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Abstract. For independent translation-invariant irreducible percolation
models, it is proved that the infinite cluster, when it exists, must be unique. The
proof is based on the convexity (or almost convexity) and differentiability of the
mean number of clusters per site, which is the percolation analogue of the free
energy. The analysis applies to both site and bond models in arbitrary
dimension, including long range bond percolation. In particular, uniqueness is
valid at the critical point of one-dimensional l/|x — y\2 models in spite of the
discontinuity of the percolation density there. Corollaries of uniqueness and its
proof are continuity of the connectivity functions and (except possibly at the
critical point) of the percolation density. Related to differentiability of the free
energy are inequalities which bound the "specific heat" critical exponent α in
terms of the mean cluster size exponent γ and the critical cluster size distribution
exponent δ; e.g., 1 + α ̂  γ(δ/2 - l)/(δ - 1).

1. Introduction

In this paper, we present general results dealing with three related issues in
percolation theory: a) uniqueness of the infinite cluster, b) continuity (in the natural
parameters) of the connectivity functions and c) continuous differentiability of the
"free energy" function. New relations are derived here between these three properties
and used for the resolution of some old problems in the mathematical analysis of
percolation. Specifically, the question of uniqueness of the infinite cluster is resolved
(for independent, translation invariant models on finite dimensional lattices) by first
proving uniqueness to be equivalent to either of the continuity statements b) or c)

* Research supported in part by NSF Grant PHY-8605164
** Research supported in part by the NSF through a grant to Cornell University
***Research supported in part by NSF Grant DMS-8514834



506 M. Aizenman, H. Kesten and C. M. Newman

and then establishing differentiability c). The equivalence between these three issues
is quite similar to the situation in Ising models, where differentiability of the free
energy is equivalent to continuity of the energy density and either of these implies the
absense of any translation invariant ergodic Gibbs distributions other than the
usual ones given by plus or minus boundary conditions [Le].

In addition to these results, extensions of property c) are obtained which give d)
sufficient conditions for twice-differentiability of the free energy and related critical
exponent inequalities. (These are presented in Sect. 3 below following the proof of
Proposition 1.5.)

a. Motivation. The motivation for studying uniqueness of infinite clusters is
multifold:

i) The qualitative properties of the percolating phase are of intrinsic interest. It
was shown in [NS1] that for a large class of both independent and dependent
models, nonuniqueness of infinite clusters cannot occur unless there are (with
probability one) infinitely many distinct infinite clusters. However, nonuniqueness
has not been shown to occur in any natural nontrivial model (it does of course occur
in independent percolation on a Bethe lattice).

ii) Uniqueness is a rather usefull property for the development of rigorous
renormalization arguments, both for short range [ACCFR] and long range[NS2]
models.

iii) The uniqueness and intersection properties of "incipient infinite clusters"
[Co; K2] at critical points seem to be closely connected with the values of critical
exponents. For example, nonuniqueness (of a certain sort) implies mean field values
for at least some exponents [ANl,Sect. 3.2] while uniqueness appears related to
hyperscaling relations [Co;K3]. Some results have been obtained concerning
uniqueness of two-dimensional incipient infinite clusters [K2] and related objects
[CCN, Appendix] but little is known in general. The results of this paper concern
uniqueness of infinite clusters away from a critical point or at a critical point with
strictly positive percolation density. They may be regarded as a first step in
preparation for a rigorous analysis of the uniqueness/intersection properties of
incipient infinite clusters.

iv) There are close relations between uniqueness of the infinite cluster and
qualitative properties of thermodynamic functions. Such a link appeared first in the
result of van den Berg and Keane [BK] that uniqueness implies continuity of the
percolation density except possibly at the critical point. The analysis presented here
adds to our understanding of such relations in two ways: a) Our general uniqueness
result applies also to the critical point of the long-range one dimensional models
with bond occupation probabilities asymptotic to β/\x — y\2 [NS2], whose
percolation density is known to be discontinuous at the critical point [AN2]. Thus
the restriction in the result of [BK] to points other than the critical point is indeed
necessary, b) In this paper we introduce another such relation, namely the threefold
equivalence of the uniqueness of the infinite cluster, continuity of the connectivity
functions, and differentiability of the free energy (the mean number of clusters per
site). This relation involves no caveats about the critical point.

We next introduce the setup for our main results. At the end of the introduction,
we discuss some of the previously known results on uniqueness.
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b. Setup. In Sects. 1-4, we restrict attention to independent, translation-invariant
bond percolation models in which an occupied (or passable) bond may occur
between any pair of sites {x,y} in Zd, d ̂  1. Such a model may be thought of as
defined by independent occupation variables {n{x >:x, yeZd, x / y} taking the values
1 (bond occupied) or 0 (bond vacant) with

Pτob(n[Xty} = ί) = py-x=l-exp(-βJy-x), (1.1)

where Q^py_x<l9 β>0 and Jy_x = Jx_y ^0. We sometimes exclude pz = 1
(or βjz = oo) to avoid the extra considerations needed for this degenerate case.
Ordinary nearest neighbor bond percolation corresponds to the choice of py-x = p
(or Jy-x = 1) for y and x nearest neighbors and py_x = 0 (or Jy_x = 0) otherwise. The
generalization of our results to lattices other than the hypercubic Zd is straightfor-
ward; the generalization to site percolation will be discussed in Sect. 5 below. A
generalization to directed percolation models has not been made.

A cluster C in such a model consists of a maximal set of sites which are all
connected by paths of occupied bonds. The percolation density P^ is the probability
that C(0), the cluster containing the origin, is infinite. When P^ = 0, there are with
probability one no infinite clusters (although one may still be able to define incipient
infinite clusters [K2]).

The (two-point) connectivity function τ(x,y) is the probability that x and y
belong to the same cluster. The π-point connectivity function, τ(x l 5 . . . ,x w ) is
similarly the probability that x l 5 . . . , xn all belong to the same cluster. We will call a
model irreducible if τ(x, y) > 0 for all x, y; i.e., if Zd cannot be partitioned into two
nonempty subsets, L1 and L2, with py_x = 0 whenever xeL1 and yeL2. Clearly,
reducible models can have distinct infinite clusters.

c. Main Results. Following are the statements of our main results for independent
rf-dimensional (short or long range) bond percolation models.

Proposition 1.1. In any irreducible, translation invariant model: ifP^ > 0, then there
is exactly one infinite cluster (with probability one).

Remark. When Σpx = oo (or ^Jx = oo), it is immediate that P^ = 1, since, with
X X

probability one, each site has infinitely many occupied bonds incident to it. It has
further been proved in [GKM] that for irreducible such models, τ(x, y)=ί for all x
and y\ i.e. all sites in /d are connected. This result can alternatively be obtained as an
immediate corollary of Proposition 1.1; we note in this regard that the proof of
Proposition 1.1 for such models is much shorter than for the general case (see the
fourth remark following Proposition 1.5 below).

The next two propositions refer to continuity properties of percolation models.
It is often convenient to focus on one parameter families of models with P^, τ(x,y)
etc. regarded as functions of that one parameter, with all other parameters held fixed.
One natural choice is to take β as the varying parameter with all the Jy-x's fixed.
Another choice is to pick some finite set Γ of nonzero z's in /d, which is symmetric
with respect to reflection through the origin, and consider the models with py_x = p
for each x and y such that y — x is in Γ; here p is the varying parameter and all other
py-χS are fixed. For example, in order to study the dependence of a model on a single
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pz, Γ would be chosen to be {z, — z}; on the other hand, in standard nearest neighbor
models on Zd, 7" would consist of the 2d neighbors of the origin and all other py-x's
would be fixed at zero. The critical value pc or βc is defined as the smallest value of p
or β above which P^ > 0; i.e.

o o , ( }

]8c = inf{j8e(0,oo]:Pβ)0?)>0}. l ' '

It is easy to see that βc = 0 if (and only if) £ Jz — oo.
z

In spite of the convenience of the one parameter models, it is instructive to bear
in mind that the complete parameter set of bond percolation models, {pz}, is infinite
in number. It is therefore appropriate to introduce a notion of convergence which
allows all the parameters to vary independently. We say that a function F (of the pz's)
is continuous in the L1 sense at {pz} if F({pz})^>F({pz}) whenever Σ\Pz~ Pz\^^

z

(Note that we allow £pz = °° in this definition.)

To see that this type of continuity is natural, consider the special case where F is
the probability that no occupied bond is incident to the origin. Then F = Y[ (1 — pz\

z

which is easily seen to be continuous in the L1 sense. Similarly, the probability that
the cluster of a given site is a specified finite set is L1 -continuous. Note also that for a
one parameter (p or β) model, continuity in the L1 sense implies continuity in p or (if

oo)in β.

Proposition 1.2. Let {pz} denote the parameter set of some irreducible, translation

invariant model. Then for any fixed n and fixed xί9...9xn9τ(xί9...9 xn)9 considered as a

function of all the pz's, is continuous in the L1 sense at (pz} In particular in an

irreducible, one parameter (p or β) model, the connectivity functions depend

continuously on p (in (0, 1]) or β (in (0, oo]).

Remark. A lack of continuity at p = 0 can only happen when the p = 0 model is
reducible. This occurs, for example, in a three dimensional nearest neighbor model
in which p = p(0,o,i) while P(i,0,o) and P(O,I,O) remain fixed above the two dimensional
percolation threshold; here if x1 and x2 are in different two dimensional layers, then
τ(xί9 x2) vanishes at p = 0 but as p -> 0, it tends to the square of the two dimensional
percolation density. A lack of continuity at β = 0 occurs only when £ Jz = oo, in
which case τ(xl9. . . , xn) = 1 for β > 0 but vanishes for β = 0.

One may appreciate the continuity result for connectivity functions more after
noticing that the percolation density P^ is not, in general, continuous in the L1

sense. That fact is clearly seen in the situation where the percolation transition is
driven by the long bonds, i.e. in one dimension. Any one dimensional model
with]Γ/?z < ao and P^ > 0 (see [NS2] ) is a limit in the L1 sense, of finite range models
for which P^ = 0. (On the other hand, it may very well be the case that P^ is
continuous, in the L1 sense, at the parameter set {pz} of any irreducible, translation
invariant model in more than one dimension.)

An even more drastic discontinuity of P^ occurs in one dimensional "border-
line" models, with J ~ l/\x -y\2. At the critical point of such a model, P^ is
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discontinuous even as a function of finitely many pz's with all others held fixed. This
follows from the fact [AN2] that P^ either vanishes or else is bounded below by
[lim sup z2pz] ~ 1/2, a bound which is unaffected by changing finitely many pz's. To
construct a one parameter model with such a discontinuity in P^, take any {pz} with
lim z2pz in (1, oo). Then the one parameter model with pz — p for z ^R and pz = pz

for |z| > R will have pc neither zero (if R is chosen so that £ pz < 1) nor one [NS2]
\z\>R

but will have a discontinuity in P ^(p) at p = pc as just explained.
The next proposition shows that a discontinuity of P^ like the one exhibited in

the previous paragraph, can occur only at a critical point. This result is actually a
rather direct corollary (as explained in the latter part of Sect. 4 below) of the
uniqueness proven in Proposition 1.1 and of the earlier result (and method) of van
den Berg and Keane [BK].

Proposition 1.3. In any irreducible, translation invariant, one parameter (p or β)
model, P^ is a continuous function ofp in (0, 1] or β in (0, oo] except possibly at p = pc

orβ = βc.

Remark. Although P^ is discontinuous at the critical point of one dimensional
l/\x — y\2 models [AN2], it is expected to be continuous for most other models.
Unfortunately, even for standard nearest neighbor models, this has not yet been
proven except for d = 2 [Rus]. However, there exist some sufficient conditions for
continuity of P^ at the critical point [AB2; N2]. One of these [AB2] is the validity of
the "triangle criterion" (first introduced in [AN1]); i.e. a bound on

which is uniform for β < βc (we assume here that 0 < βc < oo). The triangle criterion,
which also implies that certain critical exponents take on their mean field values
[AN1; AB2], is only expected to be valid for d > 6 (in short range models); it is thus
an overly strong condition for continuity of P^ However, the uniqueness result of
Proposition 1.1 implies much weaker conditions which would guarantee that P^
vanishes (and hence is continuous) at the critical point: namely any a priori bound
which would force τ(x, y) to become small as | x — y \ -> oo, uniformly in β < βc. This is
so, because if P^(βc) > 0 (and the model is irreducible at βc\ then for all x, y,

limτ(x,y) = Probc(x and y belong to the same cluster)
β\βc

^ Probc(C(x) and C(y) are infinite)

where the subscript c denotes evaluation at β = βc. Here the first equality is a
consequence of left continuity of the connectivity function (which does not require
Proposition 1.2), the first inequality is due to uniqueness of the infinite cluster and
the second follows from the Harris-FKG inequalities [Har; FKG]. An example of
such a sufficient condition is the uniform boundedness, as β]βc, of
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for some finite m, where || x \\ is the Euclidean length of x in Zd. We note that the
relation, discussed in this remark, between uniqueness, continuity of P^ and decay
as I x — y I -> oo of τ(x, y) (uniform in β < βc) has an analogue for general Ising systems
[BL].

The methods we use to obtain the uniqueness and continuity results of
Propositions 1.1 and 1.2 seem to us to be of independent interest. They show the
applicability of arguments which have been developed in other areas of Statistical
Mechanics (see e.g. [Le]) but have not been much employed in the study of
percolation.

A key quantity in our analysis is

oo 1

/= Σ-P^EdCίO)!-1), (1.3)

where |C(0)| denotes the number of sites in the cluster C(0) and

Pn = Prob(|C(0)| = n). (1.4)

Note that even though we deal with bond percolation, the n in Pn refers to the
number of sites in the cluster. / represents the mean number of clusters per site and
was first exploited as such in [SE]. On the other hand, / may also be regarded as the
percolation analogue of the free energy in Ising or Potts models [KF FK].
Propositions 1.1 and 1.2 are direct consequences (as demonstrated in Sect. 4 below)
of the following two propositions about the dependence of the free energy fonporβ
in the one parameter models.

Proposition 1.4. In any translation invariant bond percolation model:
i) / is a convex function of p whose one-sided derivatives are

j f ( p - 0) = - [2(1 - p)-] - > X (1 - τ(0, x)), for 0 < p < 1, (1.5)
op £r

p<l , (1.6)

(1.7)

VP xeΓ

where

τ + (x, y) = τ(x,y) + Prob(x and y belong to distinct infinite clusters).

Likewise,
ii) / is a convex function of β with the one-sided derivatives

-0)=- (1/2) Σ J,(l - τ(0,x)), for β>0, (1.8)
xeZd

Jx(l-τ + (0,x))> forβ>Q. (1.9)

Thus
iii) df/dp has a discontinuity at some p in (0, 1) if and only if for some x in Γ,

Prob(0 and x belong to distinct infinite clusters) > 0 (1-10)
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at that value of p. Similarly df/dβ has a discontinuity at some β in (0, oo) if and only if
for some x with Jx > 0, (1.10) is valid (or equivalently δf/dpx is discontinuous) at that
value of β.

Proposition 1.5. In any translation invariant model, f ί s a continuously differentiable
function of p in (0,1). Thus (by the last statement of Proposition 1.4) f is also a
continuously differ entiable function of β in (0, oo).

Remarks, i) The proof that / is differentiable (Proposition 1.5) leads to bounds on
the second and higher derivatives of / which in turn imply various inequalities for
the critical exponents α, y and δ (see (3.22)-(3.27) below). Precise statements of these
extensions of Proposition 1.5 are given in Proposition 3.3 and its corollaries.

ii) A proof of Proposition 1.5 is implicitly contained in the proof of [Kl; p. 252]
that / is twice continuously differentiable in standard two-dimensional models.
Section 3 below presents that proof, which is based on a lattice animal expansion,
explicitly. The first use of the lattice animal representation to study the differentia-
bility o f/ appears to be in [G2].

iii) The proof that / is differentiable is independent of Proposition 1.4
and its proof (which is given in Sect. 2 below). It was pointed out to us that
one can therefore use the differentiability of / and standard convex function
arguments (cf. [R], Theorem 25.7) to simplify both the statement and proof of
Proposition 1.4 by eliminating the need to explicitly consider one-sided derivatives.
We have kept the present structure for two related reasons. First, it emphasizes the
three fold equivalence between uniqueness of the infinite cluster, continuity of τ(0, x)
and differentiability of /. Second, the a priori expressions for the one-sided
derivatives of/ are the natural analogues for the corresponding expressions in Ising
systems [Le]; such analogies between percolation and Ising models can be helpful
for both subjects.

iv) For models in which ΣPX

 = °°> / = ® s^nce ^oo = 1 by the remark following
X

Proposition 1.1 above. Since the derivative formula (1.5) is applicable even in that
situation, it implies that τ(x9y) = 1 for all x,y with py_x > 0. Thus a proof of the
[GKM] total connectivity result for irreducible such models can be based on (1.5),
and the result is a particular case of Proposition 1.1.

v) The convexity of/ seems not to have been noted previously, perhaps because
the analogous quantity in site percolation is not convex. However, as already
pointed out in [DN, Sect. 3], the site percolation free energy may be made convex by
the addition of an explicit polynomial in p. All our results can be extended, with
suitable adjustments, to site percolation as we explain below in Sect. 5.

vi) The usefulness of convexity and related properties of f(β) extends to

f(β,h)= Σ -Pne~n\ (1-11)
n = ι n

as can be seen in the methods and results of [AB1].
Before concluding this introduction, let us briefly review previous results on

uniqueness of infinite clusters. Previous proofs of uniqueness were confined to site
percolation or nearest neighbor bond percolation on Zd or other rf-dimensional
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lattices. Uniqueness was known for d = 2 and any p > pc [Har; F] but for d>2it was
only known for p > p'c [ACCFR], where p'c is a limit of "slab thresholds" conjectured,
but not yet proven, to coincide with pc.

There was a nonrigorous but heuristically appealing argument [Ki] which
supported uniqueness for general d and p on the grounds that two potentially
distinct infinite clusters should infinitely often come close to each other and thus
should have zero probability of remaining distinct. In a sense, the main result of
[NS1] was a rigorous version of that argument (applicable also to general bond
models and to a large class of dependent percolation models) which ruled out
nonuniqueness via any finite number of distinct infinite clusters. The work of [NS1]
suggests that it would be hard to rule out the coexistence of infinitely many distinct
infinite clusters by such an argument alone. Of course, infinitely many distinct
infinite clusters do occur in Bethe lattice models. It is an instructive exercise, which
we leave for the reader, to discover which of the arguments of the next section break
down in that case.

As discussed prior to Proposition 1.3 above, one dimensional models with
Jx-y~ l/\x — y\2 have a discontinuity in P^ at their critical points [AN2]. Because
of the result of [BK] concerning discontinuities (away from the critical point), such
models were the most promising candidates, among independent, translation
invariant models for nonuniqueness. Proposition 1.1 of this paper shows that even in
this situation the infinite cluster is unique.

Proposition 1.1 does not rule out nonuniqueness for directed percolation or for
dependent percolation models, for which it remains an open problem. For directed
percolation nonuniqueness (or more accurately, nonintersection) could mean, for
example, that C(x) and C(y)—the sets of sites reachable by directed paths of
occupied directed bonds starting from two sites x and y—are both infinite but
nevertheless disjoint.

2. The Connectivity Functions and the Free Energy

The usual definition of free energy in Statistical Mechanics (see e.g. [Ru]) requires
the process of an infinite volume limit. In contrast, the percolation free energy seems
to be defined with no labor by the elegant formula (1.3). Our first step in the analysis
of the free energy (needed to obtain Proposition 1.4) will seemingly spoil the
simplicity of (1.3) by introducing an infinite volume limit process (see also [Gl; W]).
However, this loss of simplicity will be compensated by a better grasp of the
properties of /.

For any finite A a ~l_d we wish to define clusters according to two different
boundary conditions: free and wired. The wired or + -cluster of x, denoted C + (x, Λ)
is the cluster of x obtained when every bond with both endpoints outside of A is set
to be occupied. The free or 0-cluster of x, denoted C°(x, Λ) is obtained when every
bond with at least one endpoint outside of Λ is set to be vacant. Note the following
properties of these definitions:

1) For x in Λ, C°(x,/l) is always finite, while C + (x,Λ) is finite precisely when
there is no path of occupied bonds from x to the complement of Λ.

2) Two sites in Λ are in the same 0-cluster if they are connected within Λ,
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whereas they are in the same + -cluster if they are either connected in A or both are
connected to A° (the complement of A).

3) For a given site x and bond configuration, C°(x, A) is a monotone increasing
function of Λ9 whereas C+(x,Λ) is decreasing in A.

We will henceforth use an asterisk * to denote either 0 of + . We define

P*(x, A) = Prob (C*(x, A) contains exactly n sites) (2.1)

and

M*(Λ) = Number of distinct finite *-clusters totally within A

= Number of distinct finite *-clusters which intersect Λ.

Note that M+(A) is one less than the number of + -clusters which intersect A
whenever there is a path of occupied bonds between A and Ac.

Denoting the number of sites in A by \A |, we define our finite volume approxi-
mants to / as

/ϋ=ι>ιr 1 Σ Σ-Pϊ(χ,Λ) = \A-ιΣE(\c*(x,A)\-ί = \A\-I E(M*(Λ)).
xe A n = 1 n xe A

(2.3)

The following lemma is essentially proven in [Gl] and [W].

Lemma 2.1. Let Ak be an increasing sequence of finite rectangles converging to Zd.
Then for either choice of boundary condition,

Proof. It is clear that C*(x,Λk) = C(x) whenever C(x), the cluster of x, is entirely
contained in Λk. From this one obtains

1 1 C*(x, Λk)\~ 1 - C(x)|" 1 1 ̂  I C°(x, Ak)\~ 1 /(there exists a path of occupied
bonds from x to the complement of Λk),

where /( ) denotes the indicator function. The right-hand side decreases to 0 as A k

increases to Zd. (To convince oneself of this when pz Φ 0 for infinitely many z, it is
easiest to separate the cases C(x) finite and C(x) infinite.) Consequently

E(\C*(^λύ\-^E(\C(x}\-^ = S asfc->oo, (2.5)

not only for fixed x, but uniformly for x's in Ak whose distance from the complement
of Λk tends uniformly to oo. Since the left-hand side of (2.5) is uniformly bounded
(by 1), it follows that

/1HΛJ-1 Σ E(\C*(x,Λk)\-i)-+f (2.6)
xeΛk

as desired.

Remark. It is clear from the proof that (2.4) remains valid for any choice of /lk's
converging (not necessarily monotonically) to Zd in the usual van Hove sense (see
e.g. [Ru]) — i.e. where for every D, the fraction of sites in Ak within a distance D of the
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complement tends to zero. (A similar remark applies to Lemma 2.3 below.)
We shall now turn to the derivatives of the free energy and its approximants.

Since C*(x9Λ) depends only on those bonds with at least one endpoint in Λ, it
follows by a lattice animal representation of P*(x, A) (see Sect. 3) that (for the model
with p as its single parameter) /* is a polynomial in p and hence smooth. Then by the
relation (1.1) between the px's and β,

( l - P j , (2-7)

provided that the use of the chain rule can be justified. (The factor of 1/2 in (2.7) is
needed because for each x /O, px and p_x are not independent parameters, but
rather identical.) The validity of the chain rule is part of the next lemma which is the
finite volume version of Proposition 1.4. An important role will be played by the
connectivity functions

τ*(X y) = Prob(x and y are in the same ^-cluster of Λ).

We shall write {x, y} to denote the bond between x and y.

Lemma 2.2. For any finite Λ c Zd and either choice of boundary condition *, f*A is a
convex (polynomial) function of p with

dp = _ (l/2)\Λ \ — 1 V"1 W /1
— P) ) 7 (1 — 'AJ z-i v

zeΓxeZd

where £' for * = 0 is restricted to x and x + zeΛ and for * = -f to x or x + ze/1. /* is
also a convex, differentiable function of β with

Sf*Λ = -(I/^I/IΓ1 Σ Σ Jz(l-τ*Λ(x,x + z)). (2.9)
xeΛ z eZ

d

Proof. For x and y both in Λ or for one of x and yinΛ ana * = +,let us denote by
#{* y} the event that M*(Λ) depends on the occupation status of the bond {x, j;}. For
all other cases, let B^x y} be the null event. Note that under B^9 M*(Λ) decreases by
exactly one when {x,y} changes from vacant to occupied. Thus by a variant of
Russo's formula [Rus], we may differentiate the right-hand side of (2.3) to obtain

?£*=-\ΛΓ1 Σ Prob(£fxx+z}). (2.10)
ΰPz χeZd

Now when B*xy^ is not the null event, it is simply given by

B^xy} = {x and y are not in the same *-cluster
after removal of the bond {x,y}}.

This specific expression for Bfx y} shows that for x in A and any z in /d for * = + or z
such that x + zeΛ for * = 0:

1 - τ\(x, x + z) = (1 - Pί) Prob (Bfx,x+z). (2.11)
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Thus (2.10) may be rewritten as

which yields (2.8).
The above expression for B^ shows also that Prob(5|*xx+z}) is a decreasing

function of each of the py's, and hence, by (2.10), f\ is convex in each pz and thus (by
the chain rule) is convex in p. Convexity in β follows similarly, once the expression
(2.9) (or (2.7)) for df*A/dβ is shown to be valid.

For the case * = 0, where f°Λ depends on only a finite number of bond
parameters, (2.9) is an immediate consequence of (2.12) and the chain rule for finitely
many variables. For the case * = +, where f\ depends on all the bond parameters,
we will justify (2.9) when Σ Jz < °o by showing that /^ as a function of all the pz's is

z

(Frechet) differentiate in the L1 sense; when Σ Jz = °o> (2.9) is valid since both sides
z

are identically zero.
To see that f+

A is L1-differentiate, we first note that both f+

A and τ^(x, j;) are
continuous in the L1 sense. This is so because these functions fail to be polynomials
only through their dependence on the probabilities

Prob {some bond between u and Λc is occupied}, ueΛ;

however these probabilities are clearly L1-continuous. The continuity of the
connectivity functions τA (x, y) is even uniform in x, y since as x and y vary over Zd,
there are only finitely many distinct functions.

We then use the continuity of fA to write f\ ( { p y } ) — fA ( { p y } ) as a telescoping
sum in which one variable at a time is incremented. Then by the single variable
intermediate value theorem,

f~Λ({Py})~-fΛ({Py}) = (l/2) Σ (Pz~Pz)~^-({pZy}\

where for each z, pz

z lies between pz and pz while every other pz

y is either py or pr It then
follows, by (2.10)-(2.11), and the uniform continuity of τ^, that as {py}^{py},

This completes the proof.
Although connectivity functions involving more than two sites are not relevant

for Proposition 1.4 (whose proof is the main object of this section of the paper), they
are treated in the next lemma because of Proposition 1.2. We define

T^(X! ,..., xn) = Prob ( x ± , . . . , xn all belong to the same ^-cluster of Λ);

analogously, τ° denotes the ordinary connectivity function τ while

τ + (x 1,..., xj = Prob (x ̂ ,..., xn all belong to the same cluster

or C(xx),..., C(xn) are all infinite).
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Lemma 2.3. With A k as in Lemma 2.1, either choice of boundary condition and any
fixed n,

T^X! , ...,*„)- T*(X! , . . . , xπ) -> 0 ask-^co. (2.14)

The convergence in (2.14) is uniform for x1,...,xn whose relative distances remain
bounded while their distances from the boundary of Λk tend uniformly to oo.

For any fixed n and x l 9 . . . , xn, τ(x l 5 . . . , xn) is a lower semicontinuous function and
τ + (xί,...,xn)isan upper semicontinuous function of{pz} in the L1 sense. Finally, in the
one parameter (p or β) models, τ(x l 5 . . . , xn) is a left continuous function ofp or β while
τ + (xί,...,xn) is right continuous.

Proof. For fixed x, C°(x, Λk) is increasing in k while C + (x, Λk) is decreasing in k and
C + (x,Λk) ID C°(x,/y. Further, if C(x) is finite, then C(x) - C*(x,Λ fc) for sufficiently
large k. If C(x) is infinite then C°(x, Λk) -> C(x), while C + (x, Λ f c) -» (z : | C(z) | = oo } (cf.
proof of Lemma 2.1). It follows that for fixed xl9...,xn, τ°Λk(x1 , . . . , xj increases to
τ°(xι9...9xn) as fc-»oo, while τ^ k(x 1 ?...,xπ) decreases to τ + (x1,...,x l l) as fc— >oo.
The first paragraph of the lemma easily follows.

To obtain the semicontinuity of τ*, we next note that, as discussed in the proof of
Lemma 2.2 (for n = 2), for each finite Λ, τ*A is continuous in the L1 -sense. But by
monotonicity in A,

α)}, (2.15)

while

π}. (2.16)

Now a function F ( { p z } ) is defined to be lower semicontinuous in the L1 sense at {pz}
if

<5-»0

while upper semicontinuity is defined similarly but with inf replaced by sup. It then
follows, by standard arguments, from (2.15)-(2.16) and the L1 -continuity of each τ*A

that τ° is lower semicontinuous and τ+ is upper semicontinuous in the L1 sense (e.g.
see [C, Theorem II.8.6]).

Finally, in the one parameter models, τ* is increasing in p or β. This makes the
lower semicontinuous τ° left continuous, and the upper semicontinuous τ+ right
continuous (compare [Rus]).

Proposition 1.4 is now an immediate consequence of the previous three lemmas.

Proof of Proposition 1.4. Let us first consider / as a function of p and view it, by
Lemma 2.1, as the limit oϊf°Λ (with e.g. Λ = Λk -> Zd}. According to Lemmas 2.2 and
2.3, we have the following situation: i) / is a pointwise limit of (smooth) convex
functions, ii) the derivatives of those functions converge pointwise, and iii) the limit
of the derivatives (which is just the right-hand side of (1.5)) is left continuous. It
follows, by general arguments (as in [R], Theorem 25.7), that / is convex with its left
derivative given by this limit of derivatives (i.e. (1.5) is valid). The analogous
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argument with 0 replaced by + and left by right yields (1.6). This proves part i) of the
theorem.

Part ii) is obtained by essentially the same arguments provided

When £ Jz = oo, / = 0, and for any x with Jx > 0, 1 — τ + (0, x) is trivially zero while
z

1 — τ(0,x) is zero because the right-hand side of (1.5) is already known to be zero
for any choice of Γ.

Part iii) now follows easily from the identity

^(p + 0)-^(p-0) = [2(1 -p)]-1 £ Prob0(0 and x belong to
Op Op xeΓ

distinct infinite clusters).

3. Differentiability of the Free Energy

The purposes of this section are to prove Proposition 1.5 and to present some
extensions of it. Here we spoil the simplicity of the expression (1.3) for the free energy,
not by introducing infinite volume limits but rather by decomposing Pn according to
more detailed information about the cluster of the origin, in particular according to
the bonds associated with the cluster. Throughout this section, we assume that the
pz's are summable since otherwise / = 0 and Proposition 1.5 is vacuously true.

Let us extend the definition of C(0) which was a collection only of sites by
defining C(0), the bond cluster of the origin, to be the connected graph whose vertices
are the sites of C(0) and whose edges are the occupied bonds incident to any of the
sites in C(0). Its boundary, δC(0), is the set of all vacant bonds incident to any site in
C(0). The decomposition of Pn we will use is based on the number of /"-bonds in C(0)
and δC(0). By a /"-bond we simply mean a pair (x, x + z} with ze/"; recall from
Sect. Ic that the /"-bonds are precisely those bonds whose common occupation
probability p is the single varying parameter of the model. We will denote by | C \ the
number of sites in C, by || C \\ the number of /"-bonds in C and by || dC \\ the number of
/"-bonds in dC. For finite n, Pn may then be decomposed as

where

Pnml = Prob(|C(0)| = n, | | C ( 0 ) H = m , || SC(0) || = /). (3.2)

Pnml may be further decomposed according to the possible configurations A
(often called lattice animals) of C(0), using the identity

P(C(0) = A)= Π Py-x Π (l-ίV-*') (3 3)
[x,y}eA {x',y'}eθA

It follows, by a summation of this identity over those ,4's with | A \ = n, \\ A \\ = m and
\\dA\\=l, that

Pnmi = anrnlp
m(\-p)\ (3.4)

where anml ̂  0 is independent ofp (but depends on the pz's with z not in Γ). When
pz = 0 for all z not in Γ (as in nearest neighbor bond percolation), anml is just
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the number of lattice animals with the specified n, m and /. Note that, in any case,

anml = Q unless m + l^n\Γ \ (3.5)

(and unless m + l^n\Γ |/2).
We may now differentiate the free energy (1.3) by using the lattice animal

representation, (3.1) and (3.4), to obtain the formal identity,

¥= Σ n-^m/p-l/(l~Pnanmlp
m(l-p)1, (3.6)

OP n,m,l

or equivalently,

(3.7)

where I(B) denotes the indicator function of the event B. The remainder of this
section is devoted to showing that the right-hand side of (3.6) is sufficiently
convergent to conclude that / is continuously differentiable in p.

Our analysis is based on an estimation of the smallness of the "surface-volume
difference" term, [m/p — l/(\ — p)], of (3.6) or the analogous term of (3.7). This
smallness is related to previous results on the surface to volume ratio being (1 — p)/p
for large finite clusters [KSo] or for infinite clusters (e.g. [G2;NS1]). (See also
[Ll;L2;Ha].) As mentioned in a remark of the introduction, the essential
ingredients of our analysis are already contained in the proof given in [Kl, p. 252] of
twice-differentiability of / for standard two-dimensional models. Indeed, the
estimates on [m/p — //(I — p)] lead not only to differentiability of/ (Proposition 1.5)
but also to sufficient conditions for twice-differentiability and related critical
exponent inequalities (see Proposition 3.3 and its corollaries below). These and
related estimates can also be used to obtain other critical exponent equalities (see e.g.

The basic estimate needed is essentially a large deviation estimate on the random
variable [ || C(0) || /p - \\ dC \\ /(I - p)]. There are at least two approaches to obtaining
this estimate. One is a purely combinatorial approach based on (3.4), as in [Kl,
Lemma 5.1]; the other uses an algorithmic construction of percolation clusters
which was applied in [KSh] to the surface to volume ratio of infinite clusters. Both
approaches reduce the estimate to a standard large deviation result for binomial
random variables. Here we emphasize the second approach. We write Probp/, Ep.,
etc. when we want to refer to a particular value p' for the /"-bond occupation
probability.

Lemma 3.1. For any α ̂  0,

Prob,(|[||C(0)||/p-^^^

^2exp(-M/(p)α2/2), (3.8)

where H(p) is uniformly positive as a function of p on compact subsets o/(0, 1).

Proof. This estimate is based on the following relations. For any 0 < p < 1 and any
real r, we have the identity

|| C(0) || /p - \\ dC(0) || /(I - p)] } /( I I C(0) || + || SC(0) \\=k))

p)e~r^ ~^k Probp, ( || C(0) || + || 3C(0) || = k\ (3.9)
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where

p' = perlp[_perlp + (1 - p)e ~r/(1 "^] ~ l. (3.10)

Furthermore,

Prob, ( || C(0) || = m, || 3C(0) || = 0 = Σ Pnmi

= (Σ <u/K(i - PΫ
n

To prove the relations (3.9) and (3.11), write Pml(p) for the left-hand side of (3.1 1).
Then

LHSof(3.9)= Σ (er/pne-r/(ί-p})lPmi(p)

m,ϊ
m + ί = fc

(3.12)

where p' is given by (3.10). But (3.4) implies that for any p' in (0, 1),

Pmι(pf) = (P7p)w((i - P')/(! - p})lPmι(p) (3.13)
so that (3.12) yields (3.9).

Our derivation of (3.11) is based on the following construction. (Similar
constructions of clusters have been used previously, as in [PS; KSh] and variants
appear at least as far back as [H2].) Choose some total ordering of all /"-bonds, and
let Wl9 W2, . . be a sequence of independent 0 or 1 valued random variables with
P(Wi = l) = p for each i. A growing sequence of partial clusters, C l 5 C2, . . . which
converge to C(0) (if it is finite) is constructed along with their partial boundaries, dCj9

as follows. C1 is the graph consisting of the site 0 and no bonds, and dC1 is empty.
Cn + 1 and dCn + 1 are constructed from Cn and dCn in several steps. First, occupation
variables are assigned to those .Γ-bonds not in CnudCn but which are incident to
some site in Cn by assigning the next available "unused" P^-values to the /"-bonds
according to the chosen order; e.g. W1 is assigned to the /"-bond of lowest order
among those incident to the origin. Second, occupation values are assigned to non-
jΓ-bonds not in Cn u dCn which are incident to some site in Cn. Of course (x, x + z] is
assigned to be occupied at this stage with probability pz. Third Cn is augmented by
the "newly occupied" Γ and non-/"-bonds and dCn is similarly augmented by the
"newly vacant" bonds.

Now, the event that || C(0) || = m and || δC(0) || = /, is identical to the event that the
above process terminates with exactly m + / WΓ values "used," exactly m of which are
equal to 1. Thus

ίm + l \ /m +
Pml(p) ^ Prob, Σ Wi = ™ =

\ i = ι / \ m

which gives (3.11).
To obtain (3.8) we first note that either (3.9) or (3.11) implies that

LHS of (3.9) ̂  [_per/p + (1 - p}e~rl(l ~p^\ (3.15)
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The remainder of the argument, which we discuss briefly, is quite standard. Let us
define H (p) as the largest H such that

per/p + (1 - p)e~rl(l -*> ̂  exp [r2/(2tf (p))] for all real r. (3.16)

H(p) > 0 because the left-hand side of (3.16) - 1 + 0(r2) for small r. By Chebyshev's
inequality and (3.15)-(3.16), for any t^O,

LHS of (3.8) ̂  £Γίαfc[(LHS of (3.9))|r=ί + (LHS of (3.9))|r== _J

^ 2exp [fcί2 /(2H(p)) - fox*]. (3.17)

Minimizing this last expression over t yields (3.8).

Remarks, i) The basic estimate (3.8) involves the rather implicitly defined H(p). A
more explicit estimate is given in [Kl, Lemma 5.1]. One can both improve (3.8) and
make it more explicit by avoiding the wasteful estimate (3.16) for the binomial
generating function. This would replace H(p)a2/2 in (3.8) by an explicit binomial
entropy function.

ii) In the case of ordinary bond percolation on a graph with all bonds (of the
graph) having a common occupation probability p, the inequality (3.11) implies that
aml9 the number of (bond) lattice animals with volume m and surface / is bounded by

). Thus (3.11) is a generalization of (and a very slight improvement over) the

usual result, aml ^(m + ΐ)m + lm~mΓl (which follows from Pml(p) ^ 1 for all p).

Lemma 3.2. Given any 0 < p 1 < p 2 < l , and any constant Kl < oo, there exist finite
constants K2, K3 so that for all p in [pι,p2] and all n ̂  1,

(3.18)

Proof. By (3.5) and (3.8),

n|Γ|

LHS of (3.18) g Σ 2exp(-kH(p)lK2(nln(n))ί/2/k~]2/2)
k=l

(3.19)

With an appropriate choice of K2, this immediately yields (3.18) since H(p) is
uniformly positive on [pl9p2].

Proof of Proposition 1.5. Since, by (3.4)-(3.5), Pn(p) is a polynomial in p, and hence
continuously differentiable, it suffices (by standard arguments) to show that for any

£ n~idPjdp is uniformly convergent on [p1?p2] (3.20)
Λ = l

in order to conclude that / is continuously differentiable with df/dp = Σn~ ldPn/dp>
n

and thus prove Proposition 1.5.
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Now by (3.4),

3PΛ/dp = Σ MP ~ '/(I - P)]«m(l - P)' (3.21)

We break up this sum into two parts, depending on whether \m/p — //(I —p)\<
K2(nln(n))1/2 or not. In the part where this inequality is violated, we use the
bound (see (3.5))

\m/p - //(I - p)| g (m + /)/[?(! - p)] ^ |Γ|n/[p(l - p)].This yields

so that by (3.18),

«2

Σ n-^PJiL-Λ «/
n = m

for all p in [Pι,p2]. By choosing K2 so that Kl > 1, this yields (3.20).
For the remainder of this section of the paper, we apply the methods used in the

proof of Proposition 1.5 to obtain bounds on the second and higher derivatives of/.
The bounds will yield sufficient conditions for / to be twice differentiate (as is
known in two-dimensional models [Kl,p. 252]) as well as inequalities relating the
critical exponents α, β and δ. These exponents may be heuristically defined by

/"'(p)~(pc-pΓ(1+α) asptPc, (3.22)

χ(p)= £ nPn(p)~(Pc-pT'ί asptPc, (3.23)
n=l

Pn(pc)~n-(1 + 1/δ} asn->oo. (3.24)

The inequalities on the critical exponents, which are valid under various
assumptions given in the corollaries to Proposition 3.3 below, are:

γ < oo implies α ̂  0, (3.25)

P00(pc) = 0 and δ < oo imply α^O, (3.26)

PM = 0 implies 1 + α g (^} ̂  (3.27)
\ < 5 - l / 2

Note that the right-hand side of (3.27) is non-negative since δ ̂  2 [AB1]. We remark
that analogues of these inequalities are valid with α and y replaced by a' and /, the
analogous exponents defined when p \,pc (but some strengthening of the hypotheses
of (3.26)-(3.27) is needed).

The free energy f(p) is infinitely differentiate, in fact real analytic, for p<pc.
This follows from the lattice animal representation ((3.1)-(3.5)) and the known facts
that χ(p) < oo for p < pc [AB1] and that χ(p) < oo implies exponential decay of Pn(p)
[HI; Kl, Theorem 5.1; AN1]. At p = pc, / is not expected to be more than twice
differentiable with /"' diverging according to some critical exponent α, as in (3.22).
The following technical proposition gives bounds on the fcth derivative, f(k\p\ in
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terms of moments of the finite cluster size distribution. We define for real r and t

χ(p;r,ί)= Σ nr[ln(n)γpn(p). (3.28)
l^π<oo

Note that χ(p-, 1,0) is just the expected size of finite clusters.

Proposition 3.3. In a translation invariant model, suppose that for some
0 < Pi < P2 < °°? some σ > 0, and some /c — 2, 3, 4,...

sup χ(p;(fc/2)-l,(fc/2) + σ)<oo. (3.29)
P 1 < P < P 2

Then f(p) is k-tίmes continuously differentiable on (p^p2) and for some #<oo,
depending on p1? p2 and k only,

l/(k)(p)l ^ B[χ(p;(fc/2) - 1, fc/2) + 1] /or p m ( p l 9 p 2 ) . (3.30)

Proof. Extending the lattice animal expansion (3.21) for dPJdp to higher deriva-
tives yields inductively that dkPJdpk is a finite linear combination (whose coefficients
are independent of n) of terms of the form

Fίjk>(p) Σ mΨlm/p - //(I - p)]*'P,,*^),
m,l

where 1 ^, ^
k' + 2(1 + j)^k

and Fijk. is a polynomial in p~1 and (1 - p)~1. The conclusions of the proposition
now follow by essentially the same arguments as used in the proof of
Proposition 1.5.

As corollaries of Proposition 3.3, we now give in order precise versions of the
critical exponent inequalities (3.25)-(3.27).

Corollary 3.4. In a translation invariant model with pc > 0,

f"(p) = 0(ln(χ(p))) asp]pc. (3.31)

Proof. By the k = 2 case of Proposition 3.3, we have

f"(p) = θ( £ ln(n)Pn(p)\ (3.32)
\«=ι /

which yields the desired result by the concavity of In (u) and Jensen's inequality.

Remark. When y < oo, (3.31) shows that f"(p) cannot have a power law divergence
as p ]pc and hence that α ̂  0. If y = oo (which may be the case in one dimensional
l/\x — y\2 models), (3.31) still gives useful information; e.g., if

χ(p) - exp [0((pc - p)"θ)] as p\pc,

then α ̂  θ. Conversely if one could show that /" had a power law divergence, that
would prove exponential divergence of χ.

Corollary 3.5. In a translation invariant model with pc > 0 and P^(pc} = 0, if

oo

Σlιφ)Pπ(ί>c)«», (3.33)
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then

/"(p) = 0(1) asp]pc. (3.34)

Proof. Let bn = In (n) - In (n - 1) > 0. Since

Pδ_(P)ΞΣ ίU/>)
m^n

is increasing in p, it follows, by the hypotheses of this corollary, that for p rg pc,

00

X ln(n)Λ,(p)= Σ M^OOS Σ b.PM
n=l n> 1 n> 1

oo

= X ln(n)Pπ(pc)<oo.
w = l

Thus, by the fc = 2 case of Proposition 3.3 (i.e. by (3.32)), f"(p] is 0(1) as p|pc.

Corollary 3.6. /w <z translation invariant model with pc>0 and P^(pc) = 0, suppose
there is some δ in [2, oo) so that

Hoo. (3.35)
Λ = l

/or αnj; ε7 > 0,

f(3](p) = 0(ίχ(pΏ{d~2)l(2δ-2)+e') αsptPc (336)

Proof. By the fc = 3 case of Proposition 3.3, we have

/(3)(P) = 0(χ(p; 1/2, 3/2)) = 0(χ(p; r', 0))

for any r' > 1/2. By Holder's inequality, χ(p; r, 0) is a log-convex function of r, so that
forr ' = (l-α)(l/<5) + α l with

δ-2
a = 2δ^2+S>

we have

But by the assumptions of this corollary and arguments as in the proof of
Corollary 3.5, χ(p; 1/<5,0) is 0(1) as p]pc, so that (3.36) follows.

Remark. Without assuming either that P^(pc] = 0 or that (3.35) is valid for some
δ < oo, one may use the δ = oo version of the proof of Corollary 3.6 to conclude that

(3-37)

so that

1 + α ̂  y/2. (3.38)

This is an improvement of (3.25) (i.e. γ < oo implies α ̂  0) only when γ < 2 (which
cannot be valid unless Pao(pc) = Q [N1;N2]). Another exponent inequality,

2 + α ̂  7, (3.39)
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can also be derived without assuming POO(PC) = 0 but again this does not improve the
α ̂  0 result unless γ < 2. The precise version of (3.39) is

(3.40)

Its proof, which requires the assumption that for some r > 1 and yr < oo,

(3.41)

is based on the k = 4 case of Proposition 3.3 and the log convexity of χ(p; r', 0) as a
function of r'.

4. Derivation of Propositions 1.1, 1.2 and 1.3

In this section we explain the few extra ingredients needed to obtain
Propositions 1.1-1.3 from the results of the last two sections (specifically from
Proposition 1.4, Proposition 1.5 and Lemma 2.3).

Proof of Proposition 1.1. We assume here that ^]/?z < oo; see Remark iv) following
z

Proposition 1.5 for the proof when this condition fails. Proposition 1.1 concerns a
model with given pz's and no specified Γ. We may pick any z φ 0 in J.d with pz Φ 0
and choose Γ = {z, — z}. Then by Propositions 1.4 and 1.5 (with p = pz\ we see that
for any z, pz φ 0 implies

Prob(0 and z belong to distinct infinite clusters) = 0. (4.1)

(If p = pz = 1, we cannot use Propositions 1.4 and 1.5, but then (4.1) is trivial.) Let us
denote by G(0,z) the event whose probability appears in (4.1). If we can show that
S = (z Prob (G(0, z)) = 0} is closed under addition, then by the irreducibility of the
model, S = ~Lά and the proposition is proved. So assume that z and z' are in S but
z" = z + z' is not in S. We wish to derive a contradiction.

Let x0, x l 5 x2,...,xk be a sequence of distinct sites leading from z(=x0) to
0(= χk) such that p x._ x. > 0 for each j (such a sequence exists by irreducibility).
Prob(G(0,z"))>0 by assumption. For each configuration ω in G(0,z"), define
K = K(ω) as the smallest; such that Xj is in C(0)uC(z"); since C(0) and C(z") are
disjoint, xκ is in only one of these clusters. Define the mapping Φ on configurations in
G(0, z") by the rule that Φ forces the bond {xj_1,xj} to be occupied for each j ^ K (if
it was already occupied, Φ leaves it so) and Φ leaves unchanged all other bonds.

Φ has two important properties. First, Φ(G(0,z")) = {Φ(ω):ωeG(0,z")} is a
subset of the event G(0, z) u G(z, z"). Second, since Φ involves only those bonds from
a finite nonrandom collection (i.e. { { X j _ i , X j } : j ^ k } ) 9 all of which have positive
occupation probability, it follows that Prob(Φ(G)) > 0 for any event G of nonzero
probability (see, e.g., [NS1, Proposition 9] for a proof of this claim). These two
properties together imply that at least one of the following two probabilities is
nonzero: Prob (G(0, z)) and Prob (G(z, z")) - Prob (G(0, z')). But this contradicts the
assumption that z and z; are in S.

Proof of Proposition 1.2. Recalling the definition (2.13) of τ + (x l 5 . . . , xj, we see that
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the uniqueness of infinite clusters (i.e. the already proved Proposition 1.1) implies

But by Lemma 2.3, τ is lower semicontinuous and τ+ is upper semicontinuous in the
L1 sense. Thus τ = τ+ is L1 -continuous. This yields all of Proposition 1.2 except for
the continuity in β when £ Jz = oo. When £ Λ = oo, τ = τ + = 1 for all β > 0.

We complete this section with a proof of Proposition 1.3, the continuity of P^
above threshold. This is a corollary of Proposition 1.1 and the result of van den Berg
and Keane [BK] that uniqueness strictly above threshold implies continuity of P^
Since the context of [BK] was continuity as a function of p, we give, for the sake of
completeness, a version of the argument of van den Berg and Keane for the proof of
continuity of P^ as a function of β.

Proof of Proposition 1.3. We first note that since P^ is a decreasing limit, as
Λk^Zd, of the continuous increasing functions Prob(C(0)n/l£ ̂ 0) = Prob
(|C + (0,/lfe)i = oo), P^ is necessarily right continuous. To relate left continuity in β
to uniqueness, we proceed, in a variant of the approach of [BK], by embedding the
one parameter family of models into a single system consisting of independent
random variables, W^, with exponential distributions. When J>,_x>0, the
distribution is given by

Pτob(W^y}^w)=l -exp(-Jy.xw), f o r w ^ O ; (4.2)

when Jy-x = 0, then W{x ^ = 00. (Such an embedding was proposed, in the context of
invasion percolation, in [CCN, Sect. 5] ).

For any β in (0, oo), we obtain the original parameter-/? percolation model by
considering {x, y} to be occupied if W^y} ^ β. We will call a cluster C from this model
a β-cluster with the understanding that each occupied bond still is associated with its
W- value. We will call an infinite β-cluster fragile if for every β' < β, the removal from
the cluster of all the bonds with W- values in (/?', β~\ leaves only finite components.
Analogously to [BK], we claim that

P^(β) -Pao(β-0) = Prob (the origin belongs to
a fragile infinite β-cluster). (4.3)

Once this is proved, left continuity follows for β > βc because by Proposition 1.1 the
β-cluster is unique, and hence cannot be fragile for β > βc since there is an infinite (β
— ε)-cluster for small ε, which must be a subcluster of the β-cluster.

Since

P^(β'} = Prob (the ^'-cluster of the origin is infinite),

it follows that

Pao(β)-Pao(β-0) = Prob (the ^-cluster of the origin is
infinite but the ^'-cluster of the
origin is finite for every β' < β).

This shows that LHS of (4.3) ̂  RHS of (4.3). To obtain the opposite inequality, it
suffices to show that conditioned on the event that the β-cluster of the origin is



526 M. Aizenman, H. Kesten and C. M. Newman

infinite and nonfragile, then the conditional probability that there is some infinite /?"-
path starting at the origin tends to one as β" f β. This follows by standard arguments,
since for ε sufficiently small there is with probability one an infinite (β — ε)-cluster
inside the infinite ^-cluster of the origin and the conditional probability that there is
a β-path, within the finite region A, from the origin to this infinite (β — ε)-cluster
tends to one as A | Έd.

5. Site Percolation

In this section we show that all our results, with suitable adjustments, extend to
ordinary nearest neighbor site percolation on Zd. The same arguments apply to site
percolation on other d-dimensional lattices. At the end of this section, we briefly
discuss mixed site-bond percolation models.

The d-dimensional site model may be defined by independent variables
{nx:xeZd} taking the values 1 (site occupied) or 0 (site vacant) with Prob (nx = l} = p
for all x. C(x) denotes the set of occupied sites y which are connected to x by nearest
neighbor paths over occupied sites; if x is vacant, then C(x) is empty. As usual, one
defines

| = w) forn = 0, 1,2,. ..,00. (5.1)

and

T(X! , . . . , xn) = Prob (x1 , . . . , xn are all occupied and all
belong to the same cluster). (5.2)

The free energy is defined as

0)) (5.3)

and represents the expected number of (nonempty) clusters per site. For a finite
A ci Zd, we define C°(x, A) as the C(x) obtained when all sites outside of A are set to be
vacant. We define C + (x, A) to be the ordinary C(x) ifxeA and C(x) c A otherwise it
is defined as Acv{yeA:C(y)nAc φ 0}. If A is such (e.g. a cube) that Ac (with all its
nearest neighbor bonds) has only a single connected component, then C + (x, A) may
be equivalently defined as the cluster of x when all sites in Ac are set to be occupied.
Note that C + (x,/l)^ C°(x,Λ) and C*(x,Λ) is increasing in A for * = 0 and
decreasing in A for * = +. M*(Λ) denotes the number of nonempty finite *-clusters.
/* is defined as

(5.4)

The analogue of Lemma 2.1 remains valid (with the same proof) in the site
percolation context. What changes is the formula for df^/dp. Let us define for xeΛ ,
N*(x, A) as the number of distinct (finite or infinite) *-clusters, obtained after setting
x to be vacant, which contain a nearest neighbor to x. Note that if N*(x, A) = 0, then
changing x from vacant to occupied increases M*(Λ) by 1, but iϊN*(x,Λ)^.l, then
such a change in x decreases M*(Λ) by N*(x,Λ)— 1. It follows (see also [G2,
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Theorem 4.3]) that

xeΛ

= \ΛΓ1ΣE(L-N*(x,Λ)). (5.5)
xeΛ

Although neither f*A nor / need be convex, (5.5) leads to the next proposition
which shows that they can be made convex by a slight alteration (see also [DN] ). We
define

N°(x) is the number of distinct clusters to which the (occupied) neighbors of x
belong, after x is set to be vacant. N + (x) is the same except that all infinite clusters
are identified; i.e.

-l, if

where N#(x) is the number of distinct infinite clusters to which the (occupied)
neighbors of x belong, after x is set to be vacant.

The next proposition is the analogue of Proposition 1.4.

Proposition 5.1. In the site percolation model on ~Ld.
(a) f(p) — 2d(p — p2/2) is a convex function of p so that f has finite one-sided

derivatives for all p in (0, 1). These are given by

(b) (p-0)=l-E(JV°(0)), (5.6)
dp

(c) |Wθ)=l-E(JV + (0)). (5.7)

Thus df/dp has a discontinuity at some p in (0, 1) if and only if for that value of p,

E([ΛΓ#(0) - 1]/(ΛΓ#(0) ̂  1)) > 0. (5.8)

Proof. Let us define

V(x,Λ) = number of nearest neighbors of x which are in A and vacant.

For any x in Λ, it is easy to see that N*(x, Λ)+ V(x9 Λ) cannot increase when a site is
changed from vacant to occupied, hence

E(N*(x, A) + 7(x, Λ)) is decreasing in p. (5.9)

Let us denote by w(x,/l) the number of nearest neighbors of x which belong to Λ;
w(x,A) = 2d for every x in A not near the boundary of A. Since

E(V(x,Λ)) = w(x,Λ)(l - p) = -
dp
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it follows from (5.5) and (5.9) that

(5.10)
xeΛ

is a convex function of p.
It is clear that as Λ fc->Zd, e.g. in the sense of Lemma 2.1,

Since, as mentioned above, Lemma 2.1 is valid for site percolation, we have

p2/2), (5.11)

which yields statement a) of the proposition. The remainder of the proof is based on
essentially the same arguments as in the proofs of Lemmas 2.3 and Proposition 1.4
given in Sect. 2. For example, the one sided continuity of lim df\/dp is based on the

k

fact that the expectation in (5.9) is monotonic in A (for x in Λ9 not near the boundary
of Λ). To avoid repetition, further details are left to the reader.

The next proposition is the analogue of Proposition 1.5. We do not present its
proof since it is essentially the same as the one give in Sect. 3 (e.g. for the nearest
neighbor bond model) but easier since (3.1) and (3.4) are simplified to

Pn = ΣanιP
n(l-p)1, (5.12)

i

where anl is the number of site lattice animals with n occupied (volume) sites and /
vacant (surface) sites.

Proposition 5.2. In the site percolation model on Zd, the free energy f is a continuously
differ entiable function ofp in (0, 1).

Remark. Extensions to site percolation of Proposition 3.3 and its three corollaries
are valid. These concern twice-differentiability of / at pc and inequalities for the
critical exponent γ. The proofs are again essentially the same as for bond models.

The next proposition is the analogue of Proposition 1.1.

Proposition 5.3. In the site percolation model on Zd, for any p in [0, 1] either there is
no infinite cluster with probability one or else there is exactly one infinite cluster with
probability one.

Proof. The proposition is trivial for p = 0 or 1. If 0 < p < 1, then Propositions 5.1
and 5.2 imply that the expectation in (5.8) is always zero and thus that

Prob(7V#(0)^2) = 0. (5.13)

To prove Proposition 5.3 it suffices to assume that more than one infinite cluster
occurs with nonzero probability and derive a contradiction to (5.13). Under this
assumption, Prob(G(/l)) is positive for some large cube Λ centered at the origin,
where G(Λ) is the event that (at least) two distinct infinite clusters occur and intersect
Λ. It is easy to construct, as in [NS1], a mapping Φ on configurations ω in G(A)
which only alters the occupation status of sites in A and for which Φ(G(A)} is
contained in the event that N#(0) ^ 2. But, as in the proof of Proposition 1.1 given in
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Sect. 4, Prob(G(/l))>0 implies Prob(Φ(G(/l))) >0 implies Prob (JV#(0) ̂  2) > 0
which contradicts (5.13).

The next proposition combines the analogues of Proposition 1.2 and Proposi-
tion 1.3. Continuity of the connectivity functions is proven as for bond models;
continuity of P^ is an immediate consequence of Proposition 5.3 and the main
result of van den Berg and Keane [BK].

Proposition 5.4. In the site percolation model on J.d, τ(x l 5 . . . ,x π ) is a continuous
function of p for all p and P^ is a continuous function of p except possibly at pc.

Remark. P^ for standard site models with d ̂  2 should be continuous also at pc.
This has not yet been rigorously proven except for d = 2 [Rus].

We conclude this section and the paper with a brief discussion of the free energy
for mixed site-bond models which shows that all our results, suitably formulated, are
valid for these models. Site-bond models have their own intrinsic interest and in
addition they arise naturally when analyzing, e.g., pure bond models by block
renormalization techniques, as in [ACCFR; NS2]. In such a model (on Zd) bonds
{x,y} are occupied with probability py-x and sites are occupied (or "alive") with
probability λ, all independently. Denoting by p the common value of py_x for y — x
in some Γ, as in a pure bond model, we may consider a one-parameter family of such
models using either the parameter λ or p(or β).

C(x), the (site) cluster of x, consists of all occupied sites which are connected to x
by paths of occupied bonds both of whose endpoints are occupied; C(x) is empty if x
is vacant. As usual Pn = Prob (| C(0)| = n) for n = 0, 1, . . . , oo, and the free energy is

f=Σ"~ίpn, (5.14)
n^l

which represents the expected number of nonempty clusters per site.
The convexity properties of / (and its finite volume approximations), as a

function of/? or β, are the same as in a pure bond model. Convexity as a function of λ
is essentially the same as for a pure site model except that here the quantity JV°(x) is
redefined as the number of distinct clusters to which those occupied sites y, such that
{x,y} is also occupied, belong after x is set to be vacant. N + (x\ N*(x,Λ) etc. are
defined similarly. Analogues of Propositions 1.4 and 5.1 can then be shown by
arguments like those used above.

The analogues of Propositions 1.5 and 5.2 are also obtained by similar
arguments to those used above. The lattice animal expansion (jointly in λ and p) of
Pn has the form

Γ,m,l

where anVml depends on the pz's for z not in 7". One then first sums over m, / or over /',
before applying the arguments like those of Sect. 3. Finally one obtains analogues of
Proposition 1.1 and Proposition 5.3 and of Propositions 1.2-1.3 and Proposi-
tion 5.4 by analogous arguments.
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Note added in proof. Uniqueness of the infinite cluster in some dependent percolation models was
recently proved by Gandolfi, Keane and Russo.






