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Abstract. In this paper we introduce symplectic invariants for convex
Hamiltonian energy surfaces and their periodic trajectories and show
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show that they can be used to prove multiplicity results for the number of
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I. Introduction and Statement of the Main Results

LI. Dynamical and Geometrical Formulation of the Problem

Denote by <•, •> the usual inner product on R 2 " and let J be the standard complex
structure on R 2 " given by the matrix

Associated to <•, •> and J is the symplectic form Ω given by

Assume H:R 2 i V ->R is a smooth map. The so-called associated Hamiltonian
vectorfield is defined by the formula

The corresponding differential equations

(HS) x = XH(x)

is called a Hamiltonian system. If x solves (HS) then

~X=Ω(XH(XXXH(X)) = 0

so that H is constant on x. Therefore it is natural to ask for periodic solutions of
(HS) having a prescribed energy H.

Though the problem of finding a periodic solution with a prescribed energy
seems to belong to the theory of dynamical systems, it is possible to formulate it in
purely geometrical terms. This can be done in great generality (see [W 2]). Here,
however, we shall restrict ourselves to the cases we shall in fact study, namely
convex smooth hypersurfaces in R 2 n. More precisely we say S c R 2 n satisfies
condition (Jf) if the following holds:

2" is a compact C^-manifold bounding a convex region.
Moreover S has a nonvanishing Gaussian curvature and S
encloses 0eR 2 π . The collection of all S satisfying (Jf) will be
denoted by jf. (jf)

The condition that 0 e R 2 " is enclosed by S is only some kind of normalisation and
has nothing to do with the results obtained.

We defined a 1-form θ on R 2 " by

Then dθ = Ω. Denote by λ the restriction of θ to S and put ω = dλ. Then kern(ω)
must be nontrivial since dim (S) is odd. In fact,

kern (ωx) = R Jn(x),

where n(x) is the outward pointing normal vector at x e S and moreover

λ(Jn(x)) =4< /
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since (ffl) holds. Therefore λ A ωn ~1 is a volume on S. Hence (S, ω) is a manifold of
contact type in the sense of Weinstein, [W2]. As a consequence of our previous
discussion we have the following

Lemma 1. Let S e Jf7. Then ω — Ω\S defines a canonical line bundle J£S-^>S, where the
fibre over xeS consists of all those vectors v annihilating ωx, i.e., y_iωx = 0.
Moreover J£s possesses a canonical orientation induced by the unique vectorfield ζ on
S satisfying

C_JΛ=1 , C-JωΞθ. (1)

See [W 2] for the easy proof. Since JS?S C TS we have a one dimensional and
therefore integrable distribution on S.

Definition ί. Let SeJtf.A periodic Hamiltonian trajectory on S is a submanifold Γ
of S which is diffeomorphic to S1, satisfying

The collection of all Hamiltonian trajectories will be denoted by 3Γ(S).
If H: IR2"->IR is now a Hamiltonian having S e #? as a regular energy surface,

say H=i, then the periodic solutions of the corresponding Hamiltonian system
with energy 1 on S are just parametrisations of Hamiltonian trajectories Γe &~(S).
In fact each x0 e Γ is the initial data for a periodic solution x lying entirely on Γ.

By results of Weinstein [W 1] and Rabinowitz [R 1] it is known that ^~(S) + 0
for SeJf. Knowing that 3Γ(S) φ 0 for S e J4? one can ask for its cardinality. Let
αf > 0, i = 1,..., n, so that the αf's are independent over ΊL. Define S = S(α ί,..., αn) by

n

I Σ αi(X? + xl+ n) ~
ί = 1

One easily shows that # $~{S) = n. As far as the cardinality is concerned this is the
worst known example. Hence the following conjecture.

Conjecture 1. If SeJt, then
A few partial results are known to be true [E-L, E-La, E1, B-L-M-R], see

also [A-M, H I ] .
In this paper we shall associate to SeJ^ its index interval σ(S) which is a

compact interval in (0, oo). We show in particular that σ(S) degenerates to a point if
#iΓ(S)<oo. To the Hamiltonian trajectories ΓE3^(S) we shall associate two
positive numbers y(Γ) and y(Γ) which are independent. They are called the total-
and the mean-torsion at Γ. In the main result of this paper we shall prove that σ(S)
and the collections {y(Γ)} and {y(Γ)} are not independent and that always certain
inequalities and equalities have to hold. The inequalities turn out to be optimal.
This new approach gives besides new results for Hamiltonian systems a much
deeper insight to the problem of periodic Hamiltonian trajectories than previous
results. Several open problems are mentioned. For instance, it is shown that if ^(S)
is finite, then

Σ
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where σ{S) = {σ}. Moreover y{Γ)>\ for all Γe#~(S) if rcΞ>2. So in particular the
above inequality implies that # 2Γ(S) ̂  2 for n ̂  2, thus improving the results of
[E-La], where this was proven for n^3. Further it will be shown that the above
inequality is optimal in the sense that there exists an S for which we have equality.

1.2. The Index Interval of an Energy Surface and Torsion Indices

for Its Hamiltonian Trajectories

We start with a definition

Definition 2. Denote by M* the collection of all maps Jϊ R ^ ^ R such that

H G C°°(R2lI\{0}, R J n C 1 ^ 2 " , R ) ,

H{λx) = λ2H(x) for λ^O and x e R 2 \ (1)

JΓ(x)^α H Id VxeR2"\{0}, ocH>O.

Here H'\x) is the linearization of the gradient H' of H at xeR 2 ί l\{0}.
The following lemma is obvious:

Lemma 2. There is a natural bijection J f 7 - ^ associating to SeJί? the unique
& such that

Hs1(l) = S. •

Let HE^. Its Fenchel conjugate is the function H*sJ& defined by

;>-ff(x)). (2)O 0 ( < , ) > ( ) )
xelR 2 n

We equip Jtf with the metric d: J f x J>f-+R + defined as follows:

d(S l 5 S 2 ) = max inf |x — y | + m a x inf |x — y\,
xeSj yεS2 yeS2 xeS\

which is the Haussdorff metric. The map H-+H* induces a map Jf ->Jf which is
continuous for the topology induced by d. Next we introduce a Hubert space E by

E= <x:S1=ΈL/Z->]R2n\x is absolutely continuous
^ 1

with square integrable derivative and j x(t)dt = 0 } . (3)
o

The inner product on E is given by

) (4)
0

We associate to SeJ^ a Cu^Hubert manifold MS,MSCE, by

1 1 }

J if J( - Jx(ί))Λ = 1 and J < Jx(t\ x(ή)dt < 0 >. (5)
0 0 J

Here C 1 ' ^Hubert manifold means that there exists an atlas so that the overlap
maps σa°Gβ1 are C 1 with a locally Lipschitz derivative. Ms is actually a C 1 ' 1 -
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submanifold of E. The natural S ̂ action on E by phase-shift denoted by

S1 x E->E: (α, x)-+a * x

induces an S^-action on Ms. Hence Ms belongs to the category of paracompact
S1-spaces. We define a smooth map AeC^iE^ΊR) by

|}<Jx(ί),x(ί)>Λ, (6)
o

and denote by As the restriction of A to Ms. For ^ G ( — OO,0) we define

Md

s:=A^{(-co9d]). (7)

Note that A is S11-invariant. In the following we write (most of the time)

G = Sί, EG = S(X), BG = <£P^, p S ^ C P 0 0 projection.

Then (EG,p,BG) is the universal bundle for G-actions. Denote by Md

s G the
"G-quotient" of Md

s, that is

Md

StG = (Md

sxEG)/G, (8)

where G acts freely in the obvious way on Md

s x EG. Hence we have principal
bundles

Md

sxEG-+MiG. (9)

Denote by fs'MSiG-+BG the up to homotopy uniquely defined classifying map.
From the diagram

Λ/tά r r i n c l A x r f s r

Md

s x EGt >MS x EG >EG

IG \/G (10)

and the properties of classifying maps, see [Hu], it follows immediately that the
restriction of fs to Md

s G denoted by // can serve as a classifying map for
Md

sx EG-+Md

s G. Denote by H the Alexander-Spanier-Cohomology with coeffi-
cients Q. One knows that

ηeH2(BG)\{0}. (11)

We define for SeJtf a map αs:(-oo,0)-»N, N={0,l,29...} by

as(d) = inf{k e N\(fd) * (ηk) = 0}, (12)

where (//)* : H(BG) -> ίJ(Md

s G). It requires of course some proof that αs(d) < oo. This
will be provided later. For specialists this is clearly the Fadell-Rabinowitz index of
M|, see [F-R]. We define a subset σ(S) of IR+ = [0, -f oo) called the mdex interval of
5 by

ί e σ(S) o lim inf αs(d) |d| ^ ί ^ lim sup as{d) \d\. (13)

Denote by cβ the collection of all compact intervals in (0, + oo) which we equip with
the Hausdorff topology and Hausdorff metric. As we shall see later the following
holds:
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Lemma 3. For SeJίf the index interval of S, denoted by σ(S) belongs to c€.

A first result which will be proved later is

Theorem 1. (i) The mapping Jίf-tΉ: S-+σ(S) is continuous for the Hausdorff
topologies

(ii) if # «r(S) < oo , then σ{S) = {point} .

We mention now an important open problem.

Problem 1. Does there exist SeJti? with σ(S) + {point}?
A positive answer would be extremely interesting because then there exists

δ>0 such that for all ReJ? with d(S,R)<δ we have #^ r (Λ)=oo in view of
Theorem 1. If there would exist a dense set Σ in Jf7 with σ(S) φ {point}, then in view
of Theorem 1 we would have for an open and dense set in Jf (for the Hausdorff
topology) infinitely many periodic trajectories. Another problem is

Problem 2. Can σ(S) be computed without the detour over equivariant
cohomology?

Sometimes it is possible to compute σ(S). For example for S = S(α l 5..., απ) with
αf > 0, we have

as we shall see later.
Next we introduce the torsion indices for Γ e SΓ{$\ where SeJ^. Fix SeJtf* and

denote by ζ the associated vectorfield defined by

C - J Λ Ξ I and C_JO;ΞO (15)

One easily verifies that

ζ(x) = JH'{x), xeS, (16)

where H'(x) is the gradient of H = HS in R 2 n . The right-hand side of (16) defines a
Hamiltonian system on R 2". Let x :R->ΓeIR 2 " be a solution of x = ζ(x) with
minimal period T > 0 . Then

o

Definition 3. The volume V(Γ) of Γ e^(S) is defined by

V(Γ):=μ\Γ. (17)

Sometimes V(Γ) is also called the action of Γ.
Note that by (15) and the fact that TXΓ = IR((x), λ\Γ is a nonvanishing 1-form

on Γ and defines therefore a volume-element. Linearizing the Hamiltonian
system (HS) around x:IR->Γ gives

y(t) = H"(x(t))At). (LHS)
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Denote by (R(t))teΈί, R(0) = Id the fundamental solution of (LHS). Then
). Denote by R* the adjoint of R defined by

and define
l!2 (18)

Then B is the "unitary part" of R, see [C-Z1]. That is, B(t) commutes with J and
\B(t)y\= \y\ f° r every t e R and j/eR 2 " . J defines a complex multiplication on R 2 n

by .
ιy:=Jy,

turning R 2 n into a complex vectorspace of dimension n. Denote by det: (R2")n->C
a non-zero complex determinant function. We find a unique continuous map
zJ Γ :R->R characterized by

deto(J3(ί)x . . .χβ(ί)) = exρ(2πizlr(0)det. (19)

Definition 4. Let SeJt? and Γ e $~{S). The total torsion at Γ is the real number

y(Γ):=AΓ(V(Γ)). (20)

The mean torsion at Γ is the number

y{Γ)'.=y(Π/V(Γ).

