)
is the second member, n=1 (f, = 1/2) of the following hierarchy generated by &,,
‘ht:ﬁn _f d)’zé(%_yz)qyfza(xoz), n=0,1,2,..., (1.4)

where o{%)=(®,,D)-1 =4, +4,,+(q, —4,)D" (g, _‘]2)4‘0‘1)_1(‘]”1 —{y,) and
o(y; —y,) is the Dirac delta function. The KP is a bi-Hamiltonian system:

qr,= [ dy000, =)0 = | dy.d(y;— )O3, (1.5)

where

0)_p-1.(0 H_p-1 0
¥3=D""0l3, )3=D""d,03. (1.6)
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The KP equation possesses two infinite hierarchies of time-independent commut-
ing symmetries and constants of motion. For example, (®},6(%),,,n=0,1,2, ... are
symmetries of the KP.

The operator @, is the adjoint with respect to an appropriate bilinear form
(see Sect. 4) of the “squared eigenfunction” operator. One may verify that

(FlszlW; =05 Wi#W(X, yi)a (17)

where w* satisfies the adjoint of Eq. (1.1) (see Sect. 4).
ii) The linear eigenvalue problem

W,=JW,+QW, (1.8)

where J =a0, 0 =diag(1l, —1), and Q is a 2 x 2 off-diagonal matrix containing the
potentials g,(x, y), ¢,(x,y), gives rise to the hereditary recursion operator &,
defined on off-diagonal matrices, where

®,,%0(P,—Q012P 1, 01), (1.9a)
and the operators P,,, Qf, are defined by
P12F12¢F12X—JF12yl"szsz’ Q%2F12$Q1F12iF12Q2> (1.9b)

and Q;=Q(x,y;), i=1,2. The operator ¢, admits a factorization in terms of
Hamiltonian operators, @, =03(0) !, where 8} =o0.
The DS equation

lqt+%(qxx+a2qyy)=q(¢—'q[2)a ¢xx_a2¢yy=2|q‘:2cx s (110)
corresponds to ¢, =4, =4, f,=— %, and n=2 of the following hierarchy
Qltzﬁnnj;dy2dy;2Q1_20' (1.11)

The DS equation is also a bi-Hamiltonian system with respect to the two
Hamiltonian operators ©)=¢ and @3 = &, ,0 defined on off-diagonal matrices.
It also possesses two infinite hierarchies of time independent commuting
symmetries and constants of motion.

In more detail, this paper is organized as follows: In Sect. 2 we review the
algebraic properties of equations in 1+1. The KdV equation is used as an
illustrative example. This is in a sense a summary of [7, 8, 24] although we follow
the notation of [7]. In Sect. 3 we derive algorithmically the recursion operators
(1.2), (1.9). This derivation is simpler than the one given in [29]; we now use
expansions in terms of d’6(y; —y,)/dy}, where & denotes Dirac’s function, as
opposed to expansions in terms of A’. In Sect. 4 we show how &,, generates
extended symmetries o,, and extended gradients of conserved quantities y,,. We
then show that o,,,7,; are symmetries and gradients of conserved quantities,
respectively. Furthermore, the remarkably rich theory associated with the bi-
Hamiltonian factorization of @, is developed in this section. In developing this
theory we use two important notions: a) The role of Frechét derivative is now
played by an appropriate directional derivative, which is naturally motivated from
the underlying isospectral problem. b) An extended symmetry o, can be written
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as 6,,- 1, where 8, is an appropriate operator. The Lie algebra of these operators
is closed provided they act on appropriate functions H,,. Thus in 2+ 1 one is
dealing with a Lie algebra of operators as opposed to a Lie algebra of functions. In
Sect. 5 we give concrete illustrations of the notions introduced in Sect. 4.

We note that Fuchssteiner and one of the authors (ASF) introduced an al-
ternative way for generating symmetries, the so-called mastersymmetry approach.
In particular, it is shown in [31] that for the Benjamin-Ono equation u,=K,
the map [ -, t],, where the bracket [, ], is defined in (2.16b), t=xK +u?+3 Hu,,
and H denotes the Hilbert transform, maps symmetries into symmetries. This
approach has been applied to KP in [32], and its general theory has been
developed in [33] (for other applications see [34]). However, the t has certain
disadvantages: a) The relationship between t and the eigenvalue problem has not
been established. b) 7 is not hereditary. c) It is not known if 7 can be used to obtain
the second Hamiltonian. In [35] we develop further the theory presented here. In
particular, we: i) analyze further the Lie algebra of the starting symmetries and use
@, , to generate time-dependent symmetries, ii) use an isomorphism between Lie
and Poisson brackets to show that all these symmetries correspond to extended
gradients and hence give rise to conserved quantities, iii) show that the t
mentioned above comes from a time dependent symmetry, and since it corre-
sponds to a gradient cannot be used to generate @,,, iv) find a non-gradient
mastersymmetry (for KP it is ®3JJ,,) which can be used to generate @,,,
v) motivate and verify some of the results presented here and in [35] by
establishing that equations in 241 are exact reductions of certain nonlocal
evolution equations, of which the algebraic properties are straightforward.

Since two central aspects of integrable equations in 2+ 1, namely the IST
method and the associated algebraic properties, have now successfully been
studied, we speculate that essentially all aspects of equations in 1+1 will be
successfully studied for equations 2+ 1. (For example, asymptotics and action-
angle formulation of KP have been studied in [36].)

2. Review of Algebraic Properties in 1+1
We consider evolution equations of the form

q,=K(q), (2.1)

where ¢ is an element of some space S of functions on the real line vanishing rapidly
for |x| - co, and K is some differentiable map on this space depending on ¢, and on
derivatives of g with respect to x. We use the KdV equation as an illustrative
example:

q:=Gxxx T 649, . 2.2)

Equation (2.2) admits the following four-parameter Lie-group of transformations

X'=e(x+a+yr), =eXt+p), q'=e"2§<q+ %)
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The above transformations (space and time translations, Galilean and scaling
transformations) are uniquely characterized by the following infinitesimal gen-
erators of symmetries [37]:

01={x, 62:qxxx+6qqx> Z‘1=1+6th5 22=2q+qu+3t(qxxx+6qqx)'
(23)

Actually, the KdV possesses infinitely many symmetries
o,=P"a,, 2,=0"2,, n=12.., (2.4

where &, the recursion operator (a strong symmetry) of the KdV, is given by
®=D*>+2q+2DgD™", (D7'f)x)= | f(&d¢. (2.5)

It turns out that @ has a certain algebraic property, called hereditary, which implies
that g, 6; commute. KdV also possess infinitely many constants of motion; the first
few are
I= | 04 - -1 _ Gy 26
= | edx, @=4q, =75, C=—75+q. (2.6a)
e 2 2
It is more convenient to work with the gradients of constants of motion:

<grad1,u>=%l(q+av) , where (f,v)= ?fvdx

e=0

is an appropriate scalar product. The functionals I,,1, imply

Y1=4, P2=du+3q". (2.6b)

Equations (2.3), (2.6b) suggest that 0 = Dy, i.e. D is a Noether operator for the KdV
(it relates symmetries to constants of motion). This follows from the fact that KdV
is a Hamiltonian, actually a bi-Hamiltonian, system:

2

© 2 [
q,=Dgrad | (—%ﬁ+q3>dx=(D3+2qD+2Dq)grad f %dx. 2.7

The two Poisson brackets associated with the above are
{I,1;}={gradl;,®,gradl;>, /=1 or2,

2.8
©,=D, ©,=D3+2qD+2Dq. 28)

It can be verified that {,} is skew symmetric and satisfies the Jacobi identity.
The notion of a conserved covariant y is a mathematical generalization of the
gradient of a conserved quantity. Namely, if the functional I is conserved with
respect to a given evolution, then y=gradI is a conserved covariant. Conversely, if
y is a conserved covariant and if y is a gradient function, then its potential I is a
conserved quantity. For example X implies a conserved covariant I}, =x—6tq
which is a gradient function, hence it implies a conserved quantity

I= | (xq—3tq*dx. However, I}, corresponding to X,, is not a gradient and

hence does not correspond to a usual conservation law.
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The above discussion motivates the following definitions:

Definition 2.1. (i) A function ¢ is a symmetry of (2.1) iff

d'[K]—K'(0)=0, (2.9
where prime denotes Frechét derivative, i.e.
0
aglv]= En alg+ev)| . (2.10)

e=0
(i) A function y is a conserved covariant of (2.1) iff
Y[K1+K'"[y]=0, (2.11)
where K'* is the adjoint of K’, namely, <K'"f, g>=<{f, K'g).
(iii) An operator valued function @ is a recursion operator (strong symmetry)
for (2.1) iff
P[K]—-[K,?]=0, (2.12)

where [, ] means commutator.
(iv) An operator valued function @ is called a Noether operator of (2.1) iff

O[K]-OK'*—K'©=0. (2.13)

(v) An operator valued function O is called a Hamiltonian operator iff it is skew
symmetric and it satisfies

{a, @'[Ob]c) + cyclic permutations=0. (2.14)

vi) An operator valued function @ is called a hereditary operator iff
O[dvIw—dP'[v]w is symmetric with respect to v, w. (2.15)

(vii) Equation (2.1) is of a Hamiltonian form if it can be written as gq,= @y,
where O is a Hamiltonian operator and y is a gradient function, i.e. y'=9"".

Proposition 2.1. (i) If y is a conserved covariant of (2.1) and if y is a gradient function,
then I, the potential of v, is a conserved quantity for (2.1).

(ii) @ maps ¢’s to ¢’s, ®* maps y’s to y’s, and © maps ’s to ¢’s.

(iii) If (2.1) is of a Hamiltonian form, then ® mapsvy’s to o’s. Furthermore, there
is an isomorphism between Lie and Poisson brackets:

[07,,07,],=0 grad(y;,07,), (2.16a)
where
[a,b], =a'[b]—b[a], (2.16b)

and v,,v, are gradient functions.

(iv) If @ is hereditary and @ is a strong symmetry for a, then ®"a,, form an
abelian algebra.

(v) If 2.1)is of a bi-Hamiltonian form, then ® = 0,0 ' is a recursion operator

of (2.1).
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(vi) If (2.1)is a compatible bi-Hamiltonian system, i.e. if it is bi-Hamiltonian and
if @,4+0, is also a Hamiltonian operator, then ®=0,0[" is hereditary.
Furthermore, if y, is a conserved gradient of (2.1), then ®* "y, are also conserved
gradients. Thus (2.1) possesses infinitely many commuting symmetries and infinitely
many conserved quantities in involution.

Given the isospectral eigenvalue problem associated with (2.1) there is an
algorithmic way of obtaining &. Furthermore, if @ has a complete set of
eigenfunctions it must be hereditary:

Proposition 2.2. Let
V.=U(q, )V (2.17)

be a linear isospectral eigenvalue problem associated with (2.1). Let G, denote the
gradient of the eigenvalue J. If G, satisfies

YG,=uAG,, (2.18)

then ®=Y¥" is a hereditary operator (provided G, form a complete set ).

