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Abstract. Various versions of the Fubini theorem on the principal fibre bundle
are derived. The formal generalizations of these theorems are used as a basic
tool for the investigation of the geometrical setting of the Faddeev-Popov
procedure in the cases of pure Yang-Mills theories, spinless particle and
Polyakov's bosonic string.

1. Introduction

In general the gauge theories can be divided into two classes: those which are
invariant under true gauge group transformations and those which are invariant
under infinitesimal transformations whose commutators do not necessarily close
and involve field-dependent structure constants. There exists a general approach
to functional quantization of both types of gauge theories developed along
Hamiltonian lines by Fradkin and his collaborators [1] and recently reviewed by
Henneaux [2]. This approach is based on a functional integral over paths in the
canonical phase space suitably extended by additional ghost degrees of freedom.
Due to the so-called Fradkin theorem [1] such an integral is formally equivalent to
the phase-space functional integral over physical (independent) degrees of freedom
of a constrained system [3]. On the other hand in the case of the first type of gauge
theories there is a covariant functional approach introduced by Faddeev and
Popov in the case of Yang-Mills theories [4]. One starts with the functional
integral over configurations of fields and then by the so-called Faddeev-Popov
trick extracts the volume of the gauge group from this integral. The functional
integral obtained in this way leads to the perturbative expansion with correct
Feynman diagrams [5]. Soon after the discovery of the Gribov ambiguity [6] it
was recognised that its origin is closely related to the global geometry of the space
of fields [7]. It is known that under some assumptions about an action of the gauge
group the space of connections ̂  has a structure of a principal fibre bundle over
the orbit space with the group <§ of local gauge transformations as a structure
group [8,9]. In this bundle there exists a connection determined by a natural
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^-invariant riemannian metric on c€. By means of this connection one can
construct an induced metric on the orbit space. Babelon and Viallet [10] have
shown that it is possible to provide the geometrical interpretation of the Faddeev-
Popov determinant in terms of this induced riemannian structure. Their interpre-
tation is based on a heuristic approach to the Feynman integral in which functional
measures are introduced by means of volume oo-forms (which are of course
completely formal objects) related to the riemannian structures on the space of
fields. More recently simmilar ideas appeared in a series of papers by Fujikawa
[11], where it was shown that the anomalies can better understood as arising from
the transformation properties of the functional measure. The geometrical
approach sketched above plays an especially important role in Polyakov's
quantization of the string [12]. In the case of d < 26 it leads to the Liouville theory
[13] and at the critical dimension it can be used to determine the multiloop
amplitudes [14-17]. Therefore it seems to be important to understand the
geometrical setting of the functional quantization of the first type of gauge theories
as well as the geometry of the Faddeev-Popov procedure. In order to achieve this
goal we must have at hand some unified and unambiguous method of dealing with
the functional integral which takes into account the riemannian structures on the
spaces of fields and the global geometrical properties of these spaces. In our
previous paper [18] such a method based on the geometrical ideas mentioned
above has been proposed and applied to provide the geometrical interpretation of
the Faddeev-Popov determinant in the case of Polyakov's bosonic string in d < 26.
The aim of this paper is to develop this approach using a more general framework
in a wider class of theories. It allows us to clarify some aspects of the Faddeev-
Popov procedure in Polyakov's theory omitted in [18]. Moreover it makes
possible the formulation of a conjecture about the general scheme of the covariant
quantization of the first type gauge theories. It is important to verify this
conjecture in the case of the euclidean gravity. Discussion of this point is far
beyond the scope of this paper and will not be included.

Let us stress some basic points of the present approach. It is clear that we need
some kind of measures on infinite-dimensional manifolds. The well defined
Gaussian measures on abstracts Wiener manifolds [19] are however insufficient in
many cases for quantum field theory. So in physics the commonly used approach
to the functional integration is the heuristic one based on the analogy with the
finite dimensional case. Let us note that the approach recently introduced by
Polchinski [20,21] in which the measure on infinite-dimensional manifold is
implicitly defined by means of a Gaussian measure in the tangent space at each
point is also based on this analogy. The basic tool in all present discussions of the
Faddeev-Popov procedure in the case of Polyakov's string [13-15, 21-23] is the
change of variables in a functional measure and therefore it has local character.
Extending the ideas of Schwarz [24] and Babelon and Viallet [10] we propose to
proceed a little further and use instead of the change of variables a formal
generalization of various versions of the Fubini theorem on manifolds.

After this brief motivation of methods used in this paper let us summarize its
content. In Sect. 2 the integration of a G-invariant function on a trivial finite-
dimensional fibre bundle is considered. Three types of integrals are introduced and
some theorems are formulated which allow us to express these integrals in terms of
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the global gauge slice and induced riemannian metric. In order to make this paper
self-contained the proofs of the theorems are outlined in the appendix. In Sect. 3
our geometrical method is presented in the most familiar case of the Yang-Mills
theory, and the results of Babelon and Viallet [10] are obtained. In Sect. 4 the
covariant functional quantization of the scalar spinless particle is considered. In
this case appropriate functional integrals can be evaluated and one can establish
the correct form of the functional representation of the particle propagator. It is
important because it provides some hints how to quantize the bosonic string. In
Sect. 5 our geometrical method is applied to the detailed discussion of the
Faddeev-Popov procedure in Polyakov's theory of the bosonic string. The results
of [18] are completed by discussion of the measure on the Teichmuller space in the
case of multiloop amplitude (genus >1) at d<26 and at the critical dimension
d = 26. The results of this section agree with those obtained recently by
Polchinski's method in [20-22]. In Sect. 6, taking into consideration the results of
previous sections, the general scheme of the co variant quantization of the first type
of gauge theories is formulated and some open problems are listed.

2. Integration of G-Invariant Functions

In this section we will consider the integration of a G-invariant function on a finite-
dimensional trivial principal fibre bundle. After formal generalizations to the
infinite-dimensional case the results presented here provide the geometrical
interpretation of the Faddeev-Popov procedure. Let us note that in many cases
(pure Yang-Mills theory [7,8], Polyakov's string and euclidean gravity [25]) the
quotient of the space of fields by the group of local gauge transformations is a
nontrivial principal fibre bundle. The most convenient (and in fact the unique) way
to parametrize the orbit space in gauge theories is to use the gauge fixing
conditions which can be interpreted as local sections of an appropriate fibre
bundle. Therefore in the infinite-dimensional case one can consider by means of
the Faddeev-Popov trick the integration only on trivializations of some fibration,
and our restriction to trivial bundles is justified. All theorems presented here result
from the Fubini theorem on a manifold [26]. The proofs of these theorems are
inessential for our considerations and their sketches are presented in the appendix.

We use the following objects: G is an n-dimensional compact Lie group,
P(U, G, π') is the trivial principal fibre bundle over U with structure group G and
the projection πf \P-+UΪZ P/G, Ra'.pe P->p a e P (a e G) is the right action of G on
P. We consideer a G-invariant riemannian metric g on P (Vα e G: R%g = g). All
objects considered here are assumed to be sufficiently smooth.

One can construct a connection on P related to the metric g and given by the
splitting [8,10]:

TpP=Vp®Vp\ (2.1)

where Vp is the horizontal subspace at the point peP defined as the orthogonal
(with respect to the metric g) complement of the vertical subspace Vp = Tpπ

f~1(p)
CTpP tangent to the fiber π'~1(p) at the point p. In order to find the explicit
expression of the connection form α of the connection defined above, let us
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introduce the family of mappings {τp}peP:

p Vp, τp^βp*\e, (2.2)

where

βp:G-+n'-1(p), βp{a) = Rj> = p a (2.3)

(e is the neutral element of G and G' is the Lie algebra of G). Introducing some
positively defined nondegenerate inner product fι in G' one can define the family of
adjoint operators {τp}peP:

a,τ;δp) = gp(τpδa,δp), (2.4)
+ :

where δa e G'? δp e TpP. It is easy to check that the form α defined at every point
peP by:

is a connection form on P and ker ocp = Vp. Let us note that α is independent on the
inner product lι used in the definition of τp . Starting with a G-invariant riemannian
structure g on P one can construct the riemannian metric g on the space of orbits
U. Suppose δu, δu' eTuU,p is a point in the fiber over u(peπ'~ ί(u)) and δύ, δύ' are
horizontal lifts (with respect to the connection α) of δu,δu' at p:

n'^δύ = δu, n'^δύ' = δu',

oipδύ = 0, ocpδu' = O.

We define the metric g by:

(2.5)

From the G-invariance of the metric and properties of the horizontal lifts it follows
that the right-hand side of (2.5) is independent of the choice of p in π'~ι{u).

Now let us proceed to the discussion of integration of G-invariant functions /
on P (Vα e G: R*f=f). Such a function is constant along the fibers of P and can be
considered as a function on the orbit space U. For the metric g on P we have the
following natural definition of integral of/ over U:

hin^Sfdat, (2.6)
u

where dω® denotes the riemannian volume element related to the metric g defined
above. Our aim is to mimic the Faddeev-Popov procedure in the finite-
dimensional case, so we must express the integral i Ί [ / ] in terms of some global
section σ: U-+P of P and the metric g on P. In order to do it, let us introduce some
additional constructions.

It is convenient to consider the isomorphic fibration

instead of P(U, G,π') so we can treat the base space Σ as a submanifold of the
bundle P. Let us consider the following family of submanifolds of P {Σα}αeG,
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Σa = RaΣ = Σ a. At every point p = u aeP (ueΣ, α e G) we define the orthogonal
decomposition:

TpP=Wp®Wp

±, (2.7)

where Wp = TpZ"α C ΓpP is the subspace tangent to the submanifold Σa at the point
p = u aeΣa and W^1 is the orthogonal complement of Wp with respect to the metric
g. We have a pair of projection operators related to the splitting (2.7):

Πj: TpP-+Wp, U j x : TpP-+Wp

λ. (2.8)

Let us consider the family of operators {Ap}peP:

Ap:G'->Wp\ Δp^Πp

v±oτp (2.9)

[see (2.2) for definition of τp] and the family of adjoint operators {Ap}peP:

defined by +

for every δa e G', δp e TpP, where K is the inner product used in the definition of τp

in (2.4).
We have the following theorem for / J

Theorem 1.

where dωΣ denotes the riemannian volume element related to the induced metric gΣ on
the submanifold ΣcP and operators τu,τ^(Au,A») are defined in (2.2), (2.4)
(respectively in (2.9) and (2.10);.

Let us note that the quotient:

is a G-invariant function on P and can be considered as a function on Σ. Moreover
it is independent of the inner product K used in the definition of τM

+,zlM

+.
Now let us introduce another type of integral of the G-in variant function / on

P:

\fdωq

hίf^^r, (2-12)
G

where dω9 denotes the riemannian volume element related to the metric g on P and
dωn is the volume element related to some fixed right-invariant metric h on G. For

e following theorem is true:

Theorem 2.

I2ίΩ= I f (dot A: Au^
2dωΣ, (2.13)
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where dωΣ, as before, denotes the volume element related to the induced metric gΣ on Σ
and Δu is the operator introduced in (2.9). The operator Δ* in the right-hand side of
(2.13) is now defined by:

he(δa, A δp) = gp(Δpδa,δp) δaeG'9δpe TpP, (2.14)

where he = h\TeG and h is the right-invariant metric on G used in the definition of J 2 .

In the end of this section we define one more integral / 3 [/] of the G-invariant
function of P, which is a special generalization of the integral J 2 [ / ] . The definition
of I3 requires an additional object on P, namely such a family {hp}peP of right-
invariant metrices on G that:

is G-invariant function on P. Because any invariant metric on G is determined by
its value in TeG = G\ one can treat {hp}peP as a family {hζ}peP of inner products in
G such that for a given base in G det/z£ is a G-invariant function on P. We define

. (2.15)
G )

We have the following theorem [18]:

Theorem 3.
Σ, (2.16)

where the definition of Δp the inner product hp

e = hp\TeG in G' is used. Another
symbols in (2.16) have the same meaning as in Theorem 2.

3. The Yang-Mills Theory

The riemannian geometry of the configuration space of pure Yang-Mills theories
and geometrical interpretation of the Faddeev-Popov determinant in noncovar-
iant functional integral have been discussed in detail in [10]. Let us only recall
that the functional integral on the configuration space (i.e. the functional integral
obtained from the phase space functional integral after integration over momenta)
corresponds to the integral of type I± introduced in the previous section. In other
words the Faddeev-Popov determinant is related to the natural metric on the orbit
space, which in this case is the quotient of the space of irreducible connections on
the principal fibration over three-dimensional space by the group of local, time-
independent gauge transformations. In this paper we are mainly interested in the
functional integral for gauge theories in the Lagrange formulation, so in this
section we will present from our point of view only those results of [10] which
concern the covariant functional integral of pure Yang-Mills theory. As we shall
see the euclidean version of this integral can be treated as a formal generalization of
the integral of type I2 for the infinite-dimensional case. The results of the infinite-
dimensional geometry of the space of connections and the gauge group are rather
well known and we refer to [8,9] for details. In the following the notations of [8]
will be used.
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Let us consider the infinite-dimensional principal fibre bundle

where ^ denotes the space of all irreducible connections on the principal fibration
P over M = S4 with the structure group G and § = &/Z is the quotient of the group
y = Autv(P) of vertical automorphisms of P by its centre Z. We define the space
Ώ€(M,adP) as the space of g-forms on M with values in the bundle adP
= Px adG' with the Lie algebra of G as a standard fibre and with the adjoint action
G on G'. Let us introduce the cup operator:

A: Ωq{M, adP) x Ωq'(M, adP)->i2«+iZ'(M)

by means of the exterior product for ordinary forms on M and some fixed invariant
inner product in G'. For a given riemannian metric on M one can construct the
natural inner product (\)q in Ωq(M,adP) by:

(φ\φ\=i φΛ*φ',
M

where φ, φf eΩq(M,adP) and * denotes the Hodge operator. The space %> of all
connections on P is an affine space modelled on Ω\M,a.άP\ therefore for every
AeΉ, ^~A

<% = Ωί(M,adP), and the inner product (\)ί provides the ^-invariant
riemannian structure G(\) on (€\

Because ^ is an open submanifold of ̂ , G( |) can be treated as a riemannian
structure on cβ. In order to construct a right-invariant riemannian structure on ̂  it
is sufficient to define an inner product in the Lie algebra Φ = ̂ d ^ of ^ . In physical
applications & = §' = Ω°(M,adP\ and a natural choice is the following one:

Due to the Gribov ambiguity [6,7] one can consider only local sections of the
fibrations ^ - > ^ / ^ near some given background connection Ao. Let us consider
the so-called background gauge condition:

dϊo(A-Ao) = 09 (3.1)

where d*jjL:Ωί(M,2idP)-+Ω0(M,adP) is the adjoint operator to the covariant
derivative dA restricted to the space Ω°(M,adP) and defined by:

(dAψ,φ)ί=(ψ,d%φ)0

for every ψeΩ°(M,a.dP), φeΩ1(M,SidP). It can be shown [8,9] that for every
Ae^S there exists an open subset ^(Ajc^/^ of the orbit space such that
Π{A)e%{A) and the following subset off:

2(A) = {A'e$: Π{Ά) e %{A\ d\\A! - A) = 0}
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does not contain two gauge equivalent connections, and therefore (3.1) defines a
local section of the fibration <€-*<§!§ over %(A). (Π in the above definition denotes
the projection in the fibration ^->#/#.) Then proceeding to a discussion of the
Faddeev-Popov procedure we will consider the following trivial principal fibre
bundle:

instead of <€-*<$!%.

Now we consider the following functional integral:

I=([dΩHYι J

where dΩH(dΩG) denotes the formal volume "oo-form" related to the riemannian
structure H( |) on § [respectively G( |) on ^(AQ)] and S[̂ 4] is the euclidean Yang-
Mills action. Of course such an expression is completely formal and we must find
another more tractable (at least perturbatively) form of /. We will show that the
resolution of this problem provided by the Faddeev-Popov trick is related to
Theorem 2 of previous section. In fact the integral / can be seen as an infinite-
dimensional counterpart of the integral I2 in the left-hand side of Eq. (2.13). In
order to find an appropriate counterpart of the right-hand side of (2.13) we must
find an infinite-dimensional counterpart of the operators AU,A^ [see (2.9) and
(2.14)]. We have the following correspondence of relevant objects:

finite-dimensional case
P

M
ueΣ

infinite-d:

<g(A0)
e-S[A]

AEMA0)

where an abbreviated notation Ωa(M,adP) = Ωq was used.
It can be easily seen that the infinite-dimensional counterpart of the right-hand

side of (2.13) has the form:

where dΩΆ is the volume "oo-form" related to the induced riemannian structure on
1(AO). Finally, using the functional <5-function with appropriate Jacobian one can
proceed to the more familiar form of /:

/ = f δ(d*Λo(A-Ao))detd*AdAoe-sWdΩG.
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Let us note that because the riemannian structure G(|) is constant on # the
measure dΩG can be treated as a formal "Lebesgue measure" on Ή and we have full
agreement with usual expressions [5].

4. The Spinless Scalar Particle

The Faddeev-Popov procedure in the covariant functional quantization of the free
relativistic particle has been considered in the context of Polyakov's string in [23]
and more recently (and more carefully) in [21]. The aim of this section is to
compare three possible definitions of the particle propagator based on formal
generalizations of the integrals introduced in Sect. 2. As we will see, the definition
related to the integral J3 is the correct one. In this case our approach reproduces
the derivation and results of [21].

Let us consider the following (euclidean) action [27]:

, (4.1)

where x{t) = {xμ(t)}d

μ=1 denotes an embedding of the interval L Ξ [ 0 , 1 ] into the
Euclidean space Rd and describes the position of the particle, e = e(ήdt is the
"einbein" of the metric e2 on the interval L and x~ xe describes a distance scale on
the path of the particle. This action is reparametrization invariant, so the group of
diffeomorphisms @L of the interval L plays the role of the gauge group.

Let us start our discussion with some geometrical preliminaries. We will
consider the following fibration:

JfLx#Z^ΛLx*l/@L9 (4.2)

where Sy

x denotes the space of all embeddings {xμ{t)}d

μ=i of L into Rd with the
property that xμ(0) = xμ, xμ(l) = yμ{x, y e Rd); JίL is the space of all "einbeins" on L
and the right action of 3)h on JiL x $y

x is defined by pull-back Rf{e, x) = (f*e, f*x\
fe@L. Resorting to Sobolev spaces, it is possible to give a Hubert manifold
structure to @>L,$l,J(L and prove that (4.2) is the principal fibre bundle. All
relevant results can be found in [8] (and references therein). Here we mention only
that although 3)L is not a Lie group, nevertheless it is a Hubert manifold modelled
on the space H0(TL) of vector fields on L vanishing at the ends of L. With this
structure @L is a topological group under composition of maps. The left action
Lff'=fof is continuous (but not smooth) and the right action Rff'=fΌf is
smooth for any feΘL. One can construct the right-invariant riemannian (weak)
structure H( \) on S)L by defining an inner product in the tangent space 3~-xdβh

= H0(TL) at the identity diffeomorphisms:

If we have some metric g = e2 on L, the most natural parametrization-invariant
inner product on H0(TL) is the following one:

t, (4.3)
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where δt, δt' e H0(TL). The metric defined by this product we will denote by He( |).
The space JίL is the open subset of the linear space Q}{V) of one-forms on L, hence
it is an infinite-dimensional manifold modelled on Ωι(L). The space Sζ is an affine
space modelled on the space <f 0 =

 x ^o(L), where Ω%(L) is the space of real functions
on L vanishing at the ends of the interval L. One can construct natural riemannian
structures on JiL and δζ as follows:

c ς f

^ , (4.4)

t, (4.5)
L

where δe, δe' e 3~eJ(L = Ω\L); eeML\ δx, δx' e *ΓxS
y

x = δo,xe Sy

x. The above struc-
tures define a cartesian product riemannian structure G(\) on Jίhxδy

x which is
right-invariant due to reparametrization invariance of (4.4) and (4.5). Now let us
consider the problem of existence of global sections of the principal fibration
(4.2). It is clear that (JίL x δζ)/@L = (JtL/@L) x δy

x, hence we are in fact interested
in sections of the principal fibration:

Fortunately this fibration is trivial and JίL/ΘL is isomorphic to the positive real
half axis R + . This follows from the fact [23] that given a cart of the interval
L = [0,1] and given an einbein eeJίu one can always find a diffeomorphism
fe 3)h such that in this cart f*e = cdt, where c is a positive constant determined by:

c = fe(ί)Λ. (4.6)
L

Equation (4.6) can be seen as a condition determining the fiber of the bundle
JiL-^JίJΘL containing the einbein e. It is easy to verify that for every eeJiL the
submanifold,

intersects every orbit exactly in one point and can be used as a global gauge slice
(there is no Gribov ambiguity).

Now let us proceed to quantization. The relevant object is the euclidean
propagator P(x, y) defined, according to the general idea of a covariant functional
approach to gauge theories, as a sum over all paths in Rd with internal metric and
with fixed endpoints x,j/eIRA In order to give a meaning to the above formal
definition we must first define a measure on the orbit space and then express P(x, y)
in terms of parametrizations (x, e) of one-dimensional riemannian submanifolds of
Rd and some gauge fixing condition. As follows from the considerations of Sect. 2
this can be achieved at least by three different ways. From the geometrical point of
view the most natural definition is that corresponding to the integral j \ [see (2.6)]
namely:

PfayJΞΞ J e-sdΩG,

where dΩ& denotes the formal volume element related to the metric G(|) on
JίL x δl/2L defined by analogy with the metric g considered in Sect. 2. On the other
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hand the results in the Yang-Mills theory described in Sect. 3 suggest that an
appropriate definition is the following one:

P2{x,y) = ( J dΩHe°)~1 x J e~sdΩ

where the formal measure dΩHe° is related to the metric He°( |) on ΘL for some
e0 e JίL chosen for the normalization of the volume of the gauge group and dΩG is
related to the metric G( |) on Jίh x Sζ. One can also consider the third possibility
[see definition (2.15) of /3] introducing the family {He}eeML of riemannian
structures on 3)L\

Ps(x,y)= J (\dΩHeYιe-sdΩG. {A.I)

For each of the "propagators" defined above one can apply the Faddeev-Popov
procedure using appropriate generalizations of theorems presented in Sect. 2. The
nice feature of the model under consideration is that due to the very simple
structure of the orbit space and quadratic dependence of the action on the x
variable one can explicitly evaluate all the above "propagators." It turns out that
only P3{x,y) is a well known euclidean propagator so we now proceed to the
discussion of the integral (4.7). The results of Pι and P2 will be only mentioned in
the end of this section.

Let us note that due to the "product" structure of the fibration (4.2) and the
"diagonal" property of the metric G( |) on JiL x Sζ the integral (4.7) can be
rewritten in the following form:

Ps(x,y) = ί (I dΩTYΊl e~sdΩEe)dΩM,

where the formal measure dΩEe(dΩM) is related to the riemannian structure Ee( |)
on $y

x (respectively M(\) on Mj). The integral over Sζ is Gaussian so can be
formally performed:

I
= e L » \-d/2

) 5

where v = $e and ife denotes the one-dimensional Laplace-Beltrami operator:
L

e e dt e dt'

acting on the space ΩQ(L).

Now we apply the appropriate formal generalization of Theorem 3 to the
integral:

In order to do it we must find the infinite-dimensional counterpart of the right-
hand side of Eq. (2.16). We have the following correspondence between relevant
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geometrical objects:

finite-dimensional case infinite-dimensional case

P-+P/G JiL-

f(p) e~*

u<=Σ e

Wu Ψ~e = {δeeΩι(L): δe = δλe, δλeM]

Wj- -Ψt=\besΩ\L):

Δ:ΔU:G'^G' -J?ee:H0(TL)^H0(TL). (4.8)
e

Let us note that now in the infinite-dimensional case the gauge slice is orthogonal
to the fibers, therefore i ^ 1 is the space tangent to the fiber containing e and the
counterparts of operators τu and Δu are identical. It is easy to see that the operator

- <£ee acting on H0(TL) has the same spectrum as the operator S£e acting on ΩQ(L\
e
so we have: γ

and from Theorem 3 of Sect. 2 and the correspondence (4.8) the following form of
the integral (4.7) can be derived:

3 v y/ j

where v = j e and dΩΣs denotes the formal riemannian measure related to the metric
L

induced on Σ-edJίL. Let us evaluate this metric at the point. λeeΣ^. For δλe,
Zj> we have:

Changing the variable of integration we arrive at the following expression:

P3(x-y)=$dλv(λvy1/2e 2L ** ° J(detJ2?AB)τ 2 . (4.9)
o
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The last task is to regularize the determinant of «Sfλg. Using the ζ-function
regularization [29] we have [21,23]:

logdetΛ(J2?AB) = logλi? + log2. (4.10)

Inserting (4.10) into expression (4.9) we have:

Taking the Fourier transformation and changing the order of integration it is easy
to obtain:

where c3 is an irrelevant constant.
A similar consideration can be performed for Pί and P2 with the following

results:

One can see that the correct geometrical interpretation of the Faddeev-Popov
procedure is provided by formal generalization of the definition of the integral /3

and Theorem 3 of Sect. 2. The other definitions lead to nonlocal theories and can
not be considered as a "quantization" of the relativistic particle.

5. Polyakov's Bosonic String

Let us briefly recall the basic concepts of Polyakov's method for calculating of
averages of functional defined over surfaces [12]. Such averages can be generally
expressed in the symbolic form as follows:

]Fe~sdΩ,

where 9 denotes some space of surfaces embedded in Rd and endowed with an
intrinsic riemannian metric. S is some action defined over such surfaces and
integration in general involves summation over topologies. Depending on physical
applications [13-17,20-22] various spaces of surfaces and various actions are
used. In this section, in order to avoid inessential (to understand the geometry of
the Faddeev-Popov procedure) boundary terms, we will consider the following
functional integral:

Zh = J e~sdΩ, (5.1)

where integration goes over the space (Sh of all closed surfaces with h = 0,1,...
handles. Such an integral can be seen as an /z-loop vacuum amplitude for a closed
bosonic string [14-17]. A surface secSh can be described by its parametrization
(g,x), where x = (x1,...,xd) is the embedding of some fixed two-dimensional
orientable manifold Mh of genus h, and g is a riemannian metric on Mh. We have a
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natural right action of the group @)h of orientation preserving diffeomorphisms of
Mh on the space of parametrizations 3Ph = Jih x Sh {Jίh denotes the space of metrics
on Mh and Sh - the space of-embeddings of Mh into Rd) defined for fe@h as
follows:

Rf(g,χ)=(f*g,f*χ).

It is easy to see that for any fe @h9 parametrizations (g, x) and (/*g, /*x) describe
the same surface in IR̂  with its intrinsic metric (x~1)*g. Therefore we can write:

% = {Jίh x <$h)/% = Jth^h x gh.

In terms of parametrizations one can define the action for surfaces from $h

introducing a ^-invariant functional on SPh. The action used by Polyakov had
been previously proposed by Brink et al. [27]:

s[g,x]=ί f /gd2zgabdχdbx\ (5.2)

where xeih,ge Jth. Let us note that using the principle of renormalizability one
can derive the most general action containing two additional terms [30]:

However, the first term on the classical level leads to an inconsistent equation of
motion [30]. The second term is a topological invariant called the Euler
characteristic, and being a total derivative it does not contribute to the equation of
motion. The classical action (5.2) is invariant under global rotations and
translations in the Euclidean space Rd, under diffeomorphisms of Mh and under
Weyl transformations of the metric:

gab(z)-+e2^gab(z). (5.3)

The conformal deformation of metric (5.3) is parametrized by the scalar function
φ:Mh-^ΊR. and the abelian group of these transformations is isomorphic to the
additive group ifh of all scalar real functions on Mh.

Before we proceed further let us recall some geometrical preliminaries about
the functional spaces under consideration. Let us denote by H(T2) the linear space
of symmetric tensor fields of type (0,2) on the manifold Mh. By resorting to Sobolev
spaces in the usual way, one can give the Hubert space structure to H(T2). The
space of metrices Jίh is the open cone in H(T2\ so Jίh can be considered as a Hubert
manifold modelled on the space H(T2) [8,28]. On Mh we have a natural
riemannian (weak) structure M(|) defined by:

Mg(δg, δg') = J ]/g d2z[_iig"cgbd + g- V b - gabgcd) + cgahgcd-]δgahδg'cd,

where <5g, δg' e 2ΓgJίh = H(T2\ g e Jtw This metric structure is natural and unique as
far as we are looking for a ^-invariant expression which is local and does not
involve derivations of the metric (so-called ultralocality) and does not involve
arbitrary functions. Let us note that the above metric structure is not Weyl
invariant.
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The space Sh = x Ω°(Mh) is linear, so there is no problem with the Hubert
manifold structure and the natural (in the above sense) ^-invariant weak
riemannian structure E9( |) on Sh is defined in the tangent space 3Γ x Sh at the point

Eg

x{δx\δx') = J ]/gd2zδxμδx'μ,
M

where δx, δxf e 2TxSh = Sh. By the cartesian product construction we have a natural
^-invariant structure G(|) on &h\

G{g, x)(δg, δx\δg\ δx') ̂  Mg(δg, δg') + EJδx, δx'),

where (δg,δx), {δg\δx')e3Γ{gx)(JihxSh) =
The Hubert manifold structure of <3h has the same properties as in the case of

Q)L briefly described in the previous section [8,28]. 3)h is a Hubert manifold
modelled on the space H(TMh) of vector fields on MA, and the natural right-
invariant riemannian structure Hg(\) on 3Jh is determined by its value in the
tangent space at the identity diffeomorphism:

HU\):H(TMh)xH(TMh)->lH,

HWf\δf')= \ ]/gd2zgabδf δf'b,
Mh

where <S/, δf e ̂ {ά9h = H(TMh).
The group iVh of conformal deformations of the metric has an obvious Hubert

space structure with a natural invariant riemannian structure W9( \)oniΓh defined
for φeiΓh by:

W°(δφ\δφ')= f ]/gd2zδφδφ\
Mh

where δφ, δφ' e ̂ φirh = Ω°(Mh\ φeiTh,ge Jίh.
Finally we consider the semi-direct product Q)hQifh. The right action of the

element (f,φ)e@hOifr

h on &>k is defined by:

One can introduce the right-invariant riemannian structure in 3hQΨ*h by defining
its value at identity (id, 0)e^hQifr

h:
1 ) ^ J γgd2zgabδfaδf'h+ J ]/gd2zδφδφ'. (5.5)

M M

Let us note that we prefer to work with ^hQi^h instead of i^hQ^h, because in the
last case the extension of (5.5) to the whole group by the right action leads to the
"nondiagonal" metric. In the case of @hQiΓh such an extension leads to:

V(U(δf,δφ\δf',δφ')= f \/gd2zgabδf°f-1δf'°f-1+ f

for any (f,φ)e3>hGΨlι and (δf,δφ),{δf',δψ')e^f_φβhΘirh.
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Now let us proceed to Polyakov's definition of the functional integral (5.1). As
follows from the symmetries of the classical action (5.2) the gauge group of the
string theory under consideration must be identified with Q)hQifh. So the physical
configurations of the string are described by the quotient ^hISJhQiΓh. In order to
eliminate the redundant degrees of freedom one can try to apply one of the schemes
described in Sect. 2. At this point, however, we face troubles. All schemes
considered in Sect. 2 required some gauge-invariant metrics on the original field
space, while in our case the most natural riemannian structure on 3Ph is not Weyl
invariant. Moreover, any other ultralocal <3)h©^-invariant structures requires
introduction into the theory of some arbitrary length scale which is physically
unacceptable. It led Polyakov to the consideration of the theory described by the
action (5.2) as a gauge theory of the diffeomorphisms group. On the other hand the
action (5.2) is a straightforward generalization of the action (4.1) of a spinless
particle, so it is natural to define Zh by analogy with the definition (4.7) of the
particle propagator:

Zh=\(\ dΩH9Y1e~S[9'x]dΩG, (5.6)
&h \@h J

where dΩH9(dΩG) is the formal volume element related to the riemannian structure
H9( I) on Q)h [respectively G( |) on SP^\ and {Hg}geJίh is the family of riemannian
structures defined in (5.4). The restriction of the gauge group ^hQΨ^hto @ιh has
important consequences. This means that physical configurations are described by
the quotient &hl@h and the conformal factor φ is treated as the dynamical variable.
However the integral (5.6) is well defined only when the dynamics of the conformal
factor is non-trivial. It can happen only as the result of the anomaly because φ is
not present in the action (5.2). It was shown by Polyakov [12] that for d<26 the
conformal anomaly really appears and φ acquires a non-trivial dynamics. For
d^26 the integral Zh diverges. More recently the covariant path integral for the
BDHP string has been reconsidered at critical dimension by several authors
[14—17, 20-22]. The following definition suggested by the true gauge group
^ ή O ^ i and by the expression of the point particle propagator (4.7) has been
proposed:

Z2

h

β=U J dΩV9γxe'slβ'xldΩG

9 (5.7)

where dΩvg is related to the metric structure Vβ( |) on @hQWh. It is clear that for
d < 26 this integral formally vanishes due to an infinite volume of the Weyl group in
the denominator. In d = 26, however, one can hope that this integral leads to a
correct expression, as in the critical dimension the local conformal anomaly
disappears. It was shown further [22] that there is no nonlocal anomaly either and
the integration over the conformal factor is perfectly cancelled by the volume of the
Weyl group.

In the rest of this section we will apply our geometrical formulation of the
Faddeev-Popov procedure to the integrals Zh and Z^6 for h^2. The cases of
sphere S2 and torus T 2 require a slight generalization of the scheme described in
Sect. 2 and some special results concerning the geometry of the quotients ,
and JiJ@}u and will not be discussed here.
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Let us recall some relevant geometrical results. The action of 3>h on Jίh is not
free, so we will consider the following fibration:

Jt^Jί^^ (5.8)

where Jih is the subspace of Jίh consisting of metrics with a trivial isometry group.
Mh is the open and dense subset of Jίh and the fibration (5.8) has the structure of a
principal fibre bundle [8,28]. Simple consideration of the homotopy of @Jh shows
that the bundle (5.8) can not be trivial [25]. In order to overcome this problem, one
can consider the following fibration instead of (5.8):

Mh-+JiM, (5.9)

where 3)\ is the connected component of identity. For h>ί there are no
topological obstructions to the bundle (5.9) to be trivial [25]. Before we proceed to
discussion of gauge fixing, let us consider the following fibration:

The quotient JiJ^Qif^ is called a Teichmuller space for the surface of genus h
[31]. It is known that ?Γh is an open, convex subset of ΊR.6h~6. Let us note that the
action of ® ° O # ^ on Jίh is free for h > 1. In fact for surfaces of genus h>\ the group

of so-called conformal diffeomorphisms for a given metric g is discrete (and finite)
and ^n^d

h = {id} [31]. A discussion of a principal fibre bundle structure of
Jίh-*2Γh and its triviality requires some rather advanced mathematical methods
and will be omitted in this paper. We assume here that the global section i of the
fibration (5.10) exists:

t:r3t

For a given i one can construct the global section σ of the fibration (5.9) defining
the gauge slice Σt by:

and _ _
σ: JiJ^h s u-+g = σ(u) e Jίh,

where Π denotes the projection of Jίh

Let us consider the integral (5.6). Due to the "diagonal" structure of the metric
G( I) on ̂ k, the integration over Sh can be performed. In order to do it we must
separate the constant pieces of x. One can introduce the following orthogonal
decomposition:

g

where Sh contains those x which are orthogonal to constants:

J ]/gd2zx^ = 0, μ=lf...,d.

Using an appropriate generalization of the Fubini theorem (rather trivial in this
case) we have:
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where jS?fl denotes the Laplace-Beltrami operator:

^ d ] / a b d

acting on the space of scalar real functions on Mh (symbol det' for determinants
means that zero-modes of S£g are omitted). The finite-dimensional divergent
integral in the above formula can be regularized by putting the system in a box of
dimension L [22], then:

As before we will apply the appropriately generalized Theorem 3 of Sect. 2. Let us
introduce the following subspaces of the space 9~gJίh tangent to Mh at the point
g = ̂ 6 2 , (see Fig. 1):

Fig. 1

= \δgeH(T2): δg = δφeY+δtkeφ~g1, δφeΩ°(Mh),

χ β={δgeH(T2): δg = δφe«g<, δφeΩ°(Mh)},

y. g'°»δgab = 0},

= UgeH(T2): δg = δtke^gt,

y δgab=Va(δVb)+Vb(δVa), δVeT(Mh)},
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(Vg denotes the covariant derivative defined by eφgt). We have the following
orthogonal decompositions:

(5.12)

where ΊV*^{V^) denotes the orthogonal complement of ifg (respectively *Vg) in
3~gJίh, and C^g

L(3Tg

L) denotes the orthogonal complement of C/fg (respectively 3Γg) in
Ψ*g (on i^g we have an induced scalar product). Let us consider the projection
operators:

related to the splitting (5.ll), (5.13) and (5.12) respectively. We have the obvious
relation: , _ ,

The infinite-dimensional counterpart Tg(Pg) of the linear operator τp (respectively
Ap) considered in Sect. 2 has in the present case the following form:

Tg:H(TMh)^H(T2),

1 g — l ί β 1g l λ g ι l g 1g ι l g λ β'

where Pg denotes the operator introduced by Alvarez [13]:

Pg:H(TMh)-*3fg,

where g = eφgt and V is the covariant derivative defined by g. Let us consider the
orthogonal splitting:

^ I P 0 K P ; , (5.14)

where P+ : jeg-*H(TMh) is defined by:

for all δg e J^g, δVe H(TMh). One can construct the projection operators related to
this decomposition:
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It is easy to verify that the adjoint operator P* : j4?g-+H(TMh) defined by:

for all δge^g, δVeH{TMh) fulfills the relation:

and β 9 9'

det P +Pg = det 0>* det ̂  det P+P f f,

where ^ = ΠP\WL, ^ / ^ = 7?jΓΊimpg Let us note that determinants of ^ and ^ r r ' L

in the formula above are evaluated in an orthonormal basis of spaces iV^ and
ImP^. Using a formal generalization of the first part of the lemma of the
Appendix in the case of the decompositions (5.13) and (5.14) we have:

det^J = det^f^ = det [_Gg(δψ^δχ i\,

where {δψ^ft^6 ({δχ^t\6) denotes the orthonormal basis in KerP^ (respectively
in Jf/). For any arbitrary (not necessarily orthonormal) basis {<5y\ }f=7 6 -
we have:

(detH(F+))1'2

where H is the matrix introduced by Alvarez [13]:

Resuming we have the following correspondence:

finite-dimensional case infinite-dimensional case

P^P/G M h l

ueΣ

TUP=WU®WU

L

 β βK

τu:G'->TuP Tg:H(TMh)^H(T2)

: : TUP-+G' P ; = p ; o Π"g .

Using the formal generalization of Theorem 3, the following form of the integral Zh

can be derived:
det'JS?a

-d/2

dΩΣ\
Jgά'Ί

\Mh

where dΩΣί denotes the formal volume element on Σ- related to the metric induced
on Σ-.
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The next step is to express the integration over Σί in terms of integration over a
conformal factor φ and Teichmuller parameters tk. It can be achieved by applying
an appropriate formal extension of the Fubini theorem in the case of fibration:

In order to do it we will construct the formal volume form on Σι of the form:

Π*{de1Λ...Λde6h-6)ΛdΩ,

where de1 A ... A de6h ~ 6 is the euclidean volume form on WL6h ~ 6 and dΩ is a formal
form on Σ{ such that:

dΩ\π-Ht) = dΩΣ<\π~Ht). (5.15)

Let us consider two bases of SΓgΣ^ the orthonormal one:

and the following one (in general not orthonormal):

j - e

For dual bases {dχj}6

ji\
6κj{dφί}fLu {dχj}^i~1

βκj{dφi}Γ=ί, we formally have:

6h — 6 oo

dΩΣί Λ dχjA Λ dφk

j=i fc=i

Λ ^ A Λ V

i/|δχ i)iI*(dβ1 Λ ... Ade6h~6)AdΩ. (5.16)

Let us note that in general dφk φ dφk, nevertheless the relation (5.15) is valid. Now
from (5.16) and the Fubini theorem the following expression of Zh can be derived:

dβh~6t

where

d e t P Λ

+ P Λ \ 1 / 2 / det'JSfg \ ~di2

^Mh ' (5.17)
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It is easy to check by straightforward calculation that Gg(δ\p^δχ^ is independent of
the conformal factor φ. The formal volume form dΩ in the formula (5.17) can be
considered as one related to the induced riemannian structure on Π~x(t).
Changing the variable of integration φ-^eφgt we finally have:

~d/2
(5 18)

where dΩw denotes the volume element related to the nonconstant riemannian
structure W(\) on Ψ"h:

Wφ(δφ,δφ')= J e*}/^ d2zδφδφ' (δφ,δφf eΩ°(Mh)).
Mh

The formula (5.18) has been derived for the first time by Alvarez [13] for the special
case of gauges Ί: 3Γh^»J{h for which δχ^e KerP+, and more recently in the general
case by Moore and Nelson [22].

Let us comment on the problem of overcounting of physical configurations. In
fact in the above discussion the full gauge group 3)h has been replaced by Θ® which
leads to the residual gauge invariance under the group Γh = S^JS)^. Γh is the so-
called homeotopy or mapping class group and is the properly discontinuous group
of the Teichmuller space [14]. The quotient &]JΓh is isomorphic with the moduli
space of riemannian surface of genus h, defined as a space of all complex structures
on Mh. The problem of this overcounting can be overcome by restricting the
integral over Teichmuller parameters in (5.18) to the fundamental domain
[JΛ] C ̂ ~h of/J in ̂ j . This is possible because the singular points of [/̂ ] form a set of
zero measure and the intergrand of (5.18) has modular invariance.

Now let us consider the integral Z26. Due to the "diagonal" structure of metric
V9(\) on Q)hQiΓh, the Fubini theorem yields formal relation:

f dΩV9= f dΩH9x { dΩW9

h h h

and

Zf = J ( J dOP'YΊ J

The "volume" of the Weyl group is a ί^-invariant functional of g so nearly all
calculations can be performed as in the case of Zn. The result is:

x / f dΩW9\\-i

~d/2

Using the heat kernel method Alvarez shows [13] that up to φ-independent factors
and with an appropriately chosen renormalization constant:

α ~ — (5.19)
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where SL[φ] denotes the action of Liouville theory. Therefore for h > 1 and d = 26
the left-hand side of (5.19) is φ-independent and one can write:

1 / 2/ det^9 V 1 3

Let us recall that dΩ^9' is related to the nonconstant metric Wβ\\):

W${δφ\δφ') = j e'"'γi'δφδφ'd2z,
Mh

while dΩW9 is related to the constant metric

Wp\δφ\δφ')= f (*Yέ
MH

We have the following formal relations [18]:

f ACiW^β* s,i:$φδ(0)d2z c J n ^ 9

I llύCi C I I f ώώ ,
J J 7

therefore:

j dΩw ίJ dΩw \ 1 = 1 ,

and finally:

/ H p t P + P \1/2 I de.t Ψ \ ~ 1 3

(5.20)

The expression above coincides with that obtained in [15] and [22].

6. Concluding Remarks

As follows from the above considerations the presented approach provides a
convenient method of dealing with functional integrals and gives the geometrical
interpretation of the Faddeev-Popov procedure. Moreover the method is sensitive
enough to distinguish between three prescriptions for the functional integral over
the orbit space given in Sect. 2. The results of Sects. 3 and 4 show that the first
definition (related to Iγ) is never appropriate and has been considered only for
comparision. The second definition (related to I2) can be considered as a special
case of the third one. If the natural right-invariant riemannian structure on the
gauge group is field-dependent (as in the Yang-Mills theory) both prescriptions
lead to the identical, correct answer. In the case of the point particle the natural
right-invariant riemannian structure on the group of diffeomorphisms depend on
the metric and these two approaches yield different results. Explicit calculations of
Sect. 4 show that only P3(x,y) is the usual particle propagator; therefore one can
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expect that the third prescription is the universally correct one. Finally, as has been
discussed in Sect. 5, the scheme related to the integral 73 and Theorem 3 of Sect. 2
applied to Polyakov's string leads to the known expressions of the multi-loop
vacuum amplitudes [14-17, 22].

Taking into account the results presented above one can try to formulate the
general scheme for covariant quantization of the first class gauge theories. Starting
with an euclidean action S we must first choose the appropriate (infinite-
dimensional) manifold Jί of field configurations and the gauge group ^ defined as
a group of local symmetry transformations of the action S. The next step is to
determine the most natural (ultralocal and not involving the additional structures
and parameters) rίemannian metric G(|) on Jί and H(\) on 9. The relevant
functional integral is then defined by analogy with the finite-dimensional integral
I 3 introduced in Sect. 2:

(H\1e-sdΩG. (6.1)

Let us note that in general the metric H(|) can be field-dependent. The possibility
of giving a meaning to the integral (6.1) by the Faddeev-Popov procedure of course
depends on the geometry of the action of ̂  on Jί. The possible obstructions can be
seen as anomalies.

Of course it must be checked that the above scheme is a scheme of
quantization. It is far from obvious that the functional integral (6.1) considered for
example as a propagator (with the appropriate choice of Jί) leads to a unitary
motion of some quantum system. The possible resolution of this problem is to
show the equivalence of the presented approach with the canonical one introduced
by Fradkin [1] which has clear physical interpretation and is formally unitary "by
definition." This equivalence is obvious in the case of the relativistic particle [33]
and well established for the Yang-Mills theories [2]. In the case of the bosonic
string the situation is not so clear (for some related points see [32,34]). Let us note
that Polyakov's covariant quantization of the string at d < 26 is beyond the general
scheme described here. As it was discussed in the previous section only a part of the
full gauge group is used in the definition of the appropriate functional integral [see
(5.6)]. It was shown by Marnelius [35] that in this case Polyakov's theory is
equivalent to the canonically quantized suitably modified classical model of the
string. As one can expect this modification consists in the introduction of
additional degrees of freedom on the classical lavel. This problem is probably more
important in the case of euclidean gravity so it seems to be interesting to consider
scheme sketched in this section also in this case. Some attempts in this direction
have been made in [36] where geometrical interpretation of the Faddeev-Popov
determinant was also discussed.

Appendix

The aim of this appendix is to give some justification of theorems formulated in
Sect. 2. For simplicity special requirements concerning differentiability and
measurability will be omitted. We generally assume that all structures under
consideration are sufficiently smooth. Let us note that the integrals considered in
Sect. 2 are oriented so all manifolds are assumed to be orientable.



Geometry of the Faddeev-Popov Procedure 463

We start with some additional constructions. At every point pePwQ have two
orthogonal decompositions (2.1), (2.7):

TpP=Wp®Wp

±=Vp®Vp

±

and two pairs of projection operators related to these splittings:

Γfw - T P -+W ΓJW± T P—vW1

11p'1pΓ^γvpy 11p >lpΓ^Wp>

JJV . rγ p_^y γjVL . ji p_^ yl

Let us define:

All these operators are bijective which follows from the fact that σ: U-+P is a
section of P and g is nondegenerate. It is convenient to prove the following:

Lemma. |det^"| = |det^F ± | = |det^f | = \det0>w±\, (A.I)

where the determinants of all operators are evaluated in the orthonormal (with
respect to the metric g) bases in Vp, Vp, Wp, Wp. The absolute value of all
determinants in (A.I) is a G-invariant function on P and

Proof of the Lemma. Let us choose two orthonormal (with respect to the metric g)

bases {<5wf}Γ=i> {^}Γ=i i n T

P

P s u c h t h a t :

δwiβWJ-, ^ 6 F P for i = l , . . . , n ,
(A.3)

δwieWp, δvieVp1 for i = w + l,...,m.

Further we construct the basis {δtι}f=i of TpP (in general not orthonormal):

δt^δVi for i = ί,...,n,
(A.4)

δt^δwi for z = n + l , . . . ,m.

We have:

δtt= Σ AM= Σ BijδVj,

where the transition matrices A,B are defined by:

Proceeding to the appropriate dual bases {dw'}?Li, {^}Γ=i? {dtι}T=i we have:

m m mm

Λ dw^dQtA Λ dίf= ±detB /\dti=± f\ dv\ (A.5)
i = l i = l i=l i=ί

and therefore:
|det>4| = |detB|. (A.6)
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The transition matrices have the following form:

where:
aij = gP(δvbδWj) ίj= 1,...,n,

bkι = gp(^h^i) k9l = n + ί9...,m.

From (A.6) and (A.7) it follows that |detα| = |det b\. Now from an explicit form of the
matrix a one can see that detα can be interpreted as a determinant of the operator
gPj1 or SPζ evaluated in the orthonormal bases in Vp and Wp. Similarly for the
determinant of the matrix b we have:

Now we proceed to the second part of the lemma. Let us note that all determinants
(A.I) are independent, up to sign, of the choice of an orthonormal bases in the
spaces Vp9 F/, Wp, Wp and their absolute values are well defined functions on P.
The G-invariance of these functions immediately follows from the G-invariance of
detα (or detfo) which is a consequence of the G-invariance of the metric g. In order
to show the relation (A.2), let us consider some base {(5sJ"= 1 in G' and let {δυ$= ί

and {<5wJ"= ί are orthonormal bases in the spaces Vp and respectively Wp. With the
convention that \_A\ denotes the matrix of operator A evaluated in appropriate
bases and [K] is a matrix defined by [Kjij^hiδs^δSj}, we have:

and

= (det[^)- 1 (det[τ p ]) 2

Therefore the equation (A.2) follows. Let us note that the right-hand side of (A.2)
does not depend on the choice of the base in G and the inner product K in G.

Proof of Theorem 1. Let us change the variable in the integral / t using the global
section σ U

where dώΣ is the volume element related to the metric gΣ defined at every point
ueΣ by: ŷ , Λ ^ ,

gu = (π*g)u\τuΣ,

For every δu, δu' e TUΣ=WU we have:

Ά , K) = gu^Γδu, 0>Γδu'). (A.8)

The corresponding expression for the induced metric gΣ on Σ is as follows:
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Now we compare the volume elements related to the metrics gΣ and gΣ. Let us
consider the bases: {δwi}f=n+1 in Wu and {<5ι>j}Γ=n+1 i*1 Vu introduced in (A.3). It is
clear that {δwi}™=n + x is the orthonormal base in TUΣ with respect to the metric gΣ.
From the formula (A.8) one can see that the base {Svi}f=n+1 defined by:

δΰi^(^Lγ1δvi for ΐ = n + l,...,m

is the orthonormal base with respect to the metric g. Without loss of generality one
can assume that bases: {δwi}f=n + u {δvi}^=n+ι are both positively orientated. The
transition matrix from {δwi}

1[ί

=n+1 to {δvi}
I[Ln+ί can be easily calculated:

Σ
j=n+l

m

Σ
j = n+ ί
.7 = 11+1

Proceeding to the dual bases {dwί}f=n+1, {dvi}f=n+l we have:
m m

dώΣ= Λ d&^detAy1 /\ dw^idetAy^dω1.
ί=n+l i=n+ί

Because A is a matrix of the operator ( ^ f 1 ) " 1 evaluated in orthonormal bases of
the spaces Vu

λ and Wu we can apply our lemma to its determinant. From (A.I) it
follows that:

det-M Γ f±

and from (A.2) we finally have:

Proof of Theorem 2. We will prove (2.13) extracting from the integral:

the volume of the "gauge" group G by means of the Fubini theorem on manifolds
[26]. In order to apply this theorem in our case we must construct a suitable
expression of the volume m-form dωd as an exterior product of two forms on P. At
every point p e P w e consider the base {δt^ΊL i in TpP defined in (A.4) and such that
{δti}T= l ({δti}?=n+ I) is positively oriented in TpP (respectively in TpΣa) with respect
to some fixed orientation on P (respectively on Σa). An orientation on the fiber
Π~ι(Π{p)) we determine by demand that the orientation of {δti}"=1 is positive.
Proceeding to the dual base {dtι}r[t

=1 we define:

dωp = dtn+1Λ...Λdtm.

Because the splitting TpP = VPQ) WP is continuous and G-invariant dω1 and dω are
well defined forms on P. For these forms the following relations are true:

dωL\π-Hu) = dω9\π-r{u), ueΣ,
(A.9)

dω = Π*dωΣ.



466 Z. Jaskόlski

From the proof of lemma [relations (A.5-7)] we have:

dωg = det&^dω1 A π*dωΣ

(in order to avoid problem with sign one can assume that bases {δwJfL ί and
[<>vί}T=i have positive orientation). Using our lemma (A.2) we have:

(detτp

+τp)1 / 2

Now applying the Fubini theorem [26] to the integral:

and using (A.9) we have:

'^fUΎ'' (A '0)

where dωπ~1(u) denotes the volume element related to the induced metric on π~ 1(u).
The volume of the orbit π~1(u) can be evaluated by the change of variable
βu\G-^n~ι(u) [see formulae (2.3)]

where dωgU is the volume element related to the metric gM = /?*g on G. Now we
compare the volumes of the group G evaluated in the metric g" and in the metric h
used in the definition of / 2 [ / ] . Because both metrices are right-invariant it is
sufficient to consider the relation between appropriate volume elements at the
neutral element e of G. Suppose {άsJ L x is the (suitable oriented) base in G = TeG
orthogonal with respect to the metric h. The base {(5#i}"= i in G orthonormal with
respect to the metric g" can be constructed in the following way:

δϋi~τ~1δvi for i = l, . . . ,n,

where τ ~ 1 is the inverse of the operator τu defined in (2.2) and {δv JjL x is the base in
Tuπ~1(u)=Vn orthonormal with respect to the metric g\Vn. Proceeding to the dual
bases {dvl}u

i=u {dsl}n

i=i we obtain:

U= f\ dvl = aQUu - f\ dsl = det τudωu,
i=ί i = l

where determinant in the right-hand side is evaluated in the orthonormal bases in

Vp and G. It is clear that:

provided that in the definition of τ^ the inner product he = h\TeG in G' is used.
Finally we have:

J dωπ~Hu)
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Inserting (A. 11) in (A. 10) we have:

f fdω9 = $dωh-$ /(det zlu

+ Au)
1/2dωΣ,

P G Σ

where operators Δ* are defined with respect to the inner product he = h\τ G in

G'. Π

The proof of Theorem 3 is almost identical as in the case of Theorem 2. We

must only replace h by hu, evaluating the volume of the fiber n~ι{u).

Acknowledgement. The author would like to thank Prof. A. Z. Jadczyk for critical reading of the
manuscript and helpful comments.

References

1. Fradkin, E.S, Vilkoviski, G.A.: Phys. Lett. 55B, 224 (1975)
Batalin, LA., Vilkoviski, G.A.: Phys. Lett. 69B, 309 (1977)
Fradkin, E.S., Fradkina, T.E.: Phys. Lett. 72B, 343 (1978)

2. Henneaux, M : Phys. Rep. 126, 1-66 (1985)
3. Faddeev, L.D.: Theor. Math. Phys. 1, 3 (1969)
4. Faddeev, L.D., Popov, V.N.: Phys. Lett. 25B, 30 (1967)
5. Faddeev, L.D., Slavnov, A.A.: Gauge fields: introduction to quantum theory. Reading MA:

Benjamin/Cummings 1980
6. Gribov, V.N.: Nucl. Phys. B139, 1 (1978)
7. Singer, I.M.: Commun. Math. Phys. 60, 7 (1978)
8. Cotta Ramusino, P., Reina, C : JGP 1, 121 (1984)
9. Kondracki, W., Rogulski, J.: Preprint No. 293, Inst. of Math. Polish Academy of Science

(1984)
10. Babelon, O., Viallet, CM.: Phys. Lett. 85B, 264 (1979); Commun. Math. Phys. 81, 515 (1981)
11. Fujikawa, K.: Phys. Rev. Lett. 42, 1195 (1979), Phys. Rev. Lett. 44, 1733 (1980); Phys. Rev.

D23, 2262 (1981); Phys. Rev. D25, 2584 (1982); Nucl. Phys. B226, 437 (1983)
12. Polyakov, A.M.: Phys. Lett. 103B, 207 (1981)
13. Alvarez, O.: Nucl. Phys. B216, 125 (1983)
14. Gilbert, G.: Nucl. Phys. B277, 102 (1986)
15. DΉoker, K, Phong, D.H.: Nucl. Phys. B269, 205 (1986)
16. Namazie, M.A., Rajeev, S.: Nucl. Phys. B277, 332 (1986)
17. Gava, E., Iengo, R., Jayaraman, T., Ramachandran, R.: Phys. Lett. 168B, 207 (1986)
18. Jaskόlski, Z.: J. Math. Phys. 27, 2570 (1986)
19. Elworthy, K.D.: In: Functional integration and its applications, p. 60. Arthurs, A.M. (ed.).

Oxford: Clarendon 1975
20. Polchinski, J.: Commun. Math. Phys. 104, 37 (1986)
21. Cohen, A., Moore, G., Nelson, P., Polchinski, J.: Nucl. Phys. B267, 143 (1986)
22. Moore, G., Nelson, P.: Nucl. Phys. B226, 58 (1986)
23. Durhuus, B.: Lectures given at NBI/NORDITA, Autumn 1982, NORDITA preprint 82/36

(1982) (unpublished)
24. Schwarz, A.S.: Commun. Math. Phys. 64, 233 (1979)
25. Killingback, T.P.: Commun. Math. Phys. 100, 267 (1985)
26. Sulanke, R., Wίntgen, P.: Differential geometrie und Faserbundel. Berlin: VEB Deutscher

Verlag der Wissenschaften 1972
27. Brink, L., DiVecchia, P., Howe, P.: Nucl. Phys. B118, 76 (1977)
28. Ebin, D.: In: Proc. Symp. Pure Math., Vol. 15, pp. 11-40. Providence, RI: American

Mathematical Society 1970
29. Hawking, S.W.: Commun. Math. Phys. 55, 133 (1977)



468 Z. Jaskόlski

30. Alvarez, O.: Lectures presented at the Workshop on Unified String Theories, Santa Barbara,
Aug. 1985, preprint LBL-20483 (1985)

31. Abikoff, W.: The real analytic theory of Teichmϋller space. Lecture Notes in Mathematics,
Vol. 820. Berlin, Heidelberg, New York: Springer 1980

32. Niemi, A.J., Semenoff, G.W.: Phys. Lett. B176, 108 (1986)
33. Marnelius, R., Nilsson, B.: ITP-Goteborg preprint (Dec. 1979) unpublished
34. Fradkin, E.S., Tseytlin, A.A.: Ann. Phys. (N.Y.) 143, 413 (1982)
35. Marnelius, R.: Nucl. Phys. B 211,14 (1983) see also Hwang, S., Marnelius, R.: ITP-Goteborg

preprint 85-43 (1985)
36. Catenacci, R., Martinellini, M.: Phys. Lett. 138B, 263 (1984)

Communicated by L. Alvarez-Gaume

Received November 18, 1986; in revised form January 26, 1981




