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Abstract. The outstanding problem of systematically developing rigorous
bounds on the complex effective conductivity tensor σ* of d-dimensional,
^-component composites with n>2 is solved. The bounds incorporate
information contained in successively higher order correlation functions which
reflect the composite geometry. Explicit expressions are given for many of the
bounds and some, but not all of them, are represented by nested sequences of
circles in the complex plane that enclose, and in fact converge to, each diagonal
element of σ*. They are derived from the fractional linear matrix transfor-
mations found in Part I that recursively link σ* with a hierarchy of complex
effective tensors Qu\j = 0,1,2,..., of increasing dimension, d(n-l)j. Elemen-
tary bounds on Ωω confining the diagonal elements of Ωϋ) or its inverse to half-
plane, wedge or open polygon regions of the complex plane, imply narrow
bounds on tf* which converge to the exact value of σ* in the limit as j->co.
When the component conductivities are real these bounds are more restrictive
than the corresponding variational bounds. Besides applying to the effective
conductivity σ*, the bounds extend to a wide class of matrix-valued
multivariate functions called Ω-functions, and thereby to conduction in
polycrystalline media, viscoelasticity in composites, and conduction in multi-
component, multiterminal, linear electrical networks. The analytic and
invariance properties of Ώ-functions are explored and within this class of
function most of the bounds are found to be optimal or at least attainable. The
bounds obtained here are essentially a generalization to matrix-valued,
multivariate functions of the nested sequence of lens-shaped bounds in the
complex plane derived by Gragg and Baker for single variable Stieltjes
functions.
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1. Introduction

The average current j generated in response to an average electric field e in a
periodic or statistically homogeneous composite is typically determined by the
linear relation

j = σ*e, (1.1)

which defines the effective conductivity tensor σ*. In Parti [1], henceforth
denoted as I, we considered a d-dimensional multicomponent composite com-
prised of n isotropic components separated by sharp boundaries and developed a
continued fraction expansion for σ* in terms of the component conductivities,
σ l5 σ2,..., σn and a sequence of geometric parameters that reflect successively finer
details of the microstructure. Here this expansion will be utilized to solve an
outstanding problem for composites comprised of more than two components,
namely to systematically develop a hierarchy of bounds on σ* that include
progressively more information about the geometry, for both real and complex
component conductivities. Actually our analysis is quite general and applies to the
effective thermal conductivity, diffusion coefficient, dielectric, elastic and viscoelas-
tic tensors of multicomponent composites, including polycrystalline materials
with anisotropic grains [2]. Moreover it extends to conduction in multicompo-
nent, multiterminal networks, and in fact to any problem for which the field
equation has the appropriate form: see Sect. 15 in I.

The earliest work on bounds for effective transport coefficients dates back to
Wiener [3] who in 1912 proved that the eigenvalues of σ* are bounded above and
below by the arithmetic and harmonic means of the local conductivity when the
local conductivity is real. Not much more progress was made until half a century
later when Hashin and Shtrikman [4] formulated new variational principles and
used them to derive bounds on the effective conductivity, σ*, of isotropic
composites with real component conductivities, σ l5 σ2,..., σn. Their bounds proved
to be considerably tighter than the Wiener bounds yet still were in excellent accord
with experiment and only incorporated the component conductivities and volume
fractions.

Beran [5] and Kroner [6], among others, went further and developed a scheme
for generating a whole hierarchy of bounds which include information contained
in successively higher order correlation functions characterizing the composite
geometry. Improvements of these bounds for multicomponent composites
(containing more than two components) were obtained by Phan-Thien and Milton
[7]. The improved bounds are denoted in I as (2/ + l)th-order Wiener-Beran
bounds or (2/)th-order Hashin-Shtrikman bounds wherej = 0,1,2,... signifies the
order of the trial fields that generate the bounds: these fields are ranked according
to their order of appearance in perturbation expansions of the actual fields in
powers of the conductivity differences σa — σb9 where α, be {1,2, ...,n}.

Prager [8] considered two component composites and established bounds
that correlate the values of σ* at different conductivity ratios σjσ2. Willis [9] gave
specific attention to anisotropic composites, and Murat and Tartar [10] and Lurie
and Cherkaev [11] implemented the method of compensated compactness (which
is essentially a new variational method with matrix valued fields) to obtain
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realizable bounds correlating the different eigenvalues of σ*. Kohn and Milton
[12,13] rederived these bounds and generalized them to elasticity by using the
standard Hashin-Shtrikman variational principles. Such bounds have application
in design optimization problems [14,15].

Bergman [16] initiated a different approach. He considered any diagonal
element, say σfu of the effective conductivity tensor of a two component composite
with volume fractions f± and f2 of the components and esssentially proved that the
function F(s), where

satisfies the inequality

has the integral representation

0

l(z)d:

s — z

and s = σ2/(σ2-σ1),

ιere μiz)>o,

(1.2)

(1.3)

(1.4)

and can be expanded in a series of the form
2 3 4 + . . . 9 (1.5)

in which c2 = fιf2/d when the composite is isotropic: see also [17] and [18]. From
this representation Bergman rederived the Hashin-Shtrikman bounds and
obtained new Prager type bounds incorporating one known value of σfλ at any
given real ratio σ1/σ2>0.

Subsequently, and independently, Bergman [19] and Milton [20], generalized
the Wiener and Hashin-Shtrikman bounds to arbitrary complex ratios σjσ2 and
proved that σf 1 is confined to one of three nested lens-shaped inclusion regions in
the complex plane, depending on whether the volume fractions are known, or
whether the composite is isotropic. These results enlarge upon the variational
bounds of Schulgasser and Hashin [21] which are valid when σjσ2 is nearly real.
Complex conductivities, of course, are appropriate for describing the relation
between j and e, including the phase lag, when the applied fields oscillate but have
wavelengths and attenuation lengths much larger than the composite
inhomogeneities.

Following this work, the bounds were extended to encompass an arbitrary
number of coefficients in the series expansion and/or an arbitrary number of
known values of σ\ 1(σ1, σ2) at either real or complex ratios σjσ2 [22]. McPhedran
and Milton [23] numerically tested the bounds and together with McKenzie used
them as a basis of a successful method [24] to estimate the volume fraction fγ from
experiments of the refractive index and absorption coefficient at various frequen-
cies of the applied field. Gajdardziska-Josifovska [25] made a careful experi-
mental test of the method and considered its applicability to composites with more
than two components. Felderhof [26], Milton and Golden [27], and Golden [28]
reformulated and analyzed the structure of the subset of bounds that only include
series expansion coefficients, and Milton and McPhedran [29] proved their
equivalence, for real σ1 and σ2, to the complete hierarchy of odd and even order
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variational bounds, i.e. to the (2/+l)th-order Wiener-Beran bounds and (2/)th-
order Hashin-Shtrikman bounds for j = 0,1,2,....

Additional assumptions about the analytic properties of σf1(σ1,σ2), which
apply to certain classes of composites, produce even more restrictive bounds. For
instance, Keller's duality relationship [30],

σ?1(l/(71,l/σ2) = l/σί1(σ1,σ2), (1.6)

satisfied by the effective conductivity of isotropic two-dimensional composites,
and the identity

σfi(σlJσ2) = σί1(σ25σ1), (1.7)

appropriate to materials invariant under phase interchange, give substantial
improvements to the bounds [20, 22, 31, 32]. In fact any bound in the double
hierarchy of bounds [22] incorporating (1.6), an arbitrary number of known real
or complex values of σ*1(σ1, σ2), and an arbitrary number of series expansion
coefficients is realizable by the transverse effective conductivity of a Hashin-
Shtrikman type multicoated cylinder geometry [4]. Bergman [19] used
Schulgasser's inequality [33] to marginally improve one arc of the complex
extension of the Hashin-Shtrikman bounds in dimensions d^3. Korringa and
LaTorrica [34] incorporated information about F(s) in the vicinity of s = 0, and
utilized their bounds to analyze measurements of σfx for brine saturated
sandstones.

These and other contributions to the theory of bounds for two-component
composites are reviewed by Hashin [35], McPhedran and Phan-Thien [36], Willis
[37], McCoy [38], Christensen [39], Watt et al. [40], Hale [41], and Beran [42]:
see also Niklasson and Granquist [43], Torquato and Stell [44] and references
therein. Many of the developments, particularly including the results outlined
above, overlap with work on Stieltjes functions [45-50]. To see the connection
consider the function i(υ\ where

and φ)= -F(v)/v = (σ*1-σ2)/(σί-σ2). (1.8)

From (1.4) this function has the integral representation

which according to Baker and Graves-Morris [51] defines a Stieltjes function with
a series expansion

2-c4.v
3 + ..., (1.10)

convergent in the unit disk.
Nevanlinna [45, 46] considered the more general class of Hamburger func-

tions, which include Stieltjes functions, and found bounds which confine 4(v) to a
nested sequence of diskshaped inclusion regions in the complex plane as
successively more series expansion coefficients are incorporated in the bounds.
Henrici and Pfluger [47] used the well-known continued fraction expansion of
Stieltjes functions, such as Λ(v), to derive a hierarchy of improved, and in fact
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optimal, bounds for real and complex v which incorporate the series coefficients up
to successively higher orders in υ. Gragg [48] focussed on Stieltjes functions
convergent in the unit disk and obtained more restrictive bounds, again based on a
continued fraction expansion of Λ{v). Following earlier work of Common [49],
Baker [50] also independently established these results and obtained bounds that
in addition incorporate known values of 4(v) at an arbitrary number of real values
of v. All of the bounds are optimal within the appropriate class of Stieltjes functions
and are represented by nested sequences of lens-shaped inclusion regions in the
complex plane. While Gragg and Baker did not incorporate in their bounds the
inequality

4
implied by (1.3) and (1.8), it is clear that if a bound depends on this inequality, then
all functions that attain the bound have A{ —1) = 1, and this can be treated as a
known value of A(υ) for the purpose of calculating the bound in question. Suitable
combinations of Gragg's bounds and Baker's bounds thereby yield the whole
sequence of Wiener-Beran and Hashin-Shtrikman bounds, Prager's bounds, and
many of the complex extensions of these bounds obtained by Bergman and Milton.
The bounds derived for two-component composites go beyond the Gragg-Baker
bounds to the extent that they incorporate known values oϊΛ(v) at complex v and
(when appropriate) the functional relations on Λ(v) implied by (1.6) and (1.7). For a
comprehensive review of work on bounds on Stieltjes functions, including their
derivation for real v from variational principles and their connection with Pade
approximants, see Baker and Graves-Morris [51] and Jones and Thron [52].

Very little of this analytical work on bounds has been generalized to
composites with more than two components, or to multivariate Stieltjes functions.
In Bergman's trajectory method [16] all the component conductivities are
parameterized in terms of a single variable, say s. The parametrization is chosen so
that the representation for F(s) has the form (1.4), and then bounds on such
functions imply bounds on σfx. Using this approach Bergman rederived the
Hashin-Shtrikman bounds for three component composites. Although the
method has been quite successful, the best parametrization is often difficult to find
and the method only incorporates the analytic properties of σf1(σ1,σ2, ...,σn)
along a single trajectory in the full domain of the variables σ1?σ2, ...,σn. A
multivariate generalization of the representation (1.4) was formulated by Golden
and Papanicolaou [28, 53]. They used it to conjecture complex extensions of the
elementary Wiener and Hashin-Shtrikman bounds, based on the plausible (but
unproven) assertion that functions attaining elementary bounds should have
especially simple representations after suitable fractional linear transformations.
Subsequently, Bergman and Milton [54] extended the trajectory method to
complex component conductivities and gave a rigorous proof of the Golden-
Papanicolaou extensions of the Wiener bounds.

The main barrier to the development of bounds on σ* for multicomponent
composites when the conductivities σ l5 σ2,..., σM are complex has been the lack of a
suitable continued fraction expansion for σ*. Now that several such expansions
are available, the path is open to generalize the nested hierarchy of lens-shaped
bounds appropriate for two-component composites to multicomponent
composites.
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The paper is structured as follows. In Sect. 2 we summarize most of the results
obtained in I. These include recursion relations which link σ* with a sequence of
matrices Qu\ j = 0,1,2,..., each representing the effective tensor in an appropriate
Hubert space, although not necessarily in a composite. Such effective tensors
depend on the variables σ1?σ2, ...,σn and are collectively denoted as ft-variable
tensor Ω-functions. Their general analytic and invariance properties are studied in
Sect. 3. For instance it is proved that the diagonal elements of any tensor
Ω-function are scalar Ω-functions.