3. Derivation of Recursion Operators

A. The Schridinger Eigenvalue Problem

Proposition 3.1. The Schriodinger equation (1.1) is associated with the following
equation:

01241, =D¥,T,,—2q1,a,5, (3.1

where qf, are given by (1.2b), § denotes the Dirac delta function, T, a are arbitrary
functions of the arguments indicated,

012501 —y2), Ti=T(xy1,y2), a=aly,y,), (3.2)
and ¥, is given by
¥,=D*+q{,+D 'q{,D+D"'q;,D " 'qy,. (3.3)

To derive the above result first write Eq. (1.1) in matrix form

w 0 1
w.=UW, W= , U= . .
¥ Qﬂ) <—q—aDy(J G4)

Equation (3.4) is compatible with

(3.5)

Wevw, V= <A 2C>

B E
if
U,=V,—[U,V]. (3.6)
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The operator equation (3.6) implies
A.=B+2C4, E,=—B-2¢C, 2C.,=E—A,

(3.7
ql:_Bx_qA+Equ Cj=4+°‘Dy
The above equations yield

A=—C,+D7'[C,4]+4,, Ay.=0,

° 0 (3.8)
B=_Cxx_[c>q:|+>
E=C.+D"'[C,{]+A4,,

° (3.9)

q:= Cxxx + [q9 C]: + [qa Cx] i + [q’ D~ l[q’ C]] + Aofj —qu s

where [,]" is the usual anticommutator of two operators. We represent the
operator C by:

(€06 y1)= [ dy2Tx,y1, y2)f(x,72). (3.10)

similarly,
Ao fi =2Hj;dY2a12f2 .

Then
(:.C+C4)fi = Hf{dY2(41izT12)f2 >

[‘ilaD‘l[qus Cllfi= Hf{dY2(4f2D_141_2T12)f2, (3.11)
(Aod1 —4,140) /1= — nj;dYqul_Zalsz'

Hence applying the arbitrary function f to the operator equation (3.9) we obtain
01292, = T, .+ (@5 T )+ T2, 44D 41, T, — 241,01, (3.12)

Remark 3.1. It is easily verified that the following important commutator operator
relationships are valid:

[412:h1,1=0,  [qi2hi,]=20k,5, [¥i5,h,]=4ah],; (3.13)

hereafter h,, is any arbitrary function h(y, — y,) and k', denotes its derivative with
respect to y;.

Proposition 3.1 can be used to derive nonlinear evolution equations related to
(1.1). One needs only to assume appropriate expansions of T;,, a,,. We give two
examples:

Example 1.
T,= Y 6,1, TH=C,, a;,=0, (3.14)
Jj=0

where & ,=075,,/0y}, C, an arbitrary constant. Then

41, =B, [dy,0,, D131 -1, n=12,.... (3.15)
R
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To derive (3.15), use Egs. (3.14) in (3.12) and use (3.13c) with h,,=0,,,
512612t=D<Z 3, ¥ T +4a Z SiLTY 1))
i=0

Equating the coefficients of 873! and §%,, 1 < j<n to zero, we obtain

1 .
1
1";)=0, T4~ )_—‘Eq’lsz%}-
Hence

. 1Y 1 \
Tl('é_n: <— 4Aa) CanJIZ .1’ 12q2 —512D¥112T12 - <_ M) G 512D.II 5! 1.

Thus (3.15) follows with the normalization (—1)"$,=(4x)""C,,

Example 2
noo . 1
T,,= Y 01,11, T%=0, a12=—5Cn5'{z- (3.16)
j=0
Then
QIlzﬁnjdy25l2D'P’;2D-1ql_2'1a n=1’27"" (317)
R

with the normalization C,=(—1)"(4a)"B,.

Remark 3.2. 1. The operators @,,, ¥, , defined by (1.2) and (3.3), respectively, are
related via

®,D=D¥,,. (3.18)
Hence the hierarchy of Egs. (3.15) can be written as
qlt:ﬁnnj;dy26l2DlP’{§1 1 =ﬁnnj;dYZ512@’iz((D12D)' 1. (3.19)
The KP equation corresponds to n=1 and 8, =1; the next equation of the class
(for B,=3) is
4= Grxxxx T 109G 0 + 2004 + 3074,
+50%(24y,,+ D™ N(q%),, + 24,07 2q,, +49,D 7 g, +49D " 'q,,) + 5a*D " 3g,,, .
2. Similarly, the hierarchy of Egs. (3.17) can be written as
4 =ﬁnn{dy5lzD‘P’iz(D”1f1Iz ' 1)=ﬁn]§{dyz5lz¢'iqu“z 1. (3.20)

For n=1 and B,=1% the above becomes qy,=0q,,, ie. it corresponds to a
y-translation. '

B. The 2x2 AKNS in 2+1

Proposition 3.2. Equation (1.8) is associated with the following equation:

512Q2,:0T12V12(,, (3.21)
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where V), denotes an arbitrary off-diagonal matrix and the operator ¥, (acting
only on off-diagonal matrices) is given by
Vi250(P—Q0PR0n),  PoFo*F, —JF, —F, J. (322)

To derive the above note that (1.8) can be written as

W,=0W, Q=Q+JD,. (3.23)
Equation (3.23) is compatible with W,= VW if
0,=V.—~[0.7]. (3.24)
We represent the operator ¥V by
(VF)(x,y) = n{ dy,V(x, y1, y2)F(x, y5). (3.25)

Then [Q, IA/]'—_ﬁgdh(QAlelz)Fz, where QA12F12¢Q1F12—1'712Q2+JF12yl

+F,, J. Hence (3.24) implies 512Q1t=(D—QA12)V12. Splitting this equation
into diagonal and off-diagonal parts we obtain

512Q2t:P12V120_Q1_2V12Da P12V12D*Q1_2V120=0- (3-26)

where V,,, and V;,  are the diagonal and off-diagonal parts of V,,. Hence
Eq. (3.21) follows.

Remark 3.3. The operator ¥, satisfies the following important commutator
relationship:

[lpuwhu]szo: —Zah’leuo, (3.27)

where F,,_ is the off-diagonal part of the arbitrary matrix function F, and prime
denotes differentiation with respect to y;.

The above relationship follows by considering the diagonal and off-diagonal
parts of the following equation

[D—Q,2hi,]F 1= —2ah),0F,,. (3.28)
Remark 3.4. Assuming
Visg= .io &5 ,v8), 1Y) off-diagonal , (3.29)
I=
Eq. (3.21) implies
Q1t=anj;dy2512‘l"{2Qf2012D; P,0,,=0, (3.30)

where vy, is any diagonal matrix solving (3.30b).
To derive (3.30) note that Egs. (3.21) and (3.27) imply

n n+1
512Q2[:‘7< ) (31i2l1I’1217(1j%‘2<>C > 5{20(1}'2_1)) (3.31)
j=0 j=1

Equating the coefficients of 871", 8%,, n=j=1, to zero we obtain

1
0 -1 -1 -1
=0, 0(12)=—(2a),,_1?"{2 oD 2l V=00 (3.32)
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Equation (3.32c) can be written as
2a00y V=P, — Qi2V12,,  0=Piyv15,— Qv (3.33)
where v,,, is an arbitrary diagonal matrix. Hence (3.32c) and (3.32a)
imply o{% V= %) 6Q1,0y,,, Where vy, solves Py,v,, =0. Hence
v =—1/2u)"¥}3 601,05, and the coefficient 67, imply (3.30).
Remark 3.5. Let @, be defined by (1.9a), then one easily verifies that
@ ,0=0¥,. (3.34)

Equation (3.30), for special choices of v,,, yields hierarchies of integrable
equations:

Example 1. Let vy,, =0, then (3.30) implies
0,,= —ﬁnn{d)’zéna'lpqu;er=/3n“£dJ’2512¢'sz1_20'- (335)

To derive (3.35) note that Q0,6 = — Q. Also (3.34) implies that @} ,0 = ¥,.
Hence the integral of Eq. (3.30) implies

‘O'lp'szf}I: _d)';zUQszI:@'{le_za'

Remark 3.6. Equations (3.35) for n=0,1,2 become

0,=0Q, Po=-—3%, (3.36a)
0=0., Ppi=-1, 3.36b)

= —B2[20(Q s +220,,) — QA+ A4
Qi=—B,[20(Qx+27Q,,) — QA+ Q]}. (3:360)

(D,—JD,) A= —2D,+JD,)cQ>

Equations (3.36c) under the reduction ¢,=g,=q yield the DS equation

l
Bo=—

iqt + %(qxx + azqyy) = q(¢ - IQIZ) >

s s (3.37)
d)xx_oC ¢yy=2lqlxx .
Example 2. Let vy, =1, then (3.30) implies

Q1t= -ﬁnﬁgdyzélzo-gﬂiZQi'—Z=Bnn,£dy2512¢'i2Ql_21' (3.38)

Equations (3.38) for n=0, 1,2 become
0,=0, (3.39a)
0,=0Q,, pi= —4, (3.39b)

Q,=p,[ —4000Q,,+ BQ—QB]

C ¢ . (3.39¢)

(Dx—JD,)B=440(Q3),
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Equations (3.39¢) under the reduction ¢, =4, =4 yield (8,= —%
4:=0qy,+uq,

Uy — 01y, =20t]ql2, .

(3.39d)

C. Motivation

A crucial step in deriving the recursion operator associated with the Schrédinger
equation was to use an integral representation of the operator C [see Eq. (3.10)].
Also in deriving the theory for recursion operators we will need an appropriate
Frechét derivative. Both, the integral representation (3.10) and the above Frechét
derivative can be motivated as follows:

Consider

Wex +gw+aw,=0;  (Gf)(x, y)= DJ; dy»q(x, y, y2) f(x, y,). (3.40)

Equation (1.1) can be thought of as the reduction of (3.40) under g(x,y,,y,)
=01,4(x,y,). It is clear that g satisfies an equation similar to (3.9) where ¢ is
replaced by §. Since the operator § has the integral representation (3.40b), one is
lead to consider a similar integral representation for the operator C [Eq. (3.10)].
An equation similar to (3.12) is also valid for §, where g, are replaced by i,

‘7%2](12# nj{dJ’3(413f32 t f13932) + D ¥ D,)f1, . (3.41)

The Frechét derivative of §i, f;, in the direction a,, yields

q%ﬁ[alz]flz%n};dY3(U13f32if13032)~ (342)

This is precisely the directional derivative we use in Sect. 4. More details on the
concept of equations in 2 + 1 dimensions as exact reductions of nonlocal evolution
equations are presented in [35, Sect. V].

