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Abstract. A new approach to gauge fields on a discrete space-time is proposed,
in which the fundamental object is a discrete version of a principal fibre bundle.
If the bundle is twisted, the gauge fields are topologically non-trivial
automatically.

1. Introduction

For both computational and conceptual purposes it is very often convenient to
formulate physical theories on a space or space-time lattice. A lattice discretizes
space but preserves some of its topological structure through the provision of links
between neighbours of the lattice. A smooth curve is approximated not by an
arbitrary set of lattice points but by points joined by these links and this allows one
to determine, for example, whether a closed loop in a 3-dimensional lattice is
knotted or not. By a lattice, one usually means an infinite set of points in lRn

generated by a discrete translation group. We shall actually be interested in
compact, spherical spaces and shall use the word lattice to mean a finite set of
points on the sphere generated by a discrete subgroup of the rotation group.

In this paper, we propose a new way to consider lattice gauge fields. Existing
treatments are not really satisfactory because the topological properties of
continuum gauge fields are easily lost in the discretization of space. This leads to
difficulties with fermions on the lattice; it seems impossible to incorporate chiral
fermions, and the anomalies of the continuum theory disappear.

Luscher [1] has proposed a definition of the topological charge of a lattice
gauge field in four dimensions, which has been developed and implemented
numerically by Woit [2], Phillips and Stone [3], Teper [4] and others. A
characteristic feature of Lϋscher's idea is that, locally, in a suitable gauge, the
group elements on the links of the lattice (Wilson link variables) which define the
lattice gauge field are close to the identity. However, there are difficulties. The
definition fails for some exceptional configurations, and it is algebraically rather
complicated. Also, the underlying fibre bundle is not fundamental in Lύscher's
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scheme, being instead pieced together from locally trivial bundles. Nevertheless,
we shall see that our proposal has something in common with Lύscher's.

It is well known by now that topologically non-trivial gauge fields are best
discussed as connections on a principal fibre bundle [5]. The base space represents
space or space-time and each fibre is a copy of the gauge group. The bundle picture
is not just more natural, but it accommodates symmetries more easily. The bundle
can have a bigger symmetry group than simply the product of the gauge group and
the symmetry group of the base space.

Our new approach to lattice gauge fields consists in taking a discrete total
space for the bundle, having a finite number of points, The gauge group is a discrete
group acting on these points. The fibres are the orbits of this group, and the base
space is the quotient of the bundle by the group action. There is therefore one point
in the base space for each fibre in the bundle. The bundle need not have a simple
product structure. Discrete gauge groups have appeared before in lattice gauge
theory, especially in computational work, but only in the context of a trivial
bundle.

We suppose that the bundle comes equipped with links connecting neighbour-
ing points, and that under the action of the gauge group, links are mapped into
links. We shall define which points in the bundle are neighbours by making use of a
standard Riemannian metric on the space which the discrete bundle is approx-
imating. Two fibres are defined to be adjacent, and the corresponding base points
are linked, if and only if some pair of points in these fibres are neighbours in the
bundle. The base space is therefore a lattice in the usual way, but its link structure is
determined by that of the bundle.

In a smooth bundle, a connection is a rule for lifting an infinitesimal step in the
base space to an infinitesimal step in the bundle between points on the
corresponding fibres. On a discrete bundle a connection is defined analogously to
be a rule for lifting a link in the base to a link in the bundle.

We shall concentrate in this paper on two particularly nice examples of discrete
bundles, which arise by making a discretization of the familiar smooth Hopf
bundles [5, 6]:

S 3 SΊ

Both are topologically non-trivial, i.e. S3 φ S2 x Sι and SΊ φ S4 x S3. The first has a
connection which is equivalent to the magnetic field through a 2-sphere which
encloses a Dirac monopole; the second has a connection which is equivalent to an
instanton. These bundles are therefore familiar to physicists.

A fundamental consequence of the fact that the Hopf bundles are twisted is that
there is no flat connection on them. Our discrete versions of these bundles will have
the same property. The holonomies (Wilson loops) around elementary triangles in
the base space cannot all be unity.

