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Abstract. We consider a one-dimensional random Ising model with
Hamiltonian

—Z |1+ess+hzsl’

l*]

where ¢>0 and J;; are independent, identically distributed random variables
with distribution dF(x) such that

D[ xdF()=0
i) [e"dF(x)<o VieR .

We construct a cluster expansion for the free energy and the Gibbs expectations
of local observables. This expansion is convergent almost surely at every
temperature. In this way we obtain that the free energy and the Gibbs
expectations of local observables are C* functions of the temperature and of the
magnetic field 4. Moreover we can estimate the decay of truncated correlation
functions. In particular for every ¢’ > 0 there exists a random variable c(w), finite
almost everywhere, such that

c(w)
—U|1 +e—¢g 2

where ( >y denotes the Gibbs average with respect to the Hamiltonian H.

[0S —<So)n <S1>Hi

1. Introduction, Definitions and Results

In [4] a one-dimensional Ising spin system with random interactions decaying like
1/rt** was considered. A weak version of uniqueness of Gibbs state was proven
there for such a system by showing that at every temperature the expectation of an
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observable localized far away from the boundary has a weak dependence from the
boundary conditions (see [6—8, 12, 13] for previous related results). Two different
fixed (i.e. non-random) boundary conditions give rise with probability one to the
same Gibbs state, but one cannot exclude in principle non-uniqueness and even
breaking of spin-flip symmetry if boundary conditions dependent on the realization
of the coupling are allowed.

In this paper we strengthen the result of [4] and prove that no phase transition of
any order occurs for these systems in the sense that the free energy is a.s. a C®
function of the thermodynamic parameters. This result answers a question that was
not settled even at a heuristic level (see [1]). The analogous results for systems with
interaction decay 1/r*** was obtained in [6] by exhibiting a cluster expansion that
converges a.e.

The estimates needed to prove the almost sure convergence are much more
delicate here than in [6], since in the hypotheses of this paper the supremum of the
interaction among two contiguous half-lines is not finite a. e. If we divide the volume
into blocks, we can think of the spin configuration in a block as a single “spin” and
we can endow the space of spin configurations in a block with a “free measure”
given by the finite volume Gibbs state corresponding to the internal interactions.
Then one can prove that the interaction between two such ‘“‘spins” is bounded
uniformly in the block size apart from some bad sets whose “free measure” can be
uniformly estimated. The situation is reminiscent of superstable unbounded spin
systems (see [15]) with the difference that here the bad part of the space is not given
once and for all but is determined by the realization of the random interaction.

The method here, like in [6], is basically the following : we partition the lattice Z
into blocks, then we apply a “decimation” procedure over alternating blocks and
show that at any temperature the system is weakly coupled. The size of the blocks
increases with the distance from the origin and the size of the block containing the
origin depends on the random interaction. In this way one only obtains convergence
for real values of the parameters, C* properties and decay of correlations, but not
analyticity which in fact is not expected to hold due to the possible existence of
Griffith’s like singularity.

The present paper heavily relies on [4] from which we take notation and results.

Let us now define the model and state the main results.

Given AcZ the configuration space in A is the set % ={—1, 1}". For any
unordered pair i,j, i, we introduce a random variable J;; taking values in IR.
The variables J;;’s are independent, identically distributed with distribution dF(x).
We shall denote by £ the probability space on which the J;;’s are defined and by IP
and [E respectively the probability measure on Q and the expectation with respect to
IP. As customary, usually we shall not explicitly write the dependence of random
quantities on the point we Q.

We make the following assumptions on the distribution dF(x):

i) [ xdF(x)=0, w1
i) VieR: | exp (tx)dF(x)< oo . !

Given A finite, A = Z the Hamiltonian H, is the random function on .%; defined
by
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Jij
Hy(s)=— 3}, W —h Y s, (1.2)
i,jed ied
i*j

where ¢>0 and % is a real constant called magnetic field (in the Hamiltonian
considered in [4] the magnetic field was not present but the results of that paper
extend to this case without changes). The Gibbs measure in A at inverse tempera-
ture f3 is the probability measure on % defined by the average <-4 5., on functions
f on %

bpn= 2 J(s)exp [=BHA)ZG g0 (1.3)

se S

where ZJ ; ; is the normalizing factor and the dependence on w is through the
random realization of the interaction. The free energy per site in the volume A,
Fq(w, f,h), 1s given by:

Fy(w, B.h)= mlog Zopon - (1.4)

Let & (IR?) be the space of real C” functions of two variables with the topology
of uniform convergence of derivatives of any order on compact sets. Then the main
results of this paper are contained in the following two theorems.

1.1. Theorem. Let f be a cylindrical function on Sz (i.e. a function that depends only
on the values of the configuration on a finite set of sites). Then for every increasing
sequence of intervals A, such that U A,=7Z for a.e. w the following limit exists
in &(RR?),

<f‘>w,p,h=}irg o - (1.5)
Moreover
IE(<f>,,ﬁ,h)=nli_>I?O E((/>%.h) . (1.6)

also in &(IR?).

1.2. Theorem. For every increasing sequence of intervals A, such that U A,=Z,
there exists almost everywhere in & (R?) the limit :

F(p,h)y=1lim E(F4(, B, h)) .

n= o0

Moreover Fy(w, B, h) converges almost everywhere to F(B,h) in &(R?).

1.3. Remark. For simplicity we have stated our results for Gibbs states with zero
boundary conditions. As it will be clear from the proofs, they continue to hold if one
imposes fixed (i.e. non-random) boundary conditions. Two different boundary
conditions give rise almost everywhere to the same limits /), 4.5, F(f, h) for the
expectation of a local observable and the free energy respectively.

