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Abstract. We discuss the dynamical symmetries of the multi-centre metrics and
apply our results to the scattering of B.P.S. monopoles and fluctuations around
such monopoles. In particular, we give a detailed account of the hidden
symmetries of the Taub-NUT metric.

1. Introduction

Understanding the dynamics of solutions of non-linear field equations is an
important, but difficult, problem for modern physical theories. For some very
special theories in 1 +1 dimensions (e.g. Sine-Gordon equation) this problem can
be treated exactly, but for other systems a complete discussion is not as yet
available. A typical first step in such theories is to consider static stable solutions as
"solitons". Once these have been obtained, however, one is still far from discussing
the interactions of the objects that these solutions represent. About ten years ago
these solutions were incorporated into quantum field theory [1] and their role in
these theories in a perturbative expansion in powers of the inverse soliton mass
was discussed extensively; however, at that time no attempt was made to consider
the interactions of solitons with each other - an intrinsically non-linear problem.

Later Manton [2] observed that for a certain class of multi-monopole
solutions (the B.P.S. monopoles of Yang-Mills-Higgs theories) some progress was
possible as the low energy dynamics could be reasonably described by only a finite
number of naturally obtained parameters. He argued that these solutions would
evolve according to a geodesic motion on the parameter space of static multi-
monopole solutions, with metric obtained from the restriction of the kinetic energy
functional to this submanifold of the configuration space of fields. This identifi-

* Permanent address: Department of Applied Mathematics and Theoretical Physics, Cam-
bridge University, United Kingdom
** Laboratoire Propre du Centre National de la Recherche Scientifique, associe a ΓEcole
Normale Superieure et a ΓUniversite de Paris-Sud, France



268 G. W. Gibbons and P. J. Ruback

cation of the important degrees of freedom meant that further advances were
possible.

Subsequent work [3] revealed that this metric was hyperKahler and in the case
of 2 monopoles could be found uniquely as a result of the natural geometric
symmetries of the physical problem. The metric is called the Atiyah-Hitchin
metric. It has one free parameter which may be identified with physical constants
by considering the asymptotic form of the metric and comparing it with long range
monopole interaction forces [4].

The dynamics of both the full Atiyah-Hitchin geodesic motion and the
asymptotic form of the problem have been thoroughly described in [5]. In
particular, the work in [5] brought to light an interesting and useful generalization
of the conserved Runge-Lenz vectors in the standard Coulomb problem.

In this paper we wish to amplify and extend the results about the Runge-Lenz
vector which were announced in our recent letter [6]. We also wish to give some
general results which were useful in discussing the issues raised in the monopole
motion problem and which may prove useful in other systems, possibly
generalized, for example in the case of higher dimensional hyperKahler metrics.

The asymptotic form of the Atiyah-Hitchin metric is the Taub-NUT metric
with a negative mass parameter. When discussing the geodesic equations in this
asymptotic metric the existence of extra conserved quantities was noticed. These
reflect a symmetry of the system's phase space (i.e. of the relevant Hamiltonian) and
enable the Schrodinger equation to be separated in a special coordinate system.
This is related to the existence of a Killing tensor of rank two on Taub-NUT. A
major motivation for discussing this problem in detail is to discover to what extent
these extra symmetries and separability persist for the full Atiyah-Hitchin case and
for other "generalized multi-centre metrics" which are relevant to other problems
in monopole physics. The many connections between the theory of separability,
the existence of special tensors - Killing-Yano and Killing tensors - and the Petrov
type of metrics require clarification.

The main features of the Taub-NUT metric relevant here are the fact that it
possesses a self-dual Riemann tensor, a self-dual Killing vector and a Killing-Yano
tensor. It also sits at a special point as the intersection of 3 families of Ricci flat
metrics. We give a description of these families and establish some new results and
give simplified proofs of some known results relevant to them. These results have
been useful to us, not only in relation to this work, but in relation to the
identification of other 4 dimensional hyperKahler metrics. This is of some im-
portance in the Harmonic Superspace construction of hyperKahler metrics [38].

We also give necessary conditions for the existence of Killing-Yano two forms.
Combining these results with previous work leads us to believe that the Atiyah-
Hitchin metric does not possess the simplifications for the geodesic problem that
we obtain in the Taub-NUT limit.

The rest of this paper is organized as follows:
In Sect. 2 we describe some relevant properties of 3 useful classes of Ricci-flat 4

metrics - the multi-centre metrics, the Taub-NUT metrics, and the SO(3) invariant
self-dual metrics. We have tried to give a formal systematic picture of the relation
between these classes and of metrics and their properties. In particular, the most
important information for our purposes is whether the action of the isometry
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group or its subgroups is holomorphic with respect to any of the preferred complex
structures. This information provides a powerful characterization of the metrics
which allows us in the later part of this paper to argue that the Atiyah-Hitchin
metric does not possess similar conserved quantities to those in Taub-NUT. It is
also important in other contexts, for example when discussing the construction of
hyperKahler metrics using supersymmetric methods. For this reason we have tried
to spell out rather explicitly some results which are perhaps contained rather
implicitly elsewhere in the literature. For the same reason we have organized the
material in this section in a rather formal way to enable the reader to obtain the
relevant facts quickly giving self contained proofs of both new and old results.

Section 3 contains a brief summary of the properties of the conserved
quantities discovered in [5] and relates these to the existence on the self-dual
Taub-NUT metric of 2 important geometric structures: three symmetric second
rank Killing tensors, K\β and a skew symmetric second rank Killing-Yano tensor
YΛβ. These two structures are linked by the existence of the 3 complex structures
associated with the hyperKahler metric.

In Sect. 4 we describe what is known of the separability of the Schrodinger
equation in the multi-centre metrics. In particular, we obtain a new result: the
separability of the Schrodinger equation in the 2-centre metric. This separability
may be viewed as giving rise to the existence of symmetric Killing tensors. We also
discuss a generalization of the Schrodinger equation which is relevant for the
fluctuations around the B.P.S. monopoles and find it to be separable as well.
Various previously observed separation and symmetry properties of the multi-
centre metrics are shown to arise as special cases.

In Sect. 5 we treat Killing-Yano tensors. In particular, we show that their
existence requires the Weyl tensor to be of Petrov type D. The existence of a Yano
tensor gives rise to associated Killing vectors. These are identified in our case and
we are able to show that this situation is very special to the Taub-NUT case. As
with Sect. 2 and to a lesser extent Sect. 4 we have laid out in a systematic and formal
way various results (some of them known already) about Yano tensors together
with self-contained proofs.

One aspect of the existence of hidden symmetries is that we can reduce our
problem to that of a simple harmonic oscillator provided we use an appropriate set
of coordinates. In preparation for the treatment of our generalized Coulomb
problem we give in Sect. 6 a brief review of the properties of the standard isotropic
oscillator. In particular, we describe the various important group actions and their
holomorphic properties.

In Sect. 7 we return to our specific problem and identify the action of the
conformal group (or its covering) 5(7(2,2). We outline how this is related to the
twistor formalism. We find some results of Mack and Todorov to be especially
helpful in this respect. We then show that, for the bound states, there exists a family
oίSU(2) x SU(2) subgroups of 5(7(2,2) which act transitively on the set of classical
orbits having fixed energy and electric charge. This action is described in some
detail. The diagonal SU(2) subgroup corresponds to the manifest geometric
symmetries, the remaining elements constitute the "hidden symmetries."

The existence of hidden symmetries is also known for the fluctuations around
the asymptotic Wu-Yang limit of the spherically symmetric B.P.S. monopole. In
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Sect. 8 we are able to generalize this result by showing that the large distance
fluctuations around a multi-monopole are governed by a Schrodinger type
equation on the multi-centre metrics.

Finally, in Sect. 9 we point out that because the Atiyah-Hitchin metric has non-
trivial second homology it is possible to introduce a connection on the 2 monopole
moduli-space which enters the generalized Schrodinger equation. We describe
some of the modifications of previous results this brings about. Finally, in Sect. 10
we point out the irrelevance of Killing tensors for σ-models with targets admitting
them.