4. Algebraic Properties in 2+1

The theory of algebraic properties in 2 + 1 is based on the following concepts: a) A
crucial step in deriving the recursion operator associated with a given two-
dimensional eigenvalue problem is the use of an integral representation of
operators depending on g and 0/0y. In KP for example § =g+ «0/0y is represented
by

(611+°‘D1)f12?"nf2dY3‘J13f32« (4.1a)

The above mapping between an operator and its kernel induces a mapping
between derivatives:

‘21d[012]f12=n£dY3‘713f32, (4.1b)

where 4, [0,,] denotes the directional derivative of the operator valued function
4, in the direction ¢,,. Using an appropriate bilinear form [see (4.7)1(4.8)]
Egs. (4.1) imply

4t fi2=(q,—aD,)f1,= nf{dhfmqsz s QTd[012]f12= nj;dJ’3f130'32- 4.2)
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The recursion operator @,, depends only on 4, and 47, thus one is able to define
®,,,[0,,]. b) The theory of symmetries for equations in 1+1 is based on the
existence of “starting” symmetries K°, which via @ generate infinitely many
symmetries. For example, for the KdV K°=¢,. For equations in 2 + 1 we find that
the startmg symmetries K9, can be written as K9,H, ,, where K¢, is an operator
and H , is a suitable function [for the KP H,, =H,(yy, y,)]. The operators K¢,
depend only on ¢,, ¢ and thus K¢ 12,18 well defined. The Lie algebra of the startmg
operators K¢, acting on H,, is closed. This fact, which is of fundamental
importance for the theory developed both here and in [35], can also be traced back
to the integral representation of the fundamental operator §. For example,
Eq. (4.1b) implies:

@1d[01z]f12_@1d[f12]‘712= Bf{dY3(013f32—f13032)-

Also using

‘71,,[41012:”12: n,gdys(‘flﬂn)mfaz: ]szd%dy,sfaz%y%'a >

it follows that
@1d[‘?1612]f12—41d[C}1f12]012=41ﬂ£dY3(0'13f32_f13032)-

The above equation can be written as

[41f12,410120a= 410012 f12115
where the following brackets have been motivated from the above example:
[KQHY, REHY, =K Y [KEHFYIHY - KB [KQHYIHY,  (4.3a)
[HY), HY, = | dys(HJHS) — HAHY)). (4.3b)

In 1 +1, one considers the Lie algebra of functions;in 2+ 1 one, instead, considers
the Lie algebra of operators, thus equations in 2 + 1 have richer algebraic structure
than equations in 1+ 1. ¢) The recursion operator @, and the starting operators
K9, have simple commutator relations with §,, or more generally with

hiy=h(y; —y,).

Notation. We will consider exactly solvable evolution equations of the form
= K(q), where q(x, y, t) is an element of a suitable space S of functions vanishing
rapidly for large x, y. Let K be a differentiable map on this space (we assume for
convenience that it does not depend explicitly on x, y, t). The above equation is a
member of a hierarchy generated by @,,, hence more generally, we shall study
q,=K"(q). Fundamental in our theory is to write these equations in the form

q9:,= lngZéu‘p'{zK?z 1= nf{d)bélzK(ln%:K(xn; (4.4),
(in the matrix case, 1 is replaced by the identity matrix I), where K{(q,, q,) belong

to a suitably extended space S, and @, ,, K¢, are operator valued functions in 3.
For an arbitrary function K,,(q;,q,) we define the total Frechét derivative by

Klzf[F]¢K12ql[F11]+K12q2[F22]> (4.52)
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where K, denotes the Frechét derivative of K, with respect to g, i.e.
0 . L
K12qi[Fii]#_6-8K12(qi+Fiisqj) , Lj=1,2, i%j. (4.5b)
=0

We also define a special directional derivative, dictated by the underlying
isospectral problem and denoted by K,,,. This derivative is linear, satisfies the
Leibnitz rule and is related to the above Frechét derivative by

Ki2,001,F 1=Ky, [F]. (4.6)

For arbitrary functions f;, € S and g, , € %, where S* denotes the dual of S, we
define the following symmetric bilinear form

<g12,f12>$n!3dXdY1dY2 traceg,; fi2, fi12,81, matrices, 4.7

where obviously the trace is dropped if f,,g,, are scalars. The operator L%, is
called the adjoint of L,, with respect to the above bilinear form, iff

{LY2812 [12) =X812, L12f12) - (4.8)

For arbitrary functions feS and geS*, we define the following symmetric
bilinear form

(g, /)= [ dxdytracegf, f, g matrices. 4.9)
R2
The operator L* is called the adjoint of L with respect to the bilinear form (4.9) iff
(L7g, f)=(g,Lf). (4.10)
Remark 4.1. Definitions (4.7) and (4.9) imply
612812 /120 =4812:012/120 =811, f11)- (4.11)

Let I be a functional given by

= )Rjz dxdy, traceg;,; = Rfs dxdy,dy,0,,traceQ,,, Q12=0(%, Y1,z 1€ S

(4.12)
(if g,, is a scalar, then omit trace).
The extended gradient grad,,I of this functional is defined by
Cgrad;, 1, y=1,[-]= ]Rfs dxdy dy;015012,[ -] (4.13)
The gradient of I, gradl, is instead defined by
(gradI,-)#If[~]=]Rj2dxdygf[-]. (4.14)

It is easily seen that a function y,, € §* is an extended gradient function (i.e. it has a
potential I) iff

P124=V124- (4.152)
A function y€eS is a gradient function iff
Vr=7F . (4.15b)
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Some of the above notions make sense only if for certain functions the directional
derivative exists. Such functions are called admissible.
Throughout this paper m, n denote non-negative integers.

A. Basic Notions

Definition 4.1. 1) An operator valued function L,, is called admissible if its
directional derivative is well defined.

ii) A function K, is called admissible if it can be written as K, =K ,,H,,,
where K ,, is an admissible operator and H ,, is an appropriate function [for KP,

Hi;=H5(y1, y2)]
In analogy with Sect. 2 we give the following definitions:

Definition 4.2. Consider the evolution equation

qh:H[zdyzéuK”:K“. (4.16)
i) The function o, is called an extended symmetry of (4.16) iff
012,[K1=(61,K5)l0:2]- 4.17)
ii) The function y,, is called an extended conserved covariant of (4.16) iff
V12,LK]+(612K5)f[71,]1=0. (4.18)

iii) The admissible operator valued function @, is called a strong symmetry
(recursion operator) of (4.16) iff

D, [K]+[P13,(6,2K12)a]=0. (4.19)

iv) The admissible operator valued function @, is called a Noether operator
of (4.16) iff

912f[K:|—@12(512K12)§k—(512K12)d@12=0- (4.20)

v) The admissible operator valued function &,, is called a hereditary
operator iff

¢124[¢12f12]g12_¢12¢124[f12]g12 is symmetric with respect to f,,8;,

4.21)
Remark 4.2. 1) 6, is an extended symmetry of (4.16) iff 6, , commutes with §,,K ; 5,
[012,01,K1,]4=0. (4.22)

This follows from the fact that 0,,[0,,K;]1=0, [K].

ii) Ifin(4.12), ¢, is an admissible function, 9,, =§,,H »; then the functional I
depends on H,,, I=I(H,,), and y,,=grad,, I, defined by (4.13), is also an
admissible function y,, =17,,H,, enjoying the property (4.15a) for every H,,. If,
for instance, I= | dxdy,dy,06,,9;,D " 'qi,H,, and the directional derivative is

R3

defined in (4.13) [see also (4.1b) and (4.2)], then y,,=4D 'q;,H,, is the
corresponding extended gradient.
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iii) If y,, in addition to satisfying (4.18) is also an extended gradient function,
then its potential I is a conserved quantity of (4.16). This follows from the
following:

Li=1,[K]=1,[0,,K2]=<712012K12),
where y,, =grad,, I. The derivative of the above in the arbitrary direction v,, is

zero if (4.18) holds.
iv) @,, is a strong symmetry for a,, iff

@,,la1,]+[P5a,,,]1=0. (4.23a)

Hence Eq. (4.21) implies that &,, is a strong symmetry for (5,,K,,) (see
Lemma 4.1).
v) @, is a Noether operator for a,, iff

O4,,00,,]1—05a1,,—a,,,0,,=0. (4.23b)

Hence Eq. (4.20) implies that ®,, is a Noether operator for (6,,K;,) (see
Lemma 4.1).

vi) In the above definitions we assume that o, ,,y,,, @,, ®,, do not explicitly
depend on t. Otherwise, o, [K] should be replaced by da,,/0t+a,, [K];
similarly, for y;,,, ©,,, @,

Remark 4.3. 1) &, maps solutions of (4.17) to solutions of (4.17);
ii) ¥, maps solutions of (4.18) to solutions of (4.18);
iii) ®;, maps solutions of (4.18) to solutions of (4.17);
iv) if @, solves (4.20) and @,, solves (4.19) then ¢"O, also solves (4.20).
Definitions 4.2 make sense only if (0,,K; ), exists. For equations generated by
D5, (0,,K,,),; 1s well defined:

Lemma 4.1. Assume that the admissible operators ®,, and K, satisfy the following
operator equations

(D12, h12]1=—PBhis, (4.24a)
[R92 h15]=—BS 5k, (4.24b)

where f, f are constants, S, , is some admissible operator, hy,=h(y, — y,) and prime
denotes derivative with respect to y,. Then all notions introduced in Definitions 4.2
are well defined for any Eq. (4.4),. In particular:

(012@7,K0, 1)y = (@12 + BV (KD, +BS1:9)312)a (4.25)
where the operator 9 is defined by
[2,4,,]=0, 2 -h,=Hh,, (4.26)

and 4, is any admissible operator. Thus

|
(¢12+ﬁ@>5u—zw()wfﬁn, (’;>=(n_”w (427)

Equations (4.24) imply that 8, ,®",K%, - 1 =(®,, + D) (RS, + fS,,2)5, which
is an admissible function since @, K1 5> 81, are admissible operators.
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Remark 4.4. i) For the two-dimensional AKNS we use two starting operators K9,;
both of these operators commute with h,, (ie. f=0). For the two-dimensional
Schrodinger we also use two starting operators K9,; one of them commutes with

hy,, the other implies ﬁ— =, 8,,=D.

ii) Itis clear that the theory presented here, suitably modified, is also valid for
more general commutator relations than the ones given by (4.24). In investigating a
new eigenvalue problem one first computes the commutator of ®,, and K¢, with
h,,; one then builds a general theory based on these commutator relations.

iii) We remark that Eq. (4.24a) could be derived directly from the underlying
isospectral problem without using the explicit form of @,,. As an example, in
Sect. 4.E we show that the equation &%, W, W," =4iW, W, (which is a direct
consequence of the spectral problem W, +dW=AW) implies Eq. (4.24a), with
p=—4o.

The usefulness of the extended symmetries and the extended gradients follows
from the fact that their reduction yields symmetries and gradients, respectively.

Theorem 4.1. Assume that the admissible operators @ ,,, K$,, satisfy
[®,,,0,,]=—pd5, (4.28a)
[K?5,61,]=—BS1,0,, (4.28b)
where B, are constants, S, , is such that
glzd[']H12=§12f[']H12=0

and prime denotes derivative with respect to y,. Then:
i) If a,, is an extended symmetry of

41, = [dV201,@1,K 1, 1= [dyad,,K =K1Y, (4.29)

gy, is a symmetry of (4.29).

ii) Similarly, if y,, is an extended conserved covariant of (4.29), y,, is a
conserved covariant of (4.29).

iil) If y,, is the extended gradient of a conserved quantity of (4.29), v, is the
gradient of a conserved quantity of (4.29).