Now we formulate our main result.

Theorem 2. Let SeJtf. We have:
(i) If n^2 then y(Γ)>l for every ΓeZΓ{S\ or equivalently y(Γ)> V(Γ)~K

(ii) Given teσ(S) there exists a sequence (Γ(k))C^(S) such that γ(Γ(k))-+t as
k-+co.

(iii) Given any ε>0 denote by σ(S)ε the open ε-ball around σ(S). Then the
following inequality is valid.

Σ
Γe*r(S),γ(Γ)eσ(S)ε

Theorems 1 and 2 have an obvious

Corollary 1. // SeJίf, n^2, then # ^ ( S ) ^ 2 . Moreover, if # ^ ( 5 ) < o o , then, with
σ(S) = {/} (Theorem ί),

for two suitable ΓUΓ2E «T(S), Γλ Φ Γ2.

Proo/. Since y(Γ) > 1 for n ̂  2 we infer by (iii) that # &~(S) ^ 2. If now # *Γ(S) < oo
then cr(5) = {/} by theorem 1. Then taking ε sufficiently small in (iii) of Theorem 1
we obtain

nn=i

which gives the desired conclusion. •
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Let us also note that Theorem 2 (ii) implies Theorem 1 (ii). Namely if σ(S) is
different from a point then the set

{y(Γ)\Γe.r(S)}nσ(S)

is dense in σ(S). Therefore # T(S) = oo in this case. So if &~(S) is finite σ(S) consists
of a point, which proves Theorem 1 (ii).

So Corollary 1 implies conjecture 1 for the case n = 2. In [E-La] this was
claimed too, however due to a faulty argument it was actually unproved (the
arguments in [E-La] hold only for n^3.) Under the general hypotheses of
Theorem 2 the inequality in (iii) is optimal. Namely let S = S(OLU ...,αn) with at>0
independent over Z. Then as we shall see later

tf~(K\ — / jf"1 Γ\ SO

σ(S) = {I}, /=^-Σ«i.

2π i= i

/, (22)

Oί:

2π

Hence (22) implies

Σ y ί Γ Γ ^ Σ αW Σ«i = 1

nn=i y=i \ / ί i

Problem 3. Is it true if «^(S)={Γ1, ...,ΓΛ}5 i.e., #,r(S)<oo, that

?(/]) = %Q for all i j .

We mention another conjecture. Denote by τ^ the topology on #? which is
induced from the weak Whitney topology on CGO(R2"\{0},IR) via # . Then we
have

Conjecture 2. For a residual subset J-fj of 3tf the following holds: For SeJ^Ί the
map ^(S)->R:Γ->7(Γ) is injective.

A simple corollary of this conjecture is that # &~{S) = + oo for S e Mu because
y:^{S)-^lR. cannot be injective if #5%S)<oo by Corollary 1. Finally we men-
tion the following.

Problem 4. How does y behave on periodic Hamiltonian trajectories close to a
generic elliptic one? Is it injective?

There is of course some connection between Conjecture 2 and Problem 4.
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II. Variational Set Up

11.1. Critical Point Theory

Consider the Cu ^functional AS = A\MS on Ms. As Riemannian metric on Ms

we take the one induced by ( , ). Then one verifies easily that for de(— oo,0)

If ||grad^s(x fc)|| -»0 and As(xk)-+d<0, then (xk)cMs is precom-

pact in Ms. (PS)d

Solving the differential equation

x'= —

on Ms in forward time we obtain a continuous map,

R+ xMs-+Ms:{t,x)-^x*t,

which is the restriction of a not necessarily globally defined flow. The map
t-+As(x * t) is non-increasing for fixed x e Ms. A well-known consequence of (PS)d

is the following

Lemma 4. Given an arbitrary neighborhood U of

Cr(d) = {xeMs|grad^s(x) = 0, As(x) = d}

there exists ε>0 such that

(Md

s

+ε\U)*lcMd

s-~ε. (1)

Define a semigroup θ by

θ = S1xN*9 N * = N\{0} (2)

with multiplication

(α,fc)x(b5/) = (/cb + α,fc/)5 (3)

where we take S1 = R / Z . θ operates by isometries on E via

((a,k)*x)(t)=lx(kt + a). (4)
k

One easily verifies that θ * MS = MS. Moreover if Cr(S) denotes the set of critical
points of As then θ * Cr(S) = Cr(S). But caution, note that As is noί (!) θ-invariant.
In fact

As((a,k)*x)=-As(x). (5)

Moreover θ induces by restriction to S1 ̂ S1 x {1} the usual ^-action. Denote by
" ^ " the smallest equivalence relation containing the relations

x—>(α,k)*x for all (α,k)eθ and xeE.

Denote by [x] the equivalence class of x
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Lemma 5. (i) // xeCv(S), then [x] cCr(S).
(ii) Given [x] with x e Ms there exists a unique S1 -orbit Sι * y such that for every

zeS1 *y we have 0*z = [x]. We call such a z a minimal representative for [x].
(iii) There is a canonical bijection φ:Cr(S)/~^"χS) which associates to

[x] eCΐ(S)/~ the Γ defined as follows: Let z be a minimal representative for [x],
then there exists a unique constant c e R 2 " such that \Λs(z)\ ~1 z(ί) + c C S for all t e R.

Clearly Γ does not depend on the choice of the minimal representative.
(iv) // [x]eCr(S)/~ and z is a minimal representative for [x], then \As(z)\

= V{Γ)-\ where Γ = φ([x]). Moreover \A£{a,l)*z)\=—-.

Proof (ii) Let we[x] and denote by Gu the isotropy group of the S1-action

Gu={aeG\a*u = u}.

Pick y E [x] with

G,-min{#GJt/e[x]}.

One verifies easily that S1 *y has the desired properties. In fact ΦGy=l.
(i) If XECΓ(S) then we have for some number <5φO,

A'x = δΨ'{x),

1

where Ψ(x) = J H*( — Jx(t))dt and the prime denotes the gradient in E. Let k = # Gx.
o

Then y defined by y(t) = /cy ί - J is a minimal representative for [x]. One computes
\/c/

easily
Άy = kδΨ\y).

Hence _yGCr(5). Moreover with u = (a,t)*y,

A'u=~Ψ'(u),

so that again ueCr(S).

(iii) Let [x] eCv(S)/~ and z a minimal representative. We have Gz = {1} and
for some (5 Φ 0,

yl'z = δϊ/'(2). (6)

Taking the inner product with z and using that A' and Ψ' are positively
1-homogeneous we infer since Ψ(z)=ί,

As(z) = δ. (7)

Using (6) we find that for arbitrary h E E,

j (Jz(t\ h(t)}dt = δ j <H*'( - Jz(t)\ - Jh(φdt. (8)
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Since h has mean value zero we find a constant c 1 ? e R 2 " such that

ι = \δ\H*'(-Jz(t)). (9)

Hence by the Legendre reciprocity formula

So, defining z ̂ t) = z(\δ\t) + c ί we see that

-Jz^H'izJ. (11)

Therefore the map

t^H(Zι(ή)

is constant. Hence the map

is constant. Using this and taking the L2-inner product oϊz(t) + cί with (10) given
by (7)

| 5 Γ 1 ( ( ) ) 5
Therefore

i/(|(5Γ1(z(ί) + c1)) = l V ί e R ,

and with z2(t) = \δ\~1(z{\δ\t) + cί)

-Jz2 = H'{z2), H(z2(ί)) = l , ί e R . (12)

By (7) again we conclude from this that

with c = \δ\~1c1 parametrizes an element in «̂ ~(S).
Now starting with some Γ and doing the whole procedure backwards we end

up with a class [x] eCr(S)/~.
(iv) Using (12) and the definition of z2 we see that the minimal period Γ of z2 is

|<5| ~ 1 = |As(z)| ~x and that

Moreover

1
. D

Definition 5. LetSeJ^ and Γ e <T(S). The tower of Γ, denoted by tow(Γ), is the set

Hence in order to show φ^(S)^n we have to show that #(Cr(S)/~)^n, or
that there are at least n towers!
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We use now the Fadell-Rabinowitz index [F-R], denoted by ind. We have
already seen that (formula 1.12)

d = as(d). (13)

Lemma 6. (i) d-+as(d) is non-decreasing and ¥i-valued.

(ii)
dido

(iii) ind(Cr(d)) ^ as{d) - ocs{d~) Vd e ( - oo, 0).

In particular if as is discontinuous at d, then Cr(d)Φ0. Moreover if as(d)
— ocs(d~) ^ 2, then Cr(d) contains infinitely many Sι-orbits. Consequently in this case
#iΓ(S)=oo.

(iv) lim (xs(d) — + oo .

Since the proof is essentially contained in [F-R] we can be sketchy.

Proof d-^κxs(d) is non-decreasing by the monotonicity property of ind. To see that
ocs(d)< -h oo, decompose E as follows

where xeE± is given by

x{t)= X —
k>o 2π

If de(-oo,0) one easily finds N e N such that xeMs and ,4s(x)^d implies

- 1

k= -N

Hence the orthogonal projection PN:E->Eχ, where

Eΰ = {x e E ~\xk = 0 for k < — N}

induces an equivariant map

Hence
as{d) - ind(M^) ̂  ind(£^ \{0}) < oo

by a result in [F-R]. This proves (i).
In order to see (iv) note that there is an equivariant map SE--^MfN) (SE- the

unit sphere in E^) of the form

x-*f(x)x,

where f:SE- ->(0, + oo) is a continuous map. Again by a result in [F-R] it follows

Here d(N)-+0 as iV~^oo. Since ind(.S£-)->Ό0 as N->co, (iv) follows.
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(ii) By the continuity property of the F — R index we find for given d e (— oo, 0)
an open neighborhood U of Md

s such that

ind(£7) = ind(Mg). (14)

By a variant of Lemma 4 we find ε > 0 such that

Md

s

+ε*lcMd

s-
εuUcU. (15)

By the properties of ind we infer from (14) and (15),

This proves (ii).
Assertion (iii) is standard and simple to derive from the properties of ind. •

Lemma 7. Let c?e(— oo,0) be a point of discontinuity for as. Define k and j by

d\d

Denote by ε0 > 0 a number which is smaller than the distance of 3 to the closest point
of discontinuity d1 of as with d1ή^S. Then we have for ε e (0, ε0] and i = k,..., k + j ,

(16)

Moreover denote by f'>MSG-+BG a classifying map and let

f+:M*s+G'-+BG and f~ :Ml;G^BG

be the restrictions. Let

a:MΪ;^Mi^ and b:M'ds^(Mi%Md

sJ)

be inclusions. Consider the commutative diagram with exact top row

\if1r

Then there exists a cohomology class

σeH2{k~ι\Mi

with b*(σ) = (f+)*{ηk~x). We have moreover

for m = 0,...J.