A more profound relationship between connections and the" topology of
smooth bundles is through the Chern numbers [5], These integers are the integrals
of the Chern forms, which are closed differential forms of even degree on the base
space, constructed from the curvature 2-form F. Each Chern number is the same
for all connections and depends only on the topology of the bundle and its
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fibration. If any Chern number is non-zero, the bundle is twisted. On the 1/(1) Hopf

bundle, the first Chern number is 1. It is the integral of the 2-form —- F over S2 and
2π

is physically identified with twice the magnetic charge inside the sphere. On the
SI/(2) Hopf bundle the second Chern number is 1. It is the integral of the 4-form

Ί(F ΛF) over S4, and is identified with the instanton number.
8π

On the discrete version of the U(l) Hopf bundle, we have found the analogue of
the first Chern form. Its integral is 1 for all connections. On the discrete version of
the SI/(2) bundle, however, we have not found an appropriate analogue of the
second Chern form, although one may exist. Despite this difficulty, we stress that
our bundle is certainly twisted, and believe that with sufficient ingenuity, the
analogue of Tr(F Λ F) can be found.

Section 2 is a review of the smooth Hopf bundles. In Sect. 3 we describe a
discrete version of the U(ί) Hopf bundle with its connections, and in Sect. 4 a
discrete version of the SU(2) Hopf bundle with its connections. We hope that the
methods introduced here can be extended to a much larger class of discrete fibre
bundles, so as to be useful in the numerical studies of quantized lattice gauge
theories. We also think it will be interesting to explore the implications of discrete
twisted bundles for fermions interacting with gauge fields.

2. The Hopf Bundles [6, Sect. 20]

The total space of the (7(1) Hopf bundle is the unit 3-sphere S3. This is identified
with the set of ordered pairs of complex numbers (zuz2) subject to the constraint

zιzι+z2z2 = l. (2.1)

Multiplication by complex numbers of unit magnitude, according to the rule

( Z l , z 2 ) - ^ ( z l t > " , z 2 e / i l ) (2.2)

preserves this constraint, and gives an action of 1/(1) on S3. There are no fixed
points if e I λ φ l , so S3 is fibred as a bundle of circles. The complex number
Z = zγz2

 1 is constant on each fibre and specifies the fibre uniquely. Z is assigned
the value oo on the fibre consisting of the points (eιa, 0). Z therefore takes any value
in the extended complex plane, which is topologically S2, the Riemann sphere.

The Hopf bundle is twisted and has no global section. On any circle
\Z\ = R(0 < R < oo), traversed once anti-clockwise, argZ increases by 2π. Therefore,
on a smooth section Z-*(zγ{Z\ z2(Z% argzj increases by 2π(n+l) and argz2

increases by 2ππ, for some integer n. If the section can be extended to the fibre
Z = 0, it will pass through a point (0, eιa) for some α. By continuity, z2 remains close
to eia on circles with R small, so n must be zero. A similar argument shows that if the
section can be extended to the fibre Z — oo, then n + 1 is zero, n cannot be both 0
and — 1, so no global sections exist. Two local sections, which together cover the
whole base space, and which overlap on the equator of the Riemann sphere, \Z\ = 1,
certainly can be found. The transition between them defines a map from the
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equator to the group 1/(1), i. e. a map from a circle to a circle. This map has winding
number 1.

The SU(2) Hopf bundle has a very similar structure with complex numbers
replaced by quaternions. The total space is now the 7-sphere SΊ, realized as
ordered pairs of quaternions (qί,q2) subject to the constraint

4l̂ l+<Z2<SΪ2 = l . ( 2 3 )

The unit quaternions {q:qq = l} form the group SU(2). They act by right
multiplication on pairs of quaternions

{ΆiΛi)-^{<l\<lΛ2<l) ( 2 4 )

preserving the constraint (2.3), and again there are no fixed points if g φ l . S7 is
therefore a principal SU(2) bundle. The quaternion Q = q\q2

l is invariant on each
fibre, since

Mfef^ίA^ ( 2 5 )

and Q uniquely specifies the fibre. Q can be any quaternion including oo. Since the
one-point compactification of R 4 is S4, the base space of the bundle is S4. The base
may be covered by two local sections which overlap on the equatorial S3, i.e. where
161 = 1. The transition between them is a map from S3 to SU(2), i.e. a map from S3

to iS3. This map has degree 1.

3. Connections on a Discrete U(ί) Hopf Bundle

We take a 24-point discretization of S3 as the total space of the bundle. The points
have Cartesian coordinates

(±1,0,0,0), (0, ±1,0,0), (0,0, ±1,0),

(0,0,0, ±1), | ( ± 1 , ± 1 , ± 1 , ± 1 ) , (3.1)

and are the vertices of a regular self-dual poly tope in 1R4 [7]. Presented as pairs of
complex numbers (z1?z2), these points are

(±1,0), (±i,0), ( 0 , ± l ) , (0,±f), i ( ± l ± ί , ± l ± i ) . (3-2)

The gauge group is the Έ4 subgroup of 1/(1), which acts as in (2.2),

9
(zlg,z2g)9 g e { U - l , - i } . (3.3)

There are six orbits of four points each, which are the fibres of the bundle. The base
space therefore has six points. The fibre invariant Z = zίz2

ί takes the values
{oo, ± 1 , ±i,0}. We use Z to denote both the fibre and the corresponding base
point, and as a subscript to denote on which fibre a point in the bundle lies. As
points on the Riemann sphere the six base points are the vertices of an octahedron,
the opposing pairs of vertices being (1, —1), (ί, —ί) and (oo,0).
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Each point in the bundle has eight nearest neighbours at unit separation. The
neighbours of (1,0)^, for example, are

i ( l + U + 0 i , i ( l + U - 0 i , ί ( l + i , - l - O - i , i ( l + i , - l + 0-i,

i ( i - U - 0 i , i ( i - i , - i - ί ) i , i ( i - ί , - l + O-i, i ( i - U + O-f

There are two neighbours on each of the four fibres 1, /, — 1, — j, but none on the
fibre 0. The pair of neighbours on the same fibre are always related by
multiplication by + i. Tn general, a point has no neighbours on its own fibre or on
the one opposite, but two neighbours on each of the remaining fibres. This
establishes that the links in the base space are all the usual edges of the octahedron.

Let us now define what we mean by a section of this discrete bundle. It is the
analogue of a smooth section in the usual Hopf bundle. A set of points in the
bundle, with no more than one from each fibre, is called a section if it is a set of
mutual neighbours, that is, if each pair of points on adjacent fibres are neighbours
in the bundle. A global section of six points does not exist, but one may find local
sections which omit one fibre. For example, there is a local section omitting the
fibre 0:

(1,0)*,, i ( l + ΐ , l + 0i> i ( l + U - 0 i , i ( l + i , - l - O - i ,

Ki + i - i + O-i, (3.5)

but no way of extending this to a global section. The absence of a global section
may be verified as follows. Suppose a section contains the points (a, 0)^ and (0, b)0,
where a and b are in the set {1, i, — 1, — i}. The four points on the equatorial fibres
which are neighbours of both (#,0)^ and (0, b)0 are \{a±ia, b±ib). Two of these
points lie on the fibre ab ~λ, one on lab ~x, one on — iab ~ι, but none on — ab ~ι. The
section cannot therefore be extended to all fibres.

A local section on the fibres 1, i, — 1, — i, and 0 is

K l - U + O - i , (0,l)o (3.6)

The sections (3.5) and (3.6) overlap on the equatorial fibres where they are related
by transition elements of the gauge group as follows:

i θ + i, — l — ί)-1 -—^i(— l — i, l + 0-1,

± ( 1 + 1 , - 1 + 0 - , - ^ ( l - U + O - e (3-7)

The map from the four-point equator to the gauge group is the identity map.
In the usual Hopf bundle the corresponding map from S1 to S1 has winding

number 1 and is the identity map for suitably chosen local sections. A map from a
four-point discretization of the circle to itself has a well-defined winding number 1,
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0 or —1, provided that the images of two adjacent points are always either
identical or adjacent. Overlapping local sections of our discrete bundle give rise to
a map of this sort. This is because the local sections both consist of mutual
neighbours, so the transition elements of the gauge group can only differ by 1, i or
— i, and not by — 1, on adjacent fibres. The discrete identity map has winding
number 1, and this is a measure of the non-triviality of our discrete bundle.

We now define a connection. A connection is an equivariant rule for lifting
links between neighbours in the base space to links in the bundle. Consider
neighbours in the base space Z and Z, and the fibres over them. A point p in the
fibre Z has two neighbours px and p2 in the fibre Z. The step from Z to Z in the base
may be lifted to a step from p to p1 or from p to p2. The connection specifies which
step is to be made. The starting point on the fibre Z need not be p\ it could be a
different point pg, where g is an element of the gauge group. Equivariance means
that if the connection specified a step from p to pt then the step from pg to p1g,
and similarly for the other possibility. The connection is thus invariant under the
action of the gauge group on the bundle.

As an example, consider the connections on the link oo-»l in the base. The
eight points on the fibres oo and 1 are shown below. One connection is indicated by
the dashed lines, the other by the dotted lines.

(3.8)

The connection on the step from Z to Z simply reverses the effect of the step
from Z to Z. Thus a step in the base from Z to Z and back is lifted to a step from p to
p1 and back, or from p to p2 and back. There are 12 links in the base space of our
bundle, since an octahedron has 12 edges. On each there are two choices for the
connection, so there are 212 connections altogether.

A continuous path of several links in the base may be lifted to the bundle using
a connection. One must again specify the starting point of the lift of the first
link, but each subsequent link in the bundle starts where the previous one ended.
In this way one gets a continuous path in the bundle. A closed loop in the
base is lifted to a path in the bundle whose starting point and finishing point are on
the same fibre, but the lifted path need not be closed. The finishing point is related
to the starting point by an element of the gauge group which is called the
holonomy on the loop. Because the gauge group is abelian, and because the
connection is equivariant, the holonomy depends only on the loop. It doesn't
depend on where we say it starts and finishes, nor on the point in the bundle to
which the starting point is lifted.

Holonomy measures the curvature of the connection; the connection is flat if
the holonomy on all closed loops is the identity element of the gauge group. If a flat
connection is used to lift all possible paths starting at Z in the base to the paths
starting at p (on the fibre Z) in the bundle, then a global section of the bundle
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through p is generated. Conversely, a global section defines a flat connection. Since
our bundle has no global section, it cannot in fact have any flat connection.

Let us look at the possible holonomies on an elementary triangle in the base,
for example, the one with vertices oo, 1, and i. There are eight different connections
on this triangle. Suppose we lift the path oo—>1 -»/->oo to the bundle, starting at
(1,0)^. The possible paths in the bundle can be determined from the diagram
below:

"•'(-/, 0L

Three of the connections lead to (1,0)^ and produce a closed loop in the bundle,
three lead toθ',0)^, one to (—1,0)^ and one to( — ί, 0)^. The holonomy is 1 or /in
three ways, and — 1 or — / in one way. There is clearly an asymmetry. We can
unambiguously define the phases of the holonomies — /, 1, /, and — 1 to be — \π, 0,
jπ, and π, respectively. (Choosing the phase of — 1 to be — π is not reasonable, as
the connection giving holonomy — 1 differs from the connections giving holonomy
/ on only one link, but differs from the connection giving holonomy — / on all three
links.) This phase may be identified with the magnetic flux through the triangle.
The average magnetic flux for all eight connections is \π. This is not a special
property of the triangle considered; the average flux is the same through any
triangle oriented the same way, and is a consequence of the twist of the bundle.

The octahedron has eight triangular faces, and the average magnetic flux,
summed over these faces, is 2π. But more is true. For any particular connection, the
total flux is 2π. This is the discrete analogue of the result that the smooth Hopf
bundle's first Chern number is 1. To verify that

—- X magnetic flux = 1 (3.10)
2 π faces

on the discrete bundle, one needs to first check the result for one particular
connection. This is easily done. Any other connection can be obtained from this
one by making changes on one link at a time. But a change on one link only
changes the holonomy on the two triangles whose boundary contains that link. On
one triangle the flux increases by \π, and on the other, where the link has the
opposite orientation, it decreases by \π. The sum of the fluxes on all triangles is
unaltered. Equation (3.10) is therefore true for all connections.

Our description of a connection can be related to Wilson's description of a
lattice gauge field, where an element of the gauge group is associated to each link in
the base space and holonomies are given by products of these group elements [8],
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by using local sections. This is completely analogous to the usual situation in a
smooth fibre bundle. There, the connection becomes a conventional gauge
potential only relative to a smooth local section of the bundle, and on a twisted
bundle the gauge potential cannot be globally defined.

Suppose we are given a local section which contains points p and p on adjacent
fibres Z and Z. There are two points on the fibre Z which are neighbours of p in the
bundle. One is p, since a section consists of mutual neighbours; the other is either pi
or p( — ί) depending on the choice of section. If the connection specifies that the link
Z-+Z is lifted to the link p-*p, then it is represented on the link Z->Z by the group
element 1. If the connection specifies a lift to the link p-+pi [or p-+p( — z)]5 then it is
represented by i [or — /]. As in Lϋscher's prescription for lattice gauge fields, these
group elements are near 1, in that —1 never occurs. However, there is an
asymmetry here arising from the twist of the bundle; only one of the two group
elements i or — i is allowed.

Transforming from one local section to another on the same fibres may be
regarded as a gauge transformation, but unlike in conventional lattice gauge
theory, gauge transformations using arbitrary elements of the gauge group are not
permitted. The gauge transformation must take neighbours to neighbours in the
bundle. Otherwise the residual continuity that exists on the discrete bundle would
be destroyed.

To describe the connection completely in terms of group elements on the links,
we need not to use two local sections which cover the base space, for example, the
sections (3.5) and (3.6). On a link covered by both sections, the group elements
relative to the two sections differ, and are related by the transition elements given
in (3.7). If the group element on the link Z->Z relative to the first section is g l 5

and relative to the second section is g2, and if the transition elements from the
first to the second section are g(Z) on fibre Z and g(Z) on fibre Z, then

g2 = g(ZΓ1g1g(Z). (3.11)

As an example of a connection, suppose that relative to the section (3.5) on the
hemisphere containing oo, all group elements are 1. The holonomies on the four
triangles meeting at oo are all 1, and there is no magnetic flux. Relative to section
(3.6) on the hemisphere containing 0, suppose that the group elements are 1 on all
links which end at 0; on the remaining equatorial links, which are common to
both hemispheres, the group elements are determined by formula (3.11) to be L
The holonomy is therefore i on all four triangles in the hemisphere containing 0,
and the magnetic fluxes are \π. The total magnetic flux is 2π.

4. Connections on a Discrete SU(2) Hopf Bundle

This is in many ways similar to the discrete U(l) Hopf bundle but with complex
numbers replaced by quaternions. In the usual SU(2) Hopf bundle the total space
is the 7-sphere, the base space is the 4-sphere, and the gauge group is S(7(2). As a
discrete approximation to SΊ we shall take the 240 points which are the vertices of
Gosset's semi-regular polytope in R 8 [7, 9]. These points are nowadays more
familiar as the roots of E8. The discrete gauge group is a 24-element non-abelian
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subgroup of SU(2). As a manifold, SU(2) is the 3-sphere, and the 24 points in the
subgroup are precisely the points on S3 that formed the total space of the discrete
U(l) Hopf bundle. This group acts on the 240 points on SΊ through quaternion
multiplication, and there are 10 orbits. The base space of our bundle is therefore a
10-point discretization of S4.

We present the 240 points on SΊ relative to Cartesian unit vectors
{et:i=i, ...,8} first. They are

(a) ±eu ±e2, ±e3, ±e4, ^{±ei ±e2±e3±e4),

(b) ±e5, ±e6, ±eΊ, ±e8,^{±e5±e6±eΊ±e8),

(c) ${±ea±eb±ec±ed),

where either

( c j (α,ί>) = (l,2) or (3,4), and (c,d) = (5,6) or (7,8)

or

(c2) (α,b) = (l,3) or (2,4), and (c,d) = {5,Ί) or (6,8)

or

(c3) (a,b) = (l,4) or (2,3), and (c5d) = (5,8) or (6,7). (4.1)

There are 24 points of type (a) and 24 of type (b) and 64 each of types (cx), (c2), and
(c3). This is how the roots of £ 8 split relative to the subgroup Spin(8) x Spin(8)/Z2

x Z 2 .
8

A point ]Γ ocmem in IR8 can be identified with a pair of quaternions (qu q2), where
1

Qi =ai Jra2i
Jr%3j + a4k and g2 = oc5 + α6ί + α7j + α8/c. If the point is on the unit

7-sphere, then qίq1 +q2q2 = 1. From now on we identify the 240 points (4.1) with
pairs of quaternions in this way. Right multiplication by a unit quaternion
permutes the 240 points among themselves if it belongs to the 24-element
subgroup of SU(2),

H = {±l,±i,±j,±k,U±l±i±J±k)}. (4.2)

H is the Hurwitz group of unit "integer" quaternions [10]. H acts without fixed
points, so there are ten orbits of 24 points. Each orbit is a fibre of our bundle. One
fibre consists of the points of type (a), another consists of the points of type (b). The
remaining eight fibres each contain eight points of type (cj , eight of type (c2), and
eight of type (c3).