Proof. We first note that Egs. (4.28) imply

a,) D15,[ 1012812—0612P12,[ 1212,=0, (4.30a)
a,) D15,[012°1012812—061,P12,[161,81,=0, (4.30b)
a3) (612KS ;- 1),[ 1=012(K9, - 1),[ 1, (4.30c)
ay) (012K 92 140015 -1=0,,(61,KS, - 1),[-]. (4.304)

Equations (4.30a), (4.30b) follow from (4.28a) (see Appendix A). Using (4.28b) and
the fact that S12 [-1H,,=S,[ - 1H, 2=0, Eqgs. (4.30c), (4.30d) take the form of
(4.30a), (4.30b) (Wlth @, , replaced by K?,). However, these equations follow from
(4.28b) following a proof similar to the one given in the Appendix A.
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a) Equations (4.28a), (4. 30a) (4.30c) imply
(01,91,K 12 )f[]zélz(‘p'{zk(fz'“f[]- (4.31),

We derive Eq. (4.31), by induction: Eq. (4.31), is (4.30c). Let subscript L denote any
derivative, such that the Leibnitz rule holds. Then

(5121<('l Y 1))L - (612¢1 2K1 Z)L - (451 2512K + B(éll ZK(n)

Hence

(012KT )L 1= @15, [ 161K+ @120, KDL 1+ 01 K)L[ 1. (4.32)
We assume that (4.31), is valid, then applying 2 on it, it follows that

(01, K[ 1=01.K1,[ ] (4.33)
is also valid: To derive Eq. (4.33) note that Egs. (4.26) imply
D61,81, 1=01,81,"1.
Applying the L-derivative on the above we obtain
D(012812 Dl 1=(012812- DL 1
The above equation for L= f, and (4.26) imply (4.33). Equation (4.31), . , is valid iff:
Py2,[ 101,G"+D15(6,,G") [ 1+ B(61,G"),[ ]
=512‘p12f[ 16" +(9,,04, +,55/12)an[ 1.

The first terms of the left- and right-hand sides of the above equation are equal
because of (4.30a); the second and the third terms are equal because of (4.31), and

(4.33), respectively.
b) Equations (4.28a), (4.30b), (4.30d) imply

(51245'1'216(1)2' l)d[512 : ] =512(512¢'{2K(1)2 : 1)d[ ) ] . (4'34)n

To derive Eq. (4.34), we use again induction. Equation (4.34), is (4.30c). Assume
that (4.34), is valid, then applying the operator & on it, it follows that

(5112K(1”%)d[512 : ] :512(5(12K(1n%)d[ ’ ] +5112(51 2K(1n% d[ : ] . (4-35)
Using (4.35) it follows that Eq. (4.34), ., is valid if
D15, [015° 10, KW +P5(0,,K)al01, -1+ P07, K )al 01, ]
=0,,P5,[ 101 2KT) 4+ (D12015+ POy 2) (01, KTD)al - 14612807, KB)al - 1.

The first term of the left- and right-hand sides of the above equation are valid
because of (4.30b); the second and the remainder terms because of (4.34), and (4.35),
respectively.
c) Equations (4.28), (4.30), (4.34),, (4.31),, and (4.6) imply:
512(512¢'{2K(1)2 1,1 =(512¢'{2K?2 “1)4[012-] =(512‘D'{2K?2 : 1)[[ -]
=0, 2(‘15'{213(1)2 ’ 1)f[ 1. (4.36)
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Using the definitions of symmetries and extended symmetries and Eq. (4.30c-d),
the first part of Theorem 4.1 follows:

Oy1,= nj{dhéuaut: nj;d))2512(512@12[€?2'1)(1[012]

= Idh 12(P72KY, 1),la]= Kllf[all]

The derivation of ii) is similar to the derivation of i): It follows from the
equations

(012@5,K 1, DF[ 1=0,,(P1,KY, -1)*[ 1, (4.37a)
(01,@7,RY - 1301, 1=0,2(0,,81,K%, - )5 -1, (4.37b)
which are direct consequences of Egs. (4.31),, (4.34),, (4.6), (4.7), and (4.8). Then
Y11, = ﬂj;dy2612y12¢= - Hf{dyzélz(élz(p'llzﬁ?z “Dilr12]
=- nf{dyz(&ij'izlz?z Dil012712]=— E,gd)b(au@'lez?z D]

= njldh‘sm(@{ 2K(1)2 ) 1)?[?] = “K(HT[Y] .

The derivation of iii) follows from ii) and the fact that if y, , is an extended gradient
function y,  is a gradient function: Recall that y, , is an extended gradientiffy,, [ ]
=712, [ 1 namely iff <y,,,[812], f12) =<812,712,[f12]). Letting f1,—0,,f;, and

g12—>512g12, we obtain ( Vuf[gu] Sf11)=(811>711,L/11]) which implies that
V11, =y ; (711 1s a gradient). Moreover, one could easily show that if

y,,=grad,, I, then y,, =gradl.
Another important property of the extended symmetries is given by the
following theorem:

Theorem 4.2. If ¢, is an extended symmetry of Eq.(4.29), then o,,=0 is an auto-
Bdicklund Transformation for Eq. (4.29). In equation o,,=0, q, and q, are viewed as
two different solutions of (4.29).

Proof. If 6., is an extended symmetry of Eq. (4.29) and ¢,,=0, then D,s,,
601 2

o

Remark 4.5. Theorems 4.1 and 4.2 show that the symmetries and the auto-
Bicklund Transformations of an equation originate from the same entity: the
extended symmetry. This remarkable connection between symmetries and auto-
Béicklund Transformations exists also in 1+ 1 dimensions. If we consider as an
example the classes of evolution equations in 2+ 1 dimensions (3.19), (3.17), (3.35),
and (3.38), then extended symmetries and gradients for the corresponding 1+1
dimensional systems are still defined by Eqgs. (4.17) and (4.18), in which the
operators (0;,K,), and (6,,K,)f are evaluated at «=0. For =0 @, is indeed
the operator that generates Backlund Transformations in 1+ 1 dimensions [38].

The above theorems imply that it is useful to have an effective way of
generating extended symmetries and extended gradients of conserved quantities.

+01,,[K]=0, which implies the result.
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For equations in 1+ 1 one makes fundamental use of the following two notions:
a) if @ is hereditary it generates infinitely many commuting symmetries. b) If @
admits a factorization in terms of compatible Hamiltonian operators it generates
infinitely many constants of motion in involution. Both the above notions are
extended to equations in 2+ 1.

B. Characterization of the Starting Symmetry K9, H,,
through the Recursion Operator @,

Fundamental role in the theory presented in this paper is played by a hereditary
operator @, , and a starting symmetry K%,H ,,. It is interesting that the recursion
operator @, , algorithmically implies K9,H , ,. Furthermore, if @, , is hereditary, it
is also a strong symmetry for K$,H .

Definition 4.3. A starting symmetry associated with the recursion operator @, is
KY,H,,, where the admissible operator K?, and the function H,, satisfy

¢12§12’H12=K?2H12, §12'H12=0> (4.38)
and § 12 1s an invertible operator, of course, on a space of functions excluding
KerS,,3H,,.

Examples. 1. For the KP hierarchies, S,, =D and/or S, , = D(q;,) ' D. This implies

K?,=Dq{,+4q,D"'q1,, S,=D, (4.39a)

K, =qr,, $.,=D(q;,)"'D, (4.39b)

with H,, any solution of DH,,=0.
2. For the DS hierarchies S,,=(Q;,) " 'P,,. This implies
R{,=0Q:,0 andjor K9,=0;,, (4.40)
with H,, any diagonal matrix solving P,,H,,=0.

For the results presented in this paper we only use a subclass of solutions of
DH ,=0and P,,H,,=0, given by H,,=h,, =h(y,—,) and H,, =h,(al + bo),
a, b constants, respectively. More general solutions of the above equations are used
in [35] and give rise to time-dependent symmetries.

Lemma 4.2. If K$,H,, is a starting symmetry associated with the hereditary
operator @, ,, then ®,, is a strong symmetry of K9,H,.

Proof. Since &, is hereditary,
D15 [P12/121812— P12P12,[f12]812 IS symmetric in f15, 81, (441)
Letting g,,=S,, H,, we obtain

¢12d[@12§12H12]f12_@12¢12d[§12H12]f12_¢124[¢12f12]§12H12
+¢12¢12d[f12]§12H12=0-
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Using ®,5,,H,,=K%,H,,, S;,H,,=0 and its consequence S, [ fi,]H;,=0,
for every f,,, we obtain

¢12d[12(1)2H12]f12 (K 2H12)d[¢12f12]+¢12(K 2H12)d[f12]=0’ Vle’
R (4.42)
thus @, , is a strong symmetry of K%,H,.

C. Hereditary Symmetries

Theorem 4.3. Assume that the admissible hereditary operator @, and its associated
starting symmetry K9,H ,, defined via

¢12g12H12=K(1)2H123 §12H12=0 (4.43)

satisfy
[Di2,h1,]=—Ph1s, (4.442)
[K92hyol=—BS 1,5, (4.44b)

where B, f are constants, S,, is an admissible operator, h,,=h(y, —y,) and prime
denotes derivative with respect to y,. Further assume that

[RS,H{Y R3,HE],=0, for [HY,HE),=0, (4440
where [ 14, [ 1; are defined by (4 3) and h,, belongs to H,,. Then
[@7,K0,HY, #],K0,H],=0, for [H{},HZ],=0. (4.45a)
Furthermore,
@",K%, -1 are extended symmetries of (4.4),, (4.45b)

for all nonnegative integers m, n.

Proof. In analogy with the results of 1+1 one easily verifies that if K{), K3
commute, @, , is heredltary and @, is a strong symmetry for both KY) and K‘fz’,
then @ K‘llz), ", K also commute, for all m, n. Using these results with
K‘I‘Z):K‘fz W, K‘122’—K‘1)2H‘122’ one immediately proves (4.45a) above. To prove

(4.45b) we note that (4.44) imply
512K(1"%= ) bn,£¢';£/]2(1)25{2 > (4.46)
£=0
where b, , depend on B, f (see Appendix B). Hence

[¢T2K?z : 1’(‘p12+ﬁ9)n51212(1)2 : 1]d= |:¢"1”2K?2 1, Z bn,t’qyi—Z_KK?Z : 5?2] =0.
d

(4.47)

Equation (4.47) follows from (4.45a) since [1, 8%, ]; =0 for all nonnegative integers
¢. The left-hand side of Eq. (4. 47) equals

(45'1"21( 22 1)l012@71,KS, - 11—-(6,,91,K?, 1)(1[@121( 127115
but the first term of the above equals (@7,K9, - 1),[K™], hence (4.45b) follows.
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It turns out that the recursion operators associated with both the two-
dimensional Schrédinger and the two-dimensional 2 x 2 AKNS are hereditary.
Actually, isospectral eigenvalue equations always yield hereditary operators (see
Sect. 4E).