Section 4 focuses on hierarchies of bounds for Ω-functions. Elementary
restrictions on the diagonal elements of Ωo), for j = 1,2,..., to half-plane, wedge or
open polygon regions of the complex plane, generate nested sequences of bounds
on σ*=Ω ( 0 ): these are accordingly denoted as half-plane, wedge or polygon
bounds. A bound here is defined to be attainable if at least some points on the
boundary are attained by Ω-functions in the appropriate class, optimal if all points
within the bounds are attainable by Ω-functions, and realizable, if all points within
the bounds are realized by the effective conductivity tensor of a composite in the
appropriate class. In terms of the information they contain, the half-plane bounds
are attainable and the wedge bounds optimal for both real and complex σa,
a = 1,2,..., ft, at all levels in the hierarchy of bounds. When the conductivities σa are
real both the wedge and polygon bounds are optimal and generally improve upon,
or at worst coincide with, the hierarchy of Wiener-Beran and Hashin-Shtrikman
variational bounds. The question of realizability of these bounds will be left for
later work. For two-dimensional, two-component anisotropic composites we
generalize the Murat, Tartar, Lurie and Cherkaev bounds [10,11] to include
successively higher order geometric parameters.

In Sect. 5 the mapping which links σ* with Ω0) is proved to be a fractional
linear matrix transformation. Section 6 utilizes this fact to derive explicit analytical
expressions for the complete hierarchy of half-plane bounds on scalar multivariate
Ω-functions. The inclusion regions are simply nested sequences of circles in the
complex plane for each orientation of the half-plane. Section 7 identifies
characteristics of the set of matrices that get mapped to the boundary of the wedge
bounds and this should make numerical computations of the wedge bounds more
efficient. An analytic formula is obtained for the curve needed in conjunction with
the Golden-Papanicolaou bounds to complete the boundary of the lst-order
wedge bounds on scalar 3-variable Ω-functions. These bounds have direct
practical importance because they only incorporate the volume fractions and
conductivities in a three component composite: they are the complex extensions of
the Wiener bounds. The convergence of the various hierarchies of bounds is
established in Sect. 8.

2. Summary of Part I

Now let us review the results established in I. These apply in any Hubert space

of fields, where the subspaces ^ , <?', f, and βP'a are each invariant under complex
conjugation, and °U has finite dimension, d. Specifically, in a periodic composite
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comprised of n isotropic components we may take °U as the set of uniform applied
fields, δ' as the fluctuating periodic electric fields (that have zero average), /' as the
fluctuating periodic current fields (with zero average), and 3P'a as the periodic
polarization fields that are non-zero only inside component a. Of course, other
choices of these subspaces will be appropriate for conduction in polycrystalline
media, conduction in multiterminal multicomponent impedance networks, and
for viscoelasticity in composites: see DelΓAntonio et al. [2] and Sect. 15 in I. We let
Xf91 = 1,2,..., d, label an orthogonal basis set of fields for °U and we let Γo, Γl9 Γ2,
and χa denote the projection operators onto the subspaces %, δ\ f, and Φ'a. These
projection operators, of course, satisfy the relations

ΓiΓ^δtjΓi, Σ Γ^hXΛh^M* Σ Xa = I, (2.1)
ί = 0 α = l

in which / is the identity operator in Jf". In general, the operators Γt do not
commute with any of the operators χa.

In this Hubert space the solutions E* e δ' and J* e f to the field equation of
interest,

|j + J*>= Σ σoχa|e + E*>, (2.2)
a=l

for any e e f giving some j e % can be expanded in the set of real-valued fields E°
and J° generated via the recursion relations,

|E«°/> = ΓlZα|x,>, |Eβ°τ> = ΓlZJEτ°>,

I J£> = Γ2χa\x,}, I Jα°t> = - Γ2χa\ Jτ°>,

where / = 1,2, ...,d represents a direction index; α = l,2, ...5n represents a
component index; and τ = bέ9 baf,... represents a string of component indices
followed by a single direction index.

To avoid confusion, italic subscripts ( + ij or h) are reserved for component
indices, script subscripts, such as /, /, and m,, represent direction indices, and Greek
subscripts stand for strings of indices: the subscripts α and β signify strings of
component indices while all other Greek subscripts represent a string of
component indices followed by a direction index. We adopt the summation
convention that sums over repeated Greek or script subscripts are implied, while
sums over repeated italic subscripts are not implied. Given any string τ or α we let
o(τ) and o(α) denote the number of component indices they contain, which we
define as the order of the string.

As τ varies over all strings these fields E° and J° span subspaces δdδ' and
/ C / r . From (2.1) and (2.3) the fields satisfy

n n

Σ |?0 τ?0 V T° T° (Ί Λ\

^abω ~ L αίo ? LJ J abω ~ ϋ αω ? l z ^7
b=l b=X

where the sum extends over any component index in the string τ = abω. This linear
dependence allows us to choose one of the components as a reference medium,
labelled as component qe{l,2, ...,n}, and eliminate those fields E? and J? for
which τ contains a component index q to obtain natural basis sets for δ and c/: see
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for example Phan-Thien and Milton [7]. In some special circumstances, such as
when J-P has finite dimension, the fields obtained are still linearly dependent. To
avoid prolonged discussion, this complication is tentatively overlooked.

Similarly, the polarization fields P°τ generated recursively via

\ni) = Xa\xi), I P ^ Z Λ P ? ) (2.5)

span some subspace &aC3P'a and may (generally) be used as a basis set once we
exclude those fields P°τ that have a component index with the value q in the string τ.
Note this does not exclude the fields P°τ which span <Pq.

The need for alternative basis sets for S,«/, and 0>a arises because the fields E°,
J°, and P°τ do not have any special orthogonality properties. In I, by using Gram-
Schmidt orthogonalization followed by appropriate linear transformations, we
obtain new sets of basis fields E^ }, J'}q), and P ^ (where τ ranges over all strings not
containing any component index equal to q). Their inner products

# ; ; ^ (2.6)

are block diagonal matrices, i.e. zero unless o(λ) = o(η), and satisfy the relations

U' + V' = /, Σ Wa = f, (2.7)
a=ί

in which / is the identity matrix. Furthermore, the fields x(q) and y^} defined by

x£}= Σ p««> y ^ E ω + j ω, (2.8)

form an orthonormal basis set, denoted as a canonical basis set, for the Hubert
space

je?=<%®g®/=0>1®0»2®...®0>n. (2.9)

The weight matrices Wa,a= 1,2, ...,n defined via (2.6), together with the
normalization matrix N = N{^η defined by

are positive-semidefϊnite matrices that, in fact, contain all the information
necessary to calculate the effective tensor σ*, defined via (1.1) in terms of the
solutions of the field equation (2.2) for j as a function of the applied field e. Thus the
weight matrices and normalization matrix, which are collectively denoted as
fundamental geometric parameters, characterize the orientation of the n subspaces
^ α , α = l , 2 , ...,n with respect to the three subspaces °U, S, and f. We label the
submatrices that occur along the block diagonals of Wa and N by a superscript),
which should not be confused with the reference medium superscript q. Like any
submatrix Aij) of a matrix Aλtη these submatrices i/l/Jj\ j^0, and Nu\ j ^ l , are
comprised of elements W^fλ>η and N{£η with o(λ) = o(η)=/, and hence each has
dimension d(n — l)j which represents the number of fields P ^ } or E'£q) of order;.

For an rc-component composite material with isotropic components the
elementary weight matrices W^0) satisfy

(2.H)
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where fa is the volume fraction of component a while the elementary normalization
matrix Λ/(1) has the property that

TrC/w + Λ/W]-^/, (2.12)

where the trace extends over the direction indices but not over the component
indices [12, 13, 1]. More generally the normalization factors Nu) and weight
matrices V\ήp are determined by the (2/)-point and (2/+l)-point correlation
functions characterizing the composite geometry [42, 44, 7].

Now, following the notation adopted in Part I, we let

A=A~1, A=A^2

9 A=A~1'2 (2.13)

denote the inverse, square root and inverse square root of any matrix A, and given
any component index a = ί,2,...,n, we let Aa with transpose Aτ

a, denote the
submatrix of A with elements AaTt λ labelled by the strings τ and λ. It is also
convenient to define the conductivity differences

δσa~σa-σq, δσa = l/σa-l/σqi (2.14)

for a = 1,2,..., n, and the matrix

YΆη = δabWΆη-WΆτWb

{Φ

τ,η, (2.15)

in which summation over τ, like any other repeated Greeks or script (but not italic)
subscript, is implied.

The continued fraction expansions developed in Part I, for the effective tensor

σ*=Ω ( 0 ) (2.16)

are generated by eliminating the matrices Ω0) forj ^ 1 from the recursion relation

a= 1 a,b^q

x\σ/j)+ Σ δσ^WU-VΫP + WWfiUΊ-iΫfΛTδσt, (2.17)
L c φ« J

or from either of its two equivalent forms

a= 1 a,bφq

0 ) + Σ δσJψTWJ-

£ W « - > e - Σ δ8βΫ?
a— 1 a,b"¥q

^ ω ^ ^ ) l " 1 ^ ) Γ ^ b , (2.19)
Jor by eliminating Ω0) and the matrices

Ψ^lV-Sal%, (2.20)
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where

(2.21)

Sa

 == Sa = 0 n/\O~Q — Oaj , yZ,.ΔjL)

from the relations

for all; ^ 1. These formulae were derived first from standard variational principles
and subsequently from a new field equation recursion method. In the field
equation recursion method, QU) is interpreted as the effective tensor associated
with a field equation of the form (2.2) in the Hubert space

where %U) is the d(n — l)J-dimensional subspace spanned by the fields x{q) with
o(ω) =j, while Su\ / ( j ) , and 0*£ are spanned respectively by the fields Έ'τ

iq\ Jf

τ

{q\ and
P ^ } with o(τ);>j+1 and o(λ)^j. Thus when j = 0, Ωω can be identified with σ* in
accordance with (2.16). For j > 0 the solutions of the jth-order field equation
generate the solutions of the (/ — l)th-order field equation and imply the above
relations between Ω(J'~1) and Ωo).

The variational approach yields bounds on σ* that apply when the component
conductivities σa9 a = 1,2,..., n, are real or at least share the same argument in the
complex plane. In I we found the (2/z + l)th-order Wiener-Beran upper and lower
bounds on σ* are expressible as a continued fraction of the form implied by (2.17)
or (2.19), but which is terminated at the /zth-level by the tensor

&h)= Σ *βM£*>, (2.25)

giving the upper bound σ* ̂  Ω(0), or by the tensor

\ (2.26)

giving the lower bound σ*^Ω ( 0 ) . Similarly the (2/z)th-order Hashin-Shtrikman
bounds are expressible as a continued fraction of the form implied by (2.20-23) that
is terminated by the tensor

Q(*) = (Tm/(*) j (2.27)

where σm is chosen as either the smallest or largest component conductivity, giving
respectively lower and upper bounds, σ * ^ Ω ( 0 ) and σ*^Ω ( 0 ) . The assumed
convergence of these bounds to σ* as /z->oo (proved here in Sect. 8) implies the
continued fraction expansion for σ*.

Some sets of geometric parameters, denoted as terminating sets, correspond to
Hubert spaces J f of finite dimension and result in a continued fraction for σ* that
terminates at some level. In I we found that the Wiener-Beran bounds and Hashin-
Shtrikman bounds correspond to particular sets of terminating geometric
parameters and thus represent the effective tensor σ* in a finite dimensional
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Hubert space. The (2/ι + l)th-order Wiener-Beran upper and lower bounds are
obtained by replacing the normalization factor N(h+ί) by the terminating ones,

N(h+i) = ao/(h+i) a n d Λ/(* + i ) = : o , (2.28)

while the (2/z)th-order Hashin-Shtrikman bounds are obtained by replacing the
weights W^h) with the terminating set

Wih) = /(h) for a = m

= 0 for a + m. (2.29)

3. Ω-Functions: Analytic and In variance Properties

Let us consider the class of all matrix-valued functions σ^(σ 1 ?σ 2, ...,σπ),
/, A = 1,2,..., d, that are expressible as a continued fraction of the form implied by
(2.16) and (2.17), for some choice of positive semidefinite normalization factors and
weights. Such sets of fundamental geometric parameters are called allowable and
the functions are denoted as n-variable Ω-functions of rank d. The functions share
many of the beautiful analytic properties characterizing the conductivity functions
of real composite materials: see Bergman [16,19], Milton [20], DelΓ Antonio et al.
[2], and Golden and Papanicolaou [18] for a discussion of the analytic properties
pertaining to real materials. According to this definition of Ω-functions, the
conductivity matrices Ω ω (σ 1 ? σ 2 , ...,σn) for all j ^ O are clearly n-variable Ω-func-
tions of rank k = dn'j where ri = n — 1.

Some properties of Ω-functions are immediately apparent: they are homo-
geneous in the sense that

σ*(Aσl5 λσ2,..., λσn) = /lσ*(σ1? σ2,..., σn), (3.1)

for all constants λ, and satisfy the normalization

σ*(l, l , l , . . . , l) = /. (3.2)

Furthermore, the matrix inverse of an Ω-function of the variables σfl, a = 1,2,..., n, is
an Ω-function of the reciprocal variables ί/σa by virtue of the equivalence of (2.17)
and (2.19). (In our Hubert space this reciprocal transformation corresponds to
interchanging the roles of the subspaces <$ and f, replacing the normalization
matrices Λ/ω by their reciprocals Λ/ω, and leaving the weights unchanged.)

Additional analytic properties of Ω-functions can be established by induction.
We start by proving that

σ * > 0 when σa>0 Vα. (3.3)

To do this, choose the reference variable σq as the minimum of all the σω

a = 1,2,..., n, to ensure the inequality

s(

a

q)^0 (3.4)

is satisfied for all a. Now consider those terminating continued fractions for which
Q(h) is given by (2.26): this effective tensor, Q{h\ is clearly strictly positive definite. So
suppose Ω ω > 0 for some g/z. This implies, via (2.20) and (2.21) that

(3.5)
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I = G Θ ) C

Fig. 1. Sketch illustrating the various regions in the complex plane that are needed to construct the
bounds of Sect. 4 for a five component composite with complex component conductivities
σ1,σ2, ...,σ5. The half-planes ^θ and ̂ θ>g, shown here with θ= — π/4 and q = 2, are shaded only
along their boundaries. The wedge iV extends out to infinity

when the variables έ£ are all negative as in (3.4). Consequently, from (2.23) we
deduce that Ω°~X )>0 and by induction it follows that Ω ( 0 ) >0 for all terminating
continued fractions of the type we considered. The convergence from below of Ω(0)

to σ* in the limit /ι-> oo (as established in Sect. 8) subsequently implies that σ* > 0.
Next we demonstrate that for complex-valued variables,

I m σ * > 0 when I m σ Λ > 0 Vα. (3.6)

The reference variable σ€( = σα for some α) is chosen so the line joining σq to the
origin does not pass through the convex hull of the n points σa, a — 1,2,..., n. Then
there exists some angle θ such that all the points σa, a = 1,2,..., n, but not the origin
are contained in the half plane, &θiφ that has its boundary passing through σq at an
angle θ: see Fig. 1. This ensures

lm(e~ίξs{

a

q))^0 Vα, where ξ = (nτgσq-θ). (3.7)

To prove (3.6) by induction consider the class of terminating continued
fractions for which Ω(Λ) is given by (2.25), (2.26) or (2.27) and assume

(3.8)

(3.9)

or equivalently that

lm(eiξfiU)QU)tiij)/σq) ^ 0,

for some j^h: this is certainly true when j = h, as ensured by (3.7).
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Now for any symmetric matrix A, we have Im>4 ̂  0 if and only if the inequality

(3.10)

holds for all complex vectors τ, where ττ denotes the complex conjugate of the
transpose of τ. By substituting τ =A ~ ir\, where η is any complex vector we deduce

iff I m Λ - ^ O . (3.11)

It immediately follows from this, (3.8) and (2.21) that

I m C έ Γ ^ Π + ω ) - 1 ] ^ , (3.12)

which in conjunction with (2.20) and (3.7) implies

Im(έ>- ί ξΔ+ ω)^0. (3.13)

This in turn leads through (2.23) to the bound

^ ^ ^ / ^ ^ (3.14)

which implies (3.8) is satisfied when j is replaced by; —1. Note further that (3.14)
holds when j — l=h. Thus both inequalities (3.14) and (3.8) are established. In
particular, if the variables σa all have non-negative imaginary parts and σq is
chosen so I m σ ^ I m σ f l for all a, then we can take θ = 0, j — 1 and our result (3.14)

i m p l i e S ImΩ ( O )>0 when Imσ α >0 Vα. (3.15)

Taking the limit ft-> oo, establishes (3.6). The tighter inequality (3.14) will be needed
for deriving bounds in Sect. 4: it implies for all real unit vectors α that αTΩ0)α is
inside the half-plane ^θ^q containing the points σα, Λ = 1,2,...,«.

In Sect. 8 of Part I we proved that there is always a Hubert space

ji? = <%(&&(B# = &>1®0>2(B...(B0>n (3.16)

associated with any set of positive-semidefinite fundamental geometric param-
eters. The allowable geometric parameters can be chosen as the set that occur in
the continued fraction expansion of an Ώ-function, and the Ω-function then
represents the effective tensor in Jf. This Hubert space correspondence is a
powerful tool for establishing properties of Ω-functions. Indeed, the Thompson
variational principle, (12.23) in I, directly implies (3.3) and similarly (3.6) follows
from elementary considerations in the Hubert space Jf [53, 55].

Now since we are free to choose our reference variable σq as any of the σω

α=l,2 , ...,rc, an Ώ-function will remain an Ώ-function under any interchange of
variables. Also, because it doesn't matter what set of orthonormal vectors xΛ

( = 1,2,..., d, are chosen to span Φ, an Ω-function will remain an Ω-function under
orthogonal transformations.

Alternatively we can select any subset of the basis vectors xΛ say those vectors
with / ^ d v , that span a subspace °lly Q°U of dimension dv <d. The remaining
vectors x̂  with £>dy span a subspace ^ v which is the (d — dv)-dimensional
orthogonal complement of % v in ϋlί. Our Hubert space Jf7 is clearly spanned by the
three mutually orthogonal subspaces

\ , (3.17)
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and in this Hubert space the field equation (2.2) has solutions for j e %, J* e f, and
E * G $ v given any e e ^ v . Note the current field j + J* can be re-expressed as
jV

j v

 Ξ Γ o

v j e ^ v , J * v = J * + ( J - Γ o

v ) j e / V , (3.18)

in which ΓQ is the projection operator onto ̂  v . Consequently if σf4, /, £ ̂  d, is an
Ω-function of rank d, then the truncated matrix σf& ί,i^dy is an Ω-function of
rank dy for all dy ^d. Thus an Ω-function remains an Ω-function after matrix
truncation. In particular, the d diagonal elements of an Ω-function of rank d must
be scalar Ω-functions.

From the Hubert space correspondence it is clear that an Ω-function remains
an Ω-function under contraction of variables. That is, for any a, b e {1,2,..., n} with
a + b we are free to set σa = σb in an rc-variable Ω-function to produce an (n — 1)-
variable Ω-function. In our Hubert space this is equivalent to replacing ^a and &b

by ^ α φ ^ & , thereby reducing the number of subspaces έPa from n to n — 1.

The class of Ω-functions also satisfy an important convexity property, which
follows from the Hubert space correspondence. In Appendix 1 it is established that
the weighted arithmetic (or harmonic) mean of two n-variable Ω-functions of the
same rank, d, is an rc-variable Ω-function of rank d. Thus the average of a set of
Ω-functions is an Ω-function.

Another way of generating a new Ω-function tσ*(σ 1,σ 2, ...,σw) from a given
Ω-function σ*(σ1 ?σ2, ...,σn) is to choose any fixed positive real scaling factor
λ< oo, introduce the normalization matrix,

t/V=σ*μ, l , l , l , . . . , l ) , (3.19)

and take

*σ*{σl9 σ29 σ3,..., σn) = ̂ Nd*(λσl9 σ2, σ3,..., σ^N. (3.20)

The invariance of the class of Ω-functions under this renormalized single variable
reseating defined by (3.20) is rigorously proved in Appendix 2, for all real λ>0.
Physically, in any n-component impedance network and for any integer λ > 0, this
rescaling corresponds to replacing each impedance of component 1 by λ
impedances of component 1 connected in parallel: the Ω-function
^a*{σu σ2,..., σn) given by (3.20) represents the response of the resulting network.

Clearly the isotropic component materials in a heterogeneous medium can
themselves be taken as composites, provided their microstructure is much smaller
than the inhomogeneities in the heterogeneous medium in which they are
embedded. This suggests that any one of the variables, say 'σ1 ? in an n-variable
tensor Ω-function 'σ*('σ l 5 'σ2, .../σΛ) can be replaced by an m-variable scalar
Ω-function "σ*("σι,"σ2, •••/Ό to produce an (n + m — Invariable Ω-function,

The proof that a scalar Ω-functίon can indeed be substituted in a given rank d
Ω-function to produce a new rank d Ω-function is given in Appendix 3.

Let us define a Σ-function as any rc-variable, symmetric matrix-valued function
σ*(σ1? σ2,..., σn) satisfying (3.1), (3.3), and (3.6). The class of normalized Σ-functions,
that in addition satisfy the normalization (3.2) is the class which has been
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extensively studied by Bergman [16,19], Milton [20], and most recently by
DelΓAntonio et al. [2] and Golden and Papanicolaou [18], usually with ά — 1. We
have established that any Ώ-function is a normalized ^-function and it is tempting
to conjecture that the converse is also true. Indeed, normalized Σ-functions satisfy
all those properties of Ω-functions established above, and there is currently no
evidence to suggest a distinction between the two classes of analytic function.

The continued fraction expansion for normalized two-variable Σ-functions
derived in Appendix 4 confirms their equivalence with Ω-functions when n = 2.
Successive normalization factors and weights are uniquely determined by
matching terms in the series expansion for σ* in powers of δσ = σ1 — σ2.
Unfortunately such a simple algorithm does not extend to multivariate functions,
with n^3. Indeed the coefficients in the series expansion for σ*, up to third-order
(or any higher finite order) in the differences δσ{f = σa — σφ incorporate more
unknown geometric parameters than there are coefficients to solve for them. Thus,
in a three variable Ω-function (with n = 3) the number of independent geometric
parameters in the normalization factor Λ/o) (or in the set of weights W^\
a = 1,2,..., ή) increases exponentially with;, as 2j~1 (or 2s) for large j , whereas the
number of independent coefficients of order 2/ (or 2/ +1) in the series expansion for
σ* increases only linearly withj, as 2/ +1 (or 2/ + 2). Consequently, there cannot be
any direct relation between truncated continued fractions (which incorporate the
weights and normalization factors) and multivariate rational approximants, such
as the Canterbury approximants [51] (which incorporate the series expansion
coefficients).

This raises the basic question: are the normalization factors and weights
uniquely determined by the analytic behavior of σ* as a function of the variables
σa, α = l,2, ...,n? While there is a mismatch between the number of geometric
parameters, in the normalization factors and weight matrices, and the coefficients
in the series expansion at any finite order, this does not exclude the possibility that
the countably infinite set of series coefficients suffices to determine the countably
infinite set of geometric parameters. (Of course we should disregard the trivial
degeneracies associated with terminating sets of geometric parameters, namely
that the higher-order weights and normalization factors do not influence σ*.) For
composites the issue is not of fundamental importance because the geometric
parameters can (in principle) be determined directly from the correlation functions
and there is no need to analyze series expansions for σ*. However, the question
clearly deserves attention if the continued fraction expansion are to be related to
the Golden-Papanicolaou integral representations for the function
σ*(σ1?<τ2, ...,σn) [53,55]. And of course it would be interesting to know the
analytic significance of the weight matrices and normalization factors.

4. Hierarchies of Bounds on ί2-Functions

In practice the m-point correlation functions characterizing the geometry of a
composite will be known up to some odd order 2g— 1 (or even order 2g) that is
typically small. From these correlation functions we can in principle calculate the
weights V\^j) and the normalization factors Λ/ω (or Nij+1)) for all j ^ g - 1 . Our
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objective here is to bound σ* given these fundamental geometric parameters and
the (real or complex) component conductivities σa9 a = l,2,...,n. This is accom-
plished by treating the more general problem of bounding £2-functions.

Suppose the weights V\^j) and the normalization factors Λ/0) are known for all
j^g — ί, and let us assume all the variables σa all lie in one half of the complex
plane. Define iV as the smallest wedge in the complex plane with sides meeting at
the origin that contains all the points σω a = 1,2,..., n, and let σm and σp label two
variables in the set {σu σ2,..., σπ} that lie on opposite sides of the wedge if, with
a r g σ m ^ a r g σ r Also for any angle θ in the range

p ^ f l ^ - π + argσm, (4.1)

let yθ denote the half-plane, containing if, that has boundary passing through the
origin at an angle θ to the real axis: see Fig. 1.

