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Correlations of Peaks of Gaussian Random Fields*
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Abstract. The high peaks of a Gaussian random field are studied. Asymptotic
expansions, appropriate for high peak thresholds and large spatial separations,
are developed for the TV-point correlation functions of the number density of
high peaks, in terms of the two-point correlation of the underlying Gaussian
field. Similar expressions are derived for the correlations of points, not
necessarily the positions of peaks, where the field exceeds a high threshold.

I. Introduction

The mathematical modeling of many physical processes often proceeds via a
statistical approach. The behavior of the random field of interest, ε(;c ), is described
by a probability distribution P[ε], or equivalently by the moments of the probability
distribution (we assume here that all the moments exist),

<*(*!). . . ε(xn)> = f [deleCxJ. . . ε(xπ)P[ε]. (1)

In Eq. (1) the 3cf are points in a D-dimensional Euclidean space RD, and the
integration is over the value of ε at each point in UD. Some applications have a
random variable which depends only on time, in which case D = 1. This occurs, for
example, in the theory of noise in electrical networks [1]. Other applications may
deal with a field ε which takes values that depend on the location in "physical" space,
in which case D = 3. One such example is the theory of the large scale structure of the
universe, where ε is the mass density fluctuation field [2,3].

The most common probability distribution encountered in practice is a
Gaussian distribution, which has

(2)

where Z is a constant chosen so that P [ε] is normalized to unity and ξ ~ 1 ( | x" — j? | ) is
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the inverse of the two-point correlation,

ξ(|x-7|), (3a)

--z\) = δD(x-τ). (3b)

We assume homogeneity and isotropy in the D-dimensional Euclidean space so that
ξ is only a function of 1 3c — ~y \ . For a Gaussian distribution all the connected TV-point
correlations of ε vanish for N > 2.

Often one is interested not in typical values of ε but only in the local maxima of
ε( c) that are above some high threshold. For instance, in the theory of biased galaxy
formation, high peaks of the mass density field1 are taken as the sites where bright
galaxies or rich clusters of galaxies form. Even if the underlying field ε(x) is Gaussian
distributed, the peaks of this field that are above a high threshold are described by a
number density nm(x) that is not a Gaussian random variable. In this paper we
develop a systematic expansion for the Λf-point correlations of nm(x) at large
thresholds and large distances (assuming that ξ(\~x —~y\)/ξ(0) goes to zero at large
separations and that ξ and its first four derivatives exist).

Our presentation is organized as follows. In Sect. II, we construct formulae that
generate, by differentiation, the asymptotic expansion2 in high threshold, T, for the

correlation of points x f such that ε^ ) ̂  JTξ(Q) (Eqs. (9) and (12)). (Note that T is
dimensionless). Examples are given of the explicit results to 0(T~2) (Eq. (13)) and
for the leading terms in joint expansions in T"1 and ξ(x)/ξ(0) (presumed small at
large separations) (Eqs. (14, 15)). Peaks above threshold require the further cons-
traints that Vε vanish at the positions of the peaks and that VVε have negative
eigenvalues there. The former constraint is straightforward to implement while the
latter is quite complex. We defer until Sect. IV an explicit estimate of the error made
by ignoring the restriction to negative eigenvalues of V Vε for large T and simply
proceed in Sect. Ill on the assumption that essentially all relevant extrema above a
large T are indeed peaks. Since the formulae become cumbersome, we exhibit
explicitly only terms down to relative order T~2 and ξ(x)/ξ(0). Equations (55) and
(57) are our principal results. In Sect. IV, we give an error estimate for the preceding
calculations. We find that our approximation is valid up to corrections of relative
order exp ( — Tξ2(G)/ξ2(x))/exp ( — T) and exp ( — T), where x is a typical separation.
For the density of peaks, we find that peaks far outnumber local minima and saddle
points, by a factor of order exp (T). The issues for correlations are considerably more
subtle. Since minima above threshold, rare as they may be, are strongly correlated
with nearby maxima, simple results are obtained only for large separations in the
high T expansion.

II. Large Values of a Gaussian Random Field

The probability P N ( ~ x ί , . . . 9 ~ x N ) that the Gaussian random field ε(3c) will simulta-
neously exceed some threshold ί = [Tξ(0)] 1/2 at the points ~xh i = 1, . . . , N is given by

1 Filtered so as to smooth out very short wavelength fluctuations
2 Throughout this paper the expansions are presumed, though not proven, to be asymptotic
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[4]

w(x l 9 . . . , XN) = J dk, . . . Π 'Wo
i f i = l

With P[ε] given by Eq. (2) the functional integration gives [4]

jCn-ι/2 oo
;/2 J
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(4)

(5)

where ί =(ί, £ , . . . , ί), fe = ( f e 1 , . . . , f e n ) and the symmetric NxN matrix M has
components Mi} = ξ(\~Xi — 3cj|). It is convenient to change integration variables

to 1 = T(K/t - T), where T = (1,..., 1), and to introduce the matrix My = M0 /£(0).
Then Eq. (5) becomes

/ 1 \
•JdXexp ---1TM-11-TΓM-U . (6)

o V 2T /

To derive the asymptotic expansion of Eq. (6) for large T, we assume that

TX EE My^O. (7)

This condition certainly holds at large separations \~Xi — ~xj9 where ^(1^
— ~Xj\)/ξ(0) « 1. The ~1 integration can then be rewritten (using the convention that
repeated indices are summed) as

(8)

Hence

i

(9)

For large thresholds, the term exp (- (l/2T)Vj M 1 Vj) can be expanded in a power
series of inverse powers of T yielding the asymptotic expansion. In the case N = 1 the
above becomes

(10)

Equation (10) does not converge for any value of T, as is expected for an asymptotic
expansion. The JV-point correlations ξN(xlί..., ~xN\ of places where ε is above the
threshold Γ, are related to the joint probabilities PN by
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Equations (9) and (10) then imply3

. (12)
k

The power series expansion of the terms in the brace brackets of Eq. (12) yields
the asymptotic expansion for the correlation function ξ N ( x ί 9 . . . 9 ~ x N ) . To order T~2

this expansion is

ΛΓ „ My ' , , „ M,7 'M,7 ' 1 „ M;τ
 1M

'

r4 0 ^ T2 T2

J I ^ i =f= k J i J k

r2 τ2 j ι-3r o 7'2

i ^ j i f f c J i j k ^ t f k f Z Ji

+ Σ + <wτ») ,,3,

where J^ = Σ MJ x. At large separations, where all the £(| ;cf — 3cj|)/ξ(0) are small, an
j

expansion in these quantities can also be made. From Eq. (13) we find that for the
two point function,

- T~1(3a + 8α2) + T-2(16α + 62α2) + O(T~\a3)}, (14)

where a = ξ(\~x1 — 3c2|)/£(0), and for the three point function

1 + ξ3(xl9x2,x3) = exp(Tμ - B)/(l - C + 2D))

• {(1 + 2A + 3B + |C) - T~ί(3A + 135 + 8C)

+ T~2(16A + 625 + 100C) + O ( T ~ 3

9 a f ) } , (15)

where A = ̂ ah B = a1a2 + a2a3 + a3aι, C = Σ a f , D = aia2a3, and a1 =
i i

ξ(x2 - ~x3)/ξ(0)9 etc. (In (14) and (15) one could expand the arguments of the expo-
nentials in powers of aί9 but the number of terms which are important depends on
how large Tat is.)

The leading contributions in (14) and (15) were previously derived in [4] where

3 An expansion for correlations of points where a Gaussian random field exceeds a high threshold was
derived in ref. [5] using a different technique
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the factorization property

1 + f 3(*ι, x2, x3) = (1 + f 2(*ι> *2))(1 + {2(*2, *3))(1 + £2(*3, *ι)) (16)

was noted. Equations (14) and (15) show that this no longer holds for higher orders
in at. However, (16) is still valid in higher orders of the 1/T expansion as long as only
leading order in a{ is kept at each order of 1/T, including the exponent. (Although
Eqs. (14) and (15) demonstrate this only to 0(T~2\ we conjecture that it is true to all
orders.) Since the error from the exponent is the neglect of terms of order (Ta2\
whereas in the non-exponential factor a term of order a/T is kept, this condition is
sensible when To1 « a/T, i.e., ξ(x)/ξ(0) « 1/T2. This is the regime in which
factorization should continue to hold, even for moderately large T.

III. High Peaks of a Gaussian Random Field

The number density of local maxima in the Gaussian random field ε(~x) that occur at
values of ε greater than the threshold t is given by

nm(x) = dm^δ(x - x;)<5(ε(x)-m), (17)
t

where the sum runs over all positions 3cf in UD at which ε(3ct ) is a local maximum. By
Taylor expanding Vε(x) near one of its local maxima, ~xί9 it can be shown that

(18)
i

In addition to the vanishing of Vε, local maxima are characterized by the constraint
that the symmetric D x D matrix with components ωab = VaVbε(x) have negative
eigenvalues. So the number density of local maxima is

00

nm(x)= f dmδ(Vε(x))δ(ε(x)-m)$dωδ(VVε(x)-ω)(- l^detω, (19)
t 2

where the region of integration 3) is over all negative definite ω. (Hence | det ω \ =
(-l^detω). This is a complicated submanifold of u(ί/2)D(D+1\ Note that
dω = Π dωab, where a,b=l,...,D.

a=b . . . . . _* _^
The probability density of finding N peaks in the field ε(x ) at locations ~ x ί 9 . . . 9 ~ x N

is

PN(x l s . . . , XN) = J [<fe]P[ε] ft nm(x{\ (20)
ί=l

where P[ε] is given by Eq. (2). The delta functions in nm can be written as integrals
over exponentials so that after completing the square, Eq. (20) becomes a functional
integral of the exponential of a quadratic form in ε. Performing the functional
integration gives

/ N

PN(x ,,..., XN) = ( Π
\ i = ι

exp(-i X k f Λ f k

B k » - i Σ k f N f ) . (21)
A,BJ,k A,j
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In Eq. (21) the ωj9 j =1... N9 are D x D symmetric matrices with components (cOj)ab

9

α, b = 1,...,D. The Nj are vectors with d= I -\-D +^D(D +1) components, Nf,
A = l,...,d. Explicitly

m, }1

D

Finally,

where

CO,

(22a)

(22b)

(23a)

-,α= 1,...,D; b ^a.

(23b)

For fixed subscripts (I.e. indices labeling the N points 'xί)~ki and Sf are ^-vectors and
Λjk is a d x d symmetric matrix. The appendix discusses the form of Λ in greater
detail.

Performing the k integrations gives

( N oo \ exnf — -NTΛ ~1N]
Π ί dmΛdωj(- I f d e t ω j ) ̂  det Λγ/2 (24)

In Eq. (24) ΪV is a Nd-vector with components Nf and Λ is a symmetric ΛΓd x Nd
matrix with components Λff. It proves convenient to decompose Λ into
submatrices corresponding to its upper case indices as follows

(25)

where, again, the (D + l)N components reflect the Vε = 0 and ε Ξ; t constraints and
the ^D(D + 1)N components reflect the negativity of We constraint. Decomposing
Λ ~x in an analogous fashion,

X Z

Zτ Y
(26)
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it is straightforward to show that

X = A-1+ZY~1ZT. (27)

Therefore the argument of the exponential in Eq. (24) is

NTΛ ~17} = NTA-^ +(ω- G)τY(ω - G), (28)
where _^

G=-Y~1ZTN. (29)

Here ω is the vector whose ^ND(D + 1) components are the independent
components of the TV symmetric D x D matrices ω^ . Similarly, N is a N(D + 1)-
dimensional vector whose components are Nf. Using A A ~ x = 1, one deduces that
Y~1ZT= -CTA~l. So G has components

G? = (Cτffi(A-lyί<N*9 (30)

where α, b = 1, . . . , D with b ^a;c,d= 1, . . . , D + 1 and j,k,l=\,...,N. Because
Nf = δd

1mh with the further definition

(I-1)y = μ-1)iy, (31)
our expression for the joint probability density that peaks are located at positions
~ x ί 9 . . . 9 ~ x N becomes

f dm
ι '

J^(-)βdetωΛexp(-i(ω-G)Γ7(ω-G)). (32)
^ /

The integration region ^ is quite complicated. However for high thresholds
extending the region ^ to [R^^DΦ+D induces only small errors. So we shall
approximate PN by P'N, where

f [ ] dm,
7=1 ί

•exp (- ±mτΆ- 1m)ΓN[_U(1/2)ND(D + 1}], (33)

i(ω-G)Γy(ω-G)) (34)

and jtfN = s$ x s# x x jtf. (G is a linear function of m—see Eq. (30).) Note that
P'N includes contributions from minima and saddle points, as well as maxima. The
error made by using P'N instead of PN will be estimated in the next section. Roughly
speaking, the relative errors are of order exp(— Tξ(Q)2/ξ(x)2)/exp(— T) and
exp(-T); see Eq. (104).

Expressing the determinants of ω7 as integrals over Grassmann variables η and ή

[6],

det a)j = J Π dηajdήaj exp (^(ω/^J) (35)
α = l
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allows us to easily perform the ω integrations. (Note that, in contrast with a and b,
the j indices are not summed over in the exponent.) This gives

f c = l \ f l = l

(36)
j k,l

The asymptotic series in T~ 1 for P'N is derived by expanding the exponential of the
quartic term in the Grassmann variables in a power series, performing the
Grassmann integrations, and then performing the πij integrations using the
technique introduced in Sect. II. The Grassmann integrations are performed using
the identity

X δPArp(jι}...Arj,ijm), (37)
PeSm

where Sm are the permutations of the m indices j1 . . Jm and δp is the sign of the
permutation. So our expansion in T"1 of ΓN becomes

= (-)N D(2π)N D<D+1)/4(det Y)~1/2 \ detG,
7=1

-(GΓWΓ1)"^] + 0(G-ψ}. (38)

Let us define a matrix ε such that

(39a)

where

α=-V2£(0)/ί>ξ(0)>0; (39b)

hence

+ 0(β2). (39c)

For large separations, ε can be expanded in powers of ξ(x)/ξ(0). From Eq. (30) we
find that4

$ = (1 - δjk)(xδab + VaVb)ξjk + 0(ξ2\ (40)

and we have introduced

ξjk = ξjk/ξ(0)^ξ(\Xj-xk\)/ξ(V), jφk. (41)

So we have5

4 Note that throughout, 0(ξ2) means 0(ξ2, (Vξ)2, ξV2ξ, etc.)
5 In Eq. (42) we omit a term of the form £ (7 " l)klεm/m3 because (Y'1)^ is 0(ξkl) for /c ̂  /; see Eq. (45)
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N

= (2π)<1/4>"D(D+1)(det YΓ112 Π
j = ι

1
-l\aa,bb

£ k?l

+ α~3 Y [(γ-iyu*J>c __ζγ-iγb,ca-^skimι i 0(ξϊ ,m~4) > (42)
u ' ' raf IJ? J

The terms involving Y ~1 can be evaluated in terms of ξy and its derivatives using the
identity

Y-1=B-CTA~1C, (43)

which follows from expanding A A ~1 = 1 in terms of the submatrices (Eqs. (25) and
(26)) and eliminating Z from the resulting equations

CTZ + BY=1 and AZ + CY = Q. (44)

Using Eq. (43) and the results in the Appendix, we find that

which implies that

(Y~1)k*ibb-(γ~1yίb,kba= -D(D-l)a2ξ(ty, (46a)

(ϊ r""1)fcαfc f c c —(^~1)fc?icβ== ~δbc(D- I)α2ξ(0). (46b)

Using Eqs. (40), (45) and (46), ΓN becomes

(47)

After substituting this result into Eq. (33) for P'N, the m} integrations can be
performed by the same technique as in Sect. II, giving

'^x,, . . . , X N ) = [(2πyvίdet Λ]

Γ^ίl - Σ

1 ,

- Σ «52 + 2(ί> - 1)0)4 + 0(ξfp t -4) (48)
-41 tfί
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where J, = £ Ai}

 ί and 6 = D + α J V2. To evaluate the determinants in (48), we note

from (44) that

Ά CVl Z\ /4 0"

B Λ O F / ~ l C Γ I / ' (49)

hence

detΛdet Y = detA (50)

Since the diagonal part of A is JV blocks of ξ(0) diag(l,α,. . . ,α) and the off
diagonal elements are 0(ξij\

0(ξ2j)). (51)

Also needed is the large distance expansion of A" 1,

Aΰ1 = —— ~ (1 ~ δfi)
 j ~ + 0(ξ2λ (52)7 ξ(0) (^(O))2 J

Equations (48)-(52) imply that

N \ 1 ? * ? ^ / ~~ \ / ζ \ )

exp(-iί2Tτl-1T) j( l-2(D-l)x-2y)

ι-2)-φ-3)]

(53)

where

The number density of peaks above the high threshold ί is P'1? which from (53) is

)-l)/2

. (55)

This generalizes previous results which omitted the subleading term [7] or derived it
in only the D = 3 case [3, 8].

The N-pomt correlations of the peaks, ξN, are defined similarly to Eq. (11),

1 + ξN(x ,,..., χN) = P^x, , . . . , xN)/(P'ι Γ, (56)

which according to Eqs. (53) and (55) is

t2
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-2(D-l)x-2y]+ ^ί-(D-l)(D-3)x + 2y + z]

(57)

Equations (55) and (57) are the main results of this paper. Using

Ί —, (58)w I, [ξίiξιj + ̂ <
the argument of the exponent can be expanded in powers of the correlations ξtj

which are small at large separations \xi — 'xj\. For example with D = 3, the two and
three point peak correlations are approximately

ξ(0) V2ξ(0)

(59)

t x2, x3) = [1 + ί2(Xι.

+ £>«'), (60)

where "perm." denotes the cyclic permutations of the indices, and T — t2/ξ(0).
Equation (60) has appeared previously, although its derivation was incorrect in
ref. [9].

Note that to leading order in T and ξ the correlations of peaks are the same as
those for points above threshold found in Sect. II (Eqs. (14) and (15)). Equation (60)
shows that the factorization property

that holds to leading order in ξ (for each order of T~ 1) does not hold when terms of
order ξ2 are kept. The situation is therefore just the same as for points above
threshold, so that the comments following Eq. (16) apply here as well.

IV. P'N Versus PN

In Sect. Ill it was shown that the joint probability density for local maxima,
exceeding height ί, to be located at the positions ~ x l 9 . . . 9 ~ x N is given by

PN(x,,..., xN) = kN ft Jdm,exp(-
7=1 »
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where kN is the prefactor in Eq. (32) and ΓN is given in Eq. (33). Recall that the ωk

integration region 2 is over symmetric negative definite D x D matrices, to enforce
the peak constraint. This is a complicated subspace of ^1/2)£)(Z)+ 1\ but we shall prove

that for high thresholds t » ̂ / (̂O), and large separations 1 3cf - lCj\ » ̂ /ϊ/α, PN can
be approximated by

. (33)

P'N differs from PN because the range of integration has been extended from 3ί to
) jn tke theorem of this section we show that the error in replacing Q) by
for jarge separations and threshold is negligible compared to the terms

kept in Sect. III. Prior to the theorem it will be helpful to have the following lemmas.