Proof. Equation (16) follows from our second assertion. Since k = as(cί~) + 1 we see
that

(/")V"ι) = 0. (18)

By exactness of the row in (17) we find using (18) and
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that for some σ e H{Md

s% M\~£),

fe*W = (/ + )V" 1 ) . (19)
Now for m e {0,...,;} we compute

By our hypothesis OLS(CI) = k +j. Hence

Since m ̂ j we infer therefore that

W + ) * ( > Γ ) u σ ) * 0 , (20)

implying our assertion. •

11.2. A Finite Dimensional Reduction

Recall the definition of the Hubert space E. For N e N * we denote by EN the 4nN-
dimensional nullspace (G-invariant) defined by

ί N 1 1
EN=< xeE\x(t)= ^ —-exp(2πtk)Jxk \.

U=-N2U
{ kΦO J

The orthogonal projection E-+EN is denoted by PN. Moreover we put
QN = ld-PN. Define as before ΨECU\E,TR) by

Ψ(x) = ΪH*(-Jx(t))dt.
o

For iVeN* we define an open C^-submanifold of Ms = {xeE\Ψ(x) = l} by

Ms,N = {

For doe(— oo,0) we put moreover

Md

s%

Lemma 8. There exists a G-invariant C1Λ-maj)

such that

σ: ^^(ΐ:^) -+MS,N Φ, z) =

Ϊ5 a C1'1-diffeomorphism onto. Here SN is the unit sphere in EN.

Proof. Define τ(y, z) by

yί/2. (1)

Then τ(y, z) > 0 since y + z Φ 0, and moreover it is a C1' 1-map since this is true for Ψ
on £\{0}. Consequently σ is C1 '1. It is clear that PNσ(y,z)ή=0, so im(σ)cMSjiV.
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Moreover if ueMSN, define y = PNu/\\PNu\\ and z = <2Nu/||P;/vw||. Then

σ(y,z) = u.

Clearly the map u-*(y,z) is C1*1 and an inverse to σ. Π

Next we need

Lemma 9. Given d0e(—co,0), there exists iVj^jeN* such that

Proof. We find cί > 0 such that

?P(jc)^cίl|jc||2 MxeE. (2)

Hence if x e Ms we infer

W^cΓ1. (3)

Now let x e Mf. Then

if iV> -yrτ- So define
cf\do\

tfi(<*o)=-2ΠΓί+l Π (4)

Denote by c > 0 a monotonicity constant for Ψ, that is

(?P'(x) — ίP'ίx), x — x)^c | |x — x| | 2 \/x,xeE. (5)

We shall express A = A\MS by "local coordinates" in SN x (EN)1, that is we consider
the map of class CίΛ given by

(y,z)->Aoσ(y,z).

Define

Γy(z) = A o σ(j;, z), σy(z) = σ(y9 z),
(6)

τy(z) = τ(>;,z).

We equip the vectorbundle SN x (EN)λ->SN with the metric [ , •] induced from the
inner product on E

i(y,z),{y,zj\:={z,z).

Lemma 10. The fibrewise gradient Γy(z) with respect to [ , •] is given by

Γ;{z) = τy(z)QNlA'(σy(z)) -Γy{z)Ψ'{σy(z))-] . (7)
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Proof. We compute

= (A'(σy(z)), y + z) (τ'y(z), h) + (A'(σv(z)), τy(z)h) (8)

= — Γy{z) (τ;.(z), h) + τy(z) (A'(σy(z)), h).
τy\Z)

Moreover

(τ;.(z), h)=~\Ψ(y + z)-^2(Ψ'{y + z), h)

= -%τy{zyιΨ{y + z)-ιl2)\(zγ{Ψ\y + z),li) (9)

= -\Ψ(σy{z)γτy(z)2{Ψ'(σy(z)\h)

= -\τy(z)2(Ψ'(σy{z)),h).

Hence

τ'y(z)=-iτy(Z)
2QNΨ'(σy(z)). (10)

Combining (8) and (10) yields

Γ;(z) = (y, τy(z)QNiA'(σy(z))-ry(z)Ψ'(σy(zm). (11)

Lemma 11. Given doe{— oo,0) there exists a number N2(d0)e¥l* and a constant
a = cc(do)>0 such that

α||3/-;y|!^||z,-z,|! (12)

whenever zy is a solution of

Γ;{zy) = 0, Γy(zy) S d0 (similarly for zy) . (13)

Proof Assume Γy(z) = 0 and Γv(z)^do. Then

A'z = Γy(z)QNΨ'(y + z),

where we used the positively 1-homogeneity of Ψr. Hence

(Ψ(y),z)

SΓy(z)c\\z\\2 + \Γy(z)\\\Ψ'(y)\\\\4

Sd0φ\\2 + \Γy(z)\\\Ψ'(y)\\\\4-

Now, for some constant c2 > 0 independent of x we have

| |¥"(x) | | ^c 2 | | x | | . (15)

Since \\y\\ = 1 , we infer combining (14) and (15),

{A'z,z)Sd0c\\zl2 + c2\Γy{z)\\\z\\.

Now σv(z) e Ms and by (3),
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Therefore

(A'zz)^dc\\z\\2 + c\A(σ(z))\\\z\\
2\\\\

Moreover (A'z,z)±i |[zj|2. Hence

| | z | | . (17)

So for all N^N1, for some suitable N1 we have the a priori bound (which is
independent of N, y or z)

| | z | | ^ c 3 if Γ;(z) = 0 and Γv(z)^do. (18)

Now assume

r;(z)=o, r;(z)=o,

Γ/z)=:ίl, Γ;{E)=:d, with d, ίgd o

Then

(ί/4'z - rf/l'z, z - z) = (Ψ'(y + z) - Ψ'(y + z),z- z)dd

= dd{ Ψ'(y + z) - ¥"(y + z), z - i)

+ dd( Ψ'(y + z) - Ψ'(y + z), z-z).

Now Ψ' is globally Lipschitz continuous. Hence for some constant c 4 > 0
independent of y, z and N^N1:

\(Ψ'(y + z)-Ψ'(y + z),z-z-)\^c4\\y-y\\ ||z-f||. (20)

Combining (19) and (20) gives

ddφ-z\\2Sddc4\\y~y\\ \\z-ϊ\\+(dA'z-dA'z,z-z). (21)

Moreover

\(dA'z - dA'z, z - z)| g |J(A'(z - z), z - z)| +1d- d\ \(A'z, z-z)\

^\d\^\\z-z\\2 + \d-d\~c,\\z-z-\\- (22)

Combining (21) and (22) yields

3 1 ^ 2 3 |^ :C 3 | t z-z | | . (23)
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Further

\d-3\ = \τy{z)2A(y + z) - τy(z)2A(y + z)\

S \τy{zf - τ,(z)2| \A(y + z)\ + τy(z)2\A(y + z)- A(y + z)\,
(24)

by (18) S c5\τy(z) + τy(z)\ \τy(z)- τ,(z)|

+ τy{zf\A(y) ~ A(y)\ + τy(zf\A(z) - A{z)\.

We have by (3) and (18)

2 2 \2^c6, (25)

|τy(z) + τ,(z) |gc 7 . (26)

So combining (24), (25), and (26) we obtain

\d-d\Sc5cΊ\τy(z)-τy(z)\ + c6\\y~y\\+c6\\z-z\\. (27)

Now for a suitable constant c g using that ||}> + z|j is bounded and bounded away
from zero

(28)

Using (26) and (27) yields

\τy(z)-τy(z)\^c9\\y-y\\+c9\\z-z\\. (29)

Now combining (27) and (29) yields

\d-d\^clo\\y-y\\+clo\\z-z\\. (30)

Now combining (23) and (30) we obtain

Therefore for a suitable constant c 1 2 ,

ddc-\d\~~ ^ c ^ \\z-z\\ ^cί2\\y-y\\, (31)

so for a suitable number N2(d0) ^ Nι we find α = <x(d0) > 0 independent of y, z, and
N^N2{d0) such that

j ll, (32)

where z is a solution of Γy{z) = 0, Γy(z)^d0 and similarly for y and z. Π

Define N(d0) by

N(d0) = max ίiV 1(d0), ΛΓ2(d0), -77^77} > ( 3 3 )

where OL{H) = OL(HS) such that H"(x)^ a(Hs) Id, Vx + 0.
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Lemma 12. Let d0e(—oo,0)be given and N ^ iV(<i0). Assume yeSN and (zn) C (EN)L

such that

Then (zn) is precompact.

Proof. Since (Ψ(y + zn)) is bounded away from zero the sequence (τy(zn)) must be
bounded. Let us also show that (τy(zn)) is bounded away from zero. Arguing
indirectly and eventually passing to a subsequence we may assume

Hence

Consequently

(34)

So

On the other hand

Λ(τy(z

\A(τy(zn)zn)-A(σy\

we have

1

< c .

A(τy(:

(zn))\ = \A(τy(zn)y)\^0

zM-*d.

the estimate

-h(Zn)2WZn

1
1

i | 2

2 2 1

where εn->0 as π-^oo. Therefore taking the limit rc—>oo we conclude

1

which gives a contradiction since by (36),

= \d\c\ =

(35)

(36)

Therefore (τ^z,,)) is bounded away from zero and Γy'(zn)^>0 implies

QN[A'(σy(zn))-dΨ>(σy(zn))-]^O. (37)

Put »„ = σy(zn). Eventually taking a subsequence we may assume that

an:=PNlA'un-dΨ'{uj] (38)
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converges to some aeEN [recall dim£ i V<oo and clearly (\\Άun — dΨ'(un)\\) is
bounded]. Consequently for a suitable zero sequence (εn)cE we find combining
(37) and (38),

A'un-dΨ'un = an + εn-+a. (39)

Since (un) is bounded we may assume eventually taking a subsequence that

un -^u weakly in E,

Άun->Άu strongly in E.