From the special properties (3.1) and (3.6) of Ώ-functions, such as
Qi9\σu σ2, . , σw), any half-plane passing through the origin and containing all the
points σa, a=ί,2, ...,n, must necessarily contain ατΩ(fif)α for all real vectors α.
Hence by defining

we have the elementary half-plane bounds on Ai9\

α τ Λ ( % e ^ for all real α. (4.3)

Now given any integer k > 0 and region M of the complex plane, let us define
2) as the set of symmetric, complex k x k matrices A, such that

iff α M α / ( α Γ α ) e l for all real α + 0. (4.4)

With this simplified notation the elementary half-plane bounds (4.3) take the form

W , (4.5)

where ri = n — l. Since Ψ* is the region of intersection of all the half-planes ^ with
θ between the limits (4.1), Λ(δ0 must satisfy the elementary wedge bounds

9,ir). (4.6)

Remarkably, the converse is also true: for any given matrix Λ in
there exists an allowable set of geometric parameters such that

Λ t o ) = Λ. (4.7)

To see this, we will first suppose the variables σm and σp, which lie on opposite sides
of the wedge if, satisfy argσm=t=argσr Then for any complex matrix

ή9, if) there exist real symmetric matrices

Λm = \lm{σjσp)-] ~1 Im(Λ/σp) ^ 0,

such that Λ can be represented in the form

Λ=σMΛm + σpΛp with Λ m ^ 0 , Λ p ^ 0 . (4.9)
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In the special case where argσm = argσp, the wedge Ψ* degenerates into a single ray
extending from the origin and obviously Λ can still be expressed in the form (4.9)
with Λp = 0 and Λ m ^0. In either circumstance we choose the terminating set of
allowable geometric parameters

Λ/ ( β f ) =Λ m +Λ p , N{9+1) = ooHg+1\

W^9) = Nig)AaN
ig) for a = m or p

= 0 otherwise, (4.10)

which results in a conductivity matrix Qig) given exactly by (2.25), with h replaced
by g. Hence we have

and with (4.2) this implies that (4.7) is indeed satisfied for the above choice of
geometric parameters. Therefore the elementary wedge bounds (4.5) form the most
restrictive bounds that can be placed on Λ(g), and hence Π+(fir) without further
knowledge about the geometric parameters.

Now σ* depends on Π+i9\ and hence Ai9) through (2.16) and the recursion
relations (2.20-23) which thus define a function σ*(Λω) giving

a* = σ*(Λ(ί7)) = σ*(Λ(ί?) σa, W®, NU)) (4.12)

in terms of Ai9\ the conductivity variables σa and the known geometric parameters
W^j) and NU) with ^ g — 1. This function σ*(Λ(9)) can be regarded as a mapping
from the set of symmetric complex dn'^-dimensional matrices to the set of
symmetric complex d-dimensional matrices. From (4.5) and (4.12) we have the
(2g — ί)th-order half-plane bounds,

(4.13)

while (4.6) implies the (2g — \)th-order wedge bounds,

(4.14)

Since the elementary wedge bounds are optimal, these wedge bounds (4.14) are the
best-possible bounds on rc-variable Ω-functions of rank d9 given W^j\ a = 1,2,..., n,
and NU) for all j ^ g — 1 and no other information about the successive geometric
parameters.

When the variables σa are all real, (4.6) implies the optimal bounds,

which together with (2.20) and (2.23) yields (at some loss of information on
correlations between eigenvalues) the bounds

Σ ^ ~ 1 } / M ^ Ω ^ " 1 ^ Σ W ? " 1 ^ . (4.16)
l / l

Σ
α = l

Thus the Wiener-Beran bounds of order 2g—1 follow from the wedge bounds,
(4.14). In fact the wedge bounds are generally tighter than the Wiener-Beran bounds
when d>\ and g > l because they incorporate additional restrictions on the
correlations between the different eigenvalues of σ*. Although the Wiener-Beran
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bounds are individually attainable [as the effective tensor in a Hubert space of the
form (2.9) characterized by a set of geometric parameters terminated by (2.28)] it is
incorrect to infer the attainability of every conductivity matrix between these
bounds: such a matrix may have some eigenvalues coinciding with the upper
bound and other eigenvalues coinciding with the lower bound. For scalar
Ω-functions the attainability of the Wiener-Beran bounds (and the Hashin-
Shtrikman bounds) of course implies their optimality to all orders.

If in addition the normalization factor N(9) is known then the wedge bounds
can be improved. The half-plane &θ>β, as defined in Sect. 3 and illustrated in Fig. 1,
is a translation of &θ by the amount σq. To ensure @θtq contains all the variables σa9

a = l,2,...9n, but not the origin, we require that θ satisfy (4.1) and second that the
reference variable σq is chosen with

lm(e-iθσq)^lm{e-iθσa) Vα. (4.17)

The intersection of all such planes forms an open polygon <F (see Fig. 1) which is
the convex hull of n rays that issue from the points σω a = 1,2,..., w, at angles argσfl.
(Thus each ray when extended in the opposite direction passes through the origin.)

Since (3.14) is satisfied whenever (3.7) holds, we deduce that any half plane
containing the points σa, a = 1,2,..., n, also contains α τ Ω 0 ) α for all real unit vectors
α. This implies the elementary half-plane bounds on Qi9\

,$θfq). (4.18)

Others bounds are obtained by noting that Qi9) is an Ώ-function of the variables
l/σα. Specifically we select σq so that

lm(eiθ/σq)^lm{eίΘ/σa) Vα, (4.19)

and define the half-plane ^\^q to be a translation of the complex conjugate of ^ θ

(i.e. the inverse of &θ) through an amount ί/σq. The intersection of all such half-
planes forms an open polygon J^1" which is the convex hull of the n rays emanating
from the points l/σa, α = l , 2 , ...5n, extending away from the origin at angles
arg(l/σβ).

By analogy with (4.18) we have the elementary half-plane reciprocal bounds on
Q{g\

Ω{g)e&(dnfg^iq), (4.20)

where &(k, 0£) denotes the set of matrices that have an inverse in S?(k, M). Since
(4.18) and (4.20) hold for all combinations of half-planes ^ M and ̂ > β we deduce
the elementary polygon bounds on Qig)

Qig) G sr{jM\ ^)n&(dnfg, J ^ ) , (4.21)

which are better than the elementary wedge bounds (4.6) because # ' C i f and
[^yxCW. For scalar Ω-functions these polygon bounds imply

σ * e J * Γ n ( # ' t Γ 1 , when d = l , (4.22)

which in fact coincide with the known elementary bounds [28, 54] on scalar
normalized ^-functions and are realizable by the diagonal elements of σ* of real
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composite materials. The straight edge (or circular arc) between any adjacent pair
of vertices σa and σb of 3F [or ( # ' t ) ~ 1 ] is realized by the diagonal element

σ*2 = cσa + (1 — c) σb (or by the diagonal element σfx = [_c/σa + (1 — c)/σb] ~*) of the
conductivity tensor of a laminate of the components σa and σb in proportions c and
(1 —c) orientated so the direction vector xx is normal to the layers. As c is varied
from 1 to 0 the edge (or arc) is traced from vertex σa to vertex σb.

From the definitions (4.2) and (4.12) of Ai9) and the function σ*(Λ(g)) the
elementary bounds (4.18), (4.20), and (4.21) imply the (2g)th-order half-plane bounds

,9Θt q) Λ/(*>), (4.23)

the (2g)th-order half-plane reciprocal bounds

σ* 6 σ%(fi{9Ψ{dn'9, %iq)fii9)), (4.24)

and the more restrictive (2g)th-order polygon bounds

σ* e σ*(Λ/(ί?) \ST{άrί\ ^)n&(dn'9, J ^ ) ] fi(9)) (4.25)

on the Ώ-function σ*.
When the variables σa are all real, the regions #" and s ^ t reduce to intervals on

the real axis extending from σv and l/σL to infinity, where

σv — max σa, σL= min σa (4.26)
a a

are the maximum and minimum component conductivities. In conjunction with
(4.21) this implies

l{9)<ς£9)^l{9). (4.27)

Thus the polygon bounds imply (and are generally tighter than) the Hashin-
Shtrikman bounds of order 2g. Furthermore the polygon bounds are optimal over
the class of Ω-functions, for all orders g w h e n the variables σa,a = l92,...9n, a re all
real. Thus, given any real symmetric matrix Ω satisfying the bounds (4.27) there
exists an allowable conductivity matrix Ω(flf), such that Q{9) = Ω: for example we may

Qto) = W£aL + W$συ, (4.28)

where

K9) = (σΌW - Q)/(σv - σL) * 0,

M^) = (Ω-σ L /^>)/(σ ϋ -σ I )^0

are allowable geometric parameters.
I suspect that the polygon bounds are generally not optimal over the class of

Ώ-functions when the variables σa are complex. To obtain a complete optimal set
of complex bounds of order 2g it may prove necessary to calculate the (2g + l)th-
order wedge bounds and let the weights Wjf} vary over ail positive-semidefinite
matrices satisfying (2.7). The union of the resulting sets of possible values for σ* is
guaranteed to represent the optimal (2g)th-order bounds on Ω-functions because
the wedge bounds are optimal.

Although they are not generally optimal, the half-plane bounds have many
desirable features. Their chief advantage, demonstrated in Sect. 6, is that they are
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easy to calculate: in fact for scalar Ω-functions they are simply circles in the
complex σ* plane. Also, at fixed θ, the jth-order half-plane bounds, j = 0,1,2,..., oo,
form a nested sequence of bounds, denoted as a θ-sequence of half-plane bounds.
Thus, the (2g) th-order half-plane bounds are more restrictive than the
(2g — l) th-order half-plane bounds which in turn are more restrictive than the
(2g —2) th-order half-plane bounds: this is established by noting 0 M C 0 β and that
(3.14) is implied by (3.8). Furthermore, the property (3.11) of matrices implies the
odd-order half-plane reciprocal bounds are the same as the odd-order half-plane
bounds. In conjunction with the even-order half-plane reciprocal bounds they
form a nested θ-sequence of half-plane reciprocal bounds. When θ reaches its
extreme values of argσp and — π + argσw the three half-planes @θ, $θiq and (^J>β)~1

coalesce, and hence the even-order half-plane and half-plane reciprocal bounds
merge with the preceding odd-order half-plane bounds.

As θ is varied between the limits (4.1) σ* must clearly lie within the intersection
of all the resulting jth-order half-plane and half-plane reciprocal bounds. This
intersection defines the inner hull of the; th-order half-plane bounds. The nesting of
the half-plane and half-plane reciprocal bounds implies that the inner hulls of these
bounds, for j = 0,1,..., oo, form a nested sequence of bounds.

When the variables σa, α=l,2, ...,n, are all real and positive the half-plane
bounds for θ = — ε and θ = — π -f ε (where ε is infinitesimal) imply that the inner hull
only consists of real matrices σ*. Further elementary analysis, with θ= — π/2,
establishes that the inner hull of thej th-order half-plane bounds, for; = 1,2,..., oo,
is at least as restrictive as the j th-order Wiener-Beran-Hashin-Shtrikman
bounds.

Bounds that are narrower than the wedge or polygon bounds, yet which
incorporate the same set of geometric parameters, are obtainable from additional
constraints on the normalization factors and weights. These constraints are only
appropriate to select classes of problems, such as conduction in composites with
isotropic components, and the resulting bounds correspondingly have limited
applications. As an example consider any 2-component, 2-dimensional ani-
sotropic composite with real component conductivities labelled so that σ1*zσ2. In
I it was established that the associated normalization matrices Ni9\ g = 1,2,3,...,
have unit determinant. Hence they satisfy

T r [ / ω + /Vω]-i = l . (4.30)

Combining this with the elementary polygon bounds (3.27) and the definition
(2.21) of Γ\+{d) gives one of two elementary trace bounds,

^ l or Tr(Π + ( ^ ) ^ l , (4.31)

according to whether σq = σ1 or σq = σ2. By expressing Π+(flf) in terms of σ* via the
recursion relations (2.20-23) and substituting the result in (4.31) we thus obtain a
hierarchy of lower and upper (2g —1) th-order trace bounds on σ* indexed by the
integer g = l . In particular when g = l (4.31) implies the bounds

Tr[(σ*-σ2/)-1] ^ if2^i +(1 +/> 2 ]/[/ 1 σ 2 (σ 1 - σ 2 ) ] ,
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which are identical to the bounds derived by Murat and Tartar [10] and by Lurie
and Cherkaev [11]. In fact the above analysis closely follows the approach used by
Milton and Golden to prove these bounds from the analytic properties of
σ*(σ1 ?σ2): see [12, 27, 55]. Here we have made the generalization to include
information about higher order geometric parameters. Note, however, that the
hierarchy of trace bounds on σ* implied by (4.31) supplements rather than replaces
the hierarchy of wedge bounds. Unlike the wedge bounds, they are not easily
extended to complex σγ and σ2.

5. Representation of σ*(Λ(9)) as a Fractional Linear Matrix Transformation

The evaluation of the (2g — l)th-order wedge or half-plane bounds or the (2g)th-
order polygon, half-plane or half-plane reciprocal bounds is not easy for
composites with more than two components. We need to construct sets of d x d
matrices that are the image, under the mapping σ*(Λ(sf)), of various sets of (typically
enormous) dri9 x dή9 complex matrices. Although this can be done numerically via
repeated substitutions in the continued fraction representations for σ*(Λ(5)), it is
clearly of interest to simplify this mapping.

Here we establish, by induction, that the function σ*(Λid)) is a fractional linear
matrix transformation of A{9) expressible in the form

σ*{W) = Qg-Rτ

g(/\^ + Sg)-'Rβ, (5.1)

for an appropriate choice of complex matrices Qφ Rφ and Sg that depend not on
A(9) but only on the variables σa, and the known geometric parameters W^) and Λ/o)

with j < g: Rg is a rectangular dn'9 x d matrix while Qg and Sg are symmetric d x d
and dn'9 x dή9 matrices.

First note that the recursion relations (2.17) with (2.16) implies σ*(Λ(1)) can be
expressed in the form (5.1) with

(5.2)

So suppose (5.1) is satisfied for some g, say g=j—1. According to the definition
(4.2) of Λ°~1}, together with the recursion relation (2.18) we have

Σ BaCa,bBb, (5.3)

where

a%) <*)(/>r~i-i)(/> o ) urω {5Λ)

Substituting into (5.1) the expression (12.16), given in part I, for the inverse of any
matrix of the form (5.3) (and replacing g by j — 1) yields the result that (5.1) also
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holds when g =j, with

(5.5)
BAiBJΫμ

Thus we have established that σ*(Λ(3)) is a fractional linear matrix transformation
of Λ(^ of the form (5.1), and it directly follows that σ*(A/(^Ω(fif)Λ/(fiί)) is a fractional
linear matrix transformation oϊΩ{9\ Furthermore (5.2) and the recursion relations
(5.4) and (5.5) can be used to generate the matrix parameters Qgf Rφ and Sg: there is
no need to work with the continued fraction expansion.

From (5.1) and the identity that (I—A)~ι — /=(A "* — / ) " 1 for any matrix A, we
have the alternative representation

Wg (5-6)

for σ*(Λ(9)) in terms of the inverse Λ<9) of Λ<9), where

/*}"$ S*i DTO — 1 o O t O — 1 D Ot O — 1 /<Γ Ή\
i / ' — ^ — Γ\ n \j n it n , #11 — O #ι . O "" O . I j t / I

6. Half-Plane Bounds on Scalar Ω-Functions

To obtain explicit expressions for the various bounds we still need to calculate
σ*(έ?) for the appropriate sets

or

where k = dn'g = d(n — l)9. This can be accomplished by identifying the matrices in
Sf that get mapped onto the boundary of σ*(£f) in σ* space and then constructing
their image.

For ease of analysis only bounds on scalar β-functions are considered: such
bounds are especially important because, from Sect. 3, they apply to the diagonal
elements of any tensor ί2-function. Following some remarks on a general approach
for calculating σ*(£f) given an arbitrary set £f, our focus is on constructing half-
plane bounds: wedge bounds are considered in Sect. 7. For these bounds the set Sf
has a particularly simple characterization. Analytic expressions for the complete
hierarchy of half-plane and half-plane reciprocal bounds are derived and each
B-sequence is found to form a nested sequence of circles in the complex plane. The
remainder of this section covers the question of attainability of the bounds, and
deals with the technicalities of constructing their inner hull.

It will be assumed the variables σa do not all share the same argument in the
complex plane. Otherwise the Wiener-Beran and Hashin-Shtrikman bounds
apply and the problem is solved: as discussed in Sect. 4, these bounds are optimal
for scalar ^-functions and correspond to substituting Λ(fll) = 0, Λig) = co/,
Λ<»> = σLNi9) or Λig) = σvN

{9) in (5.1).
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Let us define any infinitesimal variation dA in Aeϊf to be unconstrained with
respect to Sf if both Λ — dA and Λ + δΛ lie in the set Sf. Clearly for scalar
Ω-functions, and to first order in dA, σ*(Λ) lies midway on the line in the complex
plane joining σ*(Λ—dA) to σ*(Λ+δΛ). This line has slope argδσ*(Λ). Hence a
necessary, but not sufficient, condition for σ*(Λ) to lie on the boundary of the set

is that for every unconstrained variation dA of Λ we have

3σ*(Λ) = 0, (6.1)

or we have

argδσ*(Λ) = const = y°(modulo π) (6.2)

to first order in δΛ. When σ*(Λ) is indeed on the boundary of σ*(£f) the constant y°
which appears in this formula, of course, is the angular slope of the boundary at
σ*(Λ).

For scalar Ω-functions the matrix Qg that appears in (5.1) is a scalar, Qg9 while
Rg is a vector, R ,̂ in a k = n'β dimensional space. Substituting (5.1) in (6.1) and (6.2)
gives the condition

Tτ(<9Λ)T = 0 or argTΓ(<9Λ)T = y°, (6.3)

where we have introduced the vector

- 1 ! ^ . (6.4)

At fixed y° the set of Λ e ίf that satisfy (6.3) for all unconstrained variations dA will
get mapped via σ*(Λ) to a set of points in the complex plane. As γ° is varied from 0
to π the points will trace a family of curves, some of which may terminate if the
corresponding matrix Λ moves outside £f. The set σ*(£f) will be the region
enclosed by the outermost curves in this family.

To implement this scheme consider the (2g — l)th order half-plane bounds
(4.13) obtained by taking Sf = £f(k,&θ)9 where k = n'β9 and θ satisfies (4.1). Any
matrix Λ in this set can be parametrized in the form

Λ=e iβ(Λ' + iΛ"), with Λ"^0, (6.5)

where Λ' and A' are real symmetric matrices and A (unlike A') need not be positive
semidefinite. We will assume that both Λ' and A" have finite eigenvalues: the
extreme case where some of the eigenvalues are infinite can be treated separately
(see Sect. 7) and does not alter our results.

Since all infinitesimal, symmetric, real variations dA' of Λ' are allowed, (6.3)
implies that all elements of the vector T have the same argument in the complex
plane. Hence there exists a real vector ΎR such that

τ = eirΎR, (6.6)

where

y = (y°-0)/2 or ( π + y°-0)/2. (6.7)

By inserting (6.6) back into (6.3), we deduce that

Tτ(<9Λ")T = 0 (6.8)
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for all infinitesimal unconstrained variations 3Λ" of Λ". So suppose Λ" has some
eigenvector v" with a non-zero eigenvalue λ". We are certainly free to increase or
decrease λ", and consequently (6.8) implies

v"ΓT = 0. (6.9)

Now consider the effect of reducing the eigenvalue λ" by a finite amount, δλ", to
form a new matrix

Λ'ΞΛ-I¥'ΛV T . (6.10)

From (5.1) and (6.9) we have

σ*(Λ") = σ*(Λ) - iδλ"eiθ(y"τΎ) ίV'τ(A" + SgΓ
1 R9] = <τ*(Λ). (6.11)

Thus we can reduce the eigenvalues of Λ" to zero without changing σ*(Λ).
Therefore it suffices to look for solution of (6.3) with Λ" = 0: when Λ' is positive
definite this corresponds to considering those Ω-functions with a terminating set of
weights of the form (2.29).

Substituting Λ = ewA and (6.6) in (6.4) gives,

(Λ' + e - % ) T Λ = £ Γ i ( y + χ . (6.12)

Since ΎR and Λ' are both real, we can eliminate Λ' by taking the imaginary part of
(6.12) to obtain the result

g % (6.13)

By defining

Xβtβ = U^(e'iθSg)2''1Rβ (for odd-order bounds), (6.14)

and substituting (6.4) into (5.1) we find

^ l ^ θ , (6.15)

for all points Λ such that σ*(Λ) is on the boundary of the half-plane bounds. To
elucidate the dependence on y this can be re-expressed as

<(Λ) = Q, + ie-iθXlθRg/2-ie«2?^XlθRg/2, (6.16)

where R^ denotes the complex conjugate of the vector Rg.
Clearly, as y is varied from 0 to π, σ*(Λ) given by (6.16) inscribes a circle in the

complex plane. This circle, of radius X^θRg/2, must contain σ*. The quantities Qg,
Rg, and Sg that enter into the expression (6.16) via (6.14) are given by (5.2) and the
recursion relations (5.4) and (5.5). Thus once the geometric parameters are known,
(6.16) provides an explicit formula for computing the half-plane bounds to any odd
order, for any orientation, θ, of the half-plane.

The even-order half-plane and half-plane reciprocal bounds are determined by
similar analysis. Any complex matrix Λ in the set £f = A/(Sί)^(/c, ̂ θq)/9ig\ and only
those matrices in this set can be represented in the form

Λ - N{g)σq + ew{N + ίΛ") with Λ" ̂  0, (6.17)
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in which Λ' and Λ" are real and symmetric. Again it suffices to set Λ" = 0, and the
resulting (2g)th-order half-plane bounds retain the form (6.16), but with Xgθ

replaced by

Xg> Θ = [Im e ~ ίΘ(Sg + σqN
{g))~] " x Rg (for even-order bounds). (6.18)

The (2g)th-order half-plane reciprocal bounds (4.24) are easiest to examine using
the alternative representation (5.6) of σ*(Λ). By direct analogy with (6.16) and (6.18)
the boundary of σ*(Sf) is described by the circle

l l l l (6.19)

as γ varies from 0 to π, where

Xle^llme^Sl + N^/σ^-^l (for even-order bounds) (6.20)

and R* denotes the complex conjugate of R .̂
The nesting property of the half-plane bounds, established in Sect. 4 now

implies that each θ-sequence of half-plane bounds forms a nested sequence of
circles in the complex plane. Similarly each ^-sequence of half-plane reciprocal
bounds forms a nested sequence of circles. Taken together, and keeping θ fixed,
they result in a nested sequence of bounds comprised of circles, corresponding to
the odd-order half-plane bounds, alternating with lens-shaped regions formed by
the intersection of the pairs of circles corresponding to the even-order half-plane
and half-plane reciprocal bounds.

At certain values of θ, specified below, some sections of circular arc in such a
j th-order bound can be attainable. Consider the odd-order bounds, withj = 2g — 1,
and suppose θ is at its extreme value, argσp. In terms of the vector

which is purely real because ΎR is given by (6.13), the solutions for Λ' of (6.12) take
the form

Ai = (Jl ξ)-1ζζτ+kΣbjηJηJ, (6.22)

where the bp j = 1,2,..., k — 1, are a set of arbitrary real constants and then ι/7 are
chosen to be any set of k— 1 orthonormal real vectors satisfying

Ti-Vj = 0, j = l,2,. . . ,fc-l. (6.23)

Now if Λ'^0 and θ = argσp, the matrix Λ = eiθΛ! can be reexpressed in the form
(4.9), withΛm = 0 and Ap=A/\σp\^0. When this occurs the corresponding point
σ*(Λ) lying on the circle (6.16) is also on the boundary of the wedge bounds and
hence is attainable in the class of Ώ-functions. Since the constants bj in (6.22) can be
chosen non-negative, a positive semi-definite matrix solution Λ' exists if and only if
the attainability condition

Ύτξ^0 (6.24)

is met when θ = argσp. By substituting the expressions (6.13) and (6.21) for ΎR and ξ
in (6.24) this attainability condition is recast in the form

0 ) ] ^ l , (6.25)
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where r(θ) is the complex ratio

r(0)^Xj,,S9X9y{Xj,e[Re(e-%)]X9,e}, (6.26)

in which Sg and Xgθ are the complex conjugates of Sg and Xg θ. Thus the bounds
(6.16) are attainable at θ = argσp if and only if \r(θ)\ ^ 1. They are attained on the
length of circular arc with endpoints given, from (6.25), by

y = {[argr(θ)] - 0 ± cos " 1 (l/|r(0)|)}/2. (6.27)

At the other extreme value of θ, namely 0 = π + argσm, the bounds are
attainable when Λ'^0, and this again occurs between those values of y given by
(6.27), provided \r(θ)\ ^ 1. Through similar analysis it follows that the even order
half-plane bounds (or half-plane reciprocal bounds) may be attainable at up to n
values of θ, namely when θ (or — θ) coincides modulo π, with the angular slope of
one of the edges of J^ (or of J^f) that joins two adjacent vertices σa and σb (or l/σa

and l/σb) for some a, b e (1,2,..., n).
The calculation of the inner-hull of the jth order half-plane bounds requires

some care. For the odd-order bounds, with7 = 2g — 1, we first plot the attainable
sections of circular arc that occur when θ = argσm or — π + argσm. At other values
of θ any variation dθ in θ is unconstrained. Differentiating (6.16) with respect to θ
gives (after some algebraic manipulation) the result that (6.2) and (6.7) are satisfied
when

l, (6.28)

where r(θ) is the same factor, defined by (6.26), that occurs in (6.25). Whenever
\r(θ)\ ^ 1 this has the solution (6.27) for the angles γ(θ). A pair of curves is generated
by substituting (6.27) in the bounds (6.16) and varying θ subject to (4.1) and the
constraint \r(θ)\ ^ 1. At θ = arg σp and θ = — π + arg σm these curves clearly meet with
the attainable sections of arc (if any) and together they form the closed boundary of
the inner hull.