Our cluster expansion allows us to easily get estimates on the truncated
correlation functions of the model. The result is summarized in the following
theorem.
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1.4. Theorem. For every &' >0 there exists a random variable c¢(w), finite almost
everywhere, such that

()
= U,l +e—g
In Sect. 2 we construct the cluster expansion. In Sect. 3 we prove its convergence.

In Sect. 4 we prove Theorems 1.1 and 1.2. The proof of Theorem 1.4, which is a quite
natural consequence of our cluster expansion, is contained in the final Appendix.

1<s08;> —<s0) SSI=

2. The Polymer Expansion

We want to evaluate the m-th derivative with respect to 8 or /& of

A
f >£,h=Z”Z"'A(f ) 2.1)
B,h
where
Ziw() =Y f(s) exp (—fH4(5) , 2.2)
se
Zél,h=ZﬂA,h(1)= Z exp (—BH,(s) , (2.3)
se S

and f is a cylindrical function with support A centered at the origin.
We start introducing a partition of Z into blocks whose size increases with a
power law with the distance from the origin:

+
Z= =Q 0, .

Q, is centered at the origin and |Qy| =¢,, where ¢, is an odd integer. Q, is defined as

Q(n)={tel:q°2_1 14 Z (==l - Z q(])} 2.4)

Jj=

1 1
Q1={tel:q°T+1§t§q°2

and, for n=2:

with g(j)=1[qoj*], where >0 will be suitably chosen later.
For n<0 we define Q,= —-Q_,.
We introduce now a partition of Z into alternating 4 and B blocks:

+
= U (AnUBn) 5
where
An=Q2n BnZQZn—I .

We use the following notation for the spin configurations in the blocks

Yn=1250,- 0y =954, ﬁn:SBn'
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We suppose that our spin system is enclosed in a volume A, exactly partitioned
into 4 and B blocks but not necessarily symmetric with respect to the origin

A:A,,’p:(O A,.>u<.__0 B,.>=__2@ 0; .

J=—p

For k,k'eZ, k+k" we define:

Jij8i8;
Wor, 0w Ois ) = z |_—|1:;
ieor 1177
JjeQr’

For k,i,jeZ, i%j, we define
Hy (o, Prosis v 1) = —PBIHp,  (Prs )+ Wai o, a(Bror 1 %)
+WBk+1,Ak+1(ﬁk+1?ak+l)] s (2.6)
Wi v)=—BWo..0,(is 7))
Hﬂ,h(yk)= ‘,BHQk(Vk) .

In the following we are going to transform our spin system into a gas of polymers
whose only interaction is hardcore exclusion. In the next section we shall show that
the activities of the polymers are small with high probability. In the present section
we only perform algebraic manipulations without giving any estimate.

Let the partition function Zg<**! be defined by

Zpltt= Y exp (H(ow Prsrs 0e1)) 2.7
Br+1 € Fpicss

Z g™ " has with large probability factorization properties that are expressed in
Proposition 3.1 in terms of some functions v, o, on %, .

We shall treat the partition function Z4',: only trivial changes are needed to
study Z',(f). It will turn out to be convenient to divide Z;', by a suitable
normalization factor.

To simplify the notation we shall omit everywhere the subscripts f and 4 and we
shall write

2.2 for 3. Y

. ae Pr weSs P€Sn,
respectively.

We call
=Y, exp (—pHg,(s) (2.8)

SES Q.

the partition function relative to the block Q, with “zero boundary conditions.” Let
Ur (o), vy (oy) be the functions whose existence is stated in Proposition 3.1 of the next
section.

We set

dy=— [Z 5 (o) (2) €xp (ﬁ(ak»} (2.9

/,{Zk ax
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and

2p )4
N=T1 4 II d;. (2.10)

j=-2p j=-p

The partition function is given by

p'—1
z'= Z eXPI:Z (H (o) + H (o, P+ % +1))

{ar}, {Bic k=-p
Ai,BCA
+ I:I(ak):l H exp W(yia YJ) s (21 1)
{Q. Qe F

where & is the set of all pairs of blocks Q;, Q;:0;, Q; = 4, and |i —j|=2.
We can write

[T exp Whny)= > I1 (exp W(ip)—1)
(Q.,Q))eF FCZ {Q:,0,)eF

with the convention that

IT (exp W(Vi>?j)_1)=1 .
{QI!QJ}G(D

Given F ¢ % we define F the “support of F”* as

F= U Qiu( U Ak> . 2.12)
{01, Q)b eF {Bi.Q}eF
for some j or {By.1,Q,} €F for some
Namely F contains the 4 and B blocks belonging to some pairs in F and, moreover,
all 4 blocks adjacent to a B block belonging to some pair in F.
We have:

zZ_! > on( 5 A

AN 1 TE g A a

k=—-p
{Bic} . Bk C F
T 7 Ak Ak + 1
-exp< Z ~H(akaﬂk+1>ak+1)> I ~ZBk+1
k*Bi CF k:Bi+y1 ¢ F

]._[ (exp W(Vn')’;)_n >
{Q..Q,}eF
where Z;’;t"l“ has been defined in Eq. (2.7) and the empty set is included in the sum

over F.
Given F we set, for spe £,

Hisp= Y HEI+ Y Woonw) (2.14)
QuCF Qi, Q' CF
lk—k|=1

namely Ay is the Hamiltonian relative to the (generally disconnected) set F'in which
we have dropped all the interactions among non-contiguous blocks. Now recalling
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the definition of A4/, we have

j:(ﬁ d,) vy (nﬁgklexpﬁ(ak))

Jj=-p FCF {or}, Ak CA \k: A ¢ F
{Bi}, B C F
I ~<< fkﬂ _’7k(°‘k)vk+1(“kﬂ))+5k(“k)vk+1(0<k+1)>
k:Bi ¢ F 2k+1
-1
" exp H17(SE)< I1 Nj-j) [T (exp W(i,y)—1) . (2.15)
JiQ;CF {Q:1,Q,}eF

We recall that the functions ¢, and v, are characterized in Proposition 3.1 of the
next section.