So (39) gives using that Ψ':E~+E is a homeomorphism,

Afun-an-£,n\ =u

-*Ψl-ι[-JA'u-a\.
\d )

So (un) is converging strongly. Hence, with σy(zn) = un we find zn-^z strongly for
some z and Γy(z) = 0, Γy{z) = d. D

Therefore we have just proved that Γy satisfies (PS)d for all de(— oo,d0] if
N ^ N(d0). Hence if inf/^((E^)1) ̂  d0 the infimum is attained. Define

f(j;) = infΓy((£JV)1) (40)

for every y e SN such that the right-hand side in (40) is less than or equals d0. So by
the previous remark there exists zye{EN)1- with Γ(y) = Γy(zy). Moreover zy is
uniquely determined by Lemma 11 and the map y^zy is globally Lipschitz
continuous.

Define for N^N{d0) a subset Md

s% of Ms by

Σd

s°N = {σy(zy)eMs\Γ(y)<d0}.

Moreover put Md

s° = {xe Ms\A(x) < d0). Then Σd

s% c Md

s°. The following lemma is
crucial.

Lemma 13. Let doe(— oo,0) and N^N(d0). Then Σd

s°N is a strong G-deformation
retract of Md

s

Ό by a G-homotopy r: [0,1] x Md

s°^Md

s° such that

• s-»/4(r(s5x)) is nonincr'easing,

mr(0,x) = x Vx,

• φ , x) = x Vί £ [0,1] Vx £ Z£%,

• r(s, •) is G-equivariant.

Consider the C1?1-map

The preimage of Z 1 ^ consists of all (y, z)eSNx (Ex)1 such that
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We solve the parameter dependent differential equation

z' = — Γy(z) (Γy'( -) is locally Lipschitz continuous),

z(0) = zo

where Γy(z) < d0. By the (PS)d-condition, d g d0, since Γy is bounded from below and
has only one critical point zv with

Γ;(zy) = 0, Γy(zy)<d0,

we infer that lim z(t) = z . Define

r:[0, l ]x# d o -># d °

r{s,(y,zo)) =
V>Λ-<—ill if se[O,l)

if s = ί.

Then f is a continuous G-equivariant homotopy. Define r1 by

Then

s-^Γ^f-^s^z))) is non-increasing.

Defining r: [0,1] x Md

s°-+Md

s° by

r(s,x) = σor(s,σ~1(x))

gives the desired map. •

By our construction t$°N is G-homeomorphic to an open subset of SN, say
by the map

y y y). (41)

Since 1/ carries as an open subset of SN the induced C00-differentiable structure
coming from the standard differentiable structure, we can equip td

s°N with a
smooth differentiable structure uniquely characterized by the requirement that the
map in (41) is a C°°-diffeomorphism. From now on we think of Σd

s°N as being
equipped with this differentiable structure.

Lemma 14 Λ\Σ^N is of class C1Λ. Moreover the critical points of A\Σd

s°N are exactly
the critical points of Λ\Md

s°. Moreover the G-action on Σd

s°N is smooth near to critical
orbits. Also A\Σd

s°N is smooth near a critical orbit.

Proof. By the definition of the differentiable structure on Σd

s°N we have to show that
the map y-+Γ(y) = Γy{zy) is of class C1'λ in order to establish that A\Σd

s% isCul. For
this we equip SN with the Riemannian metric induced by our inner product (,) on
£. We shall show that

Γ'(y) - τy{zy)PNlA'(σy{zv)) - A(σv(zy)) Ψ'(σy{zy))] . (42)
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From this we shall infer since τ and σ are C 1 and y-+zy is Lipschitz continuous, that
f' is of class C 0 ' \ i.e., Γ is of class C 1 ' ι . We compute with Γ'(x) defined by (42),

^ Γyι(z0) - Γyo(zo) - (f'(y0), yλ-y0)

+ τ J z o ) 2 ^ ) - A(y0)) - (Γ(yo\ yi-y0)

+ τyo(zo)
2(A(yi) - A(y0)) ~ (Γ'(yΌ), y i - JΌ)

N o w dividing the above inequality by \\yί — y o | | and taking the lim sup for yx

we infer

- j/ 0 | | ^0 , (43)

where we use that {Ψ~1{yι+z0)—Ψ~1(y0 + z0))/\\yι—y0\\ can be replaced in the
limit by

Ψ'(y
o + zo

Similarly one proves that

ϊimmf(Γ(y1)-Γ(yo)-(Γ'(yolyι-yo))/\\y1-yo\\^0. (44)
yi-^yo

Note that we had in principle to work in local coordinates to establish that Γ is
differentiable at y0 and has Γ'(y0) given in (42) as gradient. However, taking an
exponential chart

for a suitable small zero neighborhood W, we see that

is the identity so that actually (43) and (44) imply the assertion in the approach
using local coordinates. So we have till now proved that (42) gives indeed the
gradient. Since by construction of Γ we have

QNlA'(σy(zy)) - A(σy(zy))Ψ'(σy(zy))-] = 0, (45)

we infer that

gvadAs(σy(zy)) = 0, (46)

if Γ'(y) = 0. On the other hand if grad^ls(x) = 0 with As(x)<d0, then writing
x = σy(z) we see that z is a critical point of Γy(z\ so that by our previous discussion
z = zy. Hence y is a critical point of Γ.

Next we have to prove the assertion concerning the smoothness of the G-action
and of A\ΣsΌ

tN near a critical orbit.
By construction

A'zy - A(σy(zy))QNΨ'(σy(zy)) = 0. (47)
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Define for /ceN*,

Ak = {xeC\S\Έi2n)nE\x(t) + 0 \fteS1}.

One verifies easily that we have the following commutative diagram:

1

0
i n c i Γ Ψ, Γ i n c i

EE

where the top arrow is a smooth map. We have to exclude x with x(t) = 0 because
H" and H*" do not exist at zero. Here the space Δk and C\Sι, R 2 " ) n £ are of course
equipped with the Cfe-topology. Define a map by

iy9z)-*Az-A(σy(z))QΉΨ'{y + z)

for yeSN and zeΛkr\(EΉ)L such that (y + z)'(t)ή=0 VteS1. So the map is in
particular smooth around pairs (y, z) such that σy(z) is a critical point of A\Md

s°. The
partial differential with respect to z at σy(zy) is given by

(y, (z, h))-*A>h - ^ ( z y ) ) G ^ y " 0 ; + zv)h, (48)

where Ψ"(y + zy) is given by

- } (J JH*"{ - J(y(τ) + zy(τ))) ( - J/l(τ))dτ )
o\o /

By the definition of Λ̂  it follows that the ^-extension of the map (48)

( E ^ M i S t f ) 1 : ft-^'Λ - A(σy(z,))β^y"0; 4- zy)h

is an isomorphism. Now let ze(EN)1nC/c(S'1,IR2"), and pick he (Ex)1 with

By a simple regularity argument it follows that /2eC/c(5 ί l,R2")n(£ΛΓ)1. So by the
open mapping theorem the map given in (48) as a map of the /z-variable is a
topological isomorphism. By the implicit function theorem there exists a smooth
map Ck-+Ck:y-+zy defined for y close to a critical orbit of Γ such that

By uniqueness zy = z r Since fc e N * was arbitrary we see that the points in Σd

s°iN

close ("close" is independent of k) to a critical orbit belong to CG O(5'1,R2")n£.
Moreover the map y-^Γy(σy(zy)) is smooth for y close to a critical orbit. So A\Σd£N is
smooth near critical orbits. S1 acts smoothly on SN, so it acts smoothly on {σy(zy)},
provided the y are close to a critical orbit. In fact, close to a critical orbit the map
y->σy(zy) is smooth and

a*σy(zy) = σaφy{za4ιy)9

implying our assertion. •
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Recall that a critical point x of Λs satisfies x(ί)=t=0, teS1. Therefore the
following definition makes sense.

Definition 6. Let x be a critical point of As. The (formal) Hessian at x is the
quadratic form

) ] (49)
0 0

where h e TXMS.
Clearly Qx has a finite index m~(x) which is the maximal dimension of a linear

space in TXMS on which Qx is negative definite, and a finite nullity m°(x), which
must be of course bounded by 2n. We call m~(x) and m°(x) the formal index and
m°(x) the formal nullity of the critical point x.

We shall show that there is a close relation between m~(x), m°(x) and the index
and nullity of x as a critical point of A\Σd

s°N for d0 sufficiently close to 0, do<0.
More precisely,

Lemma 15. Let do<O and N^N(d0). Let x e ί ^ be a critical point of A\Σd

s°tN

and denote its index and nullity by i~(x) and ί°(x) respectively. Then

Γ(x) = m~(x) and i°(x) = m°(x). (50)

This is quite standard and we will be somewhat sketchy. See also [E 1] for a
related result for a different reduction method.

Proof By definition we have

Γ'(y) = τy{zy)PN\_A'y - Γ(y)Ψ'(y + zy)\ . (51)

Let y0 + zyo = x. Then Γ is smooth near y0 by our previous discussion. Differentiat-
ing (51) at y0 gives for heTyoSN,

Γ"(yΌ)h = τyo(zyo)PNlA'(h)- Γ(yo)Ψ"(yo + zj (h + z ^ ) ] . (52)

On the other hand by the construction of Γ we have

0 = τy(zy)QNlA'zv-Γ(y)Ψ'(y + zy) ]. (53)

By the proof in Lemma 14 the map y-*zy is smooth in the Ck-setting if y is close to
y0. So we infer differentiating (53)

0 = τyo(zyo)QNlΆz>yoh-Γ(yo)Ψ"(yo + zj(h + zyoK)\ . (54)

Combining (52) and (54) gives therefore

%Γ"(yQ)K h) = τyo(zyo)Qx(h + z'yoh). (55)

This implies in particular that

index(f "(j/0)) = z'~(x) since f is a local coordinate description of A\Σd

s°N

Sm~(x) by (55),

nullity (f"(yo))^m°(x). (56)
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On the other hand assume X is a linear subspace of TXMS with Qx being negative
definite on X. Then by the definition of N we infer that PNu + 0 for u e X\{0}. Note
that z'yoh is defined by the minimum problem [as a unique solution which follows
from the definition of N(d0) in (33)]

min (A(v)-Γ(yo)&Ψ"(yo + zyo)(Λ + v)9h + v)). (57)
ve(ENμ

Let vh = zf

yoh. Then defining a subspace X of T^MS by

we see that β J X is negative definite and by construction dimX = dimX. So

index(f"(3;0)^m"(x)5 (58)

and similarly

nullity(f"(j;o))^wo(x). Π (59)

113. Critical Points with Prescribed Formal Index

Definition 7. The discontinuity sequence (Sk)ke^* for αs, 5 e Jf, denoted by dis(S), is
the non-decreasing sequence consisting of all points d<0 at which as is not
continuous. Moreover each point d is repeated according to its multiplicity as(d)

The aim of this section is to prove the following:

Proposition 1. Let fceN*, j ' e N and define cίo= — oo. Assume

άk-1<(ϊk=...=(ϊk+j<(Ik+j+ι. (1)

ί/zβrβ β x i s ί Γk, . . . , Γ k + j e & ~ ( S ) m u t u a l l y different and numbers lh, ...,lk+j in M *
swc/i that

^ ^ (2)

/or every ie{k, ...,/c+y}. Here xf denotes a minimal representative for Γb and
x[ι: =(1, /f) * x,. denotes the / t h iterate of xt.