2. The Half-Flat Taub-NUT Metrics

It is helpful to consider the half-flat Taub-NUT metrics as special cases of 3 classes
of Ricci flat 4-metrics.

1) The multi-centre metrics;
2) The general, 17(2) invariant, Taub-NUT family;
3) The S0(3) invariant half-flat metrics.
In this way we may regard some of its special properties as being inherited from

a more general class of metrics. Other of its special properties, for example its extra
"hidden" symmetries, may be regarded as arising from the way one approaches it
as a special case of the more general metrics.

(2.1). The Multi-Centre Metrics. These are conveniently characterized by the
following (local) theorem:

Theorem 2.1. Let (M, gaβ) be a Ricci flat Rίemannίan 4-metric with an ε-self-dual

Killing vector qa- — = — ,
ox oτ

then gΛβ has an ε-self-dual Riemann tensor and admits a local coordinate system in
which the metric takes the form:

ds2 = V~ \dτ + ω dx)+Vdx2 , (2.1.2)

with

curlω = εgradF. (2.1.3)

Proof. Locally any 4-metric with a Killing vector — - may be written as
oτ

ds2 = V~l(dτ + ω dx)2 + Vyijdxidxj . (2.1.4)

The vacuum Einstein equations reduce to the statement that locally

curl ω = grad ψ (2.1.5)

for some φ, and

R..= V~\diVdjV-di\pdjip}. (2.1.6)
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The 2-form

(2.1.7)

is ε-self-dual iff (2.14) holds where the curl and grad operations are covariant with
respect to the (a priori curved) metric ytj. But (2.1.5) now gives

V=ειp, (2.1.8)

which results on substitution in (2.1.6) with the result that is Ricci flat, hence (since
it is a 3-metric) flat: It now follows that in the obvious basis the connection one-
forms are ε-self-dual, and hence that the metric has an ε-self-dual curvature tensor.
Given that gaβ has an ε-self-dual curvature tensor, it follows that gΛβ admits 3
covariantly constant ε-anti-self-dual 2-forms Fl

aβ which may be normalized to
satisfy

(2.1 .9)

As explained in [7] ε-duality is equivalent to the existence of a 2-spheres worth of
complex structures with respect to any one of which the metric is Kahler. Such a
structure is called in general 4fc-dimensions a hyperKahler structure.

Since Fl

Λβ is covariant constant,

= F\aq^-F\^. (2.1.10)

Because F\β and qa;β have the opposite duality, we obtain

= 0. (2.1.11)
q«

Equation (2.1.1 1) has the significance that the Killing vector is holomorphic with
respect to all the complex structures, i.e. the Lie dragging of vectors commutes with
multiplication by i in any holomorphic chart. This property is called tri-
holomorphicity. We thus have the following corollary to Theorem (2.1):

Corollary (2.1). Any hyperKahler 4-metric with triholomorphίc Killing vector must
be of form (2.1.2), (2.1.3).

Corollary (2.1) may be strengthened considerably in view of the following

Proposition (2.2). // a Killing vector qa of a metric with ε-self-dual curvature has an
ε-self-dual covariant derivative at a point it has an ε-self-dual covariant derivative
everywhere.

Proof. The Ricci identity yields the equation (valid for any Killing vector):

qa ,β .v=Rw<ιλ (2.1.12)
This shows (as is well known) that the Killing vector is determined by its value at a
single point together with its first covariant derivative. If qa is ε-self-dual, then all
the covariant derivatives of qΆ will be ε-self-dual. Thus if cf is ε-self-dual at a single
point it will be ε-self-dual everywhere.

Another useful result is

Theorem 2.3. Let gaβ be hyperKahler with 2 commuting Killing vectors qa and pβ,
then there exists a linear combination which is triholomorphic and hence the metric is
of form(2Λ.2)and(2Λ.3).
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Proof. The Lie bracket of qa and pβ is

ΐ tff-f ^ (2-1-13)

The co variant derivative of (2.1.13) is [using (2.1.12) and the Bianchi Identity]
equal to

RaβρσP
ρPσ + P« ,yq

γ ,β-q« ,yPγ ,β (2.1.14)

If the Riemann tensor is ε-self-dual we may project the vanishing of (2.1.14) on to
the space of — ε-self-dual 2-forms to obtain the result that

[p-,β-]=0, (2.1.15)

where P~ ',Q~ are the —ε-self-dual projections of the 2-forms pa.β and qa.β and
where we are using the obvious matrix multiplication (using the metric). Equation
(2.1.15) implies that P~ and Q~ are proportional, thus

is ε-self-dual for some function λ. If λp is the value of λ at some point p the Killing
vector field Ka = p* + λpcf has ε-self-dual covariant derivative at p and hence by
Proposition (2.2) everywhere.

Remarks. 1) Clearly V must admit an additional symmetry. Typically it will be
axisymmetric. It also follows that in the axisymmetric case the "other" Killing
vector will leave invariant just one privileged complex structure, i.e. the
axisymmetric action is holomorphic with respect to one complex structure, the
other two transforming as a doublet of S0(2).

2) We were told of this result by N. Hitchin who has a different proof.
For a metric of form (2.1.2), (2.1.3) the hyperKahler structures are given by [8]

Fί = (dτ + ω- dx) Λ dxl - Vεipqdxp Λ dxq , (2.1.16)

which is clearly invariant under τ->τ + constant. We record here for later
convenience the Laplacian in these coordinates [9] :

(2.1.17)

The Green's function and geodesies are given in [9].
To obtain complete metrics we must choose

ί = N 2Mκ-< +£iϊ=ϊj <2 U8>
where M>0, O^τ^SπM, and (5 = 0 if the metrics are asymptotically locally
euclidean (ALE) or δ = 1 if they are asymptotically local flat (ALF). Some special
cases are

<5 = 0, N=ί\ flat space,

<5 = 1 , N = 1 : half flat Taub-NUT (positive mass) ,

(5 = 0, N = 2: the Eguchi-Hanson metric ,

δ = 1 , N = 2 : the double Taub-NUT metric .
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In connection with monopoles the case (5 = l , Λ Γ = l , M < O i s also of interest.
This case is called the half-flat Taub-NUT with negative mass and is Riemannian
only if \x — x1\>2M.

(2.2). The (7(2) invariant Taub-NUT family. The following proposition is well
known:

Proposition (2.4). The general Ricci flat metric possessing an isometry group acting
transitively on ^-dimensional orbits with Lie algebra (7(2) has local form:

ί 2Mt-n2\~l

 2 J 2Mt-n2

\ t2 — n2 ) \ t2 — n2

(2.2.1)

where σ l 5σ 2, σ3 are left invariant one-forms on SU(2) with

do\ = O'2 Λ (73

and cyclically.

In our conventions at Λ σ1 Λ σ2 Λ σ3 is positively oriented. The only non-flat half
flat (7(2) invariant metrics are Eguchi-Hanson and Taub-NUT. The special case
M= n has self-dual curvature and coincidences with the <5 = 1, JV=1, positive
mass half Taub-NUT solutions. The negative mass Taub-NUT solution has
M= —\n\ and is antiself-dual in our convention. The Eguchi-Hanson metric may
be obtained by setting

M = n + α2/2n (2.2.2)

and taking the limit as n-»oo.
The (7(2) action is both linear and holomorphic in any one of an infinite family

of charts defined by

C1 - R(t) cos - exp ̂  (ψ + φ), (2.2.3)

(φ-0), (2.2.4)

where R(t) is an arbitrary function of t and (φ, φ, θ) are the standard Euler angles.
Note that two charts in the family are not in general holomorphically related. The
metric is Hermitian iff

(2.2.5)

or

R-4 = (ί-ί+) t-/"(ί-ί_) f-/"exp(ί/π), (2.2.6)

with

t±=M±]/M2-n2. (2.2.7)

Since Ricci flat Kahler implies hyperKahler in 4-dimensions, the only possible
non-trivial cases in which this Hermitian structure could also be Kahler are the
Taub-NUT or Eguchi-Hanson cases. By examination one finds that this occurs
only in the latter case. Thus:
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Proposition (2.5). The only hyperKάhler 4-metric with linear and holomorphic U(2)
action is the Eguchi-Hanson metric with holomorphic coordinates defined by

R* = a2(ρ2-a2). (2.2.8)

This proposition is derived directly in [12] together with the Kάhler form.

