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Abstract. We consider the trajectory QM(t) of a Brownian particle of mass Min
an ideal gas of identical particles of mass 1 and of density 1 in equilibrium at
inverse temperature 1 (the dynamics is uniform motion plus elastic collisions
with the Brownian particle). Our theory, in dimension one, describes a variety of
limiting processes - containing the Wiener process and the Ornstein-Uhlenbeck
process - for A ~1/2 QM(A\At) depending on the asymptotic behaviour of M(A).
Part of the theory is hypothetical while another part relies upon known results.
We also prove that, if A*+ε<ζM(A)<ζA, then A'lβ QM(A\Af) converges to a
Wiener process whose variance is known from papers of Sinai-Soloveichik and
of the present authors.

1. Introduction

Ed Nelson's classical notes about Brownian motion, N (1967), also containing an
exciting historical account, stressed the necessity to derive Brownian motion from
Hamiltonian principles. "The problem, or one formulation of it, is to deduce each of
the following theories from the one below it:

Einstein-Smoluchowski
Ornstein-Uhlenbeck
Maxwell-Boltzmann
Hamilton-Jacabi.''

His notes, in fact, show that "the Einstein-Smoluchowski theory is in a rigorous
and strong sense the limiting theory of the Ornstein-Uhlenbeck theory." (Note that
the mathematical model of the first theory is the Wiener process.)

The aim of the present paper is to realize the program for a Brownian particle
interacting with an ideal gas of point particles. A rough outline of our theory is the
following: if we start from a Gibbs equilibrium state, then the model contains a
functional parameter describing the interdependence between the mass ratio of the
Brownian particle and of the gas particles on one side and the space-time scaling of
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the trajectory of the Brownian particle on the other side. (In the understanding of
modern statistical physics, the infinite Gibbs state corresponds to the Maxwell-
Boltzmann theory and it is known to describe the time-invariant state of a dynamics
governed by the Hamilton-Jacobi formalism.) For simplicity suppose that this
functional parameter, whose precise definition will be given in the next section, is of
the foτmf(A)~cAyasA-+(X)(c>Q). (Here larger values of y correspond to heavier
Brownian particles.) Now our theory shows that by varying the functional
parameter - or in this simple case y - one can obtain both the Einstein-
Smoluchowski and the Ornstein-Uhlenbeck theories. Indeed, if j<y<l then -
and this is the main technical result of the paper - we get the Einstein-Smoluchowski
theory, if γ = 1, then the Ornstein-Uhlenbeck theory [in fact, this is an earlier result
of Holley, H (1971) for d=l, and of Dύrr-Goldstein-Lebowitz,
D-G-L (1981) for d^ 2]. For y > 1 the theory is trivial, while for 0 < γ ̂  and y < 0 we
expect the Einstein-Smoluchowski theory to hold, but so far we could not prove it.
We also expect that in the case γ = 0 the theory definitely depends on the spatial
dimension of the system and on the value of c. (E.g. in dimension 1 computer results
show a delicate picture, cf. Sect. 2c.) Besides its meaning for the general theory
outlined above our result for j < y < 1 is hoped to open the way towards treating the
very interesting case M=const.

Section 2 describes the model, the theory and finally the result. The framework
of its proof is given in Sect. 3, Sections 4 and 5 are technical, exposing the two main
components of the proof: the analysis of the Markovized process and the
construction of the coupling.

2. The Theory and the Results

a) The Mathematical Model

Since the results we prove are formulated in the one-dimensional case, for
simplicity, we define the model for this case only.

A one-dimensional system of point particles consists of a tagged particle of mass
M (the Brownian particle) interacting with an infinite ideal gas of particles of mass 1
(light particles). The dynamics of the system is governed by the laws of classical
mechanics assuming uniform motion plus elastic collisions between the Brownian
particle and the light ones and no interaction among the light particles. (As far as the
behavior of the Brownian particle is observed only, assuming elastic collisions
among the light particles, too, would not change the picture.)

The collision rules are the following :

,
M+l M+\ M + \ M+l

or

where V±, v± are the post- (pre-) collision velocties of the colliding Brownian
respectively light particle. The most convenient is to describe our system as seen
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from the Brownian particle [the so-called "Mϋnchhausen picture" cf. B (1788)]. In
this picture the phase space is

where I is a countably infinite index set, Ω the set of locally finite countable point
systems in IR x IR. (F is the velocity of the Brownian particle, (^i,^)ie/ are the
coordinates - relative to the position of the Brownian particle - and the velocities of
the light particles.) We say that ω is the environment seen by the Brownian particle.
Ω is a polish space endowed with the natural σ-algebra J^ generated by counting
functions on compact sets. The σ-algebra on 3£ is 3F — $ x «^Ό> ̂  being the Borel-
algebra on IR. The system is distributed according to the Gibbs measure

μM(d( F, ω)) = dFM( F) v(dω)

with v being the Poisson measure on (Ω, ̂ 0) with intensity dxdFl(v) and

ΓM ί MV2\
dFM(V} = /τ-exp -- — }dV (M>0) .