Lemma 1. Let stf be the region of ω-space defined by ωaa ̂  0 for a— !,...,/) and

\ωab\ ^ η(D)^/ωaaωbb for a<b = 29...,D, with η(D) = (Dl)~ 1/2. Then tf c 3t (where
& is the space of symmetric negative definite D x D matrices),

Proof. Let ω($ be the matrix obtained from ωab by restricting the indices a and b by
a,b^m^D, and let Δm = det ω(m). A standard result from linear algebra [10] is that
ω is negative definite if and only if Vm(-)mzlm > 0. Write

Δm = ωll...ωmm + B9 (62)

B = ̂  &ai...am£}>i...bm<*>a^.> ωαmbm - ωn . . .ωmm. (63)

Hence B is the sum of ml — 1 terms fcα. For m > 1 we note that each ba has at most
m — 2 diagonal elements of ω. This implies that

(64)
and so

mf — 1
(65)

Butm^Aso(-l) m ω 1 1 . . .ω m m - |ω 1 1 . . .ω m m |> | j5 | , and (- l)mzlm> 0 for m> 1.
For m = 1, — Δl > 0 since ωn < 0, completing the proof.

Lemma 2. Consider the one-dimensional integral

i};(ω-^)2)? (66)

where n = Q, 1,..., y > 0, and the region of integration S is such that

r = inf |ω-0 |>0. (67)
ωe<?

Then

~'Qn(r>\9\,y~ί/2)> (68)

where Qn is a homogeneous multinomial of degree n in the arguments.
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Proof. Since the integrand is positive,

-r oo

= ( J + J
-oo r

= 2 f (n\gΓj]dωωje-(l12^2. (69)
j=o\jj

Integration by parts and the inequality

ldωe-(Wy(°2<-e-(ll2»2y (70)
r ry

gives the desired result.
The theorem we now present is essentially a generalization of Lemma 2 to the

more complicated integral ΓN, with the correspondences

r->0(ί). (71)

The basic idea is that, since Gf = - αc3αχ + εfkmk (Eq. (39)), ωf = Gf will lie
within the integration region Q) as long as ε^mk is not too large, i.e. mf ^ (α/|ε|)ί.
(This is because — aδab is a negative definite matrix.) Then by the higher dimensional
analog of Lemma 2, the error in extending S& to RU/2)D(D + i) w^ ̂ e exponentially
small in the threshold. On the other hand, if m{ ^ (α/ 1 ε | ) ί, ω = G may lie outside ££, in
which case the above strategy cannot be used. But these contributions to PN are
suppressed by the factor exp( — ̂ m7^"1^) when the integration over m is
performed.

Theorem. Assume Y and A ~ 1 are positive definite (which will be justified presently)',
then

(72)

1))- ι / 2 _ α t > (73)
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m = ~(-}(^L-}t, (74)

ε = max { I ε< jΊ}, η = (D\Γ1/2, (75)
a,b,i,j

and βjv02) are polynomials of degree ND whose coefficients are well-behaved6

functions of Y, and A~l, (For the explicit form of ε?]7, see Eq. (40).)

Proof. Define the regions in m-space

A = {m:mi^t}, (76)

f 1 N

(77)
ί=ι

Γ i N 1
£m^mW; (78)

i = ι J
also define

Wl - J Π ̂ .|detω,|exp(-i(ω- G)Γ7(S- G)), (79)
^ N j=ι

where ΉN = %? x%> x ••• x^7 (note that /N differs from ΓN by using |detω7 | rather
than (- l)DdetωJ ; cf. Eq. (34)), and

PNί®'9A] = kN$ Π dmjQxp(-^mτA-lm)INl^N^ (80a)

P'Nl@;A'] = kN$ f] d/n_/exp(-iwτ>ϊ~1w)/^[^ΛΓ], (80b)
A j = l

where fc]V = ((2π)]Vίίdetyl)"1/2. Thus

P^(x1,...,x^) = P^[^;>l] (81a)

and

Pf

N^9...9xN) = FN[U^2^D+^9A]. (81b)

I. First we obtain an estimate for \PN\β\C\ -P^[[R(1/2)Z)(D+1);C]|. For ωf e^,
|detω£ | = (-)Ddetω ί? so PN[β\C\ = P'N\β\C]. Hence we may estimate

); c]
C i

(82)

However, |/^| ̂  7N by the triangle inequality, so we focus on IN[R(II2}ND(D+ 1} - @N^
restricted to the region meC. Claim: there exists a sphere in ω-space centred about G

6 To be more precise, β!ίi(αί) is a polynomial in αί, r, αα 1/2 and y 1/2 of degree ND, where a, y are the
eigenvalues of A~1, 7 respectively. The coefficients in Q(^D depend only "weakly" on A~ί, 7, i.e. via the
matrix elements of the orthogonal transformations which diagonalize them. Similar remarks apply to

65S
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with radius R = ^[_η/(l + ff)]αί that lies wholly within @N. For meC,

G?fl = - αwf + εf/m,. ̂  - αί + εWm (83)
and

I Gf I = I εξfnij I ̂  ε JVm ifa^b. (84)

Furthermore, for ω's within the sphere

\\ω-G\\2= £ |ωf-Gf| 2<# 2, (85)

one has
ωT <G?a + R (86)

and
|ωf |<|Gf + R. (87)

Combining (83) with (86) gives

- ω?fl > - G?fl - Λ ^ αί - εTVra - R, (88)

and combining (84) with (87) gives

I ωf I < εNm + R = η(a,t- εNm - R). (89)

Then (88) and (89) imply

\G>?\<ηJo$aω?9 (90)

which guarantees via Lemma 1 that ω^Q), proving the claim.
Let Si denote the set of ω's satisfying Eq. (85). Since 3t c= @N, the positivity of the

integrand in IN implies

0 < INlRW2w*D + »] - IN1@N1 < IN[RWVND<D + » - gf\. (91)

To estimate the latter, let Y be diagonalized by the SO(^ND(D + 1)) transformation

Y=OTΫO. (92)

After the change of variables ω = Oτω\

/ J V[R ( 1/2>Λ r i )< I ) + 1)-Λ]=Jdω / Π \fet(Oτω')j\exp(~±(ω'-G')τΫ(ω'-G')) (93)
7=1

where G' = OG. Since 0 is a rotation, the transformed integration region is
Rd/2)ND(D+ 1) _ ̂  where gf is the sphere of radius R centred about ω' = G'. Within

ffl we can inscribe a hypercube of length 2r, r = [̂ D(D + l)]~1/2#. Then,
expressing the product of determinants as a sum of monomials, we have the bound

[ M / G ' a ~ r QO

Π ί + ί
α = l \ -oo G^ + r

(94)

where M = ^ND(D -f 1) and we have labeled the components of ω' and G' by ω^ and
G'Λ, α = 1, . . . , M. Since each determinant has D factors oΐω'Λ, there are ND factors of

M

co^ in each term of Eq. (94) so that Ct l = 0 unless £ zα = 7VD, in which case
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Cl i is just a number of order unity. Lemma 2 can be applied for each integral in
Eq! (94), with the result

IN[RM - Sf\ ^ jrr-——NL J r M dety

with QND being a polynomial of total degree ND in its arguments.
Combining the results (95), (91) and (82) gives

c] i <

Qraίr, IG; , ?α-α

1/2). (96)
c j

To estimate the integral in Eq. (96) the same technique may be applied as that used

to bound Eq. (93). In this case the region C is a distance R = ^/Nt from the point
m = 0 where the exponential factor is maximized. Note that G^ is linear in the
m( (Eq. (39a)). After applying Lemma 2 again we have

.y-^^α;1/2), (97)

where β^ is of degree ND and α^ are the eigenvalues of A~ 1. (We have suppressed
the weak non-polynomial dependence on Y and A"1 that comes from the
orthogonal matrices which diagonalize them, as well as the dependence on εjj, which
can always be bounded by replacing ε with α as we have done.) Since recoct these two
arguments may be lumped together in Q(^D.