A similar procedure can be followed to construct the inner hull of the even-
order bounds, by first plotting the attainable sections of circular arc (which occur
at n or less values of θ) and then by constructing the inner hull at the intermediate
values of θ, within the range (4.1). For the (2g)th-order half-plane bounds the
analogous formulae to (6.21)-(6.28) are obtained by replacing Sg with Sg + σqN

{9\
For the (2g)th-order half-plane reciprocal bounds it is necessary to change various
signs, add daggers to the appropriate symbols and replace Sj with Sl + N{9)/σq.

For scalar Ω-functions of two-variables Λ' is a real scalar, Λ\ and there is a 1-1
correspondence between the angles ye[0,π] in (6.16) and values of A along the
real line. Hence when θ = argσp (and when θ = — π 4- argσm) there exists some arc of
the circle (6.16), corresponding to A ^ 0 (or Λ; ^0), which is attainable. The pair of
attainable arcs meet when A = 0 and when A = oo. Thus the inner hull of the
(2g — l)th-order bound is an optimal bound and consists merely of a lens-shaped
region in the complex plane: when n = 2 the curves obtained by substituting (6.27)
in (6.16) degenerate into a pair of points at the corners of the lens. A similar
argument, based on choosing θ = arg(σp — σm), establishes the optimality of the
inner hull of the even-order half-plane bounds which likewise reduce to lens-
shaped regions. The optimality of these bounds implies they are identical to the
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nested sequence of lens-shaped regions in the complex plane derived by Milton
[22], which in turn correspond to the bounds on Stieltjes functions due to Gragg
[48] and Baker [50]. Numerical studies of the bounds for regular arrays of spheres
and lattices of cylinders provide dramatic evidence of their utility when the
geometric parameters are known: the bounds converge rapidly to the exact value
of σ*, even when the inclusions nearly touch and even at conductivity ratios σjσ2

as large as 10,000 [23].

7. Wedge Bounds on Scalar Ω-Functions

The wedge bounds on scalar Ω-functions are harder to calculate than the half-
plane bounds but deserve attention because they are optimal over the class of
Ω-functions. Those sections on the boundary of the wedge bounds σ*(^(fc,iF))
that do not coincide with the attainable sections of the half-plane bounds are
shown here to be generated by matrices Λ e ^(k, if) of the form (4.9), where Λm = 0
and Ap has a mixture of only zero and infinite eigenvalues with at most two zero
eigenvalues. This result enables us to derive explicit expressions for the optimal set
of complex lst-order bounds on scalar 3-variable Ω-functions. They include the
attainable sections of the lst-order half-plane bounds, which in turn coincide with
the bounds on scalar Σ-functions conjectured by Golden and Papanicolaou [53]
and rigorously proved in [54]. The remaining segments of the lst-order wedge
bounds are completely new and substantially improve upon the Golden-
Papanicolaou bounds. They are not, however, represented by a circle in the
complex plane.

Recall that any matrix Λ e 5^ (fc, if) can be represented in the form (4.9) in terms
of the matrices Λm and Ap given by (4.8). If Ap has some infinite eigenvalues, then the
singular infinite part of Ap can be removed and added to Λm without influencing the
inverse matrix (Sg + Λ) ~* that determines the wedge bounds σ*(^) via (5.1). Hence
it suffices to consider those matrices Λ for which Ap has finite eigenvalues.

Now assume Λm has at least one positive finite eigenvalue with eigenvector vm x

such that
T Γ v m j l Φ 0 , (7.1)

where the vector T is defined by (6.4). Let vm?2, vm?3, ...,vm>Λ and v m ή + 1 ,
vm,fc+2> •• ?vm,fc denote the two groups of remaining eigenvectors that have finite
non-negative (possibly zero) eigenvalues and infinite eigenvalues, respectively:
here h denotes the number of finite eigenvalues of Λw. For any two real
infinitesimals ε and ε' and for any integer; with /z^/^2, the variation

SAm = εvw,! v £ ! + e'(vw, 1 v£ , + vm, , < J (7.2)

is an unconstrained variation of Λm, and hence from (6.3) and (7.1) we have

T r-vm, f = 0 or arg(TΓ vm>i) = 7, VigΛ, (7.3)

where (6.7) defines γ. For those eigenvectors with infinite eigenvalues the formula
(6.4) for T in terms of Λ directly implies that T Γ vm> f = 0 for all i > h. Hence T can be
expressed in the form (6.6), where ΎR is real. From the argument developed in
(6.8H6.H), it clearly suffices to consider those matrices Λ = σmΛm, with Λp = 0.
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Similar analysis shows that σ*(Λ) remains constant when Λm is increased by, say,
the finite amount

δK^ΣW*, (7-4)
. 7 = 1

where the (k — 1) orthonormal real vectors ηά are chosen to satisfy T j ^ = 0. Since
T j * vm> i Φ 0, this increase (7.4) will produce a new positive definite matrix Λ + with
non-zero eigenvalues.

Thus if the boundary of σ*(5^) is attained for some matrix Λ = σmί\m e £f such
that Λm has at least one non-zero eigenvalue with eigenvector vm> ί satisfying (7.1),
then there exists another strictly positive definite matrix Λ+ = σmλ+ e £f, attaining
the same value <x*(Λ+) = σ*(Λ) on the bounds. The inverse matrix Λ+ will now be
bounded. By repeating the argument in the representation (5.6), we subsequently
obtain a bounded strictly positive definite matrix Λ * + such that

σ*(Λ+ + ) = σ*(Λ). (7.5)

Any infinitesimal variation dA* + inΛ^ + is unconstrained and therefore σ*(Λ+ + ),
or equivalently σ*(Λ), must lie on the boundary of the (2g — l)th-order half-plane
bounds.

To obtain the sections on the boundary of σ*(y(fc, iΓ)) that do not coincide
with the half-plane bounds, we clearly need to consider matrices Ae^(k, Ψ*) such
that T Γ vm = 0 for all eigenvectors vm of Λw that have positive finite eigenvalues.
Since these eigenvalues can be reduced to zero without changing σ*(Λ) [see
(6.9-11)] it suffices to restrict attention to matrices Λ for which Λm has only zero
and infinite eigenvalues. The singular infinite part of Λm can be shifted to Λp

without altering σ*(Λ) (leaving Λm = 0) and the above argument, with the roles of
Λm and Ap interchanged, then implies that we need only consider matrices Λp with
zero and infinite eigenvalues. This corresponds to an Ώ-function terminated by a
normalization factor with only zero and infinite eigenvalues.

We are still free to increase Λp by the finite amount

δ\=kΣ bΆjViϊ, (7-6)
y=i

where b is any positive real constant and the k — 2 orthonormal real vectors η7 are
chosen to satisfy

(ReT r) η j .=(ImT Γ ) % = 0 . (7.7)

By taking the limit fc-> oo, we conclude that it is sufficient to take matrices A = σpAp,
such that Ap has at most two zero eigenvalues with the remaining eigenvalues being
infinite. When Λ̂  has only one zero eigenvalue with eigenvector yl9 then (5.1) takes
the form

**(Λ) = β,-(v[ R,)2(vΓS,ViΓx, (7.8)

and when there are two zero eigenvalues, with eigenvectors vx and v2, we have

σ*(A) = Qg-Rΐv(vτSgV)-1vτRg, (7.9)
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where v is the 2 x k dimensional matrix with columns y1 and v2. The best choice for
the normalized eigenvectors vx and v2 can in principle be determined from the
condition (7.2), which must hold to first order in any variations in the orientations
of these eigenvectors. In practice, however, it may be easier to numerically evaluate
(7.8) and (7.9) over the complete range of orientations oϊ\ί and v2. The resulting
outermost curve together with the attainable sections of (7.16) forms the boundary
of the wedge bounds.

To provide a concrete example, we now specialize to the first-order wedge
bounds on scalar 3-variable Ώ-functions. (We then have g = l, d = \ and n = 3.)
Given any angle ρe[0,2π] let us define a unit vector α(ρ) with components
(cosρ, sinρ) and select

v ^ V ^ α (7.10)

as the eigenvector of Λp that has a zero eigenvalue. Note that vl5 which has not been
normalized, takes all possible orientations as ρ is varied from 0 to 2π. Substituting
(7.10) and (5.2) in the bounds (7.8) and taking σ3 as our reference variable yields the
expression

[>! cosρ+ σ2 sinρ-σ3(cosρ +sinρ)]2

(7.11)

which generates a closed curve, parametrized by ρ. All points along this curve are
attainable, but not all portions of it contribute to the boundary of the wedge
bounds. There are no contributions from the other formula (7.9) because it only
generates a single point σ*(Λ) with Λ=0. Curiously, the curve (7.11) degenerates to
an arc of a circle (but not a complete circle) in the complex plane when a pair of the
component conductivities σu σ2 or σ3 become equal, or in the limit in which one of
the volume fractions fu f2 or /3 becomes vanishingly small.

To obtain the remaining sections on the boundary of the wedge bounds we
need to evaluate the half-plane bounds at the extreme values # = argσp and
θ= — π + argσm. Although this can be achieved by direct substitution of (5.2) in
(6.16), let us follow a different approach to elucidate the connection with the work
of Golden and Papanicolaou [53, 55].

Recall from Sect. 5 that the first-order half-plane bounds with argθ = σp can be
generated from σ*(σp\) as Λp varies over all real symmetric 2x2 matrices.
Equivalently, from (2.20) and (4.2) we can take σp as our reference medium and
vary A*{

b

p) over 2x2 complex matrices of the form

^ = D^-dJi\ (7.12)

where D[p)

b is any real symmetric 2 x 2 matrix. Because of the degeneracy (6.22) of
the matrices Λ=eιΘft — σp/\p that attain any given point σ%(Λ) on the boundary of
the half-plane bounds, it suffices to consider diagonal matrices D[p)

b = δabλ
{p\ This

results, via (7.12), (2.23), and (2.11), in a conductivity

l- ΣjJ^jl (7.13)
λ S
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Fig. 2. The scalar elementary polygon bounds (outermost solid curve) and the scalar lst-order
wedge bounds (innermost solid curve) for the example chosen by Golden and Papanicolaou of a
three component composite with complex component conductivities σί = —4 + 4i9 σ2 = U and
σ3 = 4 + 4ΐ and volume fractions ^ = 9/20, / 2 = l/10, and / 3 = 9/20. These bounds enclose the
diagonal elements of the effective conductivity tensor, σ*. The curve (7.11) forms the complete
boundary of the wedge bounds: no contribution comes from the Golden-Papanicolaou bounds
which are shown here as dashed lines forming two circular arcs meeting at the imaginary axis. The
arithmetic and harmonic means of the local conductivity are represented by points A and H
respectively

which is of the form postulated by Golden and Papanicolaou [53, 55]. By
following their analysis and optimizing over the two diagonal elements λ{

a

p\ where
a takes the values 1 through 3 excluding a = p,we obtain the expression

(7.14)

for the lst-order half-plane bounds (6.16) parametrized by the real variable
ce{— oo,+oo):ascis varied σf(A) given by (7.14) traces a circle in the complex
plane that contains σ*. The other extreme half-plane bound, with θ = — π + argσm,
is obtained simply by replacing p by m in the above formula.

These bounds of Golden and Papanicolaou have also been rigorously
established using an extension of the trajectory method of Bergman [54]. In
conjunction with (7.11) they complete the boundary of the lst-order wedge bounds
on scalar 3-variable Ω-functions: the curve (7.11) meets tangentially with the
attainable circular arcs of the half-plane bounds. Note the bounds (7.11) and (7.14)
still depend on σp in the limit as fp->0. This strongly suggests they can be improved
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Fig. 3. For a different choice of component conductivities, σx — — 1 4- 6z, σ2 = 3 + i, and σ3 = 5 + 2i,
and volume fractions, f± = 1/2, f2 = 1/3, and / 3 = 1/6, one circular arc of the Golden-Papanicolaou
bounds (7.14) contributes to the boundary of the scalar lst-order wedge bounds: its analytical
continuation is the dashed arc passing through σv The other Golden-Papanicolaou bound,
shown here as a dashed arc passing through σ2 only marginally improves upon the outermost
elementary polygon bounds because the origin, σ2 and σ3 are almost colinear. In the limit in which
σ2 equals σ3 the bounds merge into the lens shaped region appropriate for two-component
composites. The dashed line inside the wedge bounds represents the analytic continuation of the
curve (7.11)

when applied to the diagonal elements of conductivity tensors of three-component
composites. However, the bounds are optimal over the class of Ω-functions.