The fibre invariant Q = qγq2

 1 has one of the ten values {oo, + 1 , +ί, + j , ±fc,0},
which can be thought of as points on S4. These latter points form the base space of
our bundle. They are the vertices of a polytope in R 5 analogous to an octahedron
in R 3 . Each point is adjacent to eight others, only the point opposite not being
adjacent. The opposite pairs are (oo, 0), (1, — 1), (ί, — i), (/, —/), and (/c, — k). We shall
refer to the fibres { ± 1 , ±i, ±j, ±k} as the equatorial fibres.
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Examples of points on each of the ten fibres are:

(l,0L, (0,1)0,

i(i + U + /)i, i(—i—ϊ, i + O-i,

i ( - l + i , l + 0 , , K l - U + 0 - i , (4-3)

where the final subscript indicates the fibre invariant Q.
Every point in the bundle is linked to 56 nearest neighbours. For example, the

nearest neighbours of (1,0)^ are

i(l±ί±j±/c,0),

i(l+i,±l±i), i(l±i,±;±fc),

i(l±Λ±l±j), i(l±Λ±ί±fc),
i(i±fc, ±i±fc), i(i±fe,±i±j)

The first eight of these points are on the fibre oo the rest are on the equatorial
fibres, with six points on each. None are on the fibre 0. This is the general pattern.
Each point has eight neighbours on the same fibre, none on the opposite one, and
six on each of the eight adjoining fibres. All pairs of points in the base space are
therefore linked, except opposite pairs.

A connection is defined, as before, as an equivariant rule for lifting steps
between neighbours in the base to steps between neighbours in the bundle. There
are 40 links connecting neighbours in the base, and six choices for the connection
on a link, so there are 6 4 0 connections altogether. The existence of a flat connection
would, as before, allow one to construct a global section of mutual neighbours.

We show next that there is no global section of the bundle, and hence no flat
connection. Without loss of generality we can consider sections that pass through
(0, l) 0, because the gauge group relates sections through other points on the fibre 0
to these. Consider a section that also passes through a point on the fibre oo. There
are two cases. The section may pass through (q,0)^, where q = ± 1, ±i, ±j or + k.
The common neighbours of (q.0)^ and (0, l ) 0 are the 12 points \{q{\ ±r), 1 +r),
where r= ±ί , ±j or + k, and they are on the fibres Q = q(ί ±r)(l -f-r)^1. There are
therefore six common neighbours on the fibre q, one each on the fibres + qi, ± qj,
and +qk, but none on the fibre —q. The section cannot be extended to all ten
fibres. On the other hand, the section may pass through \{OL1 + a2i + α 3; + α4fc, 0)^,
where α1? α2, α3, and α4 are 1 or — 1. One can verify that this point and (0, l ) 0 also
have 12 common neighbours on the equatorial fibres, but now there are three on
each of the fibres α l 5 a2ί, ocj, and α4fc. For example, the three common neighbours
on the fibre ocί are

^(oc1 +α 2 ϊ , 1 +α 1 α 2 i ) , i(cq +013J, 1 +α 1 α 3 j ) , ^(ocι + (x4k, 1 +α1α4fe). (4.5)

Again the section cannot be extended to all fibres. There is therefore no global
section.
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An example of a local section which excludes only the fibre 0 is the set of nine
points

(1,0), i ( l + i , ± l + ϊ), i ( l + ΐ , ± j ± f c ) . (4.6)

A local section which excludes only the fibre oo is

(0,1), i{±l±i,l+ί), i ( ± ; ± f c , l + i ) . (4-7)

Right multiplication of ^(1 + i,q) by q~ι{\ + ί) gives ^((1 + ϊ)q~x{\ + i\ 1 + i\ and
effects the transition between the sections (4.6) and (4.7) where they overlap.
j(ί+i,q) is on the fibre Q = (l+i)q~\ and q~~ί(ί+i) = (l+i)~ιQ(l+i% so the
transition function between the sections is Q^>(ί+i)~1Q(l+i). This is not the
identity map but it is a 1 — 1 map from the set { ± 1, ±i, ±j, ± k} to itself which
may be regarded as a discrete map of degree 1, analogous to the map of degree 1
that occurs in the smooth SU(2) Hopf bundle.

The holonomies on triangles may be studied in the same way as in the discrete
C/(l) Hopf bundle. They are not as invariant as before. The holonomy is
conjugated by an element of the gauge group when the starting point in the bundle
is changed. We have, unfortunately, not been able to identify the discrete analogue
of the second Chern form. It may be possible to define it in terms of the holonomies
on the triangular faces of the 32 elementary 4-dimensional simplexes which make
up the base space, or possibly in terms of holonomies on more complicated loops.
The second Chern number, which one expects to be 1 for all connections, would be
obtained by summing over these simplexes. Presumably, as in the smooth SU(2)
Hopf bundle, it would be related to the map between overlapping local sections
described above.

Acknowledgement. I would like to thank Ron Horgan for encouraging me to look once more at the
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