Given F we call %5 the union of B-blocks in A that do not belong to F. For any
non-empty subset I' of %4; we call

mg’rz(k‘pcf Ak>u<k»BUcrAk> ’

BT uF Bik¢TuF
Q«[i‘:,rz U - Ak U U Ak .
k: A CF k:BxCI'
Bk+1¢1'uﬁ' Bk+1¢1‘uF~‘

By expanding the product

IT ((ZB#*5k(0‘k)vk+1(Oﬁk+1)>+ﬁk(°‘k)vk+l(“k“)) ’

k:Bi ¢ F Aok 1

and, recalling the definition (2.9), we get

:%=( Ip_[ dj>_1 )Y I1

j=-p FC% TI'CRBE k' BeuBk+ 1 CABR

ngak+ 1
N ("ﬁ“ _ﬁk(ak)l’kﬂ(akﬂ))
{a}: Ak CTT'UF Br+1CI 2k+1
{Bic} : B C F
exp H (o) _
Il — I1 (o) I1 Ur (o)

k: A CF Aok k:AkCUAF k:AxCUAF
(B UBi+1)nT#0

-1
"exp ﬁf(SE)( I1 ij> [T (exp W(pi,y)—1) . (2.16)

Jj:Q,CF (0., Qj)eF

Now, looking at the expression (2.16) we distinguish two kinds of ““bonds™:
1) ¢={0Q:,Q;} for {Q;, Q;} € F to which we associate the factor

(v y)=exp Wy p)—1 . 2.17)
2) U:{Ak, By i1, Ar+q) for By, el to which we associate the factor
zy

Yy (o, o+1) = — U () v+ 1 (1) - (2.18)

)'2k+1
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Abond U={4,, By+1, Ay+1} is said to be compatible with a bond 7 ={Q;, Q;} if
Byi1¥0;, Byi1¥£0;. Given fz{Qi, Q,} we call support of # the set

Z:QiUQjU< U Ak) :
k:(Bk+1UBK)n(QivQj)*0

More explicitly

1) for /={dy, An} , [=AUA, ,
2) for ¢ ={Ay, B} (=4 VB, VA1 UAy ,
3) for /={By,B,} {=A_1UB,UAUAp-1UB,UA, .

For U={A,, Bi+1. Ay+:} the support U is simply U= 4, U 4;+,. Two bonds are
connected if their supports have a non-empty intersection.
A polymer R is a maximal connected set of compatible bonds

R={Uy,.... Uty . ...t} .
The support R of R is given by

R:(ULEJR ﬁ)u(}EjR Z) : (2.19)

The support of a polymer decomposes as the union of intervals that can be either
isolated A4 blocks or intervals I of the form

Izl(k, f)=AkUBk+1 UAk+1 U... UBk+[UAk+f .
We set
Zi=Y exp Hi(s) , (2.20)
se S
where H is defined as in Eq. (2.14).
We define the “extended support” R of a polymer R as the set

R=1~eu< U B) . (2.21)
k:U={Ax,Bk+1,Ar+1}€R
We define
QIR— U ~Ak >
k:Ax CR
B¢ R
QIR: U - Ak
k:AxCR
Bi+1¢R

We define a probability measure associated to a polymer R by the average

exXp I:II(SI) I exp H(ay)

rr= ) I1 5 7 f6) . (222
seS% I connected Z; k: A CR 2k
component of R
We can write
zg, n
—p=EA B =1+ ) Y IT ¢ (2.23)
n=1 _ Ri,.., Rn i=1

R.CA,R.nR,=0
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where, for R={U;,..., U, t1,...,ly)

CR=<H Yull & TI w I l7k>~9R s (2.24)
UeR teU k: A C UAr k: A C Ar R
where
1 V4
9= I1_— 11 L (2.25)
k-4 CR “k I connected IT A
k:QrCI

component of R

We call 2 4(qo, A) the set of all polymers R with R = A and #z(q,, 4) the set of all
polymers R with R finite subset of Z, where we have put in evidence the dependence
on the size g, of the central block and on the rate 4 of increase of the blocks. The last
dependence will be omitted when it is not important.

We want to distinguish the f and 4 dependence of Zj', from that of the quantities
her Z1, vy, D appearing in 2 which are introduced artificially in our polymer
expansion. Therefore we introduce the polymer system with partition function

E(A BB =1+ Y Y IT S, (BB B) ,  (2.26)
n=1 lew:\RnEs@A(qO,l) i=1
R.nR;=0

where (g(B', B, h', i) is defined as in Egs. (2.24), (2.25) but ¥y, &,, H;, H(x,) are
evaluated for f=p', h="h', whereas v, 0, A, Z; are evaluated for B=p",h="h"The
quantities we are interested in can be expressed in terms of expectations of local
observables [see Eq. (4.9) below]. It is evident that these last quantities do not
depend on f and A. Therefore, to prove our results, we shall only need to take
derivatives with respect to f', b’ for B'=F=p, h'=h.

3. Probability Estimates

We start with a proposition that can be obtained by a simple adaptation of the
methods of [4].

[4
3.1. Proposition. If qq is sufficiently large and n,=|By| 4 for a suitable ¢ >0 there
exists a positive constant ¢, and two positive functions v, on Sy, and v+, on Ly, .|
such that for every o€ Ly, 8’ € Ly, . |,

() lo(0)]=exp (¢, (log [Be+i)**)

(i) |oes (@) Sexp (¢ (log [Be+1 ) (3.1
(ii) 1P< _fj‘;;i — 0 () Vg1 () >ﬂk+1>§exp (—ci(log [Bes1)?)
2k+1

Proof. The proof can be obtained by applying the method of [4] Sect. 4 to the
volume B, with boundary conditions « and o', i.¢. by dividing B, into 2 N, + 1 blocks
A%, .., A§), where N,=[|B,|"], cutting the non-nearest neighbour block in-
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teractions and applying the transfer matrix result of Proposition A.1 of [4]. The
constants g, y are required to verify

0<o<(Qe(l—y)—)/10 . O (3.2)

By using Proposition 3.1 we can have an estimate for the expectation of the p-th
power of ¥y (o, «')|. Indeed if U={Ay, Ay+1}.

E(¥y (e, o)) =E(Py (e, )P w009 <) + E Vo o) g w0005 5,)
<t HE( Py (o, a )Y PP Py (o o) > )2

ep
—— 3/4
S Brsq] & (€520 epai(og 1B 7172

¢
exp (—; (log lBkHl)m) : (3:3)
where
()= 1 if a<b
Tazo @) =90 §p gop -
The last estimate is obtained by
N2 Zg;:il » ey \2 p
E(|¥y(e, ) P)<E P +IE(@ () vg 1 (2)°P)
2k+1

S<CExp Qp(Way pie, (0 Biv 1)+ Wae o i s (B 159 Db, .
+ e4pllog [Beai* (3.4)

where at the last step we have used Jensen’s inequality and the bounds (3.1) i),
(3.1)ii). The expectation on the right-hand side of (3.4) can be evaluated so that we
obtain (3.3) for a suitable constant c,.

We want now to estimate the expectation of [®,(y;,y;)|” with respect to the
interactions uniformly in the spin configurations y; and y;. For this we first evaluate
the variances of the random variables W (y,, 7).

We have
E(W (1)) Sco 3, k—/| 20+
keQ,
teQ,
j-1 2(1+2)
§CO|QiHQj(/< > ‘Io(|m|+1)/1> ) 3.5)
m=i+1

where we have assumed i <J. It is easy to check that the right-hand side of (3.5) can
be bounded for every choice of i, j by

(,'042(1 +8Mq0—28 max (’l|, Ijl)leeli__j|72(l +¢)
=c3qq 2° max (Jil, ) #7120 0=, (3.6)

Let us now define for /={Q;, Q;}, n,=V;}'*|log V,!.
We have

E(D:(yi, y)IP) =E(P|* 110,1<24,) FIEA PP 110,15 20, - 3.7
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If g, is sufficiently large,

_ 1 2
P(®,|> 20,) S P(W (17| > n) Sexp (—(J?gzi’> (3.8)

and
(log V,)?

E(®,07) <27V (log V)P +“"@" (3.9)

Ratio of Normalizing Constants. In order to estimate the activities of the polymers
we first consider the factors 3 that appear in (2.24) and are defined in (2.25). The
estimates (3.1) 1), ii) imply:

di <exp (¢; ((log | Bi))** +(log |Bi— 1)) . (3.10)

We consider now for a given interval I the probability

w( r? gexp( > <log|Qk|)3/4>>. (3.11)

A k:QrClI

k:QpCI

The probability in (3.11) can be estimated by noticing that if I=1(k,[)=A,
UB VA1 V. VA,

IEK l_fl ik>pJ:1E<<eXp <kj§: (W (o, B 1)+ W(Bj+1,aj+1))>>;>

k:QrCI

k+e—1
§<]E<6XPP Z (W(ajaﬂj+1)+W(ﬁj+1a°‘j+1))>>0

j=k Hp
<e?art (3.12)
where
H?Z Z H(y) -
k:QxCI
The probability in (3.11) is therefore less than
2P exp <—p Y. (log IQ;J)”“) : (3.13)
k:QuCI

If m=min {|j| : k <j<k+¢} and we choose p = (log |Q[)***/4c,, we see that (3.11)
is less than

8C2 8C2

o (_(log lQmI)3’2> exp <_12/—1)8log |Qo!)3/2> . (3.14)

By using the estimate (3.14) and adding over all intervals I(k, /) we have if g, is
sufficiently large,

2 :
P [~ zexp [ Y (log|Q))*)] Semsloe@™  (3.15)
k,£20 [T 4 10, CTk, )
Jj:Q;CI(k,¢)
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for a positive constant ¢s. Therefore we have that outside a set of interactions whose
probability is less than the right-hand side of (3.15) we have that

Ir=Zexp ((261+1) z~(10g le|)3/4> . (3.16)

Q,;CR

Estimates for the Activity of a Polymer. We start from the formula (2.24) and by
using the bound (3.1) 1), ii) and (3.16) we have

ICr| <exp <(401+1) QZ~(10g |Qk|)3/4> < IT 1%l T1 |(D/|>~ SN AV
W CR R

UeR ZeR

For Uz{Ak, Bk+1’Ak+1} or /:{Qi, Qj} we deﬁne lU and tf by
ty=|Busa| "%, t,=|V|'7%, (3.18)

where 0 <9< 1/2 [see (3.6) for the definition of V,]. We want to estimate

<<FI [¥ul T1 |‘Dt|> >fR> ) (3.19)
UeR £eR
where

UeR /eR

The probability in (3.19) is equal to

1P<ng<<H [Pyl T1 l¢g[>}¥>>t}> , (3.21)

where g, (x) is the function
9y () =20x1 =1/ 111202 - (3.22)

Since g;,, is a convex function, (3.21), by Jensen’s inequality, is less than or equal to

IP<<QFR<H [Pul T1 I(Dt’l>>~>fR) . (3.23)

By Markov-Chebychev inequality and Fubini’s theorem (3.23) can be bounded by

e E (o1 1T 172 T1 l¢f|>>> (324
R UeR teR

We want now to find an estimate for the expectation in (3.24) uniform in the spin
configuration. This can be easily obtained by applying inequalities (3.3) and (3.9).
Indeed

G () S2 X272 - (3.25)

So by applying Schwarz inequality and again Markov-Chebychev inequality we
get,
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1E<QFR (UH [Pyl }l |‘pt’|>>

p+1 1/2 1/2
§22—5R_”’21E<H [Pul® T1 I‘le2> IE(H [Pul? T1 l@l")

UeR feR UeR feR

vl EB(WP)PE(PN)'” o E(SLN) PE(2 )
=22 TJ] 15/2 I (772

UeR ZeR

for an arbitrary p> 0. It follows from (3.3) that given p if g, is sufficiently large and
U:{AksBk+1sAk+1}s
E(¥)' *E( Py

p/2
Iy

S|Biyy |70 (3.27)

Similarly we obtain from (3.9) that given p if /= {Qi, 0;}

E(0P) RN _ ., max (il )~
t;’/z :qO Ii—j|(1+5)ps/2

(3.28)

if g, is sufficiently large.
The previous estimates, for p sufficiently large, allow us to apply the Borel-
Cantelli lemma so that, from Egs. (3.17), (3.19), (3.21), (3.24), (3.27), (3.28) we get

3.2. Proposition. Consider the system of polymers defined in Eqs. (2.23), (2.24), (2.25).
For Re Rz(qq, 1), let

{r=cxp ((451 +1) Y (log |Qk|)3/4> ITwIT 2,
01 CR UeR  (eR
where 8 is such that (1+¢) (1 —=8)>1 and ¢y, ty, t, are defined in Egs. (3.1), (3.6),
(3.18). Then for any p>0 there exists q such that if qo> q,

PEReAz(q0,4) : |(rl>Tr)Sq0 7 . (3.29)
Now let N
D(w)={qo:1(r| <lrYRERz(q0, 1)} .

We define for every me Q, go(w) as

inf {g:q'e D(w) for every ¢'=q}
go(w)= if this set is non-empty (3.30)
o otherwise

From Proposition 3.2 we have that for every p there exists ¢ such that for k> g,

P(go(w)>k)sk™ 7, (3.31)
In particular the set
Qo={weQ|go(w) <0} (3.32)
is such that
P(Qy)=1 . (3.33)

We can now prove the following
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3.3. Proposition. There exists a constant K such that for ¢ Zmax {K, go(w)} the
partition function E(A, B, h) of the system of polymers defined by Egs. (2.23), (2.24),
(2.25),

EAph=exp Y Y TRy R) 1l (334

. nz1 Ry,..., RneZ (g, A) i=1
with
1 A
(pT(Rla' . 'aRn):’_" z (_1)#{edges in %} . (335)
n: %e®G,(R,....,R,)
where G,(Ry,. .., R,) is the set of connected graphs with n vertices and edges {i,j}

corresponding to pazrs R;, Rjsuch that RN R *0. We set the sum equal to zero if G, is
empty and to 1 if n=1.

Proof. 1f we take in (3.18) 3 such that (1 +¢) (1 —9) > 1, then it is easy to get (see for
example the proof of Lemma 2.3 of [6] or Lemma 2.1 of [S]) that there exists a
constant K, such that

sup Z Z’ é —min (e(1 —9)/2,0/16) (336)
JeL ReAz(q,4)
itg>K,. 0,=R

The result follows then for K sufficiently large from general arguments of the
theory of cluster expansion for polymer systems (see [9, 2, 14]). O

4. Proofs of Theorems 1.1 and 1.2

The strategy of the proofs of Theorems 1.1 and 1.2 is similar to that for the
analogous theorems in [6], but since here the polymer expansion is quite different we
give the complete argument to be self-contained.

We shall make use of the following lemmas that will be proven at the end of this
section.

4.1. Lemma. Let f=8'=pf, h=h"=h. For all positive integers ki, k, there exists
constants M, X such that for A<2,

(PT(RU- . ~7Rn)Dk1’k2 IT (ri(B, B,h',ﬁ) §Ck1,szlkl+k2

nz1 Ri,...,RneRy(q, 1) i=1
4.1

for all g=max (qo(w), M), where qo(w) is a random constant satisfying the estimate
(3.31) (it is not necessarily equal to the constant defined there) and in particular
go(w) < oo a.e. and where, given a function f(B', B, k', k), we have put

DRy i) = S B oo ) “2)
(Cy, ., is a suitable positive constant).
4.2. Lemma. For all posztwe integers ky, k2 there exist >0, M >0 such that for A< %
and if A=A, ,= U Q;, A=A, ,= U QJ, with 0<p=<p, 0<p'<p’,

Jj=-2p
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Z Z (pT(R1>' . 'alzn)l)k1 k2 I_I C(ﬁ/’ﬂjh/a};)
nx1 Ri,..., RneZ (4, 2) i=1

R, ¢ (g, ) for somej_
12jEn,QoCRiv...URy,

S G, g TR dist (Qo, 04)” 2 4.3)

for gzmax (go(w), M), where again qo(w) is a random constant satisfying the
estimate (3.31) and ¢ is the exponent in (1.2) and Cy, v, is a suitable positive constant.

Now we are able to give bounds on the derivatives of the Gibbs averages of
cylindrical functions.

4.3. Proposition. Given k,, k, and )<, where X has been defined in Lemmas 4.1
and 4.2, for every interval A with center at the origin, f cylindrical function with
support in A and

=4 U QJ > 4<Q ,
(4.4)

éc_kl,kz max (|A|7 qo(w)k1+k2||f” >

S Db

ak1+k2
\aW

where ||f||=sup | f(s)], qo(w) satisfies the estimate (3.31) and &, 1, is a suitable
constant. €74

Proof. From Eq. (2.1) we get

<f>§,h=exp(z 2 T(Rl,...,Rn)<l_[ (LTI CR,>> :
nZ1 Ri,...,Rac®a(q,2) i=1 i=1
QoCRiu...UR, 4.5)

where C‘f) is defined like {p [see Egs. (2.22), (2.24), (2.25)] with exp (—fHg,(yo))
replaced by f(70) exp (—BHog,(70))- Of course () =g if Qo ¢ R. The result is then
obtained by applying Lemma 4.1. O

Proof of Theorem 1.1. We shall show that for every two positive integers &y, k,,
given any cylindrical function f we have almost surely

akl +ka

apF R (<f>l/ii,h_<f>[/il,h) Ajz 0 (4.6)

uniformly for f8, # in bounded sets and uniformly in 4 > A. We choose the origin of
Z in the support 4, of f. We shall assume that Q, is so large that Q, contais 4.
We consider A, A of the form

with p2p, p'zp".
We can write

Oin= S Din= S Dpnlexp () =1) = D alexp () 1) 4.7)
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where, for ¢ as in Proposition 3.3,

n
T
v=2 ) ¢ (Ry,. ., Ry) T La,
nzl Ry,..., Rneﬂ (q ) i=1
QQCR‘U uR,.

_Z z (PT(Rla-”,Rn)l—[CR. ’

n=1 Ry,..., Rue 2 4(4,4) i=1

= z Z (PT(R17~ . '7Rn) I_I CI(Q{)

nz1 Ry,..., RnEﬂA(lI A) i=1
QOCRlu .URn
n
T
-y Y o"(Ri.....R) T (.
nzl Ry,..., RnE@/T(q’:M i=1

QoCRjuU...UR,

It follows from Lemma 4.2 and Proposition 4.3 that given two integers &y, k,
there exists a constant Cj, ;, such that

ak; +ka

W (<f>l/31,h_<f>[/31,h)§ck1,k2 max (IAIaCIo(w))kl+k2||f|| IAI—F/Z . (4.8)

The theorem is so proven in the special case A=4,, ,, A=A, ,.. The general
case can be dealt with by taking care of the fact that the first and the last block need
not belong to the canonical partition. We skip the exposition of this part of the
argument, as it requires only trivial changes.

To prove the second part of Theorem 1.1, it is sufficient to remark that the
uniform bound given by Eq. (4.4) isin L (Q, IP) as a consequence of the probability
estimate of Eq. (3.31); the result follows then from the dominated convergence
theorem. [

Proof of Theorem 1.2. For every finite interval A we can write

GBI =0 T G

ied

1]<S S}>£ h (49)

|A| i,jed |l ll+8 ’
i%j

ﬁA(ﬂ)

Then to prove the theorem it is sufficient to show that for every k,, k, =20 almost
surely and uniformly for § and 4 varying in finite intervals

ak1+kz 1 ak1+kz 1
li
3/111—r»nz op*ion* <l/1| lZ $sip, h) lm E [6B"‘6h"2 <|/1| IZ v h)] ,
(4.10)

ok /1 b . ok /1
I lim - ”—’“—hmlE (s .
Az OB (IAIUZM =il | as ape IAI,,ZeA li Jll” pol

iFj i*j
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We define 4,4, A, by
Ag={ie A/dist (i, A)<| A2},

(4.11)
AO‘—:A\AA .
We have
ak1+k2 1 ak1+k2
i Z apeans b= g Ok
1 ki t+ka 2
+|A_| iez/{o W <Si>ﬂ’h
1 ok tka .
il L g (OB GDEN  @12)
ieAg
where
Coba=lim o 4.13)
1

Given ie A we can make the construction of blocks centered at i instead of the
origin.

In force of Eq. (4.4) and of the probability estimate (3.31) we have that for an
arbitrary p for A sufficiently large

op*ion*:

Similarly, using Eq. (4.8) and the probability estimate (3.31) we get that for every
p>0 for |A] large enough

ak1+kz B
1P<316AA apF <5z>3,h§|/1|“4>§|4/1| lA177 . (4.14)

’Jkl +ka

1P<3i€/10 aph o (S —<sivpm >|Al'€/“>§l/10||/1|“‘7. (4.15)

By the probability estimates (4.14) and (4.15), using Borel-Cantelli Lemma we are
left to prove that almost surely

1 otk itk .
! ) 4.16
/}g [1] ,EZAO 5[f’“6h"2 <si >ﬂ b= <6ﬁk16h"2 <So>ﬂ,h> (4.16)

and this is a consequence of Birckhoff’s theorem, since by Proposition 4.3 and the
estimate (3.31) we know that

akl +ka
apFion*

This concludes the proof when we deal with the first possibility of (4.10). The case of
the k,-th derivative with respect to the inverse temperature f§ can be treated along
the same lines. Indeed if we look at the expression

1 JU
4] IZ'A li—jt e aﬁkl (SIS
i*j

<S‘>ﬂh iS in LI(Q,IP) .
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we see that the denominator |i —j|! "¢ controls the behaviour at large distances and
for small |i —j| we are back to the previous situation. [0

Proof of Lemmas 4.1 and 4.2. For simplicity of notation we consider the case when
ky or k, =0 and write D* for D*° or D%* We have

Dk Z Z (pT(Rla"'aRn) ]._.[ CR!.(B,,E,}Z(,}—Z_)
nz1 Ry,..., anﬂz(qg,i) i=1
QoCRjuU...UR,

k! o
= Z Z (PT(Rl,-.,,R,,)k Zk W H DleRi(B,)B’h/ah) .

n=1  Ry....Rn ki i=1
QoCRU...URn Thi=k @.17)
From Egs. (2.24), (2.25) we have
DmCR(B/9B;~h,’E)
=< IT ~/1{1>D"'< Y I1 o) TI 5k(0<k)>
k:QixCR seSr k:AreUr k:AreUr
< I_L exp Hi(sp) [T _exp H(y) TT Pu 1 @ I—Ldk_l) .
ICR AxCR UeR ¢eR  AxCR
conn. comp.
(4.18)

It is convenient to split H, into its single components. For I=4,UB;.{U. ..
U Ay s, W Write

k+¢ k+¢ k+t¢—-1

ﬁIZZ H)+ ). H(B)+ ;k (W(ote, Brs1) + W (Biszs0kss)) - (4.19)

j=k+1

We set
[T exp Hi(sy) I_LH(O‘k) IT ¥ I1 2.=11 & , (4.20)

I conn. comp. of R Ak CR UeR £eR i=1

where ¢; can be one of the following quantities: exp H(oy), exp H(Bp),
exp W(ou, Bs1), exp W(Be. o), Py, P, di ' and lE[(R)§[#{QjCR}]4nd>(R)
with ng(R)=4{/:/€R}.

We have
t(R) m! t(R)

D" [1o= Y T D™o; . (4.21)

j=1 mi,.. ., m,ml!-~~mt- i=1

Now we shall give estimates on the derivatives of the possible g;’s. We have for
={i,j},

0

~ p,=0

an &

in_gp — o" (e‘l?’W(vnv,)_l) :l(_W(yi,yj))me‘ﬁ/W(vs,w
aﬁ/m 2 @ﬂ/m

Srle? SV 1|28y, (4.22)
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for suitable constants «,,, k,, depending only on m. Moreover it is easy to see that

D™ exp Ho, (y)| SE™ (7) exp Ho, ()

D™ exp Wi e+ DI S E™ ks Vv 1) €Xp W(Vk,)’kﬂ) >

N l@;k,ak+1
k
|DmlPU(akaak+1)l§él(c'")(ak’ak+l) = s
A2k+1

(4.23)

|D"dy | SRy

for some &M, Em™ &M, i, depending on the J’s where, given 6> 0, and for |Q,|
sufficiently large,

P(EmeN:sup &M> |0 "™ <exp (—|Qil”?) ,
Tk

P@EmeN: sup & (e, pern) > 1O T Sexp (=10
Vs Vie+ 1 (4.24)

P@EmeN: sup E™ (o, os1)> Bl H9™ <exp (—|Bl??) ,

Qhe, Xk + 1

PEmeN: K, >[4, 7™ Zexp (—|4/7) .
For example for £™(y,) we can take

m

and the relative probability estimate follows immediately from the assumption
(1.1 ii) on the distribution of the J’s.
It follows from the probability estimates (4.24) and Borel-Cantelli’s lemma

that there exists a random variable g, (w) verifying the estimate (3.31) such that if
|Qol = o (w) for every ke Z and every me N,

> Jysisili—jIm T

i+jeQi

2 S

ieQr

>

&M () = max {

|D™ exp Ho, (y)| 10" ¥ 2™ exp Ho, (i)

D™ exp W (e, vt DI SO O™ exp Wi, pesr) (4.25)
Ak, Ak + 1

ID™ Wy (o, s )| S | By FOm ZBrer
Aok+1

[D"d | S| Ay O

Now, from (4.18), (4.20), (4.22), (4.25), for we Qy, if ng =max {]nl 10, c ﬁ}, we

have
D o m!
DB RIS Y

]
mytL L mygy=m T P

<H 'PITH‘%{ [T w II 17k>~(CIonflz)m(Ha),

UeR £eR k:AxeAr k:AxeAr R
(4.26)
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where m=(my,...,myg,) and for U={4y, Byi1, Ax+1}:
'Ill']n: 1 Ak Ak + 1
B otherwise .

(kl+ 1% Aapes
Now for any bond & of R we define the positive number #, in the following way:
for b=U:{Ak’Bk+1aAk+1} 1, =441 om
for b=/={Qk,Qk,} ny= 2k —k'|)H0+om
It is easy to check that:

(”R)lm(lﬁ)é I n

beR
and so:
D" (B, B, 1 h) Sqg V"9,
m! " - )
2 — (Il %8 1 n® IT v 11 o) .
mit. o Em=m M\ UeR ¢eR k K R
Are AR Are AR

(4.27)

The number of terms in the sum on the right-hand side of Eq. (4.27) is bounded by
#{/:0,< R}*"'ng(R)™, and so there exists a positive constant ,, such that:

DmCR(ﬂla ﬁ_’hla E)gq(r)n(1+6)'9Rym >

R

(4.28)
sup <l_[ Cny¥y) T1 (2”{&55) [T o TI 17k>

m UeR feR k:Axe AR k:AreUr

Now by the same methods that have been used in Sect. 2 we can give good estimates,
uniform in m, of the quantity

<H(2nu w11 Cn®) T1 o T1 ﬁk>~

UeR feR k:AkxeUr k:AredAr R
that hold with high probability, provided the following condition on A is satisfied :
A1+d0)m<e . (4.29)

We fix =1 and we choose

— €

A=—

8k ’

where k is the order of derivation [see Eq. (4.17)] to control the number of terms in
the last sum of the right-hand side of Eq. (4.17). We proceed as in the bound (4.28),
namely we extract from the activity of each polymer a factor 1/2 and again we bound
(1/2)" n* by a constant depending only on K. Lemma 4.1 follows from Eq. (4.28) and
from an easy adaptation of Propositions 3.1, 3.2. Lemma 4.2 is a corollary of
Lemma 4.1 that can be obtained by standard methods of cluster expansion (see for
instance [2]). O

(4.30)



Convergent Cluster Expansion 575

Appendix. Proof of Theorem 1.4

We note that if ¢(x)=|x| ! for xeZ with 6> 0, then there is C; such that for
every xeZ,

PrE=2 0 NeM= L | p-ne()

yilx=yl=3

X, e em+ Y eli=»eW)

yilyl €3 yilx=yl>3"

<Cyfx| 0 (A1)

>

so that
P x)SCF X7,

as it is easy to get by estimating the three terms into which we have divided the sum.
Let us now consider the two point truncated correlation functions in a volume
A=A,y

{80, Sj>/€,’hA ={So, Sj>f11,h "<So>le,h<sj>f;1,h . (A.2)
We can write
@2
<SO»SJ>E,’hA=W log Zitp. i, 1ol =2=0 (A3)
12

where Z;' ;. ., is the partition function in A for the Hamiltonian
H 2 (s)=H(s)+ 1150+ 1,55 . (A4)

If we perform our cluster expansion for Z;; ,, ,,, we see that if g = go (), (A.3)
can be expanded as

0

(SoSpDpm= 2. ) OT(Ry,. . RYI(Ry). .. [(R,) , (A5)
n=1 Ri,....,Rne (g, 1)
©0,}CRyU...UR,
where {(R) is bounded by {(R) defined in Proposition 3.1 for g = g, (w). Givene' >0
we choose § in Proposition 3.2 so that (1+¢)(1 —3)>1+¢—¢'/4 and A so that

(I+e=e'2)/A+1H)=(1+e—¢) . (A.6)

We want to prove that there exists a constant K such that the sumin (A.5) can be
bounded if ¢ 2max (k, go(w)) by

Clg)lj|~ e (A7)

uniformly in j and in A.
We start from an estimate for sums of activities . We claim that there exists a
constant K; such that if g=max (Ky, go(w)), then

Y RIS m| T (A.8)
00uQ,,CR
Re@z(q,l)
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Indeed, since R is connected, there must be a chain made out of bonds of type U
or / connecting Qo to Q,,. The contribution of each bond can be bounded for
qZ4qo(w) by the number of blocks between Q, and Q,, to the power —1 —¢+¢'/2
times a constant that goes to 0 as g tends to infinity. We first sum over the remainder
of the bonds that are connected to the chain and this gives a constant to the number
of bonds in the chain. Then we sum over all possible chains, and thanks to the
estimate on each bond and to the estimate (A.1) with 6 =¢ —¢’/4, we get the result for
g Zqo(w) and sufficiently large.

We now consider the sum on the right-hand side of (A.5). In order to get the
estimate we apply the method used in Sect. 3 of [2]. Letj belong to the block Q,, then,
using the method of [2], (note that here we incorporate in T (R;,. . ., R,,) the factor
1/n! that in [2] is kept separate) we get

Y Y [@"(Ry,. .., R)I(R). .. L(R)
n=1 Ry,..., Ry R (q, )
{0,/1CR u...UR,

=) 2 lo"(Ry,. ., RDL(Ry). .. {(R,)]
n=1 Ry,..., RneRalq, 4)
QouQnCﬁlu...uﬁn

<Yn Y 1T(Ru. R)IR).. . D(R)
n=1 Ry,..., RneZ4(q,2)
QOUchﬁl
+ ), nn—1) > leT(Ry,. .., RYL(Ry). .. L(R)] . (A9)
n=1 Ry,..., RneZ4(q,4)

QoC Ry
0,CR2

Let us consider the second term on the right-hand side of (A.9). The first one
can be treated in the same way and presents less difficulties.
Following [2] we have

> " (Ry,. -, R)I(Ry). .. {(R,)]
Ry,..., RneR (g, 2)
QOCE1,QmC§2

1
==X Y Ry TR (A.10)

nl S R RneZ (g, 2

A

QoCRy,0,CR;

where T, is the set of the trees on {1,...,n} and g(R,,...,R,) is the graph of

connections of the set of polymers R;,...,R,.

Given a tree te T there is a sequence iy, .. ., i such that iy =1,. .., =2,
and forj=1,...,k(t) —1is a connection of . Therefore if g(R,,. .., R,) o, there
is a sequence of blocks Qy,,...,Qp, , such that Q, < R, NR;,...., 0%,
< Rik(t)—l N Rik(r)'

We can choose among such sequences the least one in a given lexicographic
order.
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Therefore we can bound (A.10) by

1 - -
) > > LR .. TR . (A1)
©teTyn an ,,,,, Q"k(t)fl Ry,..., Rne:?,l(q\,/l)
QOUQ(ICRliRil
Qs vQs,CRi,
Qlppy- 1VCmCR2=Ryy )

At this point we can follow directly the proof of [2] Sect. 3 so that we don’t give

the details. Using the remark (A.1), we get that for ¢ = go(w) and sufficiently large,
(A.8) can be bounded by

Clg)m| 172 (A.12)

uniformly in A. But we have |j| < C(g)|m|' " * from the definition of m and the choice
(A.6) for A implies the bound (A.7). O
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