The rather involved proof is based on a sequence of Lemmata.
We fix do>ctk+j+u N^N(d0) and denote by ε o > 0 a number satisfying

Proposition 1 will be a consequence of the following:

Proposition 2. Under the assumptions of Proposition 1 there exist for i e [k,..., k +j)
critical points xf of As with A{x^ = ^l, Z\ =3k= ... =dk+p such that

xf) + m ° ( x ί ) - l . (4)
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// j ^ 1, we have in addition

Given any integer b and positive number δo>0, the xt can be
chosen in such a way that a δo-ball around xt contains at least b
critical points on different orbits on level <i. (5)

We don't claim that the xt are mutually different.

Proof of Proposition 1 assuming Proposition 2. Assume first j = 0. Then by
Lemma 5 we find that the first part of (2) holds for Γk = φ([_X]J). Moreover from (4)
we infer

\m~(xk)-2k\^2n + ί.

If xk is a minimal representative of [xfe] we may assume for some

and the second part of (2) is proved. If now j ^ 1 we can argue as follows. Define

Then (2) holds for i = k. Assume xk, ...,xi are constructed so that Γk,...,/], where
Γa = φ([xj), satisfy (2) and are mutually different. We have to find xi+1 if i<k + j so
that Γk,...,Γi+ι are mutually different and verify (2). Pick the xi+1 from
Proposition 2. If the G-orbit of xi + 1 is different from the orbits belonging to
xk,..., xt we define xi+ι\=xi+ι and are done. So assume xi+ι belongs to G * x l0 for
some ioe{k, ...J}.

Pick b ̂ j + 1 and δ0 > 0 such that all critical points on level d being c>0-close to
xk, ...,Xi have a Morse index m~ satisfying

m'ix^m'^m'ix^-i-wPix^-ί for l = k,...J. (6)

(The — 1 comes from the fact that we have a nontrivial Sι-action.) Now according
to (5) we can take a new xi + ι corresponding to fr^j+1 and <50 as above. If x/ + 1

coincides again with some of the xk,..., xt we find a critical point xt + ί different from
the orbits G * xk,..., G * xt on level cί which is δ0 close to one of the critical points in
{xk, . . .,xj. It satisfies by (6)

Now combining (4) and (6) gives

2/H-]-m°(x ί + 1 )^m-(x ί + 1 )^2/ + m 0 ( x £ + 1 ) - l . (7)

Since m°(xi+ί)^2n, this yields

We take x ί + 1 for our new xi+ί and the second part of (2) is proved.
Define

Σ. = Σί%, (8)

and let for d { — oo, d0)

Ά d } , (9)
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where

Ά = A\Σ. (10)
For c<d<d0 the inclusion

\ i (11)

is a G-homotopy equivalence by Lemma 13. Denote by Cr(5), where
ct:=ctk=...=3k+j, the set of critical points of A on level ct.

Given δ>0 we define an equivalence relation on Cr(<2) by

x~x iff there exists a finite sequence (-Xj)i = 0 w + 1 cCr(ί) with

\\Xi-xi+ι\\ <δ. (12)

By the compactness of Cr(d) there are only a finite number of equivalence classes.
The Riemannian metric on SN induced by the inner product on E induces a
Riemannian metric for Σ. We denote by

R+xI^:(ί,x)^n (13)

the restriction of the minus-gradient flow associated to Ά, that is

x'=-gradl(x). (14)

We shall also denote by x * t for t < 0 the image of x in backward time as long as the
flow is defined on [£, 0]. Note that Σd is compact for every d<d0.

Now fix δ > 0 and denote by [u{\δ,..., [um{δ)']δ the mutually disjoint equivalence
classes of Cτ(ct). Note that every [wjό is G-invariant, open and closed in Cr(5).

We find ε((5)e(0, ε0) and compact G-neighborhoods Kt in Σ of [wj5 such that

The G-action and A are smooth on an invariant neighborhood
oiKb (15)

— φ for iφ , (16)

g ^ and i n d ( ^ ) - i n d ( M , ) , (17)

0}
(18)

) = d-ε(δ)or ^[(x) = d + ε(<5)},

If fl,fc^0, xeXf and for ί e [ - I ?

*[-α,fo]cK ι , (19)

We define K; =K^d~E{d\

Lemma 16. The inclusion

U (Xί9 XΓ )-+(Σ*c + ε{δ\ Σd ~εiδ)) (20)

induces an isomorphism in equivariant cohomology. Here \} denotes disjoint union.

Results of this type are well known if the critical orbits are isolated. That they
are isolated is however not assumed here.
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Proof. We use the strong excision property of Alexander-Spanier cohomology.
Since we shall work in the finite-dimensional manifold Σ we can define equivariant
cohomology by taking the G-product with EG = S2k~1 instead of EG for some
sufficiently large k. The inclusion (20) induces a bijection

(U KMU κn^(Σ"-ε{δ)u u JQ\£a~ε(a). (21)

Moreover if we take the G-product of the data involved in (21) with EG9 k large, we
obtain a similar assertion to (21):

(U Ki>G)\(LI KrG)^(Σί-«»u UKiie)\2£-«<4>. (22)

Moreover the inclusion

is a closed map since a closed set in the left-hand space is compact. Recall that the
suffix G means product with Ek

G for k large enough. By the strong excision the
inclusion in (20), say j = {jj, induces an isomorphism

HG(Σ«-^yj U Kb Σ"-^)^φHG(Kh Kf). (23)

Here HG(X):=H(XG) by definition. HG is called an equivariant cohomology
theory. This construction is due to Borel, [B]. By condition (18), using the map
* :IR+ x Σ^Σ, we can easily construct a continuous map

such that

r(t,x) = x Vie [0,1] VxeΣa"ε ( < 5 ),

H\9x)eΣ*-ε{δ)υUKi VxeΣ a + ε ( δ ), (24)

r(t, -) is G-equivariant,

Using (24) we obtain the following G-homotopy commutative diagrams:

r(\, )

i n c l ° r ( l , ) ~ i d

So incl is a G-homotopy equivalence. Combining this fact with (23) we see that the
inclusion
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induces an isomorphism in equivariant cohomology. Denote the inclusion

by j t . Hence

tίG{Σ ^Σ ) — —^ίjH π G\K t. K t j . Q (24)

By Lemma 13 the inclusion

induces an isomorphism in equivariant cohomology. We can combine this with
(24). Consider the commutative diagram [recall Lemma 7, (24), (25)]

HG{Md

s

 f ε{δ\ Mϊr ^>) - ϋ > HG(Md

s

+ ε{δ)) > HG(Md

s~
ε(δ))

^ J (/")• (26)
®HG(KbK[) > ®HG(

Ki) < < ( / j — ^ H ( B G )

where /ί? /
± are induced by a classifying map (see Lemma 7), everything else is

induced by an inclusion. Recall the cohomology class σ exhibited in Lemma 7. We
easily infer from (26) that for some ίoe{l, ...,m(δ)},

for m = 0,.. .J. (27)

Hence, using that7?0(/+)* = (/0

+Λ0)*=Λΐ5 and defining σiΌeH%k-»{KlQ,K;o) by
σίo=;?o(σ) we infer

/ i o*(^m)^σ i oΦ0 for m = 0,...J. (28)

Moreover the nontrivial cohomology given in (28) "lives" above or on level <?,
namely we have the commutative diagram (de[β, — ε(δ), ct+ε(δ)~]),

HG(Σd + ε{δ\ Σd ~ε(δ)) > HG(Σd, Σd ~ε{δ))

®HG(KbKr)

That the vertical arrow on the right is a isomorphism follows as in the proof of
Lemma 16. Now if d<d the cohomology classes ( / + f ( f ) U ( J a r e mapped to zero
by the top-horizontal arrow. Consequently, the restrictions of the /ί*(^m)uσ/o to
HG(Kd

o,Kjo) for d<ct are zero. Moreover if d>d, the cohomology classes
(/+)*(^m)uσ are mapped to a nonzero class, since everything remains true if we
replace 3+ε(δ) by d. Hence we have proved the first part of

Lemma 19. For me{0, ...J} the cohomology classes

are nonzero. However the restriction for d<ct to HG

{k~i+m\Kd

o,Kfo) is zero.
Moreover if j^ί then Kio contains infinitely many critical orbits on level d, in fact
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Proof. We have f£{ηm)*0 for m = 0, ...J in H2

G

m{Kio). Hence

in

By construction, see (17), we have

Therefore

which implies our assertion. Π

Now using (15), (17), (18), (19), a result by Wasserman, [Wa], and an
equivariant partition of unity argument, there is a G-invariant smooth map A
defined on a neighborhood of Kio such that

A is C00- close to A, (29)

A coincides with A on a neighborhood of Kio, (30)

The critical ^-orbits on levels between ct—(ε(δ)/2) and

d + (ε(δ)/2) are nondegenerate, (31)

The inclusion ({x e Kio \ A(x) ^ d}, K^o)^{Kio, Kf0) induces a map
in equivariant cohomology mapping /io*(fίm)u(7io, m = 0, . . . j ,

to non-zero classes of d^.d-\ , and to zero classes for

(32)

Note that (32) is true if (29), and (30) hold.
Define a map j8:[ί-ε(δ),ί+ε(δ)]->Z by

= max({rae{0, ...J}\f^(ηm)uσio induces a non-zero class

By the construction of A we have

j8(d)=-l for d ^ £ - ^ , β(d)=j for rf^d+^. (33)

Lemma 20. There exists α sequence dt, 0 ^ / ^ j , such that

ί-f<do...<dj*l+f (34)

and β is discontinuous at dt. Moreover

β{dn-β(dΓ) = U j8(<*o)=-l. (35)

Proof. This is of course a replica of the proof of the corresponding properties of α s.
Note that by (30) Kio has property (19) with respect to the minus-gradient flow
associated to A. Equations (34) and (35) follow from the fact that (31) holds, so that
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there can be only a finite number of critical orbits between levels Z— ε(δ)/2 and
3+ ε(δ)/2. (lϊdi = di + ι for some i, then there would be infinitely many orbits on level

Our aim is to show that there exists a critical point of A in Kio on level d{ having
index 2(fc — 1 + /). From this Proposition 2 will follow easily. For this we have to
recall some facts from equivariant Morse theory [Bo, Hi], as well as some local
results concerning the Poincare polynomial of a nondegenerate orbit. The reader
can also use the note by Viterbo [V]. Combining a local version (in Kio) of
Lemma 7 with Lemma 20 and using a localization technique in Kio similar to the
procedure within this chapter (however somewhat simpler) together with the
nondegeneracy we obtain

Lemma 21. For dt as in Lemma 20 there exists a critical point u{ of A in Kio on level ά{

such that
* i ) f = o,. . .J, (36)

where Nt-+G* u{ denotes the negative bundle and N( is the negative bundle with the
zero-section deleted.