Three examples of these lst-order wedge bounds are graphed in Figs. 2-4. In
Fig. 2, corresponding to the example chosen by Golden [28, 55], the half-plane
bounds do not contribute to the wedge bounds while in Figs. 3 and 4 one arc and
two arcs, respectively, contribute and meet tangentially with the curve generated
from (7.11). The improvement gained over the Golden-Papanicolaou half-plane
bounds is clearly substantial in both Figs. 2 and 3.

8. Convergence of the Bounds

The proof that theyth-order wedge-polygon bounds and theyth-order half-plane
and half-plane reciprocal bounds converge in the limit y-κx) (i.e. as progressively
more information is specified about the Ω-function) is based on the extension of
Bergman's trajectory method [54]. The idea is to parametrize the given set of
component conductivities σa9 a = 1,2,..., n, in terms of a complex variable z taking
the value z0, with Imz0 > 0: the parametrization, and a fixed reference conductivity
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Fig. 4. For component conductivities σ1 = l + 7ί, σ2 = 4 + 5z, and σ3 = 5 and volume fractions
/i = 1/4, f2 = 1/2, and / 3 = 1/4 both arcs of the Golden-Papanΐcolaou bounds contribute to the
wedge bounds. The curve (7.11), whose analytic continuation inside the wedge bounds is denoted
by a dashed curve, forms a figure eight

σo(φσα for any a), are chosen so the ratios σa/σ0 remain in the upper half of the
complex plane as z is varied throughout the upper half plane and take real positive
values when z is real and positive. This leads to a parametrization of any point
σ*(Λ) = σ*(z) on the (2g-f-l)th-order bounds in terms of z that ensures
Im [σ*(z)/σ0] > 0 when Imz>0. The convergence of bounds on such single
variable functions (as successively more coefficients in the series expansion of
σ*(z)/σ0 in powers of z are incorporated in the bounds) implies the convergence of
our bounds on multivariate β-functions.

Since the wedge-polygon bounds are more restrictive than the corresponding
half-plane or half-plane reciprocal bounds (at any orientation θ of the half-plane)
we need only consider the convergence of 0-sequences of half-plane bounds. Not
every such θ-sequence is convergent. For example, when the variables σω

α=l,2, ...,n are all real and θ approaches zero from below the successive half-
plane bounds merge into each other and do not converge: they only imply
Imσ* ^0. To exclude this possibility we assume θ does not attain the limits (4.1).

It suffices to focus on the convergence, at fixed θ, of the odd-order half-plane
bounds on scalar Ώ-functions. Once this convergence is established the even order
half-plane and half-plane reciprocal bounds must similarly converge because they
are interlaced with the odd-order half-plane bounds. Since the diagonal elements
of any tensor £2-function are scalar Ώ-functions (see Sect. 3), the convergence of the
half-plane bounds to these diagonal elements in any orthonormal basis set x/?

/ = 1,2,..., d, is ensured and this implies the convergence of the half-plane bounds
on tensor Ω-functions.
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Given a set of finite variables σa9 a = 1,2,..., n, in one half of the complex plane,
let us parametrize them in the form

(8.1)

where σ 0 is a complex variable, while the constants ca and c'a are real satisfying

0 < e α < l , 0 < c ; < l Vα, (8.2)

and z takes a finite complex value z 0 such that

I m z o > 0 and argzo = # — argσ o . (8.3)

This ensures, for each component α, that σa is a two-variable scalar Ω-function of
σ 0 and (1 + z)σ0. Already it is necessary to assume θ does not attain the limits (4.1):
otherwise it is impossible to find a z 0 satisfying (8.3).

As the constants ca and c'a are varied over their domain (8.2) of permitted values,
σa given by (8.1) fills the lens-shaped region of the complex plane, JS?(σ0, (1 + zo)σo),
that is bounded on one side by the straight line linking σ0 to (1 + zo)σo and on the
other side by the circular arc joining these two points that when extended passes
through the origin. Clearly σ0 and z 0 must be chosen so all the points σ1? σ2,..., σn

lie inside J5f(σo,(l +z o )σ o ) : this is always possible because as say z 0 approaches
infinity while keeping argz0 = θ — argσ0 fixed, i f fills a wedge in the complex plane
(not containing the origin) that has boundaries meeting at σ0 at angular slopes of θ
and argσ0.

Recall from Sect. 6 that the (2g — l)th-order half-plane bounds are expressible
in terms of σ*(eiθN) where the matrix Λ', given by (6.22), is real. Since z 0 satisfies
(8.3) the associated matrix

Λo = eiβΛ'/σozo (8.4)

is real. Now consider the analytic properties of σ*(z) = σ*(σozΛo) as a function of z,
while keeping σ0, θ, the constants ca and dφ the geometric parameters and Λo fixed.
This function depends on z not only through the term σozΛo, but also through the
variables σa(z) given by (8.1) which enter in the continued fraction expansion for
σ*(Λ(^). From the same type of inductive reasoning given in (3.6-15) we deduce

Im[σ*(z)/σo]^0 when I m z ^ O , (8.5)

and similarly, for real z, we have

σ*(z)/σo>0 when Λo = 0 and z > l . (8.6)

Further elementary analysis shows that

σ*(z)/σo = σ*(z)/σo, (8.7)

where the bar denotes complex conjugation.
Therefore 1 — σ*(z)/σ0 is a real-symmetric function of 1/z that maps the upper

half plane into the upper half plane, taking the value zero at z = 1. Consequently

^(z) Ξ -( l/z)[ l-σ*(z)/σ 0 ] (8.8)
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is a Hamburger function of z, as defined in [51]. Furthermore when Λo = 0 (8.6)
implies that Aq(z) in fact represents a Stieltjes function of z with a radius of
convergence around the origin of at least 1.

Now the coefficients in the series expansion

*,(*)= Σ W* (8.9)
i = 0

for ig(z) can be evaluated by substituting (8.1) into the continued fraction
expansion for σ*(Λ(ί0) obtained via (2.16) and (2.17) and (4.2). Since δσa is
proportional to z the coefficients a\9\ for ί up to 2g — 2 are expressible in terms of
the weights i/l/JJ) and the normalization factors NU) with j ^ g — 1: unlike the higher
order coefficients; they neither depend on g nor on the matrix Λo.

When Λo = 0 the coefficients a[9) = a\°°\ for ί^2g — 1, are associated with a
Stieltjes series converging in the unit disk, i.e. they represent Hausdorff moments
[51]. Consequently the Hamburger moment problem associated with the
moments αj00*, z = 0,1,2,..., oo is determinant and the nested sequence of circles
[45, 46] that forms a hierarchy of bounds on the Hamburger function AJ^z)
geometrically converges to a point for all z with Im(z)Φ0. In this hierarchy the
(2g — 2)th-order bounds that incorporate the moments ai{o) = a(f) for ί^2g — 2,
apply to any Hamburger function sharing these 2g — 1 moments. In particular the
bounds must encircle Ag(z) = Ag{z, Λo) for all real matrices Λo. By setting z = z0 and
taking the limit g->oo, we conclude that Ag(z0,/\0) converges to AJ^z^).

Thus at fixed θ the radius X^Rj/2 of the circle (6.16) associated with the
(2g—l)th-order half-plane bounds converges geometrically to zero: each
θ-sequence of half-plane or half-plane reciprocal bounds converges whenever
#Φargσ p or — π-hargσm. The convergence of the wedge-polygon, half-plane and
half-plane reciprocal bounds on tensor Ώ-functions is thereby established.

This, incidentally, serves to prove the interchangeability of the limit /ι-> oo and
the minimum over α in the variational expression for σ* given in (11.6) of I. By
interchanging limits we effectively replaced σ* by the limit as h-^oo of the
(2h — l)th-order upper Beran bound, σ^(oo/), and the equivalence of these two
quantities has just been confirmed.

Appendix 1: Convexity of the Class of Ω-Functions

The class of Ω-functions is convex in the sense that if we take two n-variable
Ω-functions /cr*(σ1,σ2, ...,σrt) and "σ*(σ1 ?σ2, ...,σw), then the weighted arithmetic
average

σ* = 'σ*c + " σ * ( l - c ) , for any 0 < e < l , (Al.l)

is an ί2-function. Since the inverse of an Ώ-function is an ^-function of the
reciprocal variables, this immediately implies that the weighted harmonic mean of
two Ώ-functions is an Ώ-function.

To establish this result let' ffl and " ffl denote the two Hubert spaces that are
associated with the allowable geometric parameters in the continued fraction
expansions for 'σ* and "σ*. More generally we let 'x^ fχφ Tb '0>ai

 >ΰU, 'S, and ' '/
denote the elementary vectors, projection operators and subspaces associated with
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Jf, while the corresponding quantities associated with "jf will be denoted by a
pair of inverted commas.

Now consider the Hubert space

^ , (A 1.2)

with the standard inner product

<P|P> = <7P|7P> + <"JP|"JP>, (A 1.3)

in which Ί and "I are projection operators onto 'Jf and "2tf\ this ensures that 'Jf is
orthogonal to "Jf. Given any constant c e(0,1) we define in 3tf" the orthonormal
elementary vectors,

x, = V 1 / 2 + % ( l - c ) 1 / 2 , ^=l,2, . . . ,d, (A 1.4)

the (self-adjoint) projection operators,

ί,2,...,d, (A 1.5)

Γo= Σ |x,><x,|,

i; = '/; + "/!, (A 1.7)

Γ2 = T 2 +
 /T2 + To + /To-Γo > (A 1.8)

and the subspaces ^ , %, S\ and <// onto which these operators project.
The choice of the elementary vectors and the above operators is motivated by

what happens when two isotropic composites are laminated together in propor-
tions c and 1 — c, with layer spacing much larger than the scale of inhomogeneities
in each composite. When the field is directed parallel to the layers the effective
conductivity in that direction is just a weighted average of the effective
conductivities of the two constituent composites and the operators satisfy
equations like (A 1.5-8).

Alternatively we may regard (A 1.4-8) as resulting from three separate
operations. First, Φ, S\ f\ and $P'a are each taken as the direct sum of the
corresponding subspaces in '2tf and " Jf, and the union of the two sets of vectors
'x/? i = 1,2,..., d, and "x ,̂ & = 1,2,..., d, is chosen as a basis set for ύlί. This gives a
2d-dimensional block-diagonal effective tensor σ* with matrices 'σ* and "a * along
the diagonal. Next a new basis of vectors for °U is chosen, comprised of the vectors
x^ defined via (A1.4) together with the orthogonal set x^+d = 'x^(l — c)1 / 2 — "x^c1/2,
for { = 1,2,..., d. This rotation produces a matrix σ* with linear combinations of
'σ* and "σ* along the block diagonal. Finally, in accordance with (3.17) and (3.18),
°U is redefined as the subspace spanned by the vectors xΛ ( — 1,2,..., d, and β1 is
redefined as the direct sum of '/,"/ and the subspace spanned by the remaining
vectors x<?+d, £ = 1,2,..., d. This produces a truncated matrix σ* of the form (A 1.1).

To directly check (A 1.1) follows from (A 1.4-8) note first that any operators'A
and "B projecting onto subspaces of'Jf and "3tf satisfy 'i4|"P> = 0 and "£|'P> = 0
for all |"P> e"Jf and |T> e'jf, and hence we have
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Consequently the operators χa satisfy the identities (2.1): the subspaces 3P'ω
a = 1,2,...,n, are mutually orthogonal. Now although Γo cannot be expressed in
terms of the operators

ro= Σ |'χ,χ'χ,|, fτ0= f l%X"χ,l (Ai.io)

that project onto 'Φ and "°U we nevertheless have the commutation relations.

rororo=cro, ro

fτoro=(i-c)ro,

which follow from (A 1.4), (A 1.10) and the orthogonality of'% and "Φ.
Likewise the orthogonality of the elementary vectors % and "x, to '<?, "<?,'/,

and ",/ implies
TiΓo = ΓoTi = 'TίΓo = Γo

fTi = 0, f o r Ϊ = l o r 2 . (A 1.12)

Using these relations it is easy to check that the operators Γpj = 0,1,2, given by
(A1.6)-(A1.8) satisfy the operator identities (2.1): the subspaces °U, §\ and β' are
mutually orthogonal.