Remark 4.6. 1f @,, generates two classes of evolution equations (4.4),, correspond-
ing to two different starting points M, and N,, and if, in addition to (4.44), we
have

[M12H(112)a N1 ,H®1,=0, for [HY),H?],=0, (4.48)

then @",M,,-1 and ®7,N,,-1 are extended symmetries for both classes of
evolution equations.

D. Bi-Hamiltonian Systems

Definition 4.4. i) An admissible operator @, is called a Hamiltonian (inverse
symplectic) operator iff

a) O%,=—-0,,, (4.49a)
b) it satisfies the Jacobi identity with respect to the bracket
{@12,b12,¢12} £a15,01,,[01:b12]c15), (4.490)

for arbitrary ay,, by,, ¢y5-
ii) An Eq. (4.16) is of a Hamiltonian form (or is a Hamiltonian system) if it can

be written as
q1,= ngdyzélz@lzvlz, (4.50)

where @, is a Hamiltonian operator and 7y, , is an extended gradient function of
the form y;, =7, -1 [with, of course, (§;,H,)s=(71,H,)}].
The associated Poisson bracket is given by:

(I, 1}y =<(grad, IV, @, grad , I?), (4.51)

where the functional I is given by V= [ dxdy,dy,5,,0%,HY,.
R3

Remark 4.7. If ©,, satisfies a), b) above then the Poisson bracket (4.51) is skew
symmetric and satisfies the Jacobi identity.
Proposition 4.1. Let

G,=0,,11,, O, skew symmetric. (4.52)

Then for arbitrary a,,, by, the following identities are valid.

ay) <by,, (012,LG121= 012G )f —(G,)§O,)a;,)>
={b12>f129a12} +{f12> a1, b12}+{a12a b12,f12}
+<by,, @12(f12d*f1*2d)@12a12>‘ (4.53)
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Let ©,, be Hamiltonian and let a,, b, be extended gradient functions. Then
a,) [012015,01,b1,14=01; grad;,<ay,,01,b,5). (4.54)

These identities imply:

a;) If ©,isa Hamiltonian operator and f,, is an extended gradient, then @, is
a Noether operator for G,.

a,) If ©,, is a Hamiltonian operator and it is a Noether operator for G, then
f12 is an extended gradient function.

The above results are exactly analogous to those in 1+ 1 and thus their
derivation is omitted.

The above results can be used for any Hamiltonian system as soon as the
commutator [O,,H,] is specified. However, for a completely integrable
Hamiltonian system additional results are valid.

Proposition 4.2. Let
M=@HL)"OL'KY,, W= 1, K{=o1,KY,. (4.55)

A(m)

Assume that ©,, is Hamiltonian, its inverse exists and that {%3H, are extended
gradients. Further assume that Egqs. (4.4) are valid. Then

i) GUHY, RMHY) = GHY, 0,,013H ) =0, (4.56)
ii) (7. KM=0, if [H{3H3],=0. (4.57)

Proof. Since the hereditary operator @,, is a strong symmetry for the starting
symmetry K9,H,, that satisfies (4.4c), then [K¢?HY, K®WH®Y],=0 if
[HY, H3],=0. Then (4.56) follows from Proposition 4.1a,). Equation (4.57)
follows from (4.56) choosing H{)=1 and HZ=41,:

(77, K§) =13, 01,K)> = (9731, Zobn,ép'{?ﬁ?zéiﬁ =0.

Theorem 4.4. Let 044, 63, ©)+ 03 be Hamiltonian operators and assume that
O'Y) is invertible. Then
i) &, 2—@‘2)(@‘112))_ Yis a hereditary operator.

11) @7 ,0Y), are Hamiltonian operators.

iii) If 99,H,,=(0\Y) 'K, H,, is an extended gradient function and if Egs.
(4.44) hold, then Eq. (4.4), is a bi-Hamiltonian system having ©\Y, ©'3 as Noether
operators.

Furthermore, all functions y\"%

PWEENE 1, =) TRY, K =o7,KY, (4.58)
are extended gradients of conserved quantities in involution under the two Poisson
brackets defined by

{I(m), I(")} =0, )13, @12)’(1"% I @(112) or @(122) . (4.59)

Proof. The derivation of the above results is analogous to similar results for
equations in 1+1 (see for example [7]). With respect to iii) above we note that
RWH, ,=®",0499,H,,, hence &,0) is a Noether operator for @ ,K%,H,;
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the arbitrariness of H,, and (4.46) imply that @?,0' is a Noether operator for
(4.4),; hence (4.4), is a Hamiltonian system with @%,0¢}) as a Noether operator.
However, ®,, is a strong symmetry for K,H ,,, hence 9", is a strong symmetry
for K9,H,,. Since #",0') is Noether and @", is a strong symmetry @) is also
Noether. Thus O3 =®,,0() is also a Noether operator. Furthermore,
K¢ =@75m0 )y, and the operator @}, ™0} is both Noether and Hamiltonian,
thus $0H ,, are extended gradient functions (using Proposition 4.1).

It now trivially follows [since Theorem 4.3 implies that K{ are extended
symmetries of (4.4),] that y{% are conserved covariants of (4.4),. Moreover,

Proposition 4.2 implies:
{1, 1}y = (PHY, 01391 HE)
=(VPHY, 091, "HE) =0, if [H{},HP],=0,
and the choice H{Y)=6Y}, H3 =1 yields
M I 46,713, 01,9130 =0,  0,,=0%) or 3. (4.60a)

Namely 7Y}, are extended gradients of conserved quantities in involution. If
[013,01,]=0, then
017, @117 =0. (4.60b)

Combining Theorems 4.1-4.4, we obtain the following important theorem.

Theorem 4.5. Let @)+ vO'3 be a Hamiltonian operator for all constant values of v.
Assume that @) is invertible. Define

0,20BOW ", KB:OLRYL 1, 5,201 KY,. (@60

Assume that the operator @, and its associated starting symmetry K9,H ,, satisfy
(4.44). Further assume that y\%) is an extended gradient function. Then
i) Equations (4.4), are bi-Hamiltonian systems.

i) Kim=am K9, 1, y" =(d%,)"S, are extended symmetries and extended
gradients of conserved quantities, respectively, for Eq. (4.4),.

iii) K and y\? are symmetries and gradients of conserved quantities in
involution for q,,=K{}.

iv) K¢ =0 are auto-Bdcklund Transformations for Eq. (4.4),.

v) (K, K§1,=0, (4.62a)
I, 1 =6,,77%, 0,1 =0, 0,,=6%)or 6, (4.62b)

where
[a,b],=a,[b]—b,[a]. (4.62¢)

E. Isospectral Problems Yield Hereditary Operators

Section 4.C illustrates the importance of hereditary operators. For equations in
1+1, isospectral problems yield hereditary operators. A similar construction is
possible for equations in 2+ 1. Furthermore, this construction also provides us
with a simple commutation relation of the type (4.24a) between @,, and h,,.
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Proposition 4.3. Let
%xK =U(g, )V (4.63)
be an isospectral two-dimensional problem; § is an operator depending on q(x, y) and
0/0y; A is an eigenvalue. Assume that (G,),,, the extended gradient of 1 satisfies
¥12(G)12=u()(G)), > - (4.64)
Then if @,,=Y%¥, has a complete set of eigenfunctions, it is hereditary operator.

Instead of deriving this result we illustrate it by two examples. The interested
reader is referred to [5]. A proof of completeness should follow a two-dimensional
version of the method developed by [10].

The derivation of Eq. (4.24a) from Egs. (4.63) and (4.64) is also illustrated in an

example.
Example 1. Consider the isospectral problem
Uyxx +(qy +0Dy Yo, =20, . (4.65)
Let ¢, =g, +aD,, and consider the directional derivative of (4.65):
v L 1+ da L Jon+400, [ 1=, [ T+ 4,0 Jo,

Multiplying the above by v, , where v satisfies the adjoint of (4.65), with respect to
the bilinear form (4.9), integrating with respect to dy,dx, and assuming
j2 dxdy,vv{ =1 it follows that

R

Al f121= ]RL dXdy1U1+C?1d[f12]vl . (4.66)

Using (4.1b) to evaluate 4, [ f;,]v, it follows that
2l fi2]= ]gs dxdy dy,v,07 i .

Hence, using A,[ f1,]= [ dxdy,dy,(grad’),,f;,, it follows that
R3

(grad A);,=v,v5 . (4.67)
Since @,, defined by (1.2a) satisfies [29]
Q%005 =4iv,05, (4.68)

it follows that @, is hereditary.
Example 2. Consider the isospectral problem
VIX—JI/IY —Q,Vi=4JVy, (4.69)

where J,Q are defined in (1.8). In analogy with (4.66) and assuming
tr | dxdy V" JV; =1, we find
R2

2a[F 2] =trn§2 dxdy, V1+QA1¢,[F12] V.
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Hence, using Qld[Flz]Gu: [ dysF (3G, it follows that
R
2alF 1] =trni(3 dxdy,dy,Vi"F1,V, .

Thus
(gradd),,=V,V,".
Since R, =D—Q,, satisfies
R,V =40V V,t, JF,,=JF,—F,J, (4.70)

it follows that (R ,!Jy* = J*(R,})* = JR;,! is hereditary (see [39] for the analogous
result in 1+ 1 dimensions).
Now we show that Eqgs. (4.65) and (4.68) imply

[Pi2hi]=40h,,  hyy=h(y;—),). (4.71)

First, we recall that Eq. (4.68) follows from Eq. (4.65): Eq. (4.68) and its adjoint
Vot (g, —aD,)V," =2V, imply

Vi Vst +(qy +oD )V, Vst =iV, V" (4.72a)
ViVar, H@—aD )V V" =0V Vs, (4.72b)
Vi Voo H @ +aD ViV, = AVt (4.73a)
Vi Vot A (@2 —aD )V, V" =4V, V. (4.73b)

Adding Eqgs. (4.72a) and (4.72b), Egs. (4.73a) and (4.73b), and subtracting
Eq. (4.72b) from Eq. (4.72a) we obtain, respectively,

(D2 +qi ViV =2V, Vol + 20V, (4.74a)
. -

D D _
V, Vot =— Tq;rsz v, — TQ12(V1 V=V Vo )+ AV, V', (474b)

VWV =W V" =D g,V V" (4.74¢)

Using Egs. (4.74b—c) into Eq. (4.74a) we finally obtain the eigenvalue equation
(4.68).

Now, by virtue of the commutation relations [q,+aDy,h;,]
=[q,—aD,,h,,]=0ah},, Eqgs. (472) and (4.73) are still valid replacing
Vi=Via=hoVi, Va = Vi =hi, Vs and A— Ay, =4+ 20k ,/hy ;5 then 0%,V
=42,,V;, V5, namely

‘pfz Vis sz = dsfzh%z " VzJr = (hf245’1"2 + [(pikz, h%z])Vl VzJr
=(44h3,+ 8ok, /h )V, V5

Using Eq. (4.68) and the completeness of the eigenfunctions of &%,, Eq. (4.71)
follows.
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5. Applications

In this section we apply the theory developed in the previous sections to the classes
of evolutions associated with the Schrodinger eigenvalue problem (1.1) and with
the 2x2 AKNS problem (1.8).