We need now some information about the Morse index of the ut.

Lemma 22. The Morse index of ut as given in Lemma 21 is

By the nondegeneracy of ut the nullity is exactly one:

m ( M f ) = l . (38)

Proof Denote by Nt xthe fibre over xsG*ut and consider the trivial vectorbundle

NxxS»-^S«>. (39)

The isotropy group Gx of x is a Έb / = ordGx. Let g be a generator for Gx. Then
gNi>x = NitXand Gx acts on the vectorbundle (39) in the obvious way. Of course we
take the standard action on S00. p commutes with the action and taking quotients
we obtain

ζ: ={NitXx SCO)/GX-^SCC/GX=:L00, (40)

where L00 is an infinite dimensional lens-space. Clearly we have the commutative
diagram

(iV;x£G)/G = * ζ

I I
{G*ulxEG)/G=+L°

where the horizontal maps are isomorphisms. (So we have a vectorbundle
isomorphism.) Now ζ-^L00 is Q-orientable iff JVί->G*wί is Q-orientable.
We start with computing HG(G * wf). We have

(G * ut x EG)/G - L00 = S^/G;, = S^/Z,.
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By a result in [B] we infer

/7(S7Z(,Q) ===+ [J7(S°° Q)]z< = (Q, 0), (42)

where π:Sco~>-S':o/Έι is the projection and

[H(S», Q)]z< = {a e H(S», Q)|g * α = a Vg e Z, = G x}.

The exact equivariant eohomology triangle for the pair (JV, , Nt) is

HG(N,N ;) >i?ff(JV,.)

\ / <43>

Since Nt G-retracts fibrewise to G*ut we have

flG(JV, ) = ( Q , 0 ) .

So (43) gives
HoiN.Ni) >(Q,0)

δ \ / • (44)

HG(Nd

Since (N( x EG)/G^{NUx x EG)/GX, we obtain again by a result in [B]

x BcVGJ ~ [H(iVi;< x £ G )] Z '

j ( S 0 0 contractible).

If all geΈ, induce an orientation preserving (op) map, we have with dimJV,-,x = α,

[H(JV/iX)]z' = (Q,0)φ(Q,α-l) (if op), (46)

if one is orientation reversing (or),

flz (if or). (47)

So if Z; = G^ acts orientation preserving on Nt which is equivalent to Nt-*G* M, is
orientable, we infer combining (44), (45), (46),

(Q,0)Θ(Q,α-l)

which implies

HG(Ni,Nt) = (Q, a) iϊNi-*G* u x is orientable. (48)

If Ni-+G*ui is not orientable then a similar argument based on (47) gives

HG(Ni9Ni) = 0 iϊNi-+G*ui is non-orientable. (49)

Now by assumption HQ(k~ί + i\Ni,Ni)φ0. So we must be in case (48) with
2(fc—1 +ί) = a. This proves (37). Equation (38) is clear. •
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Proof of Proposition 2. Since A is arbitrarily C00-close to Ά, we find in view of
Lemma 22 for ie{k,...,k-\-j} a critical point xt of A on level 3 such that

Since δ > 0 is arbitrarily given, (5) follows immediately. Π

11.4. The Index Interval

We shall show in this section that σ(S) is a compact interval in (0, + oo) and that the
map S-+σ(S) is continuous.

1 V-Λ 9 Λ \ T1!Lemma 23. Let S=

Proof Given x 0 e S1 the map £->>exp(2πJφc0 parametrises an element in &~(S), and
every Γ e >T(S) can be obtained this way. Dividing out the S1 -action in S we obtain
a bijection

S/S1 =^ 3~{$), [x 0] ->{exp(2πίJ)xo\t eΊR] .

1

We compute V(Γ) = \$2π\xo\
2dt=^4π = 2π for ΓejT(§). Therefore the critical

o 1

levels for A*s must be of the form — ——, / e N*. Since our critical point problem is a
2π/

linear eigenvalue problem, one easily computes (a variant of the Courant-Hilbert
min-max principle)

where

Hence

This implies as one easily sees,

limas(d)\d\=~. Π
to 2π

Proof of Theorem ί (ϊ). σ(S)ec€ and S-+σ(S) is continuous.
Let § as in Lemma 23. For b > 0 denoting by bS the image of S e Jf7 under the

map z-^bz, we see that

This implies
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Consequently

inf σ(bS) = b~2 iniσ(S), sup σ(bS) = b~2sup σ{S).

Write R > S iff R encloses S. Assume R > S, then Hs ^ HR, and consequently
H*^H%. So we find a G-map of the form x-^f(x)x from Md

R^>Md

s. This implies
(xs^(xR. Hence we have

R>S^ocs^otR. (1)

This implies in particular

R > S => inϊσ(S) ^ infσ(R) and sup σ(S) ̂  sup σ(R). (2)

Now given S e 2tf we find δ > 0 such that

(Γ^SxW. (3)

Hence by Lemma 23 and the previous discussion

So we know that σ(S)e^. Next we show the continuity Sr->σ(S). Assume ε > 0 is
given. F o r <5e(0,1) define Usδ by

ReUSδ iff ( 1 -

Then {Us,δ)seje,δe{o, D i s a basis for the topology on Jf. By our previous discussion
we have for R e Us δ,

(1 + δ) ~ 2 inf σ(S) ^ infσ(R) S (1 + δ)2 inf σ(S),

(1 + δ)~2 supσ(S)gsupσ(R)^(1+δ)2 supσ(S).

Therefore, we have for sufficiently small δ,

d(R,S)<ε VReUs,δ.

This proves the continuity. Π

Lemma 24. For SeJ^ we have

ocs(d)-ots(d~)<>n Vde(-oo,0).

Proof. Arguing indirectly assume for some de(— oo,0) we have

Then, denoting by Cr(d) the critical set of Λs on level d, we have

by Lemma 6(iii). By a result in [F-R, Proposition 6.12] (use that ind = ind* + 1 ,
dim, = 2)
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Therefore

2nSdim{Cr(d)/G).

Since dim(Cr(<i)/G)^2n — 1, we obtain a contradiction. •

A consequence is the following useful

Lemma 25.

inf σ(S) = lim inf | ctk \ k,
fc-» oo

supσ(S) = lim sup |<?fc|fc.
fc->oo

We have

α s(2) - n) | d\, (4)

where <ϊ^<i is the closest point of discontinuity for α s on the right of d. Defining
d^d similarly we obtain

as(d)\d\^ots(d)\d\. (5)

Hence (4) and (5) imply our assertion. •

III. Index Sequence and Torsion at a Hamiltonian Trajectory

IILί. Index Sequence and Winding Number

Let SeJf and pick Γe$~(S). Denote by x :R-^S a solution of x = JH\x) with
x(0) e Γ, where H = Hs. Consequently x(t) e Γ for all t e R. As we have already seen
the minimal period T of x satisfies T= F(Γ). We study now the linearisation of
x — JH'(x) along x, which is

y(t) = JH"(x(t))y(t). (LHS)

Definition 8. Two times ί t < t2 are called conjugate along x if the linearised problem
(LHS) possesses a solution y: [tu ί2]-^lR2" satisfying y(tι) = y(ί2)' The multiplicity
of ί2 with respect to t1 is the number of linearly independent solutions of (LHS)
satisfying y(tί) = y(t2). If tί =0, we define m(ί) for ί > 0 as follows:

[0 if ί is not conjugate to 0.

multiplicity of ί if ί is conjugate to 0.
Now we are in the position to associate to Γ e &~(S) an index sequence as follows

Definition 9. Let Γe3r{S). The index sequence of Γ denoted by iΓ = (ikr)ke¥\* i s

defined as follows:
ikr= Σ Φ) (2)

0<s<kV(Γ)

In [E1-E3] the reader will find the basic properties of the index sequence. An
alternative but equivalent definition of the index sequence can be given as follows.
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For k e N * denote by Fk the Hubert space,

kV(Γ)
2n) and J y(t)dt =

I o

Define a quadratic form Qk on Ffc by

kV{Γ)

Qk(y)= ί [<Jy(ί),)<ί)> + <H* / /(-^(ί)W(0 J^(0>]Λ.
0

Then it has been shown in [E 3] or [E-H 1] that iΓ is just the number of negative
squares of Qk, or with other words the maximal dimension of a linear subspace of
Fk, so that the restriction of Qk to that subspace is negative definite. Moreover there
is a formula relating iΓ to iΓ and the Floquet multiplier of the time-T-map of the
fundamental solution of (LHS)

ir= Σ J'M, (3)
w k = 1

where) is a map from the unit circle {zeC| |z| = l} in C into the non-negative
integers, which is described in detail in [E2]. Equation (3) implies that

limUk=^-ΪJ(w)dw=:ΐΓ. (4)
zctoo k 2π

We call ΐΓ the mean index of Γ. Now using results in [C-Z 1, C-Z 2] we can relate ΐΓ

to a winding number. In [C-Z 1] Conley and Zehnder introduced an index based
on a winding number and related to previous work by Duistermaat [Du] and
Cushman-Duistermaat [Cu-Du]. From facts which can be found in [C-Zl ,
p. 651] and formula (1.17) in [C-Z 2] we have for a constant C > 0 independent of
Γ (note that our ΔΓ is \ times Conley-Zehnder's A)

\ίk

Γ-2AΓ(kV(Γ))\^C VfceN. (5)

Since, as shown in [C-Z 2, p. 652] AΓ(kV(Γ)) = kAΓ(V(Γ)l we infer combining (5)
with

ky(Γ), (6)

the following:

Lemma 26. For Γ e ^~(S) we have

ΐΓ = 2γ(Γ). (7)

Proof. Using (5) and (6) we have

k'

Taking the limit gives (7). Π

In the following we study in more detail the quantity ΐΓ to obtain information
concerning γ(Γ) and y(Γ)
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Lemma 27. Let dimkQv(R(T)-ld) = d. Then

Here R(t) is the fundamental solution of (LHS) with R(0) = ld.

Proof Fx possesses a (d + zf )-dimensional subspace X such that Q1 \X ^ 0. X admits
the Qx-orthogonal decomposition

X = X1@X29

where Xλ is spanned by the functions in the kernel of Q{ and X2 is spanned by the
eigenfunctions belonging to negative eigenvalues. Let {yu...,yd\ be a
(^-orthogonal basis ioτXι and {yd+1,..., yd + ύ} a (^-orthogonal basis for X2. We
define YjCF2 ϊoτj=ί,2,3 by

Yί = {yeF2\y = z on [0, F(Γ)] for some zeXx and j) = 0 otherwise},

1̂2 = {j;Gi?

2|3> = i on [0, V(ΓJ] for some zeX2 and j) = 0 otherwise},

Y3 = {yeF2\y = 0 on [0, F(Γ)] and y = i( - 7(Γ)) for some z e X 2 } .

Then the Yj are mutually Q2-orthogonal in F 2 and a simple calculation shows

Moreover Q 2 () ; ) = 0 implies y £ 1̂  if j e Yx 0 7 2 ®7 3 . Since Yγ does not contain an
eigenfunction since y is constant on (V(Γ), 2F(Γ)], we infer the existence of a linear
subspace Y of F2 such that

β2(j;)<0 if yeY\{0},

dimY=dim(Y1@Y2@Y3) = d + 2i1

Γ.

Therefore

as required. •

Lemma 28. There is an integer δ e [0, d] such that

\imj(ei£) = iι+n + δ.

ε Φ O

Proof See [E1] or [E-La]. Π

Corollary 2. j(w) ^ 2 except for a finite number of points.

Proof By Lemma 27 we have j(— l ) ^ d ^ 2 . That d ^ 2 follows from the 2-homo-
geneity of//, since Tis conjugate to 0. It has been shown in [E 1] that any point of
discontinuity of j must be a Floquet multiplier of x, and that if w + ± 1 is a Floquet
multiplier with |w| = l5 p times Krein-positive and q Krein-negative then

lim {j{weiε) -j{we ~iε)) =
ε->0
εΦO
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Assume w is a point in the upper half-sphere which is not a Floquet multiplier such
that j(w) ^ 1. Since j( — 1) ̂  2 by Lemma 27 we have w φ — 1 and the arc in the upper
half-sphere [ — 1 , w] must contain a Floquet multiplier. Hence the arc [w, 1) can
contain at most n — 2 Floquet multipliers, hence

-(n-2)^2. D

Corollary 3. If n^3 then ΐΓ>2.

Proof. We have j(w)^ 2 except at a finite number of points. By Lemma 28 j(w)> 3
for w φ l close to 1. Hence

f ( ) d 2 •

We develop now a special argument to extend Corollary 3 to the case n = 2.

Lemma 29. Assume R(tQ) has a simple eigenvalue eiθo with 0<θo<π. Then there are
neighborhoods U of t0 and V of θ0 and a C1-map t->θ(t) from U to V such that for
any teU eιθ{t) is the only eigenvalue of R(t) with θ(t) e V. We have

— > 0 if eίm is Krein-positive,
at

— < 0 if em) is Krein-negative.
at

Proof Krein has proved similar results when R(t0) is perturbed by increasing the
Hamiltonian (that is, changing H"(x(ή) to H"(x(ή) + εQ(ή, with Q(ή positive
definite (see [S-Y, Chap. III]). Here we perturb R(t0) by changing t0 to some
neighboring t, but the argument is quite similar.

By standard perturbation theory, there is a C^-map ί->w(ί), defined on a
neighborhood of U, such that w(ί) is the only eigenvalue of R(t) close to eiθo. Since
R(t) is symplectic and w(t) is a simple eigenvalue, it cannot leave the unit circle, so
w(ί) = eιθ(t\ We can also choose for each t an eigenvector y(t) in such a way that the
map t^y(t) is C1.

Now write

R(ήy{t) = eίmy(t)

and differentiate:

R(t)y(t) + R(t)y(t) = iemt)θ{t)y{t) + em)y{t).

Hence

(R(t) - eiθ^)y(t) = ieiθ^θ(t)y(t) - R(t)y(t)

= iew«W(t)y(t)-JH"(x(t))R(t)y(t)

= eiΘ{t\iθ{t)-JH'\x{t))y{t).

We take the Hermitian product with Jy(t). The left-hand side vanishes since

(R(ήy(t), Jy(ή) = (y(t), R(t)*Jy(ή) = (y(t), JR ~ \t)y(t))
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Therefore we are left with

ί(y(tl Jy(t))θ(t) = (H"(x(t))y(tl y(ή).

The right-hand side is positive. It is known that the Hermitian form — U does not
vanish on the eigenvector y(t\ and by definition its sign defines the Krein-sign of
the eigenvalue eιθ^:

if iy(t), Jy(ή) > 0, then em) is Krein-positive,

if i(y(tlJy(ή)<0, then em) is Krein-negative.

Hence the result. •

Before proceeding, we must make an excusion into index-theory. Take w on the
unit circle and t > 0. Consider the Hermitian form

{Qy, y) = ί <JM ΛΦdτ + ] <#*"( - Jx(τ))Jy(τ% Jy(τ)>d
0 0

on the complex Hubert space

Hi(0, ί) = {y GH '(0, ί (C2")|y(t) = wy(0)}.

This form is the sum of a positive definite term (for vv+ 1) and a compact term.
Hence it has a finite index. We call it j(w, ί). Note that j(w) =j(w, T) in our previous
notation. Clearly j(w, t) cannot change without Q degenerating, which happens
only if w is an eigenvalue of R(t).

Definition 10. Let w be on the complex unit circle. We call £>0 w-conjugate to 0
along x if w is an eigenvalue of R(t). Note that Definition 8 is concerned with
1-conjugate times ί. Denote by m(w; ί l512) for tx < t2 the number of s £ (ί l 512) which
are w-conjugate to 0, each counted with multiplicity. (The multiplicity is of course
defined similar to that in Definition 8.)

Assume t is not w-conjugate to 0 and w + 1 , thenj is constant in a neighborhood
of (w, ί). If w= 1 and t is not 1-conjugate to 0, we have

limj(eίθ,ί) = /(U) + » (8)

To see this we determine y from y by the formula

J
o

L 2and y spans the whole of L2. We can therefore rewrite Q as a Hermitian form over

Ids
o

+ (w-lΓ1 (j]y(s)ds,\y(s)ds} .
0 0

We can split L2 into L Q © ( C 2 " , where L2

0 is the space of (C2"-valued L2-functions with
mean value zero and (C2/I denotes the space of constant functions. The restriction of
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Q to (C2n has index n and the restriction of Q to L2

0 has index j(l, ί). If w is close
enough to 1 the index of Q will be j(l,ί) + n. Thus we have proved

Lemma 29. If n = 2 then if t is not 1-conjugate to zero:

\imj(ew,t)=j(l,t) + n. •

0 Φ O

Lemma 30. Assume w = l is α double eigenvalue of R{T). Then there are
neighborhoods V of 1 and U of T and a continuous map t -» θ(t) from U to IR such that

(i) 0(ί) Φ 0 /or ί + Γ <md <?ίβ(ί) eVVteU.
(ii) 77zέ? restriction of θ(t) to U\{T} is C1.

(iii) For ί e 1/ e ιθ( ί) and e~ιθ(ί) are t/ze on/j; eigenvalues of R(t) belonging to V.

Proof T is clearly conjugate to 0 with multiplicity 2 as we have previously seen.
Conjugate points are known to be isolated [E2, E3] so that there is a
neighborhood U' of T with

Ker(K(ί)-Id) = {0} teU'\{T}.

We consider the equation

det(K(ί)-wId) = 0. (9)

The left-hand side is a polynomial in w with smooth coefficients in t. For t = T there
is a double root w= 1. Choose a disk V around w= 1 containing no other root.
Then there exists an open neighborhood UcU'ofT such that whenever t e U and
t+T. Eq. (9) has two simple roots in V. Since R(t) is symplectic these roots must
either be both real

ρ(ί) and ρ(t)'1 with 0 < ρ(t) ̂  1 (10)

or both on the unit circle

em) and e~m) with 0^θ{t)<π. (11)

The functions ρ(ί) and θ(t) must be C 1 on t/\{Γ}. This leaves us with four
possibilities

(a) real roots for all t e U.
(b) real roots for t < T, complex roots for t > T.
(c) complex roots for t < T, real roots for t > T.
(d) complex roots for all t + T.
We may choose U to be an interval containing T. By the preceding lemma θ(t)

will have a constant sign on each of the half-intervals Un{t<T} and Un{t> T}.It
follows that a complex eigenvalue w = ̂ ίθ can occur at most once on each side of T.
In other words, for each w e V with |w| = 1 and, w φ 1, Eq. (9), now considered as an
equation in ί has at most two solutions tί and t2 in l/5 one with t1 < T and one with
t2>T. If there are exactly two we have case (d).

We now use index theory. Choose an interval [t1,t2\ClJ with t1<T<t2.
Since T is 1-conjugate to 0 with multiplicity two, we have

j(l9t2)=j(Uι) + 2. (12)
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Since neither tγ nor t2 is 1-conjugate to zero, it follows that there is a neighborhood
W of 1 contained in V with

j(w,ί2)=Xw,ί1) + 2, weW.

So, whenever WEW and w φ l , Eq. (9) must have two solutions in (S l 5 S2) C U.
We are therefore in case (d) and Lemma 30 is proved. •

Still in the case n = 2we have

Lemma 31. Assume ker(#(T) — Id) is two-dimesnίonal. Then

Proof Take t < T in U and consider θ(t) which was defined in Lemma 30. We have
θ(t) > 0 and Θ(T) = 0, so em) is Krein-negative by Lemma 29. Fix θί e (0, π) so that
for all t e U with ί < T the only eigenvalue of R(ή of the form ^iθ, 0 < θ ̂  θx is 0(ί). Set
β2W = 2βW and W!=e ί θ l and w2(ί) = e iβ2(ί). We have

Between wx and w2(ί) there is a single Floquet-multiplier em\ which is Krein-
negative. The change in j(-,t) is then + 1 , see [ E l ] :

Now let t~>T. Since i^(ί) never has eigenvalue w1? we have

J(Wut)=J{WuT)=j{wγ).

On the other hand we have

j(w2(tlή=j(Uή + 2.

Since there are no 1-conjugate points to 0 in (t, T) we infer

j(\,ή=j(UT) = ί1

Γ.

Comparing the four equalities we get

j(wt)=j(w2{t)91) +1 =7(1, t) + 2 + 1 = # + 3 . •

Corollary 4. // n — 2 we have

ΐΓ>2.

Proof Since j(w) ^ 3 if w close to 1 and the value of j(w) can drop by at most 1 for
w φ l (since there can be at most one simple multiplier w φ l on the upper half
circle) we infer y'(w)^2 for w=f= 1. Hence

1
i r = W Λ w ) d w > 2 .