The whole analysis of I can now be applied to the Hubert space ffl'. Field
hierarchies E°, J° and P°τ are defined from the recursive relations (2.3) and (2.5).
These fields span subspaces S, /, and £Pa of $', /', and 3P'ω respectively. From
(A 1.4), (A 1.5), and (A 1.7) we have the simple identities

where Έτ°, Tτ°, "Eτ°, and /rPt° are the field hierarchies associated with' <tf and " JT. By
constructing the basis fields E^}, J^\ and P̂ f, calculating the fundamental
geometric parameters N and Wa (in terms of say 'N, "N, 'Wa, and "WX we obtain a
continued fraction expansion for the effective tensor σ*(σ1,σ2, ...,σj associated
with the Hubert space J f'. This matrix-valued function is clearly an Ω-function.

It remains to show that σ* is the weighted average of Ό* and "σ*. Suppose we
are given an arbitrary vector eef , represented in the form

e = 'e + "e, where /e = T o e e / ^ and "e = T o ee f f f . (A 1.14)

Next define the vectors

and let ' J * e ' / , Έ*e'<ί, / r J*G"/, and "Έ*e"£ denote the solutions to the field
equations,

rj + 'J*>= Σ o-a'zJ'e + 'E*), (A1.16)

I"j + "J*>= Σ σα"χa|"e + Έ * > .

On the basis of (Al.ll) and (A1.15) it follows that

lj> = /il'i + "J + 'J* + "J*> = ̂ ol'j + "J> = ΓoToΓo|'σ*e> + Γ0'T0Γ0|"σ*e>

= (c'σ* + (l-c)"σ*)|e>, (A1.18)
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and (A 1.18) implies

By defining

"E*> = |Έ* + 'Έ*>, (A 1.20)

and adding (A1.16) to (A1.17) we deduce, via (A 1.5) and (A1.19), that j , e, J*, and
E* are solutions to the field equation

|j + j * > = Σ σαχJe + E*>, (A 1.21)

with e, j £ °U, J* G / ' , and E* e δ'. Together with (A 1.18), this implies the effective
tensor in the Hubert space jit" is simply just the weighted average of 'σ* and "σ*,
given by (A 1.1). Thus the weighted average of two Ω-functions is an Ω-function.

This convexity property of Ω-functions enables us to define classes of extremal
Ω-functions: any Ω-function that cannot be expressed as a weighted arithmetic
average of Ω-functions is denoted as arithmetic extremal, and their inverses are
denoted as harmonic extremal. Clearly an arbitrary Ω-function can be expressed
either as a weighted arithmetic average of arithmetic extremal Ω-functions or as a
weighted harmonic average of harmonic extremal Ω-functions. Presumably the
problem of finding all arithmetic (or harmonic) extremal Ω-functions is related to
the currently unsolved problem of finding all the extremal measures of analytic
functions [55].

Appendix 2: Generating ί2-Functions by Renormalized Single-Variable Reseating

To establish that V*(cr1?tf2, ...,σπ), defined by (3.19) and (3.20), is indeed an
Ω-function, consider the Hubert space ffl and for any field P e J f let φ+(P) and
φ~(P) denote the fields obtained via the linear transformations

φίP^α-χJP + r 1 ' 2 ^ .

This definition ensures that

(A2.2)

for all P, P'e Jf. Next define

% (A2.3)

and let ^S and ̂  f denote the orthogonal complements of % in the subspaces
ψ+(i®ύiί) and φ " ( / φ Φ ) respectively. We leave the subspaces 0>a, a= 1,2,..., n,
unchanged. Now if the field equation

lj + J*G)>= (λσiZi + Σ °al)j |e + E*(e)> (A2.4)
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is satisfied for some E* e δ, J* e / , and e, j e ̂ , then (A2.1) implies that the field
equation

= Σ σαχα|te + t E * > (A2.5)
a=ί

has the solution

*

from which the components fe, *j e %, fE* eV, and f J* e ̂  can be resolved by
projecting onto %, V, and t

</. In particular it follows that

φ"(J + J*(j)) = ̂ + (e + E : i ί(e))e% when σfl = l , Va. (A2.7)

Conversely, any field in % generates a solution of (A 2.4) when the conductivities
σa are all equal. Thus given any two sets of d fields eΛ j Λ t = 1,2,..., d, each spanning
^ and satisfying

v/, (A2.8)

we can take the fields

a, = φ-OV + J%)) = φ+(e, + E*(e,)) at σa=\ Vα (A2.9)

as a basis set for %. From (A2.2) and (A2.8) we have

<a,|a, > = <j,|e,> = <f/Ve,|e,>, (A2.10)

and so to obtain an orthonormal basis set for % let us select

e^t/Vfc,. (A2.ll)

None of these uniform fields ê  are zero and consequently the orthogonality of %
to the subspaces V and f / implies, via (A2.2) and (A 2.9), that

t(f = φ + W , f / = t/Π/)5 (A2.12)

which with (A2.2) establishes the orthogonality of ^δ to ̂ β.
Now consider the solutions (A 2.6) of (A 2.5) for any set of conductivities σa,

a = 1,2,..., n, that lie in one half of the complex plane. From (A 2.6), (A2.9), and
(A 2.2) we deduce

<e,|j>. (All 3)

Substituting (1.1), (3.19), and (A2.ll) in this expression gives

<a*lfj>= Σ <x/|
tσ*|xjf><xifr%>, (A2.14)

where (3.20) defines fa*. Similarly, from (A2.2), (A2.6), and (A2.ll), we have

% > , (A2.15)

which in conjunction with (A2.14) implies that fσ* is the effective conductivity
matrix associated with the Hubert space 3tf = '*ΰll®^δ®^f. Thus an Ω-function
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remains an Ω-function under the renormalized single variable rescaling defined by
(3.20).

Appendix 3: Substituting a Scalar Ώ-Function in a Tensor Ώ-Function
to Produce a New Ω-Function

Here we prove the (m + n— Invariable function σ*(σ1?σ2, ...,σm + I I_1) defined by
(3.21) is an Ω-function for all n-variable tensor Ω-functions 'σ*('σ l3 'σ2,..., fσn) and
for all m-variable scalar Ω-functions "σ*("σu "σ2,.-, " σ j To do this, we adopt the
notation of Appendix 1, letting '2tf and "J f denote the two Hubert spaces
associated with the Ω-functions 'σ* and "σ*\ all elementary vectors, projection
operators and subspaces associated with 'Jf and "ffl are denoted by a single
inverted comma and by a pair of inverted commas, respectively. Since the
Ω-function "σ* is a scalar Ω-function, the one-dimensional subspace "% is spanned
by a single vector "x.

By analogy with what happens when a composite is substituted as one of the
components in another composite, let us introduce the component spaces

for l ^ α ^ m
(A3.1)

1

labelled by the component index α = l , 2 , ...,n + m — 1, the three alternative spaces

(A3.2)

and the Hubert space

^' = %®S'®f = ̂ 1®0>'2®...®^m+n_1, (A3.3)

spanned by these spaces. These definitions and the commutability,

Ά"B = "BΆ, (A 3.4)

of any operators 'A and "B associated with rJf and "jf imply

Γo EETo'To, Γ, = T/T o + ' Z l ' 7 i , Γ2 = T 2 'T 0 + ' Z l ' T 2 , (A3.5)

and

la=lί'la for l^aSm
(A 3.6)

Ξ'Zα + i-m'To for m + l ^ w + m l

act as projection operators onto the subspaces ^ , $", /', and ^ satisfying

ΓJΓ-δifi, χaχb = δabχa. (A3.7)

Now suppose the field equations

Γi+'J*>= Σ Όd'e+'E*>,
(A3.8)

rj + ̂ > = Σ X^Γ'e + 'Έ*),
α = l
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are solved for the fields Έ*e'<f, ' J * e ' / , "Έ*e"£9 and " J * e " / for any
J = 'cr*'e e >ύlί and "j = "σ*"e e"Φ, and let us look for solutions of the field equation

Ij + J * > = " Σ σβχβ|e + E*>, (A3.9)

where j e ΰU9 J* e / ' and the fields e e ΰU9 E* e $' have the form

* ! / (A3.10)

and the component conductivities are given by

σa = "σa for 1 < a < m
(A3.ll)

= 'σα + 1_m for m + l ^ α ^ n + m — 1 .

From (A 3.6) and the above equations we have

(A3.12)

and from (A3.2) this represents a current field j + J * e ^ 0 < / / if and only if

fσx = rfσ*9 (A3.13)

in which case (A3.10) is the solution of the field equation (A3.9) and we have

n + m— 1

α = l

This in conjunction with (A3.11) and (A3.13) implies that the function
σ*(σ1? σ2,..., σn+m_ x) defined by (3.21) is the effective conductivity function in the
Hubert space Jf" defined by (A3.3) and thus represents an n + m—1 variable
Ω-function.

Appendix 4: Equivalence of Two Variable Ω-Functions and Normalized ̂ -Functions

In Sect. 3 it was established that the class of normalized ^-functions [i.e. those
functions satisfying (3.1-3) and (3.6)] included all Ω-functions. The converse is also
true for functions of two variables: any two-variable symmetric matrix-valued
normalized ^-function, σ*(σl5 σ2), can be represented as a continued fraction of,
say, the form implied by (2.16) and (2.20-23) for a suitable allowable set of
geometric parameters. Our proof of this result draws from the work of Bergman
[19] and Golden [28, 55] and thus parallels the approach of Nevanlinna [45, 46]
for generating a continued fraction expansion of a single variable Stieltjes or
Hamburger function.

To develop the continued fraction expansion, given the normalized ^-function
σ*(σl5σ2), consider the single-variable matrix-valued function

) = /— σ*/σ2, where s1 = σ2/(σ2 — σ1). (A4.1)
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From (3.2), (3.3), and (3.6) this function is analytic in sί except at points on the real
line in the interval [0,1], is real-symmetric [i.e. has the property that

s1) = F{0\sί), where the bar denotes complex conjugation] and satisfies

^O when I m s ^ O , (A 4.2)

< o ) = 0. (A4.3)

Hence F^XsJ has the integral representation

^ (A4.4)
0 Sχ—Z

where the measure μ(z)dz is real and positive-semidefinite. We define W[0) to be the
zeroth moment,

W[0)=]μ(z)dz, (A 4.5)
o

which is clearly positive-semidefinite, and from (A4.3) satisfies the bound

yi/(o)< f WZJ z </ (A4 6)

This implies the matrix

i/l/0) = /_ \ΛA°) (AAΊ\
VV2 —I VVγ /̂\4 . I)

is likewise positive-semidefinite.
Following Bergman [19] and Golden [28, 55] note that the function

} M } ̂ £ (A4<8)
o sί—z o s1—z

is real-symmetric, and after subtracting the constant W[0) is a function of the same
form as F^Xs^ but with the new measure zμ(z)dz. Therefore we have

ims^XsJ^O when I m s ^ O , (A4.9)

which together with (3.11) and (A4.3) implies that the function

(A4.10)

is similarly real-symmetric, analytic except at points s1 e [0,1] on the real line, and
satisfies

when I m s ^ O ,
ίA4 11)

0 "

Consequently it has the integral representation

Λ i ) i M 5 ^ (A4.12)
o st —z

where the measure μiί\z)dz is positive-semidefinite.



370 G. W. Milton

By repeating most of this argument the two-variable function

/} (A4.13)

is recognized to be a ^-function, satisfying (3.2), (3.3), and (3.6). If we choose

/V(1)=Σ(1)(1,1) (^0), (A4.14)

and define the normalized Z-function,

Q^\σuσ2) = N(1)Iil\σ1,σ2)Nil\ (A 4.15)

then (A 4.1), (A 4.10), and (A 4.13) imply

o*/σ2 = l+)ft[0)lί+il)lft[0)

9 ( A 4 16)

where

Δ +<D = Λ<o)fj+(i)^o)_ 5 i / j ( A 4 J 7 )

Π+(i) Ξ / + ^(DΩ(i)A/(i)/σ2? (A 4.18)

are defined in accordance with (2.20) and (2.21).
We can now iterate the procedure and obtain a hierarchy of effective tensors

QU)(σu σ2)J = 1,2,..., oo and allowable d x d geometric matrices W[j\ W^j\ and Nu\
The recursion relations, such as (A4.16-18), between the effective tensors generate
a continued fraction expansion for σ*(σ1? σ2) in terms of the allowable geometric
parameters. From (2.15) we have

YV-»=WPW?, ^ + 1 ) = Λ f Λ ^ for n = 2, (A4.19)

and so the resulting continued fraction is clearly of the form implied by (2.16) and
(2.20-23). The equivalence of two-variable Ω-functions and normalized Σ-func-
tions is thus established.
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