Some interesting details of the explicit calculations concerning these two
examples are separately presented in Appendix C.

An isospectral problem [e.g. (1.1)] yields a recursion operator @, [e.g. (1.2a)].
This operator must be hereditary (see Sect. 4.E). The isospectral problem also
yields a basic operator §,,; the integral representation of this operator implies a
directional derivative ¢, ,. Using the bilinear form (4.7), 47, 45, are also obtained.

i) In investigating the time-independent symmetries of the hierarchies
associated with ®,, one then needs to: a) Find the starting symmetries K%,H,,
associated with @, (see Sect. 4.B). b) Calculate the commutator relations of
®,,, K9, with h,,. c) Compute the Lie algebra of the starting symmetries. Then
Theorems 4.1, 4.3 yield hierarchies of infinitely many commuting symmetries.

ii) In investigating the Hamiltonian nature of the hierarchies associated with
@, , one, in addition to the above, also needs to: a) Prove that @), 3, where
®,,=03(0Y)" !, are compatible Hamiltonian operators. b) Verify that the
starting covariants are extended gradients. Then Theorem 4.4 yields hierarchies of
infinitely many involutionary conserved quantities.

A. The Schridinger Eigenvalue Problem
The spectral problem (1.1) yields the hereditary operator
@,,=D*+q,+Dq,D" ' +q,D " 'q;,D" !, (5.1a)
where
4i2 %4114, +UD, FD,). (5.1b)

The integral representation of the basic operator ¢, implies an appropriate
directional derivative:

41 f12=(q, +°‘D1)f12=n,£d)’36113f32, qud[U12]f1z=n£dY3U13f32' (5.2)

The adjoint of Eq. (5.2) implies
4tfi2=(q1—aD,)f1,= ni\dyafm‘hz > Cﬁd[o'u]flz: n.gdyaflso'sz . (5.3)

Combining the above we obtain the following derivative:

R 0
aQalfi2]= gam(‘hiz +3f1i5) >

=0

(5.4)
f1i2g12: “[{dy3(f13g3zig13f32),

which satisfies the projective property (4.6).
i) Let us first investigate the time-independent symmetries of the equations
generated by @, ,.
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a) Equation (4.33) yields
§12=D, Hi,=H5(y1,92), (5.5a)
and starting operators K9, given by
le*‘h_z, Mu%quz‘Hh_zD_quz' (5.5b)
b) The commutators of @,, with h,, imply the following operator equations:
(D5, hi,]=4ah],, [leahxz]'——oa [Mlzahu]:ZO‘Dhln- (5.6)
Hence, if
NO =@} ,N 1, MY =d1,M,,-1, (5.7)
then Eq. (4.46) yields

= Z (— 40‘)f< >¢?2[N12512, (5.8a)

n £ —
12M Z 45'{;"]\2125?2 > bn,{ %(_4“)5’ Z 27 (; _]> (5.8b)

(see Appendix B).
¢) The Lie algebra of the starting symmetries is given by

A~

[leH(llz)aNuH(z)]d:—N12H(3) [N H(l zH(Z)]d—_MmH(
[M12H12’ (2)]11——@12lele3 H 2)=[H(112)>H12]1’ (5-9)

where [, ], [, ]; are defined by (4.3).
ii) We now investigate the Hamiltonian structure of the equations generated

by @,,:
a) ®,,0Y=06") d%,, where
0{3=D, 12—D +4{,+D 'q{,D+D 'q;,D"'q;,=D"'®,,D=V,,.
We first note that both @{)=D and ©3=®,,D are skew symmetric:
@(1 =—-D=-0Y) @(122)*2((15121))*: —DoY,=—-&,,D= _@(122)~

12>

Furthermore, the bracket
{a125 b12’012}=<alz>@(122)d[@(2)b12:|c12>
={ay2,(0%b;,)"D +D(OFb ;)" +(OFb,,) D™ g1, +q1,D”(OFb;,5) )ein)

satisfies the Jacobi 1dent1ty Also @‘112’, ©'¥ are compatible.

b) 99,H,,=D " 'q;,H,, and §°,=D"'M,,H,, are extended gradient func-
tions. Thus the Theorems 4.1-4.4 imply:
Proposition 5.1. Consider the two compatible Hamiltonian operators @Y =D and

@(123=D3+‘11+2D+D‘I1+2+CI1_2D_1‘]1—2,
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and define
®,,=030OY) '=D>*+q,+Dq{,D ' +q7,D 'q;,D"?,
(ln%_®12N125 M1'"2¢¢'12M12a "}3(1'% (@(112))~1N12 and/or (@(1)) )

where the starting operator N,, and M,, are defined by N,,=q;, and
M,=Dq/,+q1,D"'qy,. Then

i) MW =M{ -1 and N =N -1 are extended symmetries for both classes of
evolution equations

q1.= nf{dY2512N(1"%=N(1"{a (5.10a)
q,,= nj{dyzéle(l"%=M(l"1) ; (5.10b)
namely
[M{,5,,K%],=[N,5,,K1],=0, (5.11)
where K, =NY) and/or M.

ii) y"”) —)?‘1"3 1 are extended gradients of conserved quantities of both classes of
evolution equations (5.10), namely

12,001, K91+ 01, KMF131=0, (5.12a)
(PY9H 1) =V9H L), Hy,p =0, (5.12b)

where * indicates the adjoint operation with respect to the bilinear form
ra:8122 = ] dxdy,dyafo1815. (5.13)

iii) The two classes of evolution equations (5.10) are bi-Hamiltonian, namely they
can be written in the form

q4,,= n];dy2512@(112)3’(1n%= nf{dy2512@(122)7(1n2_ v (5.14)
iv) M and N are infinitely many commuting symmetries of the classes of
evolution equations (5.10), namely
(MY, M1, =M, N, =[N, NT,=0. (5.15)
v) Y\ are infinitely many gradients of conserved quantities of the equations
(5.10), namely

W LK+ K9 []1=0, (5.16a)
=0 (5.16b)

where " indicates the operation of adjoint with respect to the bilinear form
(f. g)= [ dxdyfg. (5.17)

The corresponding conserved quantities are in involution with respect to the Poisson
brackets

{I(n)a I(m)} = <512V(1n%a @123’(m)> ,  Op,= @(112) or @(122) > (5.18a)
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if
0,,=01], {5,915 Dy> =011, DyYY). (5.18b)

vi) The equations M) =0 and N{") =0 are Biicklund Transformations for both
classes of evolution equations (5.10).

B. The 2x2 AKNS Problem
The spectral problem (1.8) yields the hereditary operator

¢12=0(P12_Q1+2P142QT2) (5.19)

acting on off-diagonal matrices, where
Q1i2F12#Q1F12i‘F12Q12a (5.20a)
P12F12¢F12x_JF12y1_Flzyz\]. (5.20b)

The integral representation of the basic operator O, =Q, +JD,, implies an
appropriate directional derivative:

QA1F12$(Q1+JD1)F12:n£d}’3Q13F32’ QA1d[012]F12=]£dY3013F32 >
(5.21)
and the adjoint of Egs. (5.21) imply
QTF12=F12Q2‘F12y2J= ]lf{dY3F13Q32> QAT‘,[012]F12=HJ;dY3F13032~
(5.22)

Then the reduction to the space of off-diagonal matrices performed in Sect. 3
induces the following derivative of the operator @, ,:

?,,[G2]=—0(GLP,' QL +0,P1,'Gly), (5.23a)

GiLF % H,‘;dyS(GISGS2iF13G32)' (5.23b)

Again the Leibnitz rule and property (4.6) are satisfied.

i) The investigation of the time-independent symmetries of the evolution
equations generated by @, gives the following results. ~

a) Equations (4.38) yield S,,=(Q{,)"'P,,, the starting operators K¢, are
given by

NIZ%Ql_Zﬂ Mu#Ql_zU, (5.24)

and H, is diagonal and such that P,,H,,=0.

b) The commutators of &, with &, , imply the following operator equations:

[Py, hyp]=—2ah,, [le,hu]:[Mu’hu]:O’ (5.25)
valid on arbitrary off-diagonal matrices. Hence, if

NO=OLN T, MY E0,M, 1, (5.26)
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then Eq. (4.46) yields

512N(1%: 1(2“)l< >‘I)'{2KN125125 (5.27a)

?M:

512M(1"%:

?M:

(ay (;) 57N, . (5.27b)

¢) The Lie algebra of the starting symmetries is given by

[N12H127N12H(2)]d: ”‘leH(laz): [leH(llzaMlelz a= ”‘Mqu,

(M HY) M, HOl= —N,HY),  HY=[HY, HE],. (5.28)
ii) We now investigate the Hamiltonian structure of the equations generated
by @4,:

a) (1)12@(112—_—@(112) &%,, where
OY=0, Oh=0(P,~ QPR Qn)=0 'Po=Yi  (529)

notice that on the space of off-diagonal matrices 6F,,=%[0,F,,], @{)J=0 and
O3 =d,,0) are skew-symmetric in the space of off-diagonal matrices:

(Fy3,06G ,)=—<0F,,Gy,),
and
0Y)* =(2, 0)*=*U‘DT2=_¢120="@(12:§-

Furthermore, the bracket {A4,,, B,,,C;,} =<{A4,,, O3 [O3B,,]C,,) satisfies
the Jacobi identity and 0%}, OF) are compatible.

b) $9,H,,=(0) 'K9,H (K,=N,, or M,,) are extended gradients, thus
Theorems 4.1-4.4 imply:

Proposition 5.2. Consider the two compatible Hamiltonian operators @)= and
0¥ =P,,—Q1,P,}Q1, acting on off-diagonal matrices, and define

(plzi@(lzz)(@m)_lZG(Pu_szszleLz)a N%#quzﬁlz,
M12 = quMlz > ?3(1'% #(@(112))_ 11\7{1"% and/or (@(112))_ 1M(1n% s

where the starting operators N,, and M,, are defined by N,,=0Q;, and
M, =Q;,0. Then the results i}-vi) of Proposition 5.1 are all valid for the two
classes of evolution equations

=[dy2000N ) =N{], (5.30a)
0, = Df{dhélel"z:M(x"} , (5.30b)

introducing trace in the right-hand side Eqgs. (5.13) and (5.17) and replacing (5.18b)
by

1
@12:@(12)307 <512V12a‘7”/(1”3> (vﬁ"i,avﬁ"}’)
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Appendix A

Now we show that the assumptions (4.30a), (4.30b) follow from (4.28a), without
using the explicit form of the operator. We show this for the recursion operator
associated with the Schrodinger eigenvalue problem.

Admissibility requires @, , to depend on gi,, moreover, (4.28a) and (3.13) imply
that @,, depends linearly on g;,. Then, without loss of generality we have

D, [f121812= chff;djgm + ;ps(ql_Z)fl_er(ql_Z)gIZ ) (A.1a)
Dy,,[/1812= ;Cj(fn +/22)d;812+ gps(‘h_z)(fu—fzz)"s(‘h_z)gu , (A.1b)

where ¢, d; are arbitrary functions of D, D™*; p, r, are arbitrary functions of q;,
and f,5 are defined in (5.4b).
Then the commutation property [g1,,h;,]=0 implies

¢124[h12f12]512812 =h12¢12d[f12]512g12 > (A.2a)
¢12f[f]h12g12=h12¢12f[f]g12' (A.2b)

Appendix B
In this appendix we show that equations
[Py2,hiz]=—phi2s  hia=hy1—2), (B.1a)
[R5 hy]=—BS1,h,. (B.1b)

and some additional notions concerning the associated spectral problem, imply
512K(1"% = /;0 b,,JQ'{E[K%(S{z (B.2)

for suitable constants b, ,.
We first observe that the case f=0 is particularly simple; indeed, in this case

512K =06,,®1,KS, 1=(P,,+B2)"K,6,,= f;o b, @13°K9,81,, (B.3a)

b, =p (;) : (B.3b)

This is the case for the two classes of evolution equations associated with the two-
dimensional AKNS problem and for Egs. (3.20). For the KP class (3.19),
K%, =M, ,=Dq{, +q:,D " 'qi,, B=p/2= —2a, §,, =D and the result (B.2) is less
straightforward.

In order to obtain it, we first show that

@",I,-1=0, VYn20; I,,=®,,D—M,,. (B.4)

This result could be easily derived using the explicit form of @, , and M ,. Here we
give a different derivation using the underlying spectral problem (and the
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consequent ecigenvalue equation satisfied by ®%,). This derivation is similar in
spirit to the one of (B.1a) presented in Sect. 4.E.
From Eq. (4.38), it follows that I, can be written as

I1,=41,D, A,H 5 #0. (B.5)
The operator A4,,, which is part of @, ,, is admissible depending on D, D!, ¢&,. If
for any admissible operator L;,, we define LY} as L) =L,,|,_,, then

1,005 1=01,4,,D - 1=01,A09D - 1=D¥},49 1, (B.6)

since D~ 'gD-1=0 and [L{),D]=0. On the other hand, if =0, w=1 solves
Eq. (1.1) and its adjoint, then Eq. (1.7) implies that

P -1=0 (and 4% -1=0). (B.7)
Equations (B.7) imply D¥"%,4% - 1=0 which is equivalent to (B.4).

Equation (B.4) and Egs. (B.1) imply (B.2). In fact, multiplying Eq. (B.4) by h,,
and using Eqgs. (B.1) we obtain

(P, +ﬁ@)n+1D ' h12=(@12+ﬁ@)"(]\7112+§@D) “hyy. (B.8)
The above can be written in the following recursive way:
Ay 1(hy2)=B,(hy,)+ An(ﬁhll 2)» (B.9)
where
Ay(hy5) = Z ﬁ‘( >¢’1sz h{y.  Aolhyz)=0, (B.10a)

n(h12 ; ﬁ ( )¢'1,2[M12h1{2’ BO(hIZ)zMIZhIZ’ (B‘IOb)

hy,

=

(B.10c)

The solution A4, ;(h,,)= ¥ B,_(B*h¢),) of Egs. (B.9) and (B.10) implies Eq. (B.2).
s=0
Indeed,
512K(1"% =512¢"2M12 -1 =512‘I"f2r 'D-1 =A,4+1(012)

Z Bn s(gsésll Z bn t’¢ M125{2’ (B11)
where
¢ — s [3s S
bt 3 E(Z S). (B.12)

For example, for the KP equation (M =Dgq;, +q;,D 'q7,):
512M(112)=512@12M12 -1 =¢12M12512-6°‘M125/12 > (B.13a)
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and for the DS equation (M, =0},0):

512M12—512¢%2M12’I=¢%2M12512+4°‘¢12M125’12+4“2M125%2-
(B.13b)

Finally, we use again Eq. (B.4) to derive the following interesting equation:

d”ierlD'hu— E ﬂs‘p'{stuhlz (B.14)

Multiplying Eq. (B.4) by h,, and using (B.1a), we obtain

QL,h (PN, ID 1 — @M, - 1)=0, j<n. (B.15)
Equation (B.15) for j=n and Egs. (B.1) imply

DD hy =P, My, by, +(B— B ,D kY, (B.16)
and hence Eq. (B.14).

Remark B.1. i) Equation (B.14) contains (B.4) if h,=1.
ii) Equation (B.14) can be used to obtain (B.2), (B.12) in an alternative way. In
fact,

1
SMi=0,033D 1= § (”* )cb'iz“’D'h‘{’z

£=0] s=0

n n+1 PN _
= Z [Z ﬂf S< )B B) }¢'{2{M12h(3: Z bn f(plz[Mlz h12,

since the identity

n—s n+1
<f > Z(—l <S)</_v>, s</<n, (B.17)

z BB ﬂ>3<”“) z B sﬁs</_s>, =

implies that

Appendix C

In this appendix we define explicitly the directional derivative introduced in Sect. 4
for the KP and DS classes. Then we use it to verify some of the results contained in
this paper.

C1. Evolution Equations Associated with the KP Equation

The directional derivative of the basic operators qi,=q, +q,+uD,FD,) as-
sociated with the non-stationary Schrodinger problem (1.1) is the usual Frechét
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derivative with respect to the kernel g, , of their integral representation:

Chizglz:nj;dJ’3(‘113g32ig13‘132)’ q12=01,9; +0d},, (C1a)
q%2d[f121g12=f1i2g12’ (C.1b)
flizgn%nj;d)’3(f13g32‘_|'813f32)~ (C.1¢)

In order to make explicit calculations, it is convenient to use the following basic
identities of this algebra of integral operators

apb,=tbiha,,, (C2a),
(af,bi,—bihat,)e,, =(arby,) ¢y = —C12a15b15, (C.2b),
(aiFZbl_Z$bf2ar_-2)clz=(a12$b12)ic12: i’ci_tzafzblz; (C2C)i

where a,,, b,,,c,, are arbitrary functions of x,y,,y, decaying at oo and
ai,, bi,, cf, are the corresponding integral operators defined in (C.1c).

The integral representations (C.1a) imply that the basic operators gi, can
replace af, (and/or b¥,, cf,) in Egs. (C.2). For instance, if af, = f,3, b, =g, and
c,=HE,, the identity (C.2¢)_ becomes

f15912H, 5+ 45, f2H + Hia15 /1,=0, (C3)

where we have also used Eq. (C.2a), to replace f;5q;, by the expression g}, f;, in
which the kernel g,, does not appear explicitly.

It is worthwhile to remark that formulas (C.2) can also be interpreted as matrix
identities in which a, b, ¢ are matrices and the + operations denote anti-
commutator and commutator:

a*b=ab+ba. (C.4)

Interpreting the operation aj,b, , as in (C.4), the recursion operator (1.2) of the KP
class becomes the recursion operator

®=D*+q*+Dgq"D '4+q D 'qg D! (C.5)

associated with the N x N matrix Schrodinger problem in 1 dimension and
introduced by Calogero and Degasperis [38]. Then important properties of the
recursion operator of the KP, like its hereditariness (4.21), are equivalent to the
corresponding properties of the matrix operator (C.5)! This important connection
is explained from the fact that the 2 + 1 dimensional systems considered here can be
viewed as reductions of certain evolution equations nonlocal in y. These equations
are directly connected to matrix evolution equations (see Sect. 5 of [35]).

Now we use Egs. (C.2) to verify some results concerning the symmetries and the
bi-Hamiltonian structure of Egs. (3. 19) and (3.20).

a) @,, is a strong symmetry of N,,H,,, where N,,=¢q;, and H,, =0 (this
result is a consequence of Lemma 4.2; but here it is verified directly).
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D12,[912H 121 /12— (q12H12)a[ P12 121+ Pi2(q12H 1 2)l f12]
=(@12H12)" f12+ D H )" D7 i,
+(qi2H2) D7 q, D7 i+ 40D g, Hin) "D s
—(D*f12+4{2/12+Dq D" fi2+41,D 7 g, D7 1) THy,
+(D>+q\2+Dq{,D" ' +q,D " 'q, D" ) f3H,,=0, since:
the terms without g3, give
—fi2. Hi,+D*f3H,,=0;
the terms linear in g, give
(@12H 1) fi2+ D H ) D7 f1,—(a12f12) " Hia—D(qi.D " f12) Hi,
+452 12 H 5, +Dq D7 G H =540 H o + a0 fiH o+ Hiq10 /12
DD~ f12) 4 Hy 2+ 415D fi2) T Hi,+Hi,q1,D 7 f1,)=0
using Eq. (C.3);
the terms quadratic in g, give
(@12H2) D™ 'q,D 7 f1,+ Hi2q1,D ™ 4D 7 i
+q41, D" (= (D7 f15) " H 2+ a1, D7 fioH )
=(—qH i+ H2q1,+(q1,H,5) 7 )D " 'q,D 7' f1,=0.

b) The Lie algebra of the starting symmetries is given by the following
equations:

[N HY N GHY),=—-N,HY,  [N,HY M HY],= M ,HY,
[M,HY M ,HZ,= —&,,N,HY, HY=[HY HZ],=H) HY,
where R R (€6)
Ni;=41,, My,=Dqf,+4q1,D" 'q7,, Hyp =0.
Equation (C.6a) holds, since,
lar2HYS, a2 Ha= (a1, HY) " HY) —(a1,H) " HY
—(H) qHE+(HE) q,HY = —q1,(HY) " HY,
using (C.2b)_. Equation (C.6b) holds since:
lg1.HS.(Dgy, + 41,0 " 'q1,)H],
=((Dqi>+q1. D" 'q)HY) HY)—D(q,H) " HY
—(q1,H) D™ g, HY —q:,D " (q1,HY) " HY)
= —D(HY) q,HB+HE) g H)—(H) q:,D " 'q:,HY
+(D7 g, H) q,H) +q9,D" "(HE) g, HY
= —Dq{,(H{) H?) +q1,D~ (= (HYS) g HE+(HY) q1,H)
= _Mlz(H(llz)) H(IZZ)'
The verification of Eq. (C.6¢) is left to the reader.
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The notion of an extended symmetry o,, of the evolution equation
gy, = [ dy,0,,K{3 =K} plays an important role in 2+1 dimensions. ¢, is a
so]utinz)n of the equation

01 2f[K(")] =(0,,KMl01,], (C.7a)

where
(0,.K)a= (;O by, A9157KS,0%,), (C.7b)

Again the use of Egs. (C.2) and the property
(012)* fiz=(DY £(=1)"DY)f 12 (C.8)

simplify the calculations of the operator (C.7b).
¢) 0y, is an extended symmetry of
i) the wave equation g,, =M} =2q, _iff

012,029.1=2D0 5 ; (C.9a)
ii) the KP equation qlt:M(lll’:2(q1xxx+6q1q1x+3a2D"1q1yly‘) iff
012,[2quxx+64q+30°D ™ q,,)1=2[D*+6D(q, +42) — 3D~ (41, — 4>, )
+60(q; —q,)D (D, +D,)+6aD~ (D, +D,)*]o,,. (C.9b)
(512K(102))d[f12]=(M12512)d[f12]=Df1§512+f1_2D_1q;2512
+4:1,D 7 f130,,=2Df,,.
(512K(112))d[f12]:(¢12M12512_6aM125,12)d[f12]
:¢124[f12]M12512+¢12(M12512)d[f12]—6a(M125112)d[f12]
=(f12+ DD+ [12D7 gD T gD T DT ) (DG + 41D g15)05,
+D*+q5+Dq D™ +q1,D 7 gD DS+ 12D 4+ 40D T 1300,
—60(Df 15+ f1,D 7 g2+ q0D 7 1201
=2[D>+6D(q, +q,)— 3D '(q1,,— 92,))
+60(q; —q;)D (D + Dy) + 60D (D, + D),
since, for instance:

115001501, =(Dq15)" /13012 =012 /12812 =2(q1 + 42) J12 5
Df15q1,0,,=2Df134:2=2Dq1> 12,
fo;é,lz=D(5/12)+f12=D(D1“‘Dz)fn:

f12D 7141201, = —(D71q12015) fi2=(D71(012) " 412) " frz
=(D_1(D1+D2)Q1z)_f12=(D_I(‘I1yl—‘hyz))fma
402D f13012= =412 D7 015) " fia= =41, D7 (D + D)) iz
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and we have used, for the first and only time in this appendix, the explicit
representation (C.1a) of g, ,.

In order to investigate the Hamiltonian structure of the equations generated by
&, ,, in addition to Eqgs. (C.2) we use the following properties:

aif=tai,,  q4if=14q5. (C.10)
These properties follow from the definitions (C.1c), (C.1a), and (4.8):
{(f12,0128120= n§4 dxdy dy,dys f51(a13832 7-813032)

= ﬂga dxdy dy,dy;(f23a3, % f31023)812

=+4ai2 128120
d) 99,H,,=D 'K%,H,,(K?%,=N,,and M,,) are extended gradients, namely
(V12H12)d—(/12H12)
i) If K9, =N,,, then (§9,H,,),[g,,]1=D""g;,H,, and
<f12,(3??2H12)d[g12]>=<f12,D7lg;2H12>:<D_1f12,H1"2g12>
=—C(HD fi2,8120={D " f13H 2 812
99:H,2)al f12],812) -

i) If K, =M ,,, then
(592H;2)alg12]=(g,+D " 'g,D "¢, +D " 'q;,D " 'g)H
and
S OV2H )l 1D =<{fi2 8 Hi2+ D 'gnD 7 'q,H , + D7 'q,D 7 g0 H )
={fi»(H{;=D" (D™ 'q;,H,5)” +4q:,D" "H,))g12)
={(H{~[(D7'qH15) " +HD 750D 7 ) fi0.812)
={(H3=D (D" 'q12H2)" +q:H D™ N f12.812)
={(2H2)dl f12): 812> -
e) In [35] we show that

y =grad,,I,, (C.11a)
1
(2 +3) <Y("+“, 12>=mlﬁfsdx‘ihdhénfﬁnzﬂ)
1
2(2 +3) jdxdyly‘"“’, (C.11b)

where ¢} =D 'K{} and K¢,= M, ,. Here we directly verify this result for n=0,

Ly [f121=%<0 12 /glz)d[f12]>
= %<V(112)f[512] fi= 6<“/(112)d[512],f12>
= 6<(D12d[512]y(0) 123?(102)4[512] 1 f12)
=& H20%, 1, fi) =% f12) (C12)
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which implies that %) =grad,,I,. (In this derivation we have used the property
P2 =13,

f) The bracket {a;,,b;,,¢1,} =<a,,, OF [03b,,]ci,>, OF=d,,D satisfies
the Jacobi identity for every ay,, b;,, c;,. Here we only display some of the
calculations for the linear terms in g,.

a2, [(q12Db,, + Dqy3b,5) "D+ D(q{,Db, >+ Dg{,b; )"
+(D3b12) D71 +q, D7 (Dhyy) ey,
+cyclic permutations of a,,,b;,,¢;,
=1{a12,by3,¢15} +{[D(q12Dey, +Dgise5)" +(qi2Dey, +Dgize,,) " D
—q12D7'(D3¢;5)” —(D3¢cy) D7 'q1,by s a15)
+<¢12,(Db13)*(q12Day, +Dqia,5)+ Db{y(q{,Da, , + Dgira; )
—(D7'415b15) " Da;,—q D7 b D3ay ) =<4y, Lis(by g ¢15))
where
Lya(b13,¢12)=(q,2Db1,+Dq{3b12)Dey 5+ D(q,Dby o +Dgizby5)  eys
+(D?b12) D7 g e+ 412D H(D%hy,) ey
+D(q{,Dc; 5+ Dq15¢15) by +(q12Dcy 3+ Dgi5¢1,5) " Dby,
—q12D 7 (D3%¢15) by, —(D3¢5) D7 q5b = DgH(Dbys) ey,
~q{,D(Dby3) " ¢15+ DqirbiaDeyy +q15 Db, Dey
—D¥D7'q5h15) 12— D3b1,D T g 5es
Using Egs. (C.2), it is possible to show that L,,(b;,,¢;,)=0, Vb5, cy5.

C2. Evolution Equations Associated with the DS Equation
As in the previous case, it is easy to check from their definitions

QliZGI2#Q1G12_—1—G12Q2= nj;dy3(Ql3G32iGl3Q32)s Q12:512Q1 5

(C.13a)
Qxizd[Fu]Glz:FlizGua (C.13b)
Ff_Lan#Bj;dys(FwGsziGmFsz)’ (C.13¢)

that the operators Q7, and F{, satisfy Egs. (C.2) and (C.10). Moreover, it is possible
to show that the operator P,,, defined by

P12F12¢F12x—JF12y1—Fuyz.], (C.14)
satisfies the following equations
P ,F5G,=(P,F,,) G, +F,P,Gy,, (C.15a)
P1_21F1i2G12=(P1—21F12)iG12—szl(szlFu)iPlzGu
=FLPG,— P (P,F ) PG, (C.15b)
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Now we use Egs. (C.13), (C.2), and (C.15) to verify some result concerning
symmetries and bi-Hamiltonian structure of Eqs. (3.35) and (3.38).
a) &, is a strong symmetry for K9,H,,, where K¢,=N,,=Q;, and
P,,H,,=0, H, diagonal
(p12d[Q;2 12]F12_(Q1_2 12)d[®12F12:|+(D12(Q1_2H12)d[F12]
=—0[(Q1,H;,)" Py, Q12+Q12P NQH )" 1F12
—(0(P1,— QP QH)F 1,) Hyy+0(P,— QP Q5)F,H,,=0, since:

the terms without QF, give
—0(Py,F ) Hyy,+0P,FioH ;=03
the terms with QF, give
_0[((Q12H12)++H12Q12)P121Q12F12+Q12P121(F Q12H12 Q1+2F;2H12)]
=—00L,P L (HLQ L F o+ Fh0nH +0LFLH 5)=0
(in order to show that &,, is a strong symmetry for K¢,H,,, where
K%,=M,,=Q;,0, it is enough to replace H,, by cH,, in the previous
calculation).
b) The Lie algebra of the starting operators (on H,,) is given by the following
equations:
[NJZH(IIZ)’NIZH(Z)]dz -N12H(132)> [NIZH(IIZ)’MIZH(Z)]d— -M12H12 5
[M12H1 M12H12 a= “N12H(x32)> H(132)#[H(xlz)aH(122)]1=(H(112))_H(122) , (C.16)
where
Ni2%05,, M,%Q00, P,H{=0, HY) diagonal, i=1,2,3,
[QHY, 0L H B, =0 HY) HY —(QHY) HY
=—H{Y) QL,HY+HY) Q,HY]
=—0n(H{Y) HY.
Equations (C.16b) and (C.16c¢) are obtained replacing H3 by cHY and HY, by

oHY,, i=1,2, respectively, in the derivation of (C.16a).
c) The operator

P, =0(P1,— 0P 01)), (C17)
defined on off-diagonal matrices, is hereditary, namely
P15, [P12F 121G —P1,P1,,[F1,]1Gy, 18 symmetric in Fy,, Gy, . (C.18)

In order to show it, we make use of Egs. (C.2), (C.15) and of

oFi,G,,, G,, diagonal,

GFI;ZGIZ s Glz Off-diagonal . (C19)

(O'F12)iG12= {
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Here we display the calculations for the terms linear in QF,:
—(O'P12F12)+P1_21Q1+2612_Q1+2P1_21(UP12F12)+G12
+0P12(FT2P1_21Q1+2G12+Q1+2P1_21F1+2612)
=0(Q1‘2P{21(P12F12)'Gu+FT2QTzG12+P12QT2PI21FT2G12),
which is symmetric in F,, G,,, since
F1+2G12=G1+2F12,
szszl(Pleu)_Gu+F1+2QfL2G1z
=00F G+ 00,P (P26 F i+ F1L05,G,,
=G L100F 1, +0:1,P ) (P,G,) Fy,y.

d) o, is an extended symmetry of
i) 0, =M =—-200,, iff

012, —200]=—200,,, (C.20a)
i) 0, =M{)=-20,, iff
72,0 —201=—2Dcy,. (C.20b)

(512]\7112‘1)d[F12]:(szfféu)d[Flz]:Ffzoéu
=—0F[,0,,=—20F,.
(512M(112))4[F12] =(?,,0,,00+20Q 1,00 ,),[F,]
=5, [F1210120015+ 1,015, [F1,100,,+ 20015, [F 1,00},
=—0o[(F2P1,' Q5+ 01, P, Fi5)01,60,,
—(P1,— Q5P QL)F 1,00, + Fi50,1]
=(—2P,,—200(D; —D,))F,= —2DF,,,
since, for instance,
0P, F1,00,,=—P,F,0,,]= —2P,F,,
_UQrzpleszFfzaéu=Q1_2P1_21Q1_2F1+25121, 2Q1_2Pf21Q1_2F12,
Ff25’121=(D1—Dz)F12,
’O'Q1+2P1—21F1+2Q1_20512:szpleFszszfsu[:2Q1_2Pf21F1—2Q12
=_2Q1_2P1_21Q1_2F12,
having used the properties
Gio=—0G,, G,, off-diagonal,
Q%ZO-: _GQTZ’

(151"2)iF12:(D'i i(— 1)"D3)F12 .
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e) 99,H,,=0K%,H,,(K9,=N,, and/or M,,) are extended gradients, namely

(35(1)2[.'112)3‘:(35(1)21'!12)& B o B B
i) If 9?2=0N12=GQ12, then (§1,H,,),[G,,]=0G,H,,=—0H,G,,, and

CFi0,(09:H 120G 121> = —(F1,5,0H,Gy,) ={—0H,F,,G,,)
:<(“/A(1)2H12)d[F12],G12>§
i) If ??220M12=0Q1_25= —Q7,, then
(“ﬁ?zHu)d[Glz]: - 1+2le= _H;rzGlz >

and

<F127()312H12)4[G12]>=<F12> —H1+2G12>=<—H1+2F123612>
:<("‘;(1)2H12)4[F12]aG12>~
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