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Abstract. We consider a one-dimensional random Ising model with
Hamiltonian

ί φ j \ 1 J \ i

where ε > 0 and Jtj are independent, identically distributed random variables
with distribution dF(x) such that

ii) j etxdF(x)<ao W e R .

We construct a cluster expansion for the free energy and the Gibbs expectations
of local observables. This expansion is convergent almost surely at every
temperature. In this way we obtain that the free energy and the Gibbs
expectations of local observables are C°° functions of the temperature and of the
magnetic field h. Moreover we can estimate the decay of truncated correlation
functions. In particular for every s' > 0 there exists a random variable c(ω), finite
almost everywhere, such that

* ™""=[/Γ'-' '
where <( )H denotes the Gibbs average with respect to the Hamiltonian H.

1. Introduction, Definitions and Results

In [4] a one-dimensional Ising spin system with random interactions decaying like
\jrl+E was considered. A weak version of uniqueness of Gibbs state was proven
there for such a system by showing that at every temperature the expectation of an
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observable localized far away from the boundary has a weak dependence from the
boundary conditions (see [6-8, 12, 13] for previous related results). Two different
fixed (i.e. non-random) boundary conditions give rise with probability one to the
same Gibbs state, but one cannot exclude in principle non-uniqueness and even
breaking of spin-flip symmetry if boundary conditions dependent on the realization
of the coupling are allowed.

In this paper we strengthen the result of [4] and prove that no phase transition of
any order occurs for these systems in the sense that the free energy is a.s. a C°°
function of the thermodynamic parameters. This result answers a question that was
not settled even at a heuristic level (see [1]). The analogous results for systems with
interaction decay l/r3 / 2 + ε was obtained in [6] by exhibiting a cluster expansion that
converges a.e.

The estimates needed to prove the almost sure convergence are much more
delicate here than in [6], since in the hypotheses of this paper the supremum of the
interaction among two contiguous half-lines is not finite a. e. If we divide the volume
into blocks, we can think of the spin configuration in a block as a single "spin" and
we can endow the space of spin configurations in a block with a "free measure"
given by the finite volume Gibbs state corresponding to the internal interactions.
Then one can prove that the interaction between two such "spins" is bounded
uniformly in the block size apart from some bad sets whose "free measure" can be
uniformly estimated. The situation is reminiscent of superstable unbounded spin
systems (see [1 5]) with the difference that here the bad part of the space is not given
once and for all but is determined by the realization of the random interaction.

The method here, like in [6], is basically the following: we partition the lattice TL
into blocks, then we apply a "decimation" procedure over alternating blocks and
show that at any temperature the system is weakly coupled. The size of the blocks
increases with the distance from the origin and the size of the block containing the
origin depends on the random interaction. In this way one only obtains convergence
for real values of the parameters, C°° properties and decay of correlations, but not
analyticity which in fact is not expected to hold due to the possible existence of
Griffith's like singularity.

The present paper heavily relies on [4] from which we take notation and results.
Let us now define the model and state the main results.
Given AaZ the configuration space in A is the set ^Λ = { — 1, 1}Λ. For any

unordered pair i,j, /φy, we introduce a random variable Jtj taking values in 1R.
The variables /f/s are independent, identically distributed with distribution dF(x).
We shall denote by Ω the probability space on which the J^s are defined and by P
and IE respectively the probability measure on Ω and the expectation with respect to
IP. As customary, usually we shall not explicitly write the dependence of random
quantities on the point ω e Ω.

We make the following assumptions on the distribution dF(x) :

(1-1)
ii) W e R : J exp (tx) dF(x) < oo .

Given A finite, A c Tί the Hamiltonian HΛ is the random function on yA defined
by
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^ω= - Σ JTI^TT^-A Σ * . (i 2)
i , j e Λ I 1 71 ieΛ

i*j

where ε>0 and h is a real constant called magnetic field (in the Hamiltonian
considered in [4] the magnetic field was not present but the results of that paper
extend to this case without changes). The Gibbs measure in A at inverse tempera-
ture β is the probability measure on ̂ Λ defined by the average < >^ β h on functions

U*= Σ /(•*) exP [-βfίΛ(s)]/Z£,βth , (1.3)

where Z£^>h is the normalizing factor and the dependence on ω is through the
random realization of the interaction. The free energy per site in the volume A,
FA(ω,β,h\ is given by:

FΛ(ω,β,h) = ~\ogZ^β,h . (1.4)

Let <ί(IR2) be the space of real C°° functions of two variables with the topology
of uniform convergence of derivatives of any order on compact sets. Then the main
results of this paper are contained in the following two theorems.

1.1. Theorem. Let f be a cylindrical function on ̂ ^ (i.e. a function that depends only
on the values of the configuration on a finite set of sites). Then for every increasing
sequence of intervals An such that (J An = % for a.e. ω the following limit exists

in <f (IR2),

</>«,,,,* =lim <f>£βίh . (1-5)
n->00

Moreover
. u )= Urn E«/X!^) , (1.6)

also in <f (IR2).

1.2. Theorem. For every increasing sequence of intervals An such that (J An = Z,
there exists almost everywhere in <f (R2) the limit: n

F(β,h)=lim Έ.(FA(;β,h)) .
«-> oo

Moreover FΛ(ω,β,h) converges almost everywhere to F(β,h) in <ί(IR2).

1.3. Remark. For simplicity we have stated our results for Gibbs states with zero
boundary conditions. As it will be clear from the proofs, they continue to hold if one
imposes fixed (i.e. non-random) boundary conditions. Two different boundary
conditions give rise almost everywhere to the same limits </>ω,/5,Λ ? F(β, h) for the
expectation of a local observable and the free energy respectively.

Our cluster expansion allows us to easily get estimates on the truncated
correlation functions of the model. The result is summarized in the following
theorem.
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1.4. Theorem. For every ε'>0 there exists a random variable c(ω), finite almost
everywhere, such that

In Sect. 2 we construct the cluster expansion. In Sect. 3 we prove its convergence.
In Sect. 4 we prove Theorems 1 . 1 and 1 .2. The proof of Theorem 1 .4, which is a quite
natural consequence of our cluster expansion, is contained in the final Appendix.

2. The Polymer Expansion

We want to evaluate the w-th derivative with respect to β or h of

where

ZM(/)= Σ f(s)exp(-βHΛ(s) , (2.2)
se^Λ

Z/,, = Z^(1)= £ expί-jW/Λί) , (2.3)
se^

and / is a cylindrical function with support A centered at the origin.
We start introducing a partition of 7ί into blocks whose size increases with a

power law with the distance from the origin:

+ 00

z= U fi, .
n = — oo

go is centered at the origin and \Q0\ = q0 , where q0 is an odd integer. Q1 is defined as

and, for n^2:

j=ι j=ι

with ^(/')=[^o7λ]j where λ>ΰ will be suitably chosen later.
For n<0 we define Qn= —Q-n-
We introduce now a partition of Z into alternating A and $ blocks :

Z= (J (ΛuBB) ,
n = — oo

where

We use the following notation for the spin configurations in the blocks
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We suppose that our spin system is enclosed in a volume A, exactly partitioned
into A and B blocks but not necessarily symmetric with respect to the origin

' \ ( P' \ 2p'
Aj)v( U *j)= U QJ

J=-P / V = - P + 1 ) j=-2p

For k,k'εZ, k^k' we define:

J s s
WQk,Qk,(yk,yk')= £ tj .\ + e -

ieQk K ~ 7 I

jeQk'

For fc, /,7'eZ, /φ,/, we define

(26)

In the following we are going to transform our spin system into a gas of polymers
whose only interaction is hardcore exclusion. In the next section we shall show that
the activities of the polymers are small with high probability. In the present section
we only perform algebraic manipulations without giving any estimate.

Let the partition function Z^k + 1 be defined by

,j8k + 1,α k + 1)) . (2.7)

Zgk

k'^
k+l has with large probability factorization properties that are expressed in

Proposition 3.1 in terms of some functions vk, vk on ,9^k.
We shall treat the partition function Z^h: only trivial changes are needed to

study Z/5 /,(/). It will turn out to be convenient to divide Z^h by a suitable
normalization factor.

To simplify the notation we shall omit everywhere the subscripts β and h and we
shall write

Σ, Σ for Σ , Σ
4 . , *k βk «kε^Ak βkεyBkrespectively.

We call

Λθ (2.8)

the partition function relative to the block Qk with "zero boundary conditions." Let

Vk(ttk)> vk(ttk) be the functions whose existence is stated in Proposition 3.1 of the next
section.

We set

(#(«*)) (2-9)
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and

^= Π λj Π dj . (2.10)
j=~2p J=~P

The partition function is given by

ZΛ= Σ exp ΓV

Π expWfyi,^.) , (2.11)

where 3F is the set of all pairs of blocks Qh Qj : Qh Qj c A, and |z — y|§;2.
We can write

Π exp W(yi9 yj) = Σ Π (exp W(γi9 γj) - 1)
{ Q τ , Q j } e F

with the convention that

Π
{Qι,Qj}e<?

Given F a^F we define F the "support of T7" as

F= (j Qi^ί U Λ\ (2.12)
{ft.ft}^ {B,,Q,}eF I
for some 7 \ or {Bk + l, Q}} E F for some j I

Namely .F contains the A and B blocks belonging to some pairs in F and, moreover,
all A blocks adjacent to a B block belonging to some pair in F.

We have :

^~ Σ Σ,/V ^K FC& [zk},AkCΛ

{βk},BkCF

•exp X ^(αfc,Λ + 1,α k + 1) Π Z^+1

\k BkCF / k:Bk + l$F

W(yi,yj)-i) ,
{ Q t . Q j J e F

where Z^"k+ ' has been defined in Eq. (2.7) and the empty set is included in the sum
over F.

Given F we set, for Sp

Σ W(γk,γk.) , (2.14)

namely /ff is the Hamiltonian relative to the (generally disconnected) set Fin which
we have dropped all the interactions among non-contiguous blocks. Now recalling
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the definition of yF, we have

Σ ( Π 4zV exp
[xk},AkCΛ \k:Ak$F

{βk},BkCF

//yCtk,&k+

• Π

Π ^ Π (exp^(y ί ? 7 j)-l) (2-15)
:QjtF J (Ql,Qj}eF

We recall that the functions vk and vk are characterized in Proposition 3.1 of the
next section.

Given Fwe call &£ the union of ^-blocks in A that do not belong to F. For any
non-empty subset Γ of &£ we call

®ϊ.r=l u _ 4 k W u Λ\ ,
fc:^lkCF k:Bk+ίCΓ

U . A ^ U
:^ k CF I k:BkCΓ

By expanding the product

Π

and, recalling the definition (2.9), we get

Z / p' \-1

r= Π ^ Σ Σ Π

Σ Π
α k } : ^ k C Γ u F Bk + i C F

{βk}:BkCF

Π Π „(«,) Π
k:AkCF Λ2k k:

• exp Hf(Sj) Π λ j \ Π (exp ̂ (y,, 7,-) - 1) . (2.16)
\j:QjCF / {Ql,Qj}eF

Now, looking at the expression (2.16) we distinguish two kinds of "bonds":
<? = (β;> Qj} for {Qi, Qj}eFto which we associate the factor

(2-17)

2) t/={A>^fc + ι, A + i} for ^fc + 1 eΓ to which we associate the factor

(2.18)
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A bond U={Ak, Bk + 1,Ak + 1} is said to be compatible with a bond/ = {βf, Qj} if
j Given S={Qi,Qj} we call support oft the set

\k: (Bk + i u Bk) n (Qi u

More explicitly

1) for <f =
2) for ίf =
3) for ( =

Ak,Am} ,

For £/={>4k,/?k + 1,;4fc + ι} the support U is simply U=AkvAk + ί. Two bonds are
connected if their supports have a non-empty intersection.

A polymer R is a maximal connected set of compatible bonds

* = {£/!, . . . ,[7*,^, ...,4} .

The support R of Λ is given by

(2.19)

The support of a polymer decomposes as the union of intervals that can be either
isolated A blocks or intervals / of the form

We set

Z,= Σ exp/U*) , (2.20)

where H is defined as in Eq. (2.14).
We define the "extended support" R of a polymer R as the set

k:U = {Ak,Bk+1,Ak+1}eR

We define

K= U

We define a probability measure associated to a polymer /? by the average

</>«=Σ Π Π / ω . (2.22)
se^ /connected Z/ k : A k C R A2k

component of R

We can write

3± = Ξ(Λ,β,h) = ί+Σ Σ ΠC*, , (2-23)
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where, for R = {Ult..., Uk, f,,... ,Sm}

= ( Π Ψυ Π Φe Π vk Π vk^9R , (2.24)
\UeR teU k : Ak C 3IR k:AkC%.R

where

BR= U~J Π ί"TΓτV (Z25)

fc ^ k C Λ «fc /connected I 11 λk

component of R \ k : Qk C J '

We call &Λ (q0 , λ) the set of all polymers R wi th R c /I and ̂ z (g0 , A) the set of all
polymers R with R finite subset of Z, where we have put in evidence the dependence
on the size q0 of the central block and on the rate λ of increase of the blocks. The last
dependence will be omitted when it is not important.

We want to distinguish the β and h dependence of Zfit h from that of the quantities
A f c, Z/, vk, vk appearing in Ξ which are introduced artificially in our polymer
expansion. Therefore we introduce the polymer system with partition function

Ξ(Λ,β',β,h',K) = l+Σ £ Π ζR,(β',β,h',h) , (2.26)

where ζR(β'J,h',h) is defined as in Eqs. (2.24), (2.25) but ΨU9 Φ^ Hl9 H(^k) are
evaluated for β = β'9 h = h ', whereas vk,vk,λk, Zl are evaluated for β = β ', h = h'. The
quantities we are interested in can be expressed in terms of expectations of local
observables Jsee Eq. (4.9) below]. It is evident that these last quantities do not
depend on β and h. Therefore, to prove our results, we shall only need to take
derivatives with respect to β', h' for β' = β = β9 h' = h.

3. Probability Estimates

We start with a proposition that can be obtained by a simple adaptation of the
methods of [4].

_e_
3.1. Proposition. I f q 0 is sufficiently large and ηk = \Bk\

 4 for a suitable ρ > 0 there
exists a positive constant cγ and two positive functions vk on ̂ Ak andvk + 1 on ^Ak+ί

such that for every α e &*Ak , α'

(i) |ϋk(α

, (log |5ft + 1|)
3/4) , (3.1)

Zα, α'
B +

<2k + l

Proof. The proof can be obtained by applying the method of [4] Sect. 4 to the
volume Bk with boundary conditions α and α', i.e. by dividing Bk into 2Nk +1 blocks

,. . .^jv^, where Nk=[\Bk\
y], cutting the non-nearest neighbour block in-
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teractions and applying the transfer matrix result of Proposition A.I of [4]. The
constants ρ, y are required to verify

0<ρ<(2ε(l-y)-y)/10 . D (3.2)

By using Proposition 3.1 we can have an estimate for the expectation of the/?-th
power of Ψv(a, α')|. Indeed if U={Ak,Ak + ί},

)̂ ^

_QP

m + if 4

where
Γl if

if

The last estimate is obtained by
?<*,*' \2p\

k,Bk + 1(a,^^

where at the last step we have used Jensen's inequality and the bounds (3.1) i),
(3.1) ii). The expectation on the right-hand side of (3.4) can be evaluated so that we
obtain (3.3) for a suitable constant c2

We want now to estimate the expectation of \Φt(yi,yj)\p with respect to the
interactions uniformly in the spin configurations y f and y7 . For this we first evaluate
the variances of the random variables W(yhyj).

We have

j-1 \ 2 ( l + ε )

Σ < l * ( \ m + ί ) λ ) , (3.5)
= i + l /

where we have assumed i<j. It is easy to check that the right-hand side of (3.5) can
be bounded for every choice of i,j by

q,42<1+ε%-2ε max (\i,\j\Γ2λ>\i-J\~2(1+r)

A l |/-yr2 ( 1 + e )=^ (3.6)

(3.7)

Let us now define for / = {β;, Qj}, η(= F// 2 |log Ve\.
We have
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If q0 is sufficiently large,

(3.8)

and
(log Vf}2

*V'p Γ~. (3.9)

Ratio of Normalizing Constants. In order to estimate the activities of the polymers
we first consider the factors &R that appear in (2.24) and are defined in (2.25). The
estimates (3.1) i), ii) imply:

(3.10)

We consider now for a given interval / the probability

Oog |β*|)3/4\\ . (3.11)
II 4 U : Q k C /

k:QkCI \

The probability in (3.11) can be estimated by noticing that if I=I(kJ) =

IW-IM = E ( ( e x p
Π

exp/7
j = k //Hΐ

^e2c2p
2* ? (3.12)

where
H*= Σ H(yk) .

k:QkCI

The probability in (3.11) is therefore less than

fc|)
3/4) . (3.13)

k:QkCI /

= mm{\j\:k^j^k + S] and we choose/? -(log |βm|)3/4/ 4 c2, we see that (3.11)
is less than

By using the estimate (3.14) and adding over all intervals I(k, /) we have if q0 is
sufficiently large,

U — -Γ^ Σ (logiα l)374)]^^108^'2 (3.15)
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for a positive constant c5 . Therefore we have that outside a set of interactions whose
probability is less than the right-hand side of (3.15) we have that

Gog |β,|)3/4 . (3.16)

Estimates for the Activity of a Polymer. We start from the formula (2.24) and by
using the bound (3.1) i), ii) and (3.16) we have

(log |β*|)3'4 Π l^i/l Π \Φλ) „ (3-17)
\UeR teR I R

For U={Ak9Bk + ί,Ak + 1} or f = {Q^Q3} we define tυ and te by

where 0<$<: 1/2 [see (3.6) for the definition of Vf\ We want to estimate

Π \Ψu\ Π\
UeR <?eR

where

tκ= ΠtuΠit (3.20)
t/eK ^ei?

The probability in (3.19) is equal to

π \Ψu\ Π l^l ' (3 21)

UeR / e Λ / R/ J

where gη(x) is the function

gη(x) = 2(\x\-η/2)χ}x^η/2 . (3.22)

Since ̂ ^ is a convex function, (3.21), by Jensen's inequality, is less than or equal to

9τR Π \Ψυ\ Π IΦ.I }).>tR . (3-23)
\UεR £tR J I R /

By Markov-Chebychev inequality and Fubini's theorem (3.23) can be bounded by

\Ψυ\ Π I < M _ (3.24)
Λ teR J J I R

We want now to find an estimate for the expectation in (3.24) uniform in the spin
configuration. This can be easily obtained by applying inequalities (3.3) and (3.9).
Indeed

gΪR(x}^2\x\χlxl^Rl2 . (3.25)

So by applying Schwarz inequality and again Markov-Chebychev inequality we
get,
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E(</ΓR|

p + l / \ l / 2 / \ l / 2

^2—FjΓ'^E Π \Ψu\2 Π \ΦA2) E Π \Ψu\" Π IΦA")
\UeR teR / \UeR teR J

p + ί E(|ϊ/

[/|
2)1/2E(|lί/

uΠ
1/2 E(|Φ<f|

2)1/2E(|Φ^|;?)1/2

= 2 2 γι _ ] I _
UeR [u έεR lf

for an arbitrary p> 0. It follows from (3.3) that given p if q0 is sufficiently large and

(3.27)
tpβ =l"fc + l l
Lu

Similarly we obtain from (3.9) that given p if / = {Qί5

| ( l+

if ^o is sufficiently large.

The previous estimates, for p sufficiently large, allow us to apply the Borel-
Cantelli lemma so that, from Eqs. (3.17), (3.19), (3.21), (3.24), (3.27), (3.28) we get

3.2. Proposition. Consider the system of polymers defined in Eqs. (2.23), (2.24), (2.25).
For Rε@z(q0,λ), let

(log \Qk\)3/4

where θ is such that (1 +ε) (1 -9)> 1 β«J c1? ί^, f, are defined in Eqs. (3.1), (3.6),
(3.18). Then for any p>0 there exists q such that ifq0>q,

. (3.29)
Now let

We define for every ωeί2, q0(ω) as

I inf {q : ̂ ' e D (ω) for every q'^q]

if this set is non-empty (3.30)

oo otherwise

From Proposition 3.2 we have that for every p there exists q such that for k>q,

, (3.31)
In particular the set

Ω0 = {ωeΩ|g0(ω)<oo} (3.32)
is such that

1P(Ω0) = 1 - (3.33)
We can now prove the following
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3.3. Proposition. There exists a constant K such that for q^mfά\ {K,q0(ω)} the
partition function Ξ(Λ, β, h) of the system of polymers defined by Eqs. (2.23), (2.24),
(2.25),

S(Λ,|8,λ) = exp £ £ ψτ(R,,. . . , Rn) Π C«, (3.34)
π ^ l R\,...,Rne&Λ(q,λ) i = l

with

n\
(^G<Gn(Rl,. ..,Rn)

where Qjn(Rι , . . . , Rn) is the set of connected graphs with n vertices and edges {ij}
corresponding to pairs RΪ , Rj such that Rt n Rj φ 0. We set the sum equal to zero if$jn is
empty and to 1 i f n = \.

Proof. If we take in (3. 18) 5 such that (1 +ε)(l — $)> 1, then it is easy to get (see for
example the proof of Lemma 2.3 of [6] or Lemma 2.1 of [5]) that there exists a
constant K± such that

SUp £ ^^^-min(e(l-»)

The result follows then for £ sufficiently large from general arguments of the
theory of cluster expansion for polymer systems (see [9, 2, 14]). D

4. Proofs of Theorems 1.1 and 1.2

The strategy of the proofs of Theorems 1.1 and 1.2 is similar to that for the
analogous theorems in [6], but since here the polymer expansion is quite different we
give the complete argument to be self-contained.

We shall make use of the following lemmas that will be proven at the end of this
section.

4.1. Lemma. Let β = β' = β, h = h' = h. For all positive integers k^ k2 there exists
constants M, λ such that for λ<λ,

Σ Σ
«^1 Rι,...,Rne0lz(q,λ)

nkι+k2

(4.1)

for all q 2; max (<?0 (ω), M\ where q0 (ω) is a random constant satisfying the estimate
(3.31) (it is not necessarily equal to the constant defined there) and in particular
<7o(ω)< co a.e. and where, given a function f(β',β,h',h), we have put

***β2,H1,h2) (4.2)

(Ckl,k2 ^ a suitable positive constant).

4.2. Lemma. For all positive integers kί , A;2 there exist λ> 0, M> 0 such that for λ<λ

= Λp,p,= \J QJ9 A = A",= (J QJ9 mt
j=~2p j=-2p
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Σ
q, A ) b r some 7

^ (4.3)

for g^max (g0(ω), M), where again qQ(oS) is a random constant satisfying the
estimate (3.31) and ε is the exponent in (1.2) and C f c l ? k 2 is a suitable positive constant.

Now we are able to give bounds on the derivatives of the Gibbs averages of
cylindrical functions.

4.3. Proposition. Given k^,k2 and λ<λ, where λ has been defined in Lemmas 4.1
and 4.2, for every interval A with center at the origin, f cylindrical function with
support in A and

2p'

j=~2p
Qj,

(4.4)

dβkίdhk
max (\A\,qo(ω)k

where | |/| |=sup \f(s)\9 q0(ω) satisfies the estimate (3.31) and c k l > k 2 is a suitable
constant. seSe*

Proof. From Eq. (2.1) we get

(4.5)

where £</"> is defined like ζR [see Eqs. (2.22), (2.24), (2.25)] with exp (-j8#?0(y0))
replaced by /(y0)

 exP (—βHQ0(yo)) Of course ζ(^ = ζ R i f Qo Φ R. The result is then
obtained by applying Lemma 4.1. D

Proof of Theorem 1.1. We shall show that for every two positive integers k1,k2,
given any cylindrical function / we have almost surely

0 (4.6)

uniformly for /?, A in bounded sets and uniformly mλ^Λ. We choose the origin of
TL in the support Ab of f. We shall assume that β0 is so large that Q0 contais Af.

We consider A, A of the form

Λ= β, ,

with
We can write

(4.7)
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where, for q as in Proposition 3.3,

τ = Σ Σ φτ(Rl9...,Rn) Π in,
n^l j R ι , . . . , R n e $ ? j ( g , λ ) i = l

Qo C K i u . . . u Rn

-Σ X φ^Λ,,...,/?,,) Π ζRι ,
n^l Rl,...,Rne@;ί(q,λ) i = l

Qo C R Ί u . . . u Rn

v=Σ Σ φτ(Rι,. .,Rn)
n^l R I , . . .,Rne£lΆ(q,λ) ί =

Qo C /f i u . . . u Rn

-Σ Σ ^(/^...^

It follows from Lemma 4.2 and Proposition 4.3 that given two integers kίyk2

there exists a constant C k l j f e 2 such that

k2 max (μ|,9o(ω))k '+*2 | |/HI/lΓ / 2 . (4.8)

The theorem is so proven in the special case Λ = Λp^p>, Λ = Λ~t~>. The general
case can be dealt with by taking care of the fact that the first and the last block need
not belong to the canonical partition. We skip the exposition of this part of the
argument, as it requires only trivial changes.

To prove the second part of Theorem 1.1, it is sufficient to remark that the
uniform bound given by Eq. (4.4) is in L1 (Ω, IP) as a consequence of the probability
estimate of Eq. (3.31); the result follows then from the dominated convergence
theorem. Π

Proof of Theorem 1.2. For every finite interval A we can write

Then to prove the theorem it is sufficient to show that for every k1 , k2 ̂  0 almost
surely and uniformly for β and h varying in finite intervals

(4.10)

/J_ y J>J<s<s^>»V\ιm]E/δkί [λ y J'i <ssy \\
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We define ΔΛ,AQ by

ΔA-AΔ ^ '' ~ ' (4'Π)

We have

1 3 / C ! + / C 2

where
<^>ί^hm<^Λ . (4.13)

Λ t Z

Given /e/t we can make the construction of blocks centered at / instead of the
origin.

In force of Eq. (4.4) and of the probability estimate (3.31) we have that for an
arbitrary p for A sufficiently large

P^ieAΛ:^-^^^iylh^\ΛΓμ\AΛ\\Λ\-p\ (4.14)

Similarly, using Eq. (4.8) and the probability estimate (3.31) we get that for every
p>0 for \A\ large enough

k2 \

Ί\~P . (4.15)

By the probability estimates (4.14) and (4.15), using Borel-Cantelli Lemma we are
left to prove that almost surely

Sura, 5. ̂ ^"-"Gp^*') <416)

and this is a consequence of Birckhoff s theorem, since by Proposition 4.3 and the
estimate (3.31) we know that

8 i s i n

d^δ//*2 ^0/

This concludes the proof when we deal with the first possibility of (4.10). The case of
the /^-th derivative with respect to the inverse temperature β can be treated along
the same lines. Indeed if we look at the expression

»*7
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we see that the denominator \i—j\1+ε controls the behaviour at large distances and
for small \i—j\ we are back to the previous situation. Π

Proof of Lemmas 4.1 and 4.2. For simplicity of notation we consider the case when
fci or fc2=0 and write Dk for Z>* ° or Z>° k. We have

From Eqs. (2.24), (2.25) we have

DmζR(β',β,h',K)

= ( Π 4~1Vm( Σ Π
\k:QkCR J \S6^ /c:^ k e3

,. ,

Π

Π
conn. comp.

Π.expT/ία*) ΠΨvΠΦt ΓL
AkCR UeR JeR AkCR

(4.18)

It is convenient to split HI into its single components. For I=
t, we write

_

(W(«k,βk+1)+i?(βk+e,oιk+e)) .(4.19)
7=k j = k

We set

Π exp
/conn. comp. of £

H(xk) Π ^ Π *<= Π βi , (4.20)
UeR

where ρf can be one of the following quantities: exp /?(αfc), exp H(βk)9

exp ίF(αk,ft + 1), exp ίF(A,αfc), ,̂ Φ,, rf^1 and r Ξ /

We have

Π Qj= Σ Π (4.21)

Now we shall give estimates on the derivatives of the possible ρ^s. We have for

8m

w™
(4.22)
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for suitable constants κm, κ'm depending only on m. Moreover it is easy to see that

\Dm exp HQk(γk)\^ξk

m\yk) exp HQk(yk) ,

(4.23)

for some ξk

m\ ξk

m\ ξj,m\ km depending on the /'s where, given <5>0, and for \Q0\
sufficiently large,

JP(3meN:sup ξ(

k

m)> ^exp (~\Qk\
δ/2) ,

7k

: sup ξk

m\yk,γk+l)> | ^exp(-|βk|"
2) ,

7k, 7k +

: sup

(4.24)

For example for ξ(m\yk) we can take

and the relative probability estimate follows immediately from the assumption
(1.1 ii) on the distribution of the /'s.

It follows from the probability estimates (4.24) and Borel-Cantelli's lemma
that there exists a random variable ^0(

ω) verifying the estimate (3.31) such that if
I Q0 1 ^> g0 (ω) for every keZ and every m E N,

exp exp HQk(γk) ,

Now, from (4.18), (4.20), (4.22), (4.25), for ωeΩ0, if «s = max {\n\:Qn<=R}, we
have

DmζR(β',β,h',h)^ Y - — - BR

Π Π

(4.26)
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where m = (mi,. . . ,mt(R)) and for U={Ak,Bk + 1,Ak + 1}:

\Ψv\ if Ψυ = Qι with mt^l

ι 7n,n + ί

*>" otherwise .λ λ2k + 1

Now for any bond b of R we define the positive number nh in the following way :

for b=U={Ak,ΰk + l,Ak + l] nb = 4w+°>m ,

for b = S = {Qk,Qt.} nb

It is easy to check that :

beR

and so:

m\
Π nυΨf Π ne$f Π vk Π,

t ' UeR

k R k R

The number of terms in the sum on the right-hand side of Eq. (4.27) is bounded by
φ{^ ' Qt £= R}4mnφ(R)m, and so there exists a positive constant ym such that:

(4.28)

sup Π (2nΌΨff) Π (2/ι,Φ,) Π vk Π
UeR

Now by the same methods that have been used in Sect. 2 we can give good estimates,
uniform in m, of the quantity

Π (2/iϋlPT) Π (2«,$,) Π ι>* Π
UeR £εR k:AkeMR k:Ake&R I R

that hold with high probability, provided the following condition on λ is satisfied:

λ(l+δ)m<ε . (4.29)

We fix δ = l and we choose

ϊ-£ , (430)

where k is the order of derivation [see Eq. (4.17)] to control the number of terms in
the last sum of the right-hand side of Eq. (4.17). We proceed as in the bound (4.28),
namely we extract from the activity of each polymer a factor 1/2 and again we bound
(1 /2)π nk by a constant depending only on K. Lemma 4.1 follows from Eq. (4.28) and
from an easy adaptation of Propositions 3.1, 3.2. Lemma 4.2 is a corollary of
Lemma 4.1 that can be obtained by standard methods of cluster expansion (see for
instance [2]). D
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Appendix. Proof of Theorem 1.4

We note that if φ(x) = \x\~ί~δ for xεZ with δ>0, then there is C1 such that for
every

φ*>(χ}= Σ φ(x-y)φ(y) =

Σ w
~ ~

Ixl
|y|>V

(A.I)

so that

as it is easy to get by estimating the three terms into which we have divided the sum.
Let us now consider the two point truncated correlation functions in a volume

Λ = Λp>p>

<^o,^>^-<^o;^>^-<^o>^<^>^ . (A.2)
We can write

(so,SjyJrf=— — log Z£βιtίtt2\tί=t2=0 > (A.3)
Cl\ ui2

where Z^ f l f 2 is the partition function in A for the Hamiltonian

. (A.4)

If we perform our cluster expansion for Z^>ίl j ί2, we see that \fq^.q0(ώ), (A. 3)
can be expanded as

sj>tt = Σ Σ <PΓ(*ι . . Λ.)Γ(Λι) . . . ζ(R,) , (A.5)

where C(^) is bounded by CCR) defined in Proposition 3. 1 for q ̂  </0 (ω). Given ε' > 0
we choose 9 in Proposition 3.2 so that (1 +ε)(l — θ)> 1 +ε— ε'/4 and A so that

(l+ε-ε72)/(l +,1)^(1 +ε-ε') . (A.6)

We want to prove that there exists a constant K such that the sum in (A. 5) can be
bounded if g§:max (k,q0(ω)) by

C(<7)l7Γ(1+ε~ε/) (A.7)

uniformly in j and in A.
We start from an estimate for sums of activities ζ. We claim that there exists a

constant ATX such that if q^ max (X^g^ω)), then

ImΓ1-^72 . (A.8)
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Indeed, since R is connected, there must be a chain made out of bonds of type U
or / connecting g0 to Qm. The contribution of each bond can be bounded for
q^.q0(ω) by the number of blocks between Q0 and Qm to the power —1 — ε + ε'/2
times a constant that goes to 0 as q tends to infinity. We first sum over the remainder
of the bonds that are connected to the chain and this gives a constant to the number
of bonds in the chain. Then we sum over all possible chains, and thanks to the
estimate on each bond and to the estimate (A. 1) with δ = ε —s'/4, we get the result for
q^q0(ω) and sufficiently large.

We now consider the sum on the right-hand side of (A. 5). In order to get the
estimate we apply the method used in Sect. 3 of [2]. Lety belong to the block Qm then,
using the method of [2], (note that here we incorporate in φτ(Rι , . . . , Rm) the factor
\\n\ that in [2] is kept separate) we get

Σ Σ \φτ(R1,...,R^)ζ(R1)...ζ(Rn)\
n = l Rίt...,Rne&Λ(q,λ)

Qo u Qn C R i u . . . u Rn

Σ « Σ \φτ(R1,...,Rn)ζ(R1)...ζ(Ra)\
n = l Rι,...,RneMΛ(q,λ)

n)\ . (A.9)

Let us consider the second term on the right-hand side of (A. 9). The first one
can be treated in the same way and presents less difficulties.

Following [2] we have

. 1 v ^
= ̂ T Σ Σ

n teTn Rι,...,Rne@Λ(q,λ)

where Tn is the set of the trees on {!,... ,«} and g(Rι,. . . ,Rn) is the graph of
connections of the set of polymers R1 , . . . , Rn.

Given a tree t e T there is a sequence i± , . . . , ik(t) such that zΊ = 1 , . . . , /k(ί) = 2,
and for 7 = 1 , . . . , & ( / ) — 1 is a connection of /. Therefore if g (R± , . . . , ,RJ => /, there

is a sequence of blocks βΛ> >&*(()-ι such that CΛ C

We can choose among such sequences the least one in a given lexicographic
order.
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Therefore we can bound (A. 10) by

^ Σ Σ Σ

At this point we can follow directly the proof of [2] Sect. 3 so that we don't give

the details. Using the remark (A.I), we get that for q^q0(ω) and sufficiently large,

(A.8) can be bounded by

C(q)\m - 1~£ + ε'/2 (A 12)

uniformly in A. But we have \j\ g C(q) \mv + λ from the definition of m and the choice

(A.6) for λ implies the bound (A.7). Π
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