II. The next step is to estimate \PN[β\ B~] - Pf

N[U(1/2)D(D+ υ; B~\ |, or equivalently,

\ B] - Pf

N[_U(1/2WD + υ; B] I

(98)

For meB, only weak bounds are available for ΓN, since Gf is not necessarily negative
definite. So we use

(99)

and, similarly to Eq. (94),

M oo

= Σ cfl,.,ίMΠ ί ^ω;|ω; + G;ι^
i1;...,iM α = l -

_ VJJVDl^α? ^αα )

~ (det 7)1/2

by standard Gaussian integration, with QND, once again, a polynomial of degree ND.
Equation (100) is substituted into (98) via (99) and the m integral is bounded by the
same technique as in part I of the proof. In particular, the region B lies a distance
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R = ^/Nm away from the point m = 0. Therefore, repeating the steps of part I
leads to

PN[_2i; B] - P^

k
<(dety)1/2 m^detl-1 ND " ' ' (101)

III. The triangle inequality now implies

,v[̂ ; C] - P^[K(1/2)β(D+ '>; β] - P'N[U^2^D+ V; C] |

;C] .
(102)

Using Eqs. (81), (97), and (101) gives us

' (det

(103)

The theorem then follows, using the definition of kN (below Eq. (80)) and Eqs. (50),
(74).

By extracting the leading ί-dependence of P'N, Eq. (53), and \PN — P'N\, Eq. (72),
the fractional error may be expressed as

(i t2 y j-i
P(2 ίj ;

P'N

(104)

It should be kept in mind that for large separations, | ~xt — ~Xj\ -> oo, A^ 1 -> 0 for i Φ j
and m->oo, since ε^ O; however tr,?"1 and tr Ύ remain finite — see below.
Therefore the relative error can be made arbitrarily small by going to sufficiently
large distances and thresholds.

For the density of peaks above threshold, N = 1, the relative error is more
strongly bounded, for in this case AJ 1 is by definition zero unless i = j=l9 and
similarly ε^j5 = 0, so m = oo and the second term in (104) vanishes. Thus the density of
saddle points and local minima above threshold is exponentially suppressed relative
to peaks, in accord with intuition.

To complete this section, we demonstrate the positivity of A~ 1 and 7, at least in
the regime of large separations. As 1 3cf — ~Xj\ -> oo,

(105)
recall Eq. (58). Similarly,

Ύ^-^δ^Ύllf, (106)
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'

4-'

f >

(& b ••• b\
b a j

: '•• b
\b •" b a)

0

1 I 1 °\
0 0<!(0) v Λ ' / 1 - 1) (107)

where β = V4£(0)/[ί>(£> α = (2J8)β-2[(D + ί)β-(D- l)α2], b = (2β)
(α2 - j8), 4 = (2jS)β~1 ξ(0)[(D + 2)j8 - Dα2]. This can be diagonalized to obtain

1

'βξ(0)

where
1 D-l 1 / 2 D ( £ > - 1 )

V2 (f72t:fn\\2α2 (V2ξ(0))2

(108)

(109)

In order for the first eigenvalue of 7(1) to be positive we require that S ̂  1. In Fourier
space this condition can be expressed as

where
= ($dDkABξ(k))/($dDkξ(k)).

(110)

(111)

As long as ξ(k) > 0, <A,5> is a positive definite inner product, and Schwarz's
inequality implies that (110) is true, hence S^l. However, the probability measure
in Eq. (2) may be written as

(112)

In order for this to be normalizable (i.e., the Gaussian integral converges) k must be
that ξ(k) > 0. Thus Ϋ is positive definite at infinite separations, as well as A ~1. This
conclusion must still be true at large finite separations since the eigenvalues only
change by a factor of 1 + 0(ξfj) (note Eq. (58) where the diagonal components are
unaffected at 0(ξij)).

Appendix

The matrix A of Eq. (23a) is decomposed into the block form Eq. (25). The
submatrices A, B, C are given by

f f = < δ a l δ b l + δ a l ( ί - δ b l ) -

(A-l)
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^-τ^^^-^ (A-2)

(A 3)
ΠΎ πy^ π~y^ r 7 Y f /γ^C/Λ t/Λ. V *Ί U Λι U Λ, i

(Cτ}\cf = Cffi, (A-4)

where x? is the αth component of 3cί? α = 1,..., D. In (A-2) the pair ab takes values α
^b = 1,..., D, reflecting the fact that ω°b is a symmetric matrix (Eq. 19), and likewise
for cd, and be in (A-3), (A-4). The indices i and j label the spatial positions 3cf and 3c7

and so run from 1 to AT for the N-point correlations of peaks.
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