In

Proof of Theorem 2(i). Corollary 3 and 4 give ΐΓ > 2. Since by Lemma 26 we have
ΐτ = 2γ(Γ), we find

y(Γ)>l if n^2. •
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Finally we need a result connecting the indices ik

Γ and the formal Morse index
defined in Definition 6 (II.2).

Proposition 3. Let x0 be a critical point of Λs such that φ ( [ x 0 ] ) = Γ (see Il.ί). Let z

be a minimal representative for [x 0 ] and \Λ(xo)\ = (see II.ί, Lemma 5). Then

Proof By Definition 6 in II.2 m~(x0) is the index of the quadratic form on TXoMs,

-iA(x0) } <H*"(- Jxo(t))Jh(t),Jh(φdt
0

^ ί <H*"( - Jxo(t))Jh(tl Jh(t)}dt. (13)

Now the right-hand side of (13) defines a quadratic form on E (see 1.2 for the
definition of E). One easily verifies that this new quadratic form which we denote
again by QXo has the same index m~(x0). Carrying out a change of variable and a
rescaling of x0 [similar to II. 1, Lemma 5 (iii)] we obtain for a suitable constant

which solves —Jx = H'(x) and x(t)eΓ WelR. Moreover x has minimal period
V(Γ) = T. It is now straightforward to verify that the index of Qk associated to x (see
III.l) is the same as m"(x0). By the definition of i\ this implies the desired
result. •

ΠI.2. Computation of Total and Mean Torsion

Let S be the surface given by H = 1, where

...,qn,pl9...,pJ = ± £ φf+p}). (1)
i= 1

Here the αf are positive and independent over Z. Denote by eb Ϊ = 1 5 ...,2n, the
standard orthonormal basis for R 2". We obtain that the only Hamiltonian
trajectories on S are those given by the following parametrisation:

(2)

Then with V~V{Γ^

\ ,\ / x M M \ 2π Ί 2π
Vj=—[ (\JXj{t\ Xj(t))dt = J — dt= — . (3)
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Now (LHS) is given by a linear time independent differential equation

ί 0"

y = J

0

y = : JAy. (4)

Hence R(t) = exp(ίJA). Note that R(t) commutes with J and moreover \R(t)y\ = \y\.
Now

detj(R{t) x ... x R(ή) = e2πiΔ{t) det ,

is equivalent to

Therefore

Consequently with y7- = (̂ΓJ ) and y7- = y(/]) we infer

" α 1 "

(5)

(6)

(V)

(8)

Note that ^ Σ OLi = yj)j=\,...,n.
2π ; i

Definition ίLLetSbz defined by H e # . We call S (r, #)-pinched with 0 ̂  r ̂  R if

(10)

K2 r2

Proposition 4. If S e ̂  is (r, R)-pίnched then for every Γ e <T{S\ we have

πr

/ If A(i) is a symmetric positive definite matrix depending continuously on
ί e R w e can solve

R = JA(t)R, R(0) = ld

and can associate to A and T > 0 a winding number ^ ( T ) just as in the definition
of y(Γ). From the variational characterisation of the index sequence it is immediate
that

Now y(Γ) = zlΓ — lim AΓ(t)/t. Hence
ί ->• oo

HmΔ2_u(t)/t£y(Γ)^fonAlι

(11)

(12)
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2 - 1 n

—yld corresponds to H(q1,...,qn,pί,...,pn)=-~2 Σ (qj + pj) and similarly for
R R j = i

2
~2 Id. For a sphere of radius Γ we can compute as before.

V(Γ) = πr2, γ{Γ)=—9 y(Π = n. (13)

So combining (12) and (13) gives

JL^m^—2i (14)
πR2 πr2

as required. Π

IV. Proof of the Main Results

IV.l. Two Basic Theorems

The following together with Proposition 1 is a key step in the proof of the main
results.

Definition 12. Let SeJίf. We call a Hamiltonian trajectory Γ E<T(S) k-essential,
where fceN*, if there exists ίeN* such that

1 ΐ - 2 / c | ^ 2 n + l . (1)
lkl ιv(ry

Here dis(S) = (<?fc)keN* is the discontinuity sequence (see def. 7).
We have

Theorem 3. Let Se^f. There exists a sequence Γ(k)kelN*C^(S) such that

Γ(k) is k-essential. (2)

Moreover if dk= ...=3k+j for some j ^ l , then the Γ(k)... Γ(k+j) are mutually
different.

Proof We construct the Γ(k) inductively as follows. Denote by (/c^eN* the sequence
of "jump points" for the sequence (ίfc)fceN*5

Assume Γ(k) for k=l,...,kι is constructed. We have to find Γ(kι + 1)... Γ(kι+1)
mutually different so that Γ(k) is fe-essential for ke {k{ + 1 , . . . , kι + ί}. By Proposit-
ion 1 there exist mutually different Γ(/cj + l), ...,Γ(kι + ί) such that

k , ie{fcz + l, ...,fcz + 1} (4)

for suitable /f G N*, where xt denotes a minimal representative for Γ(ί) and x\ι is the
/Γth iterate. By Proposition 3 we have

m-(xϊ) = iϊ(i). (5)

So combining (4) and (5) gives the desired result.
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Moreover we have

463

Theorem 4. Given SEM" there exists a constant c = c(S)>0 such that the following
holds:

If Γ E ̂ ~(S) is k-essential then

12 (6)

Proof We have for some ZeN*,

In the formula

we must have

Hence

lΐΓ-i[

iιr= Σ M
wι= 1

21V(Γ)
<2nl

21V(Γ) V(Γ)'

The set Ω: =G\{Floquet multipliers} can be written as

(7)

(8)

(9)

(10)

(11)

where the Uλ are open intervals on S1 = G which are mutually disjoint. Moreover
# {λ} S In — 1. On Uλj takes the valuejλ. Denote by # λ the number of w e Uλ such
that wι = ί. We have the estimate

where [ ] denotes the integer part and aλ is the length of Uλ, where we put the
uniform measure of total measure one on G. Since

we find for a fixed λ

ljλaλ-[laλ-

This implies

Using (13) we obtain

we UΛ
wι= 1

•haλ- Σ Λw);
WφΨ
wι=l

(13)

(14)
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where cx is independent of Γ and only depending on S e ffl (actually only on dimS).
So we conclude from (14) and (7),

We have by (9)

liτ-ΐτ

21V(Γ) = 9 ι r

wι= 1

Combining (15) and (16) gives

lΐΓ-iι

21V(Γ)

Equations (7) and (17) together yield for a suitable constant, c2 = c2{S)>ΰ,

21V(Γ) I I

(15)

(16)

(17)

(18)

Now the sequence {k\clk\ | /CGN*} is bounded by some constant c3 = c3(*S)>0 by
Theorem 1 (i). So (18) and (10) imply for some constant c 4 = c4(iS)>0,

21V{Γ)

1

21V(Γ)
< c - l - . (19)

Moreover by (7)

ΊV(Γ)'

Therefore we have for some constant c5 = c5(S)>0,

\nn- = 21V(Γ)

y(Π-
i'r

21V(Γ)

i'r

21V(Γ)

+ c5\3k\.
21V(Γ)

Equations (19) and (20) combined give the two estimates:

\y(Γ) - \Sk\k\ ύc6(j+ \ctk\), \y(Π - \2k\k\ S

for some constant c 6 = c6(,S)>0. From (21) we deduce using (7) again

1

υ(Γ)

(20)

(21)

(22)

Since | ί t | ^ | inL4 s (M s ) | , F(Γ)~1 <;|inL4s(Ms)| we find for a suitable constant
c = c(S)>0 finally Λ n

\y(Γ)-\dk\k\2^c2\dk\, (23)

which implies the desired result. •
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IV.2. Proof of the Main Theorem

We have already proved Theorem 1 (i). Moreover we know by Lemma 25 that

infσ(S) = lim mϊk\ctk\, supσ(S) = lim sup/c|4l (1)

Since we have already seen after the statement of Theorem 2 that Theorem 1 (ii) is a
corollary of Theorem 2, we have only to prove Theorem 2. Moreover
Theorem 2(i) has been already proved in III.l.

Proof of Theorem 2 (ii). Let t e σ(S). We shall construct a monotonic sequence
such that

Then picking by Theorem 3 a /cΓessential T(kί) e έF(S), we have by Theorem 4

Since dkι-^0 as /->oo and |<?fcJ/Cf-»i5 we infer

yiΓikβ-ϊt as /-*oo.

If σ(S) = {I} we have by definition

\clk\k-*I as fe-^oo,

and are done. So assume

infσ(iS)<supσ(5().

Constructing (kt) inductively assume kt has been constructed such that

We shall now construct kι + ί such that

We find fc* > fez such that

* / + 1 *

Using the monotonicity of (<?k) we find for α e N ,

Since there exists α0 ^ 0 such that
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we see that the balls

( )WJ) o
l+l

cover σ(S). Hence we find kι + 1e {fc*,...,&* + α0} with the desired property. •

Proof of Theorem 2 (iii). We have to show that for Se ffl the following inequality
holds:

X yiry^l Vε>0.
Γetr(S),7(Γ)eσ£.(S)

Fix ε> 0. By Theorem 3 there exists a sequence (Γ(k)) C ̂ ~(S) such that

Γ(k) is fc-essential, (2)

and

If ctk= ...=ctk+j for some j ^ 1
then Γ(k), ...,Γ(k+j) are mutually different. (3)

By Theorem 4 we find k0 G N * such that for every /c^k0,

|y(Γ(fc))-|4|fc|<8. (4)

Denote by KΓ(d) the number

C r (d)=# l e N *
1

We have

By construction, for k ̂  k0,

k-kos Σ ^r(4)= Σ
(Γ) (S) (Γ)

Dividing (7) by k, we obtain

k y(r)6σε(S) F(Γ) k\dk\

Take a monotonic sequence (fcJcN* such that

\dkι\k^supσ(S)-δ

for a given (5 e (0, sup σ(S)). Then

(5)

. (7)
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Taking the limit /->oo gives

Since δ has been arbitrary

y V(Γ)1

δ

Σ
nΠeσε(S)

If y(Γ)eσe(S), we have γ(Γ) ̂  sup σ(S) + e. Hence

1< Y ( 9 )

ε)
 l j

Since y(Γ)^infcr(S) — £, we can write for some; δε>0 with Iδ^c^ for some
constant cι>0 independent of ε,

Using this in (9) gives

Therefore

1 1

" ̂  L
 = L 7(n' ίl0)

Now let 0<εχ<ε. Then

nΓ)eσEί(S) γ(Πeσε(S)

Since εx >0 was arbitrary and δEί-+0 as εj-^O, we find

γ(Γ)eσε(S)

completing the proof of Theorem 2 (iii). •
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