\ X /

More prosaically: the positions of the light particles follow a Poissonian point
process of density ρ = 1, while the velocities of the particles are distributed according
to independent, zero-mean Gaussians of variance equal to (mass)"1, i.e.
Maxwellian velocity distributions at inverse temperature β = 1.

Remark. The only essential parameter of the system is M, while ρ and β enter
trivially into the theory.

Denote by S^ the dynamics of the system. The following two facts are assumed
to be known:

a) for each M there exists a set £M c «£ of μM- measure 1 on which the maps St

M are
well defined for any /eR, and Sf+s = Sf* ° S™ . (The equilibrium dynamics exists
with probability 1.)

b) the group of transformations St

M : XM~+XM preserves the measure μM. (The
evolution of the system, as seen from the Brownian particle, is stationary.)
Warning: for different M's we have different dynamical systems (XM,ωM,St

M).
The random variables to be introduced below are defined on different probability
spaces, depending on M: But, as we are interested in asymptotic laws, this fact is not
at all disturbing.

We shall use the notations

=V and ω(&) = ω iff ^ = (

b) An Intermezzo: Simple Facts About the Ornsteίn-Uhlenbeck Process

Throughout this paper Wlσ} will denote a Wiener process of variance σ2 with
Wf} = Q and for berevity let Wt=Wt

(ί\



44 D. Szasz and B. Tόth

The diffusion process ηt satisfying the stochastic differential equation

is called an Ornstein-Uhlenbeck (velocity) process. If η0 is distributed according to
the Gaussian law with mean 0 and variance (2y)~1Z>, then ηt is a stationary Gauss-
Markov process and its generator is

1 d2

The integral process

is called the Ornstein-Uhlenbeck position process. We shall use these processes with
the following choice of parameters

-m
D =

m2
/2
π

and we will use the notations η(™} and £t

(m) for them (m is a positive constant). It is
worth mentioning that if γ -» oo , D -> oo in such a way that Dy ~ 2 -» σ2 e IR + , then the
Ornstein-Uhlenbeck position process ξt converges in distribution to a Wiener
process W(σ} [see N (1967)]. Thus

as m-^0 . (2.2)

withσ 2-= /-.

c) The Scaling and the Theory

Our final aim is to give a complete asymptotic description of the random processes

I/A
as

2: M ( A ) Ξ M
3: 1«M(A)«A
A: M(A) = m A
5: M(A)»A

Fig. 1
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Observe that the space-time scaling is the usual diffusion one which is used, for
example, to obtain a Wiener limiting process for random walks. M(A) expresses
the dependence of the mass ratio of the Brownian particle versus the light ones on
the parameter A figuring in the space-time scaling. The important types of depen-
dence to be considered are illustrated on Fig. 1.

Throughout this paper f(A)<ζg(A) will have the precise meaning

Several cases have already been clarified but the picture is still far from
complete. Here we list the most important existing results following a logical order
rather than the chronological one.

(A) For M(A) ΞΞ 1, that is : the Brownian particle is identical with the light ones,
Harris (1965) and Spitzer (1969) proved that

w(σ

(Throughout this paper => stands for weak convergence on C[0, oo), the space of
continuous functions or on D [0, oo), that of right continuous functions without a
second order discontinuity on [0, oo).)

(B) For arbitrary fixed mass M(A} = M Sinai and Soloveichik (1986) and the
present authors [Sz-T (1986)] showed that

(2.3)
\]/Aj

Computer results [by D-O-R (1985) and by Sinai's group S (1986)] suggest the
following picture: for every M

1 /s\(M)\2
2 * i Tπσ2

M=- hm E
t A-

exists and by (2.3), of course, σ^σM^σ. Moreover, the dependence of σM on M is
illustrated on Fig. 2.

(C) From the proofs of Sz-T (1986) it is easy to see that, in (2.3), the upper bound
holds for an arbitrary scaling functional M(A) while the lower bound holds
whenever

- (Γs 06267

Fig. 2
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(D) For M(A) = m A, me(0, oo) Holley (1971) proved that

V*
Important Remark. The results (B) and (D) can be linked by observing that [cf. (2.2)]

£(mW W(°} as ra->0 .

On the basis of the aforementioned results we expect the following complete
asymptotic picture [the dimension is still 1 the multidimensional case requires
further elaboration since the model has an additional parameter: the size of the
Brownian particle, cf. D-G-L (1981)].

1. Case MC4)-»0.

=>W™ .

2. Case M(A) = M.

ΓiM

VA
where TM, M>0 are random processes with stationary increments and with
asymptotic variance σ2

M,
It is an extremely intriguing question whether, in general, TM is a Wiener process

or not. Computer results by Sinai's group (S (1986)) suggest that, for a general M, it
is not.

We know that Γ1 = Wσ, while simulations support that σM-»σ as M-+OO and
σM-+σ as M-»0 [the result for M= 1 was proved in H (1965) and S (1969) while the
bounds on the variances were given in S-S (1986) and Sz-T (1986)].

3. Case 1<M(A)<$A.

4. Case MA) = mA.

M(A)

where ξ(m) is introduced in Sect. 2b. This convergence was proved in H (1971) (d= 1)
and in D-G-L (1981) (rf^l). For m->0, (2.2) holds. For m->oo, £(m)=>0.

5. Case M(A)>A.

=>0 (trivial) .
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(Of course, the problem is not trivial if we allow spatial rescalings different from
A1/2 its determination is a question of independent interest.)

In the present note we make one further step in completing the picture sketched
above, by proving the following

Theorem 2.1. IfA*+B<M(A)<ζA (ε>0), then

3. The Framework of the Proof

The first - and in a sense principal - difficulty in the dynamics of the Brownian
particle is the non-Markovity of its motion. Indeed, light particles between their
first and last collisions with the Brownian one carry information on past collisions
in a complicated way. Nonetheless it is a natural idea to consider a Markov process
whose evolution mimics the physical process this Markov process, of course,
disregards recollisions that could spoil its Markovity. This Markov version can help
both on an intuitive level to give a feeling of what the mechanical process is like and
on a technical level, too, if we can construct a good coupling between the mechanical
and the Markov processes. In our knowledge, this idea was first used in a rigorous
argument by Holley (1971) [cf. case (D), Sect. 2c] and our proof is also a realization
of this strategy [other variants of this idea can be found in D-G-L (1981) and G-G
(1986)].

Let us first construct a family of Markov processes Vt

M, M>0 closely related to
the mechanical velocity processes Vt

M. In words, F,M's are defined as follows: we
imagine that the environment is recreated, after each collision, corresponding to the
time-invariant distribution v. Thus the Markovian velocity process Vt

M is a pure
jump process on IR with jump rates

Af+1 Af+1

In the actual coordinates the jump rates are

,M/ ^ 1 /M+lV Γ 1/M+l M-l V"
?M^ l Λ^,_ / \ β^« I _ j χ\ \\x-y\rfy

leading to the formal generator

1/M-f-l M-l

. (3.1)
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It is easily seen that, for φ and ψ belonging to a sufficiently large class of functions,

f dFM(x)φ(x)(GMψ] (*) = f dFM(x)(GMφ)(x)ψ(x) .

Thus, the Markov processes Vt

M conditioned to the initial distributions dFM(x)
are stationary and reversible. (We shall see soon that they are ergodic, too.)

Now the program consists of two parts:
(i) a study of the induced position processes,

(ii) construction of a good coupling for Qt

M and Qt

M, i.e. a realization of Qt

M

and Qf* on the same probability space, that satisfies

>0 as A^oo . (3.2)
Ά

Part (i) is executed in Sect. 4. Here the main result is

Theorem 3.1. (i) (fixed masses;'. For any fixed Me(0, oo),

with

and
lim (ΪM = σ2 .

M->oo

(ii) (sublinearly increasing masses). If \<^M(A)<^A, then

In fact, our methods give the following complete asymptotic characterization of
the induced position processes Qt

M (the reader is encouraged to compare it with the
analogous picture formulated for Qt

M in the preceding section).

QM(A)

1. Case M(A)-*Q, - is not tight.

2. Case M(A) = M, ~±=-=>W(σ^ ,

VA

with cΪM~M~112 for M^O and a^-^o2 as Af->oo.

QM(A)

3. Case =

VA
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QUA)

4. Case M(A) = mA, ^-=^^ξm .

QM(A)

5. Case M(A)>A,
VA

Cases 1-3 follow from Theorem 3.1 Case 4 is proved in H (1981); Case 5 is
trivial.

As to part (ii), so far we could only do the coupling under the assumption
M(A)^>A^+ε. The slower M(A} increases the stronger the influence of the
recollisions for the mechanical process is and the estimates required for the coupling
become harder and harder.

Remarks. We expect that further progress can be achieved soon in this circle of
ideas.

a) For 1 <ζM(A)<ζA^+\ we hope that some sophisticated refinement of the
coupling argument may work.

b) For M(A) = Me (0, oo), naturally, a "good coupling" cannot be realized, but
our estimates for σM may be of some use in estimating σM for large M.

4. Study of the Markovized Process

As a preparation for the proof of Theorem 3.1 we give a detailed analysis
of the L2-properