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Abstract. We solve the initial value problem associated to the nonlinear
Boltzmann equation in the case in which the initial distribution has sufficiently
small spatial gradients.

1. Introduction and Notation

The nonlinear Boltzmann equation is believed to describe the time evolution of a
rarefied gas of particles. It takes the form

DJ:= (dt + v Vx)f = Q{ff\ /(0) = /o, (1.1)

where D x M33(x9v)-+f{x,v) is the distribution of the particles, x and v denote
position and velocity respectively, D a U3 is the domain to which the gas is confined.
The bilinear operator Q takes into account the interaction among the particles and
will be specified later.

The initial value problem (1.1) has been considered by several authors, and the
following three groups of results global in time are available;

a) Spatially Homogeneous case. If/0 depends only on v, ft has still this property.
In this case global existence and uniqueness result can be proved for very general
data.

b) Small Deviations from Equilibrium. It is well known that the nontrivial
equilibria for the problem (1.1) are the Maxwellian distributions. An initial
distribution / 0 , slightly differing from a Maxwellian, can be proved to evolve
globally and uniquely in time, according to Eq. (1.1). Moreover it approaches a
Maxwellian asymptotically in time.

c) Small Deviations from Vacuum. A global existence and uniqueness theorem for
the initial value problem (1.1) can be proved for an initial distribution /0(x, υ\ xeU3,
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decaying for large values of \x\ and \v\ and under suitable smallness assumptions
on/o.

The first results in the above directions were obtained by Carleman [1], Ukai [2]
(following a previous analysis due to Grad [3]) and Illner and Shinbrot [4]
respectively.

Finally it should be noticed that a global existence theorem for the initial value
problem (1.1), also for large data, has been proved in [5] in the framework of the
Loeb integration. However this result does not clarify whether the solutions to the
Boltzmann equation (for more general data than those of the kind a), b), c) above)
develop singularities in finite times or not.

In the present paper we construct a unique solution to the Boltzmann problem
(1.1) for initial distributions near, in a suitable sense, to an homogeneous datum.
Namely, let us consider the gas in a three dimensional flat torus T = [0,1]3. Let f0 be
the initial distribution and

go(v) = J dxfo(x, υ), uo(x, υ) = fo(x, v) - go(υ). (1.2)

One can hope to construct solutions along the following steps.

Step 1 (Local Theorem). The evolution equation for the perturbation ut is bilinear.
So it is natural to expect that, for any fixed arbitrary time ί, one should be able to
evolve u0 up to t, provided that u0 is sufficiently small. Moreover ut ought to be small
together with u0.

Step 2 (Approach to Equilibrium for the Homogeneous Equation). Let gt be the
solution of the homogeneous equation with initial datum g0. It is known that gt

approaches a Maxwellian equilibrium when t->co. Choose t so large (and
accordingly u0 so small) that gt is arbitrarily near to a Maxwellian ω.

Step 3 (Perturbation of the Equilibrium). At the time ί, ft is near to gt, by Step 1.
Therefore it is also near to ω by Step 2. Then one can hope to apply the result b) to
extend the solution up to time t = αo.

Unfortunately the above program cannot be performed so simply just suitably
combining known results. The reason is that the approach to equilibrium for the
homogeneous solution (Step 2) is relatively easy to prove in a norm (see || ||s below)
in which Steps 1 and 3 become more difficult. In particular ft — ω, even if small in
this norm, does not decay exponentially in the velocity space, and this makes the
techniques of Ukai and Grad [2 and 3] not directly applicable since they make
essential use of the exponential decay of the perturbations. However, using some of
Carleman's techniques [1], we obtain new estimates on the collision operator (see
Sect. 3), which allow us to extend the analysis of [2] to the case of perturbations only
polynomially decaying (Step 3) as well as to prove the local theorem (Step 1).

We remark that the above results have an intrinsic interest besides the purposes
of this paper.

After this preparation the proof of the main theorem follows easily. That is the
content of Sect. 4. As for Sect. 2, it is devoted to some known properties of the
homogeneous solutions which will be useful in the sequel including a result about
the approach to equilibrium.
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We conclude this Section by establishing hypotheses, notation and our main
theorem.

We define the (unsymmetrized) collision operator as

Qif,g)(v)= [dv J ) *

= J(fg)(v)-fRg(v\ (1.3)2

where (1.3)2 defines the gain and loss term respectively. Here V denotes the relative
velocity V = v1~v and t/, v\ are the outgoing velocities after a collision with ingoing
velocities v and vx and impact parameter n = n(θ, φ) = — sin θ cos φe1 — sin θ sin φe2

+ (V/\ FΊ)cos0, where (e1,e2, V/\ V\) are an orthonormal system.
Explicitly

v' = v + (V n)n, v'^v^iV'fήn. (1.4)

For S we assume the following form:

S(θ, I V\) = h(θ)\ V\β, Cosin0cosθ g h(θ) ^ C'osinθcosθ (1.5)

with 0 < β ̂  1, so including the hard sphere case and the k~th power forces with
k > 5 and angular cut-off [6].

For f:U3->IR continuous, we introduce the following norm for s > 1:

| |/U s = sup(l+t> 2) s |/(t;) | (1.6)

i eIR 3

and for L2—functions / : T-> IR we define

\f\f= Σ
where f(k) denotes the Fourier transform of /.

Finally for measurable functions f:T x U3-»IR, with \f{ 9v)\χ continuous in v,
we define

11/11/,,= sup ( l + t ; 2 ) s | /(.,!?)!, (1.8)
nt e lR 3

and denote by Bs and Bls the Banach spaces associated to the norm (1.6) and (1.8).
Now we can state our main result.

Theorem 1. Given p, σ > 0, consider the class of positive continuous functions f0 on
T xU3 with jfo(v)dvdx = p, j v2f0(v)dvdx = σ. There exist s0, l0 such that if
s>so,l>lo and goeBs+15 then there is a > 0, such that for \\ u0 \\hs < a, there exists a
unique, positive, strong solution f to the Boltzmann equation (1.1) in Bz-8_i,s-(e+i)/2
for any ε > 0 . Moreover fteBltS, feC1(l09co)9 ^ _ ε _ 1 ) S _ ( ε + 1 ) / 2 ) , andft converges to
ω in Bls for ί-> oo.

2. Some Results on the Spatially Homogeneous Boltzmann Equation

We need some results for the initial value problem associated to the spatially



396 L. Arkeryd, R. Esposito and M. Pulvirenti

homogeneous Boltzmann equation:

dtf = J(f,f)-fRf,
Mv)=fM (2.1)

Proposition 2.1. There is s0 > 0 such that, for all f0 > 0 and \\f0 \\s < oo /or some
s > s0, ί/iere exists a unique positive solution for the problem (2.1) and a constant Cs

such that

sup| |/ ί L<C s . (2.2)

Moreover it satisfies:

J/(ί, v)dv = J/0(ι>)Λ>, J i>/(ί, v)dv = J ι>/0(ι,)A,,

f ϋ 2 / ( ^ = f ϋ 2 / o ( ^ , (2.3)

J/(ί, ϋ) log/(ί, ̂  ^ J/oW log fo(v)dv for all t > 0.

Proposition 2.1 was proved by Carleman [1] for hard spheres and s0 = 3. The
proof for the general case is contained in [8].

Proposition 2.2. Under the conditions of Prop. 2.1 there is a v > 0 such that

v(l+\vn (2.4)

Proposition 2.2 is proved in [7] Lemma 4. The constant v depends on the density
and the energy of f0 and on Cs.

Finally, we are interested in the large time behavior of the solution. Since the H-
theorem can be proved, it can be shown that the solution approaches the
equilibrium for large t. The equilibrium corresponding to the initial datum is given
by the Maxwellian with the same mass, energy and momentum as the initial datum.
By a suitable choice of coordinates we can reduce it to an initial datum f0 such that:

ifodυ=l, j V o ^ = 0, jV/ 0 ώ = 3. (2.5)

In this case
ω(v) = (2π)~3/2 exp ( - v2/2). (2.6)

For simplicity in this paper we shall always consider initial data such that (2.5)
are satisfied.

Proposition 2.3. Let f0 be as in Proposition 2.1 and satisfy Eqs. (2.5). Then

l i m | | / t - ω | | r = 0. (2.7)
ί->00

for any r<s.

Proposition 2.3 was proved in [1] for hard spheres and then generalized to the
present case in [8].

3. Estimates of the Collision Operator

The following useful representation of J(fg) is due to Carleman [1] p. 32.
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It is easy to verify that

K-^ ^-^^O. (3.1)

Let us denote by EΌuΌΪ the plane (v\ — v^'iξ — vj = 0. It obviously contains vx and is
orthogonal to v\ — vv Then

)= \dυ\f(υ\)- 1—^-β J dξg{υ'2)Gψ\ (3.2)
R3 1 ^ 1 - ^ 1 Evιvϊ

where dξ denotes the Lebesgue measure on the plane EViV,t and

G(θ) = h(θ)[sin0(cosθf]"1 ^ C 0 (cosθγ- β ^C 0 . (3.3)

Denoting by

Λ)(/,0)(»i)= ί dv2)
2 dθj dφfiυ^gW^v, - ϋ21^ sin θ cos θ (3.4)

R 3 0 0

following Carleman [1] p. 35, one has

Jo(f,0)=Jo(9,f). (3-5)

Therefore, for positive / and g:

J(f, 9) + •%,/) ̂  2C0 J o(/, ^). (3.6)

Proposition 3.1. Let I > 3/2 and s>4. The following estimate holds:

(1 + t > 2 ) Ί β ( / ^ ) l ^ ) ^ C ( S ) | | / | | / s S | | ^ | | J l + \vf). (3.7)

Furthermore there exists a function ε = φ ) -• 0(s -> oo), such that

(1 + v2Y{\gRf\t + I /fa,/)!, + I J{fg)\ι}

A {l + \v\% (3.8)

/. For any fixed v and w,/( ,ί;) and ^( , wJeH^T) (Sobolev space), which is a
Banach algebra for / > 3/2. Then we have

|/, (3.9)

therefore

). (3.10)

To simplify the notation we denote |/|, and | gr |, by /and ̂  respectively. Furthermore,
for fixed v1 we put

0 otherwise, i - J

χ0 = 1 - Xi and / {,/0 will stand for fχt and /χ 0 respectively. By the energy
conservation law J0(fi> di) = 0 and hence

Jo(f> §) = Joifi, 9o) + Joifo, ΰd + Joifo, §o) (3-12)
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We estimate separately the above three terms.

(1 + vlYJ0(f0,g0) g C Il/Ulff 11,(1 + »ί f

l\^^^lf^f (3 13)

The last integral equals

J ^ (114)

where P is the distance of the origin from the plane EυyΌ,χ and λ is the distance of the
point v2 (on the plane) from the orthogonal projection of the origin on the same
plane. If s > 3/2 the first integral appearing in the right-handside of (3.13) is bounded

K|/. (3.15)

Furthermore, making use of Eq. (3.14) and proceeding as in (3.13),

If v? g vj/2 we have

so that the last integral is bounded by C(ί + \vι\)~2+β provided that s>3/2.
Finally

(1 +vl)sJo{fi,9o)ύC{\ + \v1\f)\\fU\g II, (3.18)

The same estimate is obtained by means of the relation (3.5) for the term Jo(fo>(ίi)
We now estimate the loss term. Since Rf ϊϊ Rf, we have:

(3.19)

provided that s > (3 + β)/2. This achieves the proof of (3.8).
To obtain the proof of the estimate (3.8) we first remark that proceeding as above

/ (3.20)

Furthermore, using (3.6)

I J(g, f)\ι + \ J(f,g)\ι g CJ0(g, /) ^ C{ J0(g0,1) + J0(g0, f0) + J0{gh f0)}.
(3.21)

For the term Jo(goJo) a n ( J JoiθoJi) we slightly modify (3.15) and (3.16) respectively
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to get

(1 + vl)s(J0(g0J0)+ Jo(9oJi))^C(s)\\f\\s\\g\\s+β/2. (3.22)

The last term in the right-handside of (3.21) requires more care. We split Jo{gi9fo) in
three terms:

Jh(g»fo)=Jo(βϋ&>fo)L (3.23)
2 Xr1fo\ (3.24)

and χδ, χη are the characteristic functions of the sets {| υ\ \ < δ \ vt |} and {| v21 < η \ vλ |}
for δ < η < 1 and χc — 1 — χ. We notice that, fixed vuv\ and a point ξ in the plane
EvM (and therefore fixed t/2), v2 is determined by the collision laws so that the above
definitions make sense.

We have:

, a-β ί ^^0(^2)77—72^

ί

^ (by virtue of Eq. (3.14)).

1

- 2 . (3.25)

On the other hand, if |ι>2| <η\vt\ and 1^1 <<5|y1|, by the energy and momentum
conservation we have

v'i = v2

x + v2

2-υ'ΐ>{l-δ2)vl (3.26)

and

|i/2-»il<l»2l + l»Ί!<fo + *)kl. (3.27)

so that v'2 is at most in a sphere centered in υ1 and with radius (η + δ)\v1\.
Its intersection with EVιVί has measure at most π(η + δ)2\v1\

2 < 4πfj2 |u1 |
2.

Therefore

\d

(3.28)
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Finally, since

^ * (sm%r- ( 1 2 9 )

where ΰ'2 is the minimum value of v'2 compatible with the constraints, we have

v>2 = v

2 + v2- v'2 >(l+η2- δ2)vl (3.30)
and hence

JΓo(»ι,7o)(ϋi)(l + «?)" ̂  Cllβlla lUll-(l + l^il^ίs - l ) " ^ ! + f|2 - 52)1"*,
(3.31)

by the inequality (3.17).
In conclusion, collecting all the above estimates, we have:

V ( l - <5TS + (s -1)" Hi + n2 - δ2)1 ~% (3.32)

for some A > 0 not depending on 5.

We choose η = l/y/s9δ = ί/s for which δ2 g η2/2 = l/2s. Therefore

(l+η2-δ2)1-a£(l+η2/2)1-a = (l + l/2s)1-a£C. (3.33)

On the other hand

(3.34)

so that (3.8) is proved with ε(s) = Cs~1.

4. Proof of the Main Theorem

Let fo(x,v), (x,v)eT x IR3 be positive and in Bls. Denote by g0 its space average

go(υ)=μxfo(x9υ) (4.1)

and by uo= f0 — g0 its deviation. Let gt and ut be solutions of the initial value
problems

go (4.2)

and

Dtu + uRg = Φt:= Q(g, u) + J(w, g) + β(w, u), u(0) = u0. (4.3)

Denote by

ft(x, υ) = gt(v) + iφc, υ\ (4.4)

then ft is a solution of the initial value problem for the Boltzmann equation (1.1).
The initial value problem (4.2) can be uniquely solved for all t if s is large enough
since goeBs and the solution has the properties established in Sect. 2. Now we prove
a local existence and uniqueness theorem for the problem (4.3). Let ύt(k9 υ\ ke2πZ3
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be the Fourier transform of ut(x, υ). Consider the following integral equation in Bls:

ut{K Ό) = uo{K v)exp - j ik-vt + \ dτ{Rgτ)(v)

t ( t ϊ

+ j dτ exp < - J dσ(ik-vσ + Rgjυ)) \ φτ(K v), (4.5)
0 I τ J

where Φτ(/c, v) denotes the Fourier transform of Φτ(x, v).

Proposition 4.1. There exists so>0 such that, for s> s0 and I > 3/2 if uoeBUs and
g0eBs+β/2, then any solution in BUs of Eq. (4.5) satisfies the estimate:

lkllίi^l|wolli.βexp[(2Cln4)ί] (4.6)

for some constant C depending only on s and g0, provided that

|| u01| ίfβ ̂  ( 2 4 Q - 1 exp [ - (2C In 4)ί]. (4.7)

Proof. Denote Y(t)= \\ut\\ltS and ?(τ)= sup Y(σ).

By the estimates on the collision term in Proposition 3.1 and by Eq. (2.2), fixed
ε > 0, we can find s0 such that

I Φ,( , 17)1X1 + v2γ ^ (A, + s\vf)\\ ut ||/t5 + As{\ + \v\fi)( || ut | | J 2 (4.8)

for some constant As and s > s0. Therefore, by Eq. (4.5), using (2.4), we have:

Y(σ) S Y(0) + τAsΫ(τ) + (e/v)Ϋ(τ) + (AJv)Ϋ(τ)2 for 0 ̂  σ S τ. (4.9)

Putting C = max (As + 1, As/v), if ε < vτ,

0 ^ 7(0) - (1 - τC)Ϋ(τ) + CΫ(τ)2. (4.10)

Thus, for τ such that τC = 1/2 we have, by continuity 7 as function of σ

Y(σ)SY(τ)^(1/4-y/ϊ/16- Y(0)C)/C£47(0) for O ^ σ ^ τ , (4.11)

if 7(0)C < 1/24. In the last step we used the obvious inequality J\ - 16Y(0)C >

(1 - 87(0)0/^/1-167(0)0. By iteration of the estimate (4.11) n times, with n =

[ί/τ] - 1 ([x] = integer part of x), we get (4.6) from (4.7).

Proposition 4.2. Given s > s0, if u0 satisfies (4.7) with C large enough, and
g0eBs+βj2, there exists a unique solution up to the time t, ofEq. (4.5), satisfying (4.6).

Proof. We define, by iteration

(Dt + Rg)uin) = 0i»-»n ^ 1, u(n)(0) = uo = w(0), (4.12)

where

Φ ( M ) = Q(g, uin)) + J(u{n\ g) + Q(tfi"\ uin)). (4.13)

For n ̂  2φin):= u{n) - u^'^, φ(1):= u{1) satisfies

= Fin'1\ (4.14)
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where

^W9'^) + β ( φ ( π " υ , w("-2)), n ̂  2, (4.15)

By Proposition 3.1 we have

|F<"-1>( ,i;)|l(l + t;2) ^ μ s + β|ι;|OII?("-1)lli,,
+ As(l + |ι;|0{| |w ( M-1 ) | | /, s+||w ("-2 ) | |z, s}| |φ ( π-1 ) | | ί, s. (4.17)

Obviously the sequence w(w) satisfies the estimate (4.6) provided that (4.7) is satisfied.
Therefore, proceeding as in Proposition 4.1, we get for 5 > s0:

^ α < 1, (4.18)
where

φτ= sup \\φjι>s, (4.19)

provided that τ and 1/C are small enough. Therefore, if ε and τ are small enough the
iteration converges for σ ^ τ. This procedure can be iterated to get the convergence
up to time t if \\u0 \\Us is small. The uniqueness follows trivially.

Remark. Further regularity properties of the solution constructed above will be
discussed later.

Now we consider the evolution of a perturbation of the equilibrium. We assume
f0 such that

$fo(x,Ό)dxdΌ=l9 $vfo(x,υ)dxdv = 0, $v2f0(x,v)dxdv = 3. (4.20)

Then ft is expected to converge to ω defined in (2.6).
We write, for t ^ 0,

Λ = ω + u, (4.21)
We prove the following:

Proposition 4.3. Fixed s0 and l0 sufficiently large, for any s> s0 and l>lowe can find
b,b\γ>0 such that, if ||M0||ItS<fe, then there exists a unique solution of the
Boltzmann equation in the strong sense o/^_ δ _ 1 > s_ ( ε + 1 ) / 2 for ε > 0 and ut satisfies the
bound

yί. (4.22)

Proof. Let hjy)oc = 1,..., 5 be defined as follows:

hM = l h1φ) = vii = l9...939 M^) = ( V / 6 ) " V - 3 ) , (4.23)

and let

ψa = Kjω, α = l, . . . ,5. (4.24)

{*Aα}α=i,...,5 a r e i n L2{U3,Hι(T)) and are orthonormal with respect to the scalar
product

(/> 0) = ί dv Σ Hk> v)ά(K υ)(ί + k2)1. (4.25)
U3 ke2πZ3
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Let P be the projector on the subspace spanned by

α = l , 5

N o w we decompose u 0 as follows: u0 = u(o] + u(

0

2) + u'0

3) with

Pf= Σ (/>W</V (4.26)
α = l , 5

u™(x, v) = ̂ Pί^o-'xMiΦoix,»)], (4.27)

where, for M > 0, χ ^ ) = {J ^ ^ and tf,« 1 - XM

Furthermore we put

/8> = ιι8V^~S i = 1,2,3. (4.28)

Since woe5 ί (S, / (

o

υ and / (

0

3) are in
Putting

= vf-Lf9 (4.29)

consider the linear initial value problems, for Z / GL O O ([0, -f oo)9BltS)J = 1,2,3:

(Dt + v)u2 = χ c

M & 2 + [β(z l 5 z2) + β(z2, z 3)], (4.30),

(Dt + L)Λ = (1 - P ) ^ - ^ M K W 2 , (4.30)2

(Dt + L)/ 3 = P v ^ " XXMKU2> (4.30)3

«2(0) = II<O2), /i(0) = /(o1}, /3(0) = /(

0

3). (4.30)4

We put w(0(ί) = yjωf{ΐ)(t) and tι(ί) = Wχ(ί) + u2(t) + u3(t). For zx = z2 = u and z3 = 0,
ω + u(ί) is a solution of the Boltzmann equation.

We begin by studying Eq. (4.30)! in integral form (the same as (4.5) with g
replaced by ω and φ replaced by right-handside of (4.30)!.

Lemma 1. There is v > 0 such that v(v) ̂  v(l + \v\β).

Proof. See Grad [3] or alternatively Proposition 2.2.
We put:

. (4.31)

Lemma 2: For s and I sufficiently large, there are C, C such that any solution of (4.30) 1

satisfies

II «2 hsy ύ II U0 \\Us +C\\Z2 \\lM( || Zί | | l A r + II 2 3 \\UsJ

+ 2 v - 1 [ φ ) + C(l + M ' ) - 1 ] | | M 2 | | l A y (4.32)

for 0 < y < vo/2 = 1/2 inf v(v).
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Proof. We have

U2(K Ό9 t) = e-«ihv+m%2Xk, v) + f dτe'^v+*"»<'-*>

o

• [ZCM^w2(τ) + Q{Zl{τ\ z2(τ)) + β(z2(τ), z3(τ))Γ(fe, i;). (4.33)

By (3.8) and Lemma 1

/ * \ 1 / 2

(1 + υ2y( Σ (1 + *2)' f n
V 3 °

^ 2v" HC^ίl + M^)"1 + φ)) || u2 W^e-*. (4.34)

On the other hand by (3.7),

(1 +v2γ\Q{zi(τ\z2(τ))\aC{l +\v\β)\\z1\\UsJz2\\ι^ye-2y\ (4.35)

and therefore by Lemma 1

^v-'CWzJ^Jz.W^e-y*. (4.36)

Lemma 3. Suppose M, /, s /αr^e enough and \\ Zi\\hs>γ < + oo, i = 1,2,3. T/i^re exists α
unique so/wίion o/£ f̂. (4.33), M 2 G L 0 0 ( [ 0 , + oo),B I tjnCo([0, + oo),JBz_ε>s_ε/2)/or any
ε>0. Suppose in addition that zt€C0([0, + oo),^_ ε s _ ε / 2 ),/ = 1,2,3 /or 5t?me ε>0.

w2eC1([0, + oo),JB,_8_ l fS_(β+1)/2) and satisfies Eq.(4.30)ί strongly in

Proo/ Existence and uniqueness follow easily by iteration and estimate (4.32).
Since Q{zuz2\ Q(z2,z3) and Ku2eLJl0, +oo)9Bltll-β/2)9 then, by Eq. (4.33)
u2eC0([0, + oo), B,-,,,-^).
Moreover, putting

•P = (-1, . Vx - v + χ^K)M2 + [β(z1 ? z2) + 6(z2, z 3)], (4.37)

we get Ψ eCo([0, + oo), ̂ _ ε _ 1 > s _ ( ε + 1 ) / 2 ) provided that zfGCo([0, + oo),B,_efe-e/2),
ί = 1,2,3. The convergence of h^\u2(t + h) — u2(ή) to Ψ(t) in £/_,,_i, s- ( ε+1 ) / 2, for
/*-•(), is standard.

The following Proposition summarizes the properties of the operator L we use in
the proof:

Proposition 4.4. Consider the initial value problem

l wo. (4.38)

Suppose woeBltS and φeLJCO, + op), J5 ί f S)nC0([0, + oo), ^ - ε _ i , s - ε / 2 - i / 2 ) far
ε>0 and some I and s sufficiently large. Then Eq. (4.38) has a unique solution
w(t)eBlsfor ί ^ O which is strongly differentiable in l?i_ ε _ 1 > s _ ( ε + 1 ) / 2 . Moreover if
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0(ί)eKerP for ίe[0, + oo), and w oeKerP, then w(ί)eKerP and there are positive
constants μ, d, df such that for 0 < y < μ,

l |w | | l A y gd | |w 0 | | I i β + dΊIΦIIiAr ( 4 3 9 )

Proof Proposition 4.4 follows easily by ref. [2], Lemma 4.4.
Given u2 as in Lemma 3 with zx = z2 and z3 = 0, we next consider the solution of

(4.30)2 and (4.30)3 as given by Proposition 4.4.

Lemma 4. Suppose u(t) = ux(t) + u2{t) + u3{t)eBι sVί > 0, for s > 3. Then {ha,u{ή)
= 0 , α = l , . . . , 5 .

Proof The scalar products make sense since s > 3. Furthermore the scalar products
(/ια,Q(ω,u(t))) and (7ια,<2(w(ί),w(t))) make sense by the estimates on the collision
operators and vanish by direct computation. Therefore (/ια, u(ή) = 0 since (ha, u0) = 0.

We have, for any feBUs, I > 1, s > 1/2,

(ι? Vx + L)Pf = 0 = P(vVx + L)f (4.40)

by the same arguments as in the proof of Lemma 4.

Therefore, by Proposition 4.4, P/i(ί) = 0, Vί > 0, and, by Lemma 4

Pf2(t)=-Pf3(t)\/t>0. (4.41)

Lemma 5. There is a constant C such that

\\u3(t)\\ι^C\\u2(t)\\us- (4.42)

Proof. f3(t) = P/3(ί) by Eq. (4.40) and Proposition 4.4, since (1 - P)/3(0) = 0.
Therefore

II « 3 ( 0 IIM = II v W s Hi.. = II V » p / 2 Ik, ̂

α=l,5

ύ CsIIu2(ί)II,,, J dvhJίυW + v2Γs ύ C || «2(t)|| i>sfors > 3.
(4.43)

Lemma 6. For I, s as in Proposition 4.4 there is a constant CM such that, for 0 < y < μ,

ll«illιΛy<CM(||ιι2 | | l A y+||iioll, i β). (4.44)

Proof Using Proposition 4.4, with w o = / (

o

1 ) and φ(t) = (l — P)ΛJω~1χMKu2, we

/have, since /(

0

1} and (1 — P)^/ω~1χMKu2 are in KerP,

ll/i II I A, ^ dIIΛ" II,,, + d' || (1 - P) V ^ - ^ M K M , | | l A r (4.45)

By (3.7) and the arguments used in the proof of Lemma 5 we have

hMKu2 | | l A γ ̂  C M | | « 2 1 | l A r (4.46)
Moreover

ll/ (oΊl ί, s= l l ( l -P) > A~ 1 χ M «ol l ι , .^C J ί | | t t o | | I 3. (4.47)
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Now we can prove Proposition 4.3. From now on we fix s and M such that
2v"1(C(l + Mβ)~ι + φ ) ) < 1/2. By Lemma 2:

IIu2 | | l A y ^ 2II W o ||Iiβ + 2C | |z 2 | | l A y ( | |z x | | l A y + | |z 3 | | ί A y ) . (4.48)

By Lemma 5, Lemma 6 and inequality (4.48) we see that for I>lθ9s> s0 and 0 < γ
<min(μ,vo/2), ||w|ks,y must satisfy the inequality:

II u | | l A y £ Ci II tt0 ||IfJ + C2II z2 | | l A y ( II zx | | l A y + II z3 | | I A 7) (4.49)

(here C x and C 2 depend only on the choice of M and s).
Now we consider the following iterative procedure:

(Dt + L)uin) = Q(u{n~1}, u{n-% n ̂  1,

M(0) = 0, w(n)(0) = M0, n ^ l . (4.50)

By virtue of the estimate (4.49) (with z 3 = 0,zx = z2 = w(""1}) we easily obtain

II u(n) \\ι,s,γ < (1 - V 1 ~ 4C±C2 II fi0 ll,fβ)(2C2)-x := C (4.51)

provided that ||M0III,S <(4C 1 C 2 )~ 1 . Moreover, again by (4.49) (with z1 = u(n~1\
Z2 = M ( » - 1) _ M (»-2) a n ( J Z 3 = W («-2) ) ?

|| M(») _ tt(»-1) | | j A y ^ α ii tt(»-1) _ u ( n - 2) ̂  (4.52)

with α < 1 if ||«olli,s ^
s sufficiently small (by (4.51)).

Denoting by u limit of u{n\ it is not hard to prove that it satisfies:

U{K, v,i) — β WQ̂ /C, V) -t- j uxe \js.u

(4.53)

The strong differentiability of u in 5 z_ ε_ 1 ? s_ ε_ 1 / 2 follows by the same arguments as
in Lemma 3.

Proof of Theorem I. We fix s and I according to the previous lemmas and assume
foeBltS+ί9 g0 to be the space average of/0 and u0 its deviation. By Prop. 2.3 gteBs+1

and approaches the equilibrium in Bs. Therefore there is t* > 0 such that

\\gt-ω\\s<b/2 Vί^t*, (4.54)

where b is the one introduced in Proposition 4.3. By Proposition 4.1 || u(t*) \\ltS ̂  b/2
if II uo Iks < a> where a is fixed by (4.6) and (4.7). Therefore at time t* we have

Wft* - ω Iks ύ \\U ~ Qt* Iks + II9? - ω L < b. (4.55)

Using Prop. 4.3 with initial time f * and initial datum ft — ω9 it follows that ft exists
uniquely also for t > ί* and converges to ω for ί -> oo. By the same arguments as in
Lemma 3 / e C ^ O , αo),J3 ί_ ε_1 > s_ ( e + 1 ) / 2). Therefore Eq. (1.1) can be understood in
βi-8-i,s-(ε+i)/2 for all ί>0.

Remark 1. Since (4.54) follows by the H-theorem, ί* is not explicitly known and then
we have no control on the rate of convergence of the solution to equilibrium.
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Remark 2. By the same arguments of Sect. 4, it also follows that the solution
constructed in Theorem 1 is stable in Bls. Namely, the constant μ of Proposition 4.4
is locally uniformly (with respect to ω) bounded away from zero, as can be seen by a
slight elaboration of the argument in [2]. It then follows from the proof of
Proposition 4.3, that its constant sojo,b,b\y can be chosen locally independent
of ω, and that we can take &'-»0, when b-+0. Therefore, analogously to the proof
of Theorem 1, we can conclude that the solutions constructed in Theorem 1 are
stable in Bls, i.e. given ε > 0, and f0 as in Theorem 1, there is a δ > 0 such that

Wft - ft Hi.. < ε> t> 0,if 70efl I i Sand ll/o - Jo \\ι,s < δ. (4.56)

In particular the space homogeneous Boltzmann Equation is stable in this sense also
when the initial value is far from equilibrium.
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