In fact, one can say something stronger in view of the

Proposition (2.6). Given any hyperKάhler 4-metric with an SU(2) action which is
holomorphic with respect to one of the complex structures, then the action is
necessarily triholomorphic.

Proof. The complex structures carry a representation of any subgroup of the
isometry group of the metric. Hence in this case SU(2) has a real 3-dimensional
representation on the complex structures. This is either the triplet or 3 singlet
representations. Since one complex structure is invariant under 517(2), the
representation cannot be irreducible and hence all complex structures are
invariant.

Thus in Eguchi-Hanson we have

where Jl generate the 5O(3) subgroup. In Eguchi-Hanson the L/(l) factor of U(2)
does not act holomorphically with respect to all 3 complex structures. One of them
[given by (2.2.8)] is invariant but the orthogonal pair rotate as a real doublet of
[/(I). An example of a Kahler chart for which the SU(2) is holomorphic but the
£7(1) is not and its relation to the privileged complex structure (2.2.8) is given
in [10].

The situation should be contrasted with that of Taub-NUT for which the 5O(3)
is not holomorphic but rather [by Proposition (2.6)] must satisfy

£F\β = ε^F^β. (2.2.9)

In fact, Eq. (2.2.9) is obvious from the explicit form (2.1 .1 6). For Taub-NUT the
most convenient choice for the arbitrary function R(ή in (2.2.3), (2.2.4) is

γt — n = |/r. These coordinates will be denoted by Z1 and Z2 in what follows. The
Kahler coordinates for Taub-NUT have been given in [11]. In our conventions we
define (using standard polar coordinates for R3)

w = r sin θeiφ =

θ ί4r n h
,, = rcos-exp^-cos0+ —

whence the metric (2.1.2) with V— 1 + 2M/r takes the manifestly Hermitian form:

2M\^ . _ _ (12JO)dv . Ίθ dw
- — sin - —

One may verify that the fundamental 2-form is closed and hence Kahler. Evidently
the choice of the z direction is arbitrary up to the action of 50(3) and so there
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indeed exists a 2-sphere's worth of complex structures defined in this way. The
relation of the multi-centre form of Eguchi-Hanson to the manifestly 17(2)
invariant form (2.2.1) will be described later.

The (7(2) invariant metrics have Petrov type D + , D~ . To see this recall that we
may regard the Weyl tensor Caβ

μv as a linear map from 2-forms to 2-forms with
vanishing trace. The symmetries of the Weyl tensor imply that the map is
symmetric with respect to the standard induced metric on 2-forms and that it
commutes with Hodge dual. Thus we obtain 2 real 3 x 3 symmetric matrices with
vanishing trace. Then either is said to be of type D, if two of the eigenvalues are
equal The matrices are invariant under the induced orthogonal action of the
isotropy subgroup of the isometry group. In the Taub-NUT family the isotropy
subgroup is the 17(1) factor of 17(2). The (7(1) can thus only rotate 2 eigendirections
with equal eigenvalue about the third eigendirection, and so both matrices must be
of type D (of course, one vanishes in the half flat case).

For the record we note that the entire family admits a U(2) invariant Killing-
Yano 2-form Y satisfying

%dY=7Y, (2.2.11)

and given by:

γ= t(t2 - n2) sin θdθ Λdφ + 2n2dt Λ (dip + cos θdφ) . (2.2. 1 2)

In the Eguchi-Hanson limit Y coincides (after rescaling) with the privileged (7(1)
invariant complex structure.

(2.3). The S0(3) invariant half-flat metrics. The requirement that a half-flat
4-metric admit an S0(3) action with (generally) 3-dimensional orbits leads to
ordinary differential equations [12] which were completely investigated in [3] and
also [13]. Their results may be summarized by the following

Proposition (2.7). The only S0(3) complete non-singular invariant half -flat 4-metrics
with ^-dimensional orbits are

1) the Atίyah-Hitchin metric;
2) the Taub-NUT metric with positive mass;
3) the Eguchi-Hanson metric.
Of these only the Atiyah-Hitchin metric does not admit a further (7(1). In Atiyah-

Hitchin as in Taub-NUT the SO(3) action is holomorphic with respect to none of the
Kάhler structures. The Atiyah-Hitchin metric cannot therefore be cast in the form
(2.1.2), (2.1.3), i.e. it does not admit a triholomorphίc (7(1) action.

The asymptotic form of the Atiyah-Hitchin metric is that of the Taub-NUT
metric with a negative mass [3].

The complex structures in Eguchi-Hanson may be written as:

where the ω1' are orthonormal 1 -forms parallel to the σt and ω° is the 4th leg of the
orthonormal frame. The privileged complex structure is:

ω° Λ ω3 + C01 Λ ω2 .
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3. The Conserved Quantities and Killing Tensors

The geodesic Lagrangian in negative mass Taub-NUT is

IY 2\ / 2\ . Ί
L=π\ ί l - - r r + 4ί l - - ( t / ) + cos^)2 . (3.1)

The conserved momentum conjugate to the ignorable coordinate ψ is

/ 2V1

g = 8 π ( l - - j (ψ + cosθφ), (3.2)

and the conserved energy E is

The conserved angular momenta J are:

x r-g f , (3.4)

where f is a unit vector in the r = x — xί direction. In addition in [5] it was shown
that there are 3 additional conserved quantities K, defined by

K = 2π 1- ) r x J+ \4πE-q2 r. (3.5)
V r/~ " \ 2 / "

The vector K generalizes the Runge-Lenz vector of the standard Coulomb
problem. The non-vanishing Poisson brackets are (after some algebra) (see
also [14]),

{Ji,Jj} = έjkJk, (3.6)

(3.7)

8ίjkJk . (3.8)

The sign of the quantity I 4πE J distinguishes between bound and

unbound states being positive in the former and negative in the latter. The algebra
may be put in a more recognizable form by defining:

Ί2

4

-1/2

£, (3.9)

(3.10)

whence (for bound states)

{A'±,Aj

±} = εiikAk

±, (3.11)

μ'+MJ-} = 0. (3.12)
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This is the Lie algebra of sw(2)0sw(2). The magnitudes of the vectors A ± are given
by:

I \ l / 2 \ 4

--4πE\ \

2 y72 l -4 772 \ (3 13)
q

τ-4nEJ I (L--4nE

At fixed E and q the space of classical bound orbits is specified by the 2
constants A+ subject to (3.13). This means that the classical bound orbits are in
1 — 1 correspondence with the points of S2 x S2. From (3.11), (3.12) it follows that
the canonical transformations generated by A + act multiply transitively on this
space A + acting on one factor and A _ on the other.

The functions J and q are linear in 4-velocities and arise from the Killing
vectors of this metric in the standard way:

dx«

'-U.¥. (3-15)

The functions K are quadratic in 4-velocities and may thus be written as

dxα dxβ

X-^-jΓ-S" Cllβ

where the Kl

αβ = Kl

βα are 3 Killing tensors which by definition satisfy

K\αβ;y) = 0. (3.17)

Equation (3.17) is the necessary and sufficient condition that the right-hand
side of (3.16) is constant along geodesies. The necessary and sufficient condition
that the second order formally self-adjoint operators

K^nK^) (3.18)

commute with the D'Alembertian [15],

(K^R^p = 0, (3.19)

is also satisfied in the Taub-NUT metric by virtue of the vanishing of the Ricci
tensor.

One may check by explicit calculation the following

Proposition 3.1. The Killing tensors K\β are related to the 17(2) invariant Killίng-
Yano tensor Yaβ and the complex structures F\β by

K'.,= W (3.20)
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In fact, explicitly one has:

γ= ω° Λ ω3 + (r- ^ω1 Λ ω2, (3.21)

( 2\
Λdx+( l--\dy/\dz, (3.22)

2 ' " (3.23)

F3 - 2(dψ + cos θdφ) Λdz+(l--\dxΛdy, (3.24)

where ω^ω^ω^ω3 is the orthonormal basis given by Eq. (2.2.1), r = ί+1 and we
have taken M = — \n\ = — 1. The constant of the motion obtained by squaring Y, i.e.

KΛβ=YΛ°Yσβ (3.25)

is not new, in fact,

dx^dx^_ J2-q2 E_
aβ at at (4π)2 π

It is clear from (3.21) that Yaβ is both C/(l) and S0(3) invariant, i.e.

£r«, = 0, (3.27)

£r.* = 0. (3-28)

^L

In the next section we shall relate the existence of the Killing tensors to
separation of variables of the Hamilton-Jacobi and Schrόdinger equations. Then
in the following section we shall discuss the implications of the existence of a Yano-
Killing tensor.

4. Separability and Killing Tensors

Killing tensors often arise as separation constants for the Hamiltonian-Jacobi
and/or Schrόdinger equations. Rather than describing this connection in general
(see e.g. [16, 17]) we shall limit ourselves to giving a detailed discussion of a
particular class of "2 centre" metrics which include as special cases the Taub-NUT,
Eguchi-Hanson, and double Taub-NUT. The separability occurs in spheroidal
coordinates adapted to the 2 centres and generalizes the well known fact in atomic
physics [18] that the Schrόdinger equation for a diatomic molecule separates in
much the same way that the extra conserved quantities in the Taub-NUT metric
generalize the existence of the Runge-Lenz vector in the Hydrogen atom problem.

We begin by defining spheroidal coordinates (ζ, A, σ) based on two points x = xl

and x = x2 in R3. Define the distances from the two points by

« _ I γ γ I . r _ ι γ γ ι (Δ\\
'1 — \X — X.l\, '2 — IΛ — Λ 2 l i^.lj

Fix a plane passing through x1 and x2. A point not in the line through x± and x2

lies in a unique plane intersecting that line and making an angle σ with it. The
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angles between line x^x2 and the lines x^x and x2x are θί and Θ2. Then ζ,λ are
defined by

(4.2)

where 2R = \xί — x2 \ . Thus:

(4 3'and the Euclidean metric on 1R3 takes the form

ζ2-ί)(l-λ2)dσ2. (4.4)

If one point, say x2, is allowed to recede to infinity we obtain the parabolic
coordinates used in [5] where our σ is the φ of [5], i.e.

η= Lt 2Λ(C-1); f = Lt 2/?μ + l). (4.5)
#->oo #->oo

We shall consider the general metric

ds2 = F~ ^R2(dχ2 + (acosθί+β cos Θ2)dσ)2 + Fax2 , (4.6)

where

The metric (4.6) may be thought of as a combination of 2 gravitational dyons.
Consider the equation

(4.8)

where ω2/F may be regarded as a potential term. Equation (4.8) becomes:

C2-

dχ ζ2-λ2 dχ /

= εR2(K(ζ2 - λ2) + y(ζ -λ) + δ(ζ + λ))f + ω2R2f. (4.9)

The coefficient of —— is
δσoχ

. ,4,o,
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S2f
That of- is

~yδ

2-(α-je)2C2). (4.11)

Separability clearly occurs if the numerator of -^ ^ contains a factor of ζ2 — λ2.
ζ —x

Since the numerator is quadratic in ζ, λ it must in fact be a multiple of ζ2 — λ2. Thus
we have the following

Proposition (4.1). The sufficient conditions for Eq. (4.8) to be multiplicatively
separable are:

7

2 = 4α2, δ2 = 4β2. (4.12)

Equations (4.12) imply that the 2 dyons are separately either self-dual or
antiself-dual. Thus condition (4.12) is analogous to the cancellation required in the
Taub-NUT metric to allow the existence of extra conserved quantities, the term
ω2F being the analogue of the term arising in the generalization described in [6].
The metric (4.6) subject to (4.12) is Ricci flat iff aβyδ>0.

Proposition (4.1) contains two already known cases:
I) If one of the points recedes to infinity, R-+CO, we obtain the separability in

parabolic coordinates for the Taub-NUT metric and Taub-NUT with potential
term noted in [5, 6].

II) If K = 0 = ω2 and α = β, we obtain a result which follows from the fact that
Eguchi-Hanson is in fact 17(2) invariant and Proposition (4.1) amounts to
separation of variables in radial coordinates. We shall explain this further later.

An interesting new result is that if δ = 0 we obtain separability in Taub-NUT
(with or without potential term) in a new set of coordinates. In the related
Coulomb case this allows a fairly explicit formula for the Greens function [19-21]
and in the present case leads to a simple explicit formula for the ψ averaged Greens
function which is easily deduced from that given in [21]. If one averages over ψ the
magnetic term in (2.1.17) does not contribute. Unfortunately, the method of [21]
doesn't readily generalize to the case where magnetic terms are present. If
ε = ω2=0, one has an explicit formula for the Greens function due to Page [9].

It follows from Proposition (4.1) and the semi-classical expansion that the
Hamilton-Jacobi equation for the metric (4.6) is additively separable. The
Hamilton-Jacobi equation is

dσ dχ^

-λ) + δ(ζ + λ))2(^\

(4.13)
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The last term in (4.13) is absent if one is merely considering geodesies. If

S = χPχ + σPσ + W(ζ) + U(λ), (4.14)

where Pχ and Pσ are the constant momenta conjugate to x and σ respectively and
where the momenta conjugate to ζ, respectively λ are

dW „ dU

then we can write (4.13) as the 2 separated equations:

α ] 2\ n2 i r>2 v " " rv p p , { Ύf e n £^212 .. j f T I p2
— A Ir j -\ —^ Γ „ r̂ — Γ y Γ f , ~r \ — r^OA 7 Λ. Λ — — yr^A I rv' Λ \ 12 σ Λ n 2 \ 2 4 2 /

- ε^2(^/l - yλ - Kl2) + CA , (4.16)

and

,,2 , , n 2 , 1 02 2«α-)8)n n

(4.17)

where Cλ, Cζ are separation constants such that

Cζ + Cλ = ω2R2. (4.18)

Since

Ft (4.19)

we may substitute (4.19) into (4.16) and (4.18) to express Cλ and Cζ as the sum of 2
terms, one quadratic in momenta and one independent of momenta. Thus

ζ, (4.20)

λ. (4.21)

The equations of motion may be written as

xα

; βχί = ω 2g^ = Pα

; βP* . (4.22)

The constancy of Cζ and Cλ requires that:

C^yP«P^ + 2Cζ

2βPΛω
2dβ ίj] + ω2βζ,αP

α = 0 , (4.23)

with a similar equation for C;.
Equation (4.24) must be true for all ω2 and all initial momenta Pα. It follows

that

C«^y)=-CΛ(β/ϊ;y) = 0, (4.24)
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and

= 0, (4.25)

and similarly Cλaβ and Qλ= — Qζ + R2.
Equation (4.24) tells us that the metric (4.6) admits a quadratic Killing tensor.
The existence of 4 Poisson commuting constants of the motion shows

Proposition (4.2). The dynamical system with Hamiltonian

is integrable in the Liouville sense.

Thus in addition to the symmetries corresponding to the Killing vectors -̂ and

— there are further symmetries corresponding to translating the remaining
oσ
(action) angle variables. Even in the molecular physics applications (i.e. Px = 0) the
symmetries of the 2 centre problem are not very well understood (see [22, 23]) so
we shall pass here to the 2 special cases I) Eguchi-Hanson, K = Q = ω2, y = 2a
= δ = 2β and II) Taub-NUT, K = l, ω2 = 0, y = 2α, δ = Q = β.

I) Eguchi-Hanson. Using the freedom to set γ = 2, α = 1 we allow σ and x the
ranges 0^σ^2π; 0^x^4π. This metric is well known to admit a 17(2) isometry
group which is not apparent from the metric form (4.6) which has only the maximal
commuting subgroup 17(1) x £7(1) manifest. To obtain the standard form define θ,
ρ, φ, and ip by

2JRcosθ = r1-r2,

(4.27)

to cast the metric in the form:

(4.28)

The constant Cλa,βP*Pβ becomes:

-PI. (4.29)

Equation (4.29) shows that the Killing tensor CλθLβ is reducible in this case since the
term in braces in (4.29) is just the total angular momentum and the second its
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conserved third component squared. For the reader's convenience we point out

that the Killing vector —— is triholomorphic while ̂ — is merely holomorphic with
oφ dip

respect to the preferred complex structure. Despite appearances in order to cast
(4.28) in multi-centre form one is obliged to follow Eq. (4.27) and identify the Euler
angle ψ with the azimuthal angle σ in the multi-centre representation (4.6). This is

clearly necessary since — is not triholomorphic (see after Proposition 2.6).
oσ

II) Taub-NUT. In distinction to the Eguchi-Hanson case the Killing tensor
Cλ

aβ is really a new constant of the motion in this case. Since the position, x2, of the
second mass point and the plane through the points x2 and x1 are now arbitrary, it
follows that we obtain in this way a 4 parameter family of constants which may be
obtained from one another by scaling and rotations. For fixed scale, i.e. fixed R,
they transform as a vector under S0(3). Since the space of orbits (at fixed energy
and electric charge) is 4-dimensional, each orbit being specified by two vectors A +
subject to (3.13), these new constants of the motion must be functions of the already
obtained, A + . If we allow the point x2 to recede to infinity along a fixed line
through x2 the spheroidal coordinates become parabolic coordinates as men-
tioned above. The separation constant Cλ

ΛβPaPβ then reduces to the separation
constant obtained in parabolic coordinates. In the closely related Hydrogen atom
problem it is known [24] that this parabolic separation constant coincides with
one component of the Runge-Lenz vector. It seems plausible, but we have not
checked this in detail, that a similar relation should hold in our case.

To conclude this section we remark that it seems to be widely believed that a
Ricci flat 4-metric admitting two commuting Killing vectors and allowing
separation of variables for the Schrόdinger equation must be of Petrov type D. We
have computed the Petrov type of the metrics (4.6) in the particular 2-centre case
with KφO, α = j8, γ = δ. It is not Petrov type D.

5. Killing-Yano Tensors

A second rank Killing-Yano tensor or Yano tensor for short satisfies by
definition [25]

Yaβ',γ=Y[Λβ ,y}' (5-1)

They arise in a natural way if one has a problem in which a spin vector Sα is
covariantly constant along a geodesic with momentum Pa. Given the existence of a
Yano tensor one obtains spin vectors satisfying this condition by the formula:

S*=Y*βP
β. (5.2)

One can view Yano tensors as being in some sense the square roots of Killing
tensors by virtue of the easily verified

Proposition 5.1. The symmetrized product,

Y\*'Y\\f>, (53)

of 2 Yano tensors Yl

Λβ and Y2

aβ is a Killing tensor.
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In the (7(2) invariant Taub-NUT geometry the square of the Killing tensor Yaβ

given by (2.2.11) gives rise to the reducible constant of the motion:

where E is the energy. To obtain irreducible Killing tensors using Proposition 5.1
we may take the products of Kahler structures (which trivially satisfy 5.1) with Y β.
As mentioned in Sect. 3, Eq. (3.20) this will indeed produce the Killing tensors K\β

and [by virtue of the relations (2.1.9)] these are the only non-trivial Killing vectors
we can obtain in this way. That YΛβ has no particular duality in the (7(2) family
except in the Eguchi-Hanson case where Y*β coincides with the privileged complex
structure may be understood from the following

Proposition 5.2. A Yano tensor Yaβ has a fixed duality iff it is proportional to the
Kahler form of a Kahler metric.

Proof. The definition (5.1) is equivalent to

\dY=VY. (5.5)

Contraction on β and y in (5.1) implies

<5Y=0. (5.6)

If y has a fixed duality (5.6) implies that

dY=Q, (5.7)

and hence by (5.5) that Y is covariantly constant.
Since for any 2-form

yα ji. γβ _ if y # yε<7W CS 8Ί
1 β ^ 1 y 4^ l £ ( j ^ 1 JU y , \J.O)

Y*β must have maximal rank and by dividing YΛ

β by the constant non-
vanishing number (^Yεσ * yεσ)1/2 we can normalize YΛ

β to satisfy

YΛ

pY
β

y=-δ*y. (5.9)

Thus Ya

β satisfies the necessary and sufficient conditions to be the complex
structure of a Kahler metric. Note that if the metric is Ricci flat then it must further
be hyperKahler.

If, however, Yaβ does not have definite duality one can define the following non-
zero vector field I

Ί^μ Oμvρ<τv (X 1 Π\
A — — ε * y ρ ;<τ (J.IUJ

3!

The vector field Kμ is called the primary Killing vector field associated to the Yano
tensor Yaβ [26]. This name is justified by virtue of the

Proposition 5.3. The vector field Kμ is Killing if Yaβ has maximal rank or the metric
is Ricci flat.

Proof. We first establish the following two necessary conditions that Yμv must
satisfy [15]

y =%γτ R Ί

 τ (5 IDμv ρ σ 2 τ[v μρ]σ V ^ /
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and

^μv[σT Yρ]τ + Rσρ[μ Yv]τ = 0 . (5.12)

We have from (5.1)

YΛβ;y+YΛΓ,p = 0. (5.13)

Now taking the covariant derivative of Y Λ β ; y and successively using the Ricci
identity and (5.13) one obtains:

2 *μv;λ;ρ
 =
 ̂ μσvρ * λ ~^~ ̂ λσvρ ̂ μ ~^~ ̂ μσvλ * ρ ~^~ ̂ ρσvλ ̂ μ "+" ̂ μσρλ * v + ̂ vσρλ^μ '

(5.14)
But the left-hand side of (5.14) is totally antisymmetric in μ, v, and λ, so we may
replace the right-hand side by its totally antisymmetric part in these indices.
Rearrangement of these terms and use of a Bianchi identity yields Eq. (5.11). The
left-hand side of (5.12) is identically

r[Λ]^+P[Λ]yA"> = 0,

reexpressing this using (5.11), rearranging terms and using the Bianchi identities
yields (5.12). We have therefore

K,;v = iJ^*yw + iV**V (5.15)

Contraction on μ and σ of (5.12) gives (using the first Bianchi identity)

1"(A)« = 0. (5.16)

Thus using (5.8) in the case that Yμv has maximal rank or trivially iΐgμv is Ricci flat,

*r(rRv)τ = 0. (5.17)

Whence

*0,;v) = 0. (5-18)

We are now in position to demonstrate the following interesting

Proposition 5.4. Any vacuum metric admitting a Yano tensor must be left and right
type D [25].

Proof. The left-hand side of (5.12) has the same symmetries as the Weyl tensor. We
now adopt a manifestly SO(3)L x SO(3)R notation according to which the Weyl
tensor is represented by 2 real symmetric trace free 3 x 3 matrices C +

 {j and the self-
dual and antiself-dual parts of Yaβ by 2 real skew 3 x 3 matrices Y±

ij. Then (5.12)
reads

c<ir4,=o. (5.19)
Taking in each equation in turn and using a basis in which Ytj has its canonical

skew form, one finds that in this basis C±

ij are diagonal with 2 coincident
eigenvalues. This is what is meant by type D.

Suppose that the metric is half-flat, then the Killing vector Ka is distinguished
by the following



286 G. W. Gibbons and P. J. Ruback

Proposition 5.5. The primary Killing vector in a self-dual space admitting a Yano
tensor is triholomorphic.

Proof. This follows immediately from (5.15).
From Propositions (5.3), (5.4), and (5.5) it follows that a non-trivial Yaβ cannot

exist in the Atiyah-Hitchin metric [6] or double Taub-NUT. Since if a non-trivial
Yaβ exists it is unique (up to a constant) and can be read off from the Weyl tensor,
one knows that there are no non-trivial Yano tensors in Eguchi-Hanson. It seems
clear that the other, N > 2, multi-centre metrics are not type D, and indeed it seems
to be true that the only non-singular Ricci flat type D metrics are Schwarzschild,
Kerr, Taub-Bolt [27] and the metric given in [28].

Yano tensors possess a number of other interesting properties which we shall
now enumerate referring the reader to [25, 26] for proofs. One may check them in
the specific case of Taub-NUT explicitly.

1) The Killing vector Xα is a symmetry of Yaβ:

(5.20)

2) There exists an associated secondary Killing vector

Hμ=Yμ

λY\K6. (5.21)

3) Hμ and Kμ commute and Hμ leaves Yμv invariant. In Taub-NUT Kμ, Yμ\ and
Hμ are 5Ό(3) invariant. In particular, this means that Hμ is triholomorphic, and
hence (since it commutes with Kμ) it must be proportional to Kμ.

6. The Simple Harmonic Oscillator

To understand the significance of the hidden symmetries generated by the Runge-
Lenz vector it is helpful to consider a simpler and rather well understood case: the
isotropic oscillator in TV dimensions. In fact, our approach to the hidden
symmetries will be to reduce the problem at constant energy and electric charge to
one involving 4 isotropic oscillators. Much of this is elementary and well known
but we wish to establish some notation and ideas that we shall use in Sect. 7. We
shall begin classically and then proceed to the quantum case.

For any oscillator (isotropic or not) the symplectic group Sp(2N, IR) [some-
times called Sp(N, IR)] of linear transformations of phase space leaving invariant
the symplectic structure defined by:

dpt Λ dql = ̂ Ωabdua A dub , (6.1)

with i = l 5 . . . , A f , ua = (q\pj), α=l, ...,2ΛΓ5 plays an important role, as does the
orthogonal group of linear transformations leaving invariant the 2JV-metric gab

defined by the Hamilton:

H = ~gabu
aub = ~PίPi + 'jf 1 ωfq'q' . (6.2)

2 2 i=ι 2

A third important group consists of those linear transformations leaving
invariant the tensor Ja

b defined by

J\=aacgcb, (6.3)
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in terms of which the equations of motion are

^WV (6.4)

From (6.4) it is clear that this latter group takes classical solutions to classical
solutions. In the special isotropic case in which all the frequencies ωt are equal, one
can rescale the time variable to make

ΛΛ=-<5V (6.5)
The group commuting with Ja

b may now be identified with GL(N, <C), Ja

b being a
complex structure. The intersection of GL(N,(C) with SO(2JV,R) is SU(N) which
leaves invariant the Hamilton and takes classical solutions to classical solutions.
Thus the Hamiltonian symmetries of the system are much larger than the obvious
0(N) geometrical symmetry. The group SU(N) is also the largest group of
symplectic transformations leaving the Hamiltonian invariant. We may also
express the special nature of the isotropic oscillator by saying that the endomor-
phism Ja

b defined by (6.3) is an isometry of the metric gab. One may thus, in the
isotropic case, introduce a complex notation manifesting these facts:

(6.6)

The equations of motion, Hamiltonian and symplectic forms thus become:

f = -»„ (6.7)

H = b&, (6.8)

Ω = ίdbiAdbi. (6.9)

If N is even and we may endow the configuration space with N/2 complex
coordinates zα, α = l, ...,ΛΓ/2, such that

(6.10)

and

so that p is canonically conjugate to z and p to z. Then one may introduce complex
amplitudes

P+ = ̂ =tf-i?), (6.12)
1/2

b_«=~(p"-iz*), (6.13)
fi
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and hence

b+ = —ib+; b_ = —ib_, (6.14)

and we have suppressed the α index in (6.14) as we shall do from now on. The
symplectic structure is now:

dp Adz + dp A dz = i(db+ A db+ + db_ A db_). (6.15)

Returning to the arbitrary TV case one has quantum mechanical operators ql

and pi such that

\A^Pj\ = ^'j^ (6-16)

^(4' + Φ;), ^j^tf-iA). (6.17)

(+ denotes Hermitian conjugation with respect to the metric on the quantum
mechanical Hubert space.) The Hamiltonian is

# = £+i£i+γ. (6.18)

The 3 groups Sp(2N9ΊR), SO(2N9ΊK)9 and SU(N) in the classical problem also
occur in the quantum mechanical problem. The set of invertible operators 6
obtained by exponentiating bilinears in the creation and annihilation operators £f

and B+ i act both on the quantum mechanical Hubert space:

|φ>->0|t/;>, (6.19)

and by conjugation on the algebra of operators Bt and B+

t:

Bi-tObiO'*. (6.20)

The largest such set commuting with the Hamiltonian H generates GL(N, (C). This
is the analogue of the classical statement that the linear action of GL(JV,(C)
preserves the equation of motion (6.4). That is:

ί+^) (6.21)

for arbitrary cij9

.̂. (6.22)

The largest set of unitary operators obtained by exponentiating bilinears generates
the group Sp(2N9JSL). That is:

6 = expfaβtb+j + iWfβj + h.c.)) (6.23)

withc 0 -c/.
The intersection of these two set of operators is U(N). Just as in the classical

case the group SO(2N, R) plays no particularly important role and we shall not
consider it further. The generator of the diagonal (7(1) is (up to zero point energy)
the Hamiltonian. The remaining SU(N) acts irreducibly on the set of states of fixed

energy which have multiplicity , where H = n + N/2. This represen-
\ n
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tation is not an irreducible representation of the SO(N) subgroup generated by
operators with ctj pure imaginary. The SO(N) is the geometric symmetry and the
SU(N) is sometimes called the "degeneracy group." The group Sp(2JV,R) does not
preserve the Hamiltonian and is generated by adding raising and lowering
operators, e.g.

which generate the algebra of SU(i, 1), sometimes called "the spectrum generating
algebra":

[S1,Gi9ff] = 2GlSί9 (6.24)

[5+^tf] =-25151, (6.25)

[5151,5ί5ί]=4/ϊ. (6.26)

Notice that the operator S\ζ\ raises the energy by 2 units. In fact, the set of
states with even n and those with odd n fill out an irreducible representation of
Sp(2N, R). If N is even we may, as in the classical case, introduce the complex
coordinates z and the ± notation. In the Schrόdinger representation:

P — £z, (6.27)

P=-iί> (6.28)

-^ — _ r — +z
1/2

(6.29)

The Hamiltonian is thus:

" (6.30)

(6.31)

Note that the generators of SU(N) and Sp(2N5lR) are in general second order
differential operators acting on functions Φ(z, z) and unitary with respect to the
norm:

$ΦΦdN/2zdN/2z. (6.32)

7. The Emergence of SU(2,2)

The harmonic oscillator described in Sect. 6 is relevant for our problem only at
constant electric charge, corresponding to the Killing vector qa. For the time being
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we shall remain with the case N an arbitrary even positive integer. The 17(1) action

zWz, (7.1)

.p->e-wp, (7.2)

preserves the symplectic form (6.1 5). The action (7.1), (7.2) is that induced from the
action on the configuration space whose infinitesimal generator is

z oz

The simplectomorphism (7.1), (7.2) is generated by

Q = i(zp-zp) = 2q. (7.4)

The action (7.1) may be written as

u^iexpOQ^u", (7.5)

where Q"b is normalized so that

ββ»Qbc =-#•«• (7.6)

Thus the l/(l) action defines a second complex structure on the phase space. In
terms of the coordinates b + , Q is given by

(M+ -£-&-), (7.7)

while Ja

b corresponds to the Hamiltonian:

(b + b++b_b_). (7.8)

Because the complex structures J and Q commute the space splits into a direct
sum (labelled in our case by ± ) restricted to which Q=±J9 respectively. Thus we
obtain no further complex structures from J and Q.

The group commuting with Q is isomorphic to GL(N, (C), we shall call it
GLQ(N, C), but it is not, of course, the same GL(N, (C) as that commuting with J.
The subgroup of GLQ(N, (C) commuting with the symplectic structure is

(N N\
U I — , — 1 , i.e. the pair Ωab, Q

a

b define a Hermitian structure with signatures

ΛΓ/2, N/2 just as the pair Ωab, J
a

b define a positive definite Hermitian structure.
The intersection of the group preserving both the Hamiltonian and the electric
charge is SU(N/2) x SU(N/2). In the + basis this may be written as

(7.9)

The charge acts as
/ — \
\n 2 Π

(7.10)

and the Hamiltonian as

(o* n \
(7.11)
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The discussion above has been classical. However, the reader may readily
generalize to the quantum mechanical case by replacing the quantities b+ in (7.7)
by their quantum analogues.

Since the Hamiltonian (7.8) played no role in defining the U(N/2, N/2) action, it
follows that we can use this construction for any phase space of the form T*(M),
where M is a complex manifold with a holomorphic (7(1) action which is linear. For
example in the case of Eguchi-Hanson in ζ1 and ζ2 of (2.2.3) and (2.2.4) we have a
natural symplectic action of 5(7(2, 2) on the cotangent bundle.

From now on we restrict our attention to N = 4:
The z and p carry a complex 4-dimensional representation of 5(7(2, 2) which is

in fact isomorphic with the "twistor" representation or equivalently the Weyl
spinors of 50(4, 2). In what follows we shall use some work of Mack and Todorov
[29]. We define a 4-component vector by:

>-α *.•)•
the 5(7(2,2) Hermitian inner product is

(7.14)

in terms of which the symplectic form (6.15) is

idφ + βΛdφ. (7.15)

Note that the complex conjugate appears in (7.12) because the 5(7(2,2) is
holomorphic with respect to the complex structure Qa

b and not with respect to the
original Ja

b. Following Mack and Todorov we may identify the generators of
50(4,2) by using the following representation of the 4-dimensional y-matrices:

_°
whence the generators of S0(4, 2) yAB, ,4 = 0,1,2,3,4,5 in the twistor represen-
tation are:

y^iEivn]^^, (7.13)

Ϊ5b = Ί7S = bo7ιΎ2Ύ3 = D, (7.18)

yμ5 = iiyμΎ5 = ̂ pμ-κμ), (7.19)

yμ6 = bμ^(Pμ + Kμ). (7.20)

The labelling above allows a convenient identification of the Poincare and
de Sitter subgroups. So far the discussion has been classical. Quantum mechani-
cally we may replace



292 G. W. Gibbons and P. J. Ruback

in (7.12). The quantum operators φ then satisfy the "twistor commutation
relations" [30]

Φ9 <£] = !, (7.19)

[&£l=0, (7.20)

and the electric charge q is given

4 = ί($*$ + 2),

and the generators of SO(4,2) are

where ~ t denotes Hermitian conjugation transposition and post multiplication
by β (Dirac conjugation). Note that q plays the role of "helicity" in the conformal
language.

Having set up this formalism one may write the generators as (in general)
second order differential operators acting on functions of z and z, which are self-
adjoint with respect to the norm (6.32). The reader is referred to Mack-Todorov for
the explicit expressions which they have also expressed in the coordinates ψ, r used
earlier. The relation between their coordinates ζl and α is

ξ'=-rsmθcosφ,

ξ2=—rsmθsinφ,2

The reader should take the upper signs in [29]. The first order operators Mtj are
S0(3) Killing vectors for Taub-NUT.

So far we have not introduced the Hamiltonian. Classically, this is given by

and quantum mechanically by

Γ rl2 1 / r)2 M
(7.25)

Note that H is self-adjoint with respect to the Hubert space pseudo metric:

(7.26)

which coincides with the Riemannian measure on Taub-NUT (with a negative
mass). If we considered the positive mass Taub-NUT metric the factor |z|2 — 4
would be replaced by |z|2 + 4 which gives a positive definite inner product on the
Hubert space.

The subgroup of 5(7(2,2) commuting with the Hamiltonian is the diagonal
5(7(2) subgroup of isometries. At any given fixed energy and electric charge,
classically satisfying ε < s2/4, i.e. corresponding to the bound states, we can find (as
explained in [6]) a further SU(2) subgroup which leaves invariant the submanifold
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of phase space with these constant values. Quantum mechanically we can find a
further SU(2) subgroup of S U(2, 2) which leaves the subspace of constant energy
and constant electric charge fixed. Thus classically:

1,- , , («+-«-) .
z-+-(u++u-)z- φ,

(7.27)

where U+ and C/_ are 5(7(2) matrices.
Thus for definite energy and definite electric charge we have an SU(2) x SU(2)

symmetry taking classical orbits to classical orbits. This admits an elegant
geometrical description on phase space:

Define

'
f, (7.29|(s2-4ε)1/4 2

then the charge and Hamiltonian constraints become

s = i(α_α_-α + α + ), (7.30)

2s2 -4c = ^ +.

The symplectic form is

i(dά + / \ da +-\-da_/\ da_}. (7.32)

The functions g and H generate the actions:

a+^e 2a+; a_-*e 2 α _ , (7.33)

respectively. Equations (7.30) and (7.31) are equivalent to

i\a±\2 = \A±

 2, (7.35)

where \A + \ 2 are the functions of ε and s given by (3.13).
Equations (7.35) define two 3-spheres, factoring by the action of (7.33), and

(7.34) is equivalent to Hopf fibering these 3-spheres to give two 2-spheres. In terms
of a+ the action (7.27) reads

(α + ,β_)-φ + α + , w _ < 2 _ ) . (7.36)

Quantum mechanically we must proceed in a similar way. We may (restricted
to the subspace of states for fixed q = s and H = ε) define [using formulas (7.28) and
(7.29)] the bilinears in the α's and α + 's which restricted to the subspace of constant
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energy and electric charge generate the action of SU(2)x SU(2). This action is
/ M _ | _ C 1 γi c 1 \

irreducible on this subspace, carrying the ( , 1 representation of

SU(2) x SU(2) with degeneracy n2 — s2, where n>\s\ is the quantum number
introduced in [5].

8. Large Distance Fluctuations Around B.P.S. Multi-Monopoles

In this section we shall discuss the fluctuations of the gauge and Higgs fields about
an arbitrary solution of the Bogomolnyi equations. It was shown in [31] that these
are all governed by a single linear equation for a pseudo scalar Higgs field p which
must satisfy:

-/W + [Φ,[Φ,p]]=ω2p, (8.1)

where Dt denotes covariant differentiation with respect to the background
connection and Φ is the background Higgs field.

At large distances it seems reasonable to believe that the background
configuration will tend (in a suitable gauge) to one in which

Aa~δa

3A9 (8.2)

Φa~δa

3φ, (8.3)

where A and φ satisfy the Abelian Bogomolnyi equations,

(8.4)

which coincide, of course, with Eq. (2.1.3). For example in the single monopole case
the solution of the Bogomolnyi equations is

ΛVΛ M
J r r sinhr

γ« /I \

=— --cothr . (8.6)

At large distances we may drop the exponential terms to get the Wu-Yang
limiting form

xa

Φa -- --1 . (8.8)
r r

Under the gauge transformation by

θ . θ
cos-, — sm-e

.,\sm-e φ, cos-
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or

gs = gN(π-θ> 0 + π), (8.10)

one finds that the solutions of (8.4) are

n

AN=-2sm2~dφ, (8.11)

φN=-n--}9 (8.12)

or

r\

As=-2cos2-dφ, (8.13)

Γ

The pair (AN, φN) respectively (As, φs) are regular in the northern, respectively
southern hemisphere.

The fact that both Aa and Φα have only a 3-component - which would not be
true if we used the same gauge transformation on the full interior B.P.S.
configuration - reflects a greater symmetry in the asymptotic Wu-Yang limit than
in the full B.P.S. case. The B.P.S. monopole is SO(3) invariant. The Wu-Yang limit
has an additional (7(1) (rotation about the 3 directions). This extra symmetry
corresponds physically to electric charge. This charge is not conserved for deep
scattering against the B.P.S. monopole but it is conserved in the Wu-Yang limit.
This situation closely parallels the case of monopole-monopole interactions which
are only charge conserving in the asymptotic large distance limit.

Let us now consider the fluctuations around a general Abelian solution. We
may expand the pseudoscalar field P in a basis for the Lie algebra:

P=γi(p3τ3+p + τ++p-τ_) (8.15)

and find that Eqs. (8.1) become

s2φ2pα = ω2pα, (8.16)

where s = 0, +1 or —1 for α = 3, + 1, or — 1, respectively.
If the reader compares Eq. (7.16) with (2.20) he will accede to the following

Proposition 8.1. The fluctuations around the Abelian Bogomolnyi equations are
governed by the equation

~^Y=~P", (8.17)

where Fα is the coυariant derivative on the self-dual metric generated by φ with
τ-dependence exp + isτ, s = Q, ± 1 .
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Proposition (8.1) amplifies some rather cryptic remarks of Schonfeld [32]. See
also [37]. For a harmonic function φ with one or two mass points Eq. (8.17) is a
special case of Eq. (4.9) which satisfies condition (4.13). Thus we may by
Proposition (4.1) solve Eqs. (8.16) by separation of variables. In the 2-monopole
case this appears to be a new result. In the single monopole case the problem may
be solved by the same method as used for the ordinary Laplacian or Taub-NUT
and possesses additional conserved quantities. We have indicated in [6] how the
Taub-NUT results may be transcribed to solve Eq. (8.17) in this case. Since there
already exists an extensive discussion of the resulting solution in the literature [33]
we shall not pursue this matter further here.

One amusing point in the 2-monopole case which does not seem to have been
pointed out before is that since each centre gives rise to an attractive potential,
Eq. (8.17) resembles the Schrodinger equation for the ionized Hydrogen molecule
(with a magnetic term if s = 0). Thus something akin to molecular energy levels and
the possibility of molecular binding forces seems to arise.

9. B.P.S. Monopole Scattering with a Wess-Zumino Term

The quantum scattering of B.P.S. monopoles was described in [5] using the
Schrodinger equation on the Atiyah-Hitchin metric. In fact, given a configuration
space (M, gaβ) we may consider quantizing using as "wave functions" the sections
of any line bundle over it [34]. Since H2(Atiyah-Hitchin, Έ) = TL there is essentially
a single integer's worth of such line bundles with a connection whose curvature is
proportional to the generator of H2. Explicitly if the self-dual Atiyah-Hitchin
metric is written as

ds2 =f2dr2 + a2σ,2 + b2σ2

2 + c2σ3

2, (9.1)

then the closed 2-form

F = dg/\σl+gσ2/\σ3 (9.2)

is ε-self-dual iff

^ = -eg/α/|fec|. (9-3)

If ε = +1 this is normalizable. If ε = — 1 this is not normalizable and is exact.
Choosing ε = -f1 and imposing the "Dirac quantization condition" we find that
the curvature of the pth line bundle is given by

g=^exp-ρ|ί' (9 4)

p = +1, + 2,... . Away from 3 = 0, or π we have

F = dA, (9.5)

with

A = gσl. (9.6)



Hidden Symmetry 297

We may consider therefore the Schrόdinger equation:

~(Vμ~iAμ)(Vμ — iAμ)Φ = εΦ. (9.7)

Physically, one might imagine that the Aμ might arise from "integrating over
fermion fields" if for example one considered the B.P.S. monopole as a soliton of
the N = 4 super Yang-Mills theory. We shall not give a detailed justification here
because in this paper we are merely interested in how inclusion of the vector
potential Aμ changes the boundary conditions for the wave function Φ and hence
its solution. The 2-form F decays exponentially fast away from the bolt. Thus Aμ

would not appear in Eq. (9.7) in the asymptotic Taub-NUT region. However, it
does affect the boundary conditions in Taub-NUT, since it determines the choice

of eigenvalues of s= — i^—. Near the bolt the vector potential (5.6) becomes
dip

A~ -(dψ + cosθdφ), (9.8)

and the metric (9.1)

ds2 ~ ds2 + 4(r - π)2(dψ + cos θdφ)2 + π\dθ2 + sin2 θdφ2), (9.9)

with 0 ̂  ip ̂  π. The vector potential (9.8) is singular at the bolt r = π. We must move
to a well-behaved gauge A1 such that the gauge transformed section Φ' is single
valued.

A suitable gauge is given by:

~ ~ D /-w/ w
A' = smθdφ = A— -d(ψ-\-cosdφ). (9.10)

2

Thus

ip s0#). (9.12)

If Φ' is single valued under ψ-+ψ + π, i.e.

/!#' = <£', (9.13)

with J j defined by (3.24) of [5] we have

(9.14)

Equation (9.14) differs from that used in [5] if p e 2Z + 1. Expressed in terms of the
asymptotic Euler angles of the Taub-NUT metric 7\ is the map ((3.17) of [5])

JV θ-^π-θ; φ->π + φ; ψ^-ψ; x^x. (9.15)

If pe2Z + l, then Eq. (9.14) has profound physical consequences. Consider to
begin with the scattering. In parabolic coordinates the wave function satisfies

π, -ψ) (9.16)
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(this replaces (7.19) of [5]). If s = 0, i.e. 2 neutral monopoles, then (9.16) shows that
they scatter like fermions rather than bosons.

As for the bound states, the appropriate angular functions replacing Eq. (6.25)
of [5] are

(9.17)

which still satisfy

I3W
j

sm = (-iyWj

sm. (9.18)

10. Killing Tensors and σ-Models

One reason for being interested in hyperKahler metrics is that they provide target
spaces for finite non-linear models. It is therefore of interest to ask what does the
existence of a Killing tensor on the target manifold imply for the σ-model. The
short answer is unfortunately nothing. If xa(u) are thought of as maps from some
spacetime with coordinates u\ z = l , ...,n and metric hi}{u) it is well known that
Killing fields KΛ(x) on the target manifold give rise to conserved currents Jt on
the spacetime via the formula

dxβ

j. = gα/?K
α—τ. (10.1)

The conserved stress tensor T{j is given by:

It is natural therefore to replace gΛβ in (10.2) by an arbitrary symmetric tensor Kaβ\

^V« faβ 1 flγ* fiγβ

^-^w-^^w""- (103)

One finds that stj is conserved iff

KΛβ;7 = 0. (10.4)

Of course, Eq. (10.4) implies the Killing tensor equation (3.17) but it is much
stronger. In particular, it implies that gaβ is reducible (cf. [35]), i.e. a metric product
of 2 lower dimensional manifolds. Thus the Killing tensors on Taub-NUT [which
do not satisfy (4)] do not give rise to interesting conserved quantities for a σ-model.
This result is somewhat reminiscent of a general result of Coleman and Mandula
[36] to the effect that conserved charges which are not Lorentz invariant and
which arise from local currents (local in spacetime) are incompatible with the
general principles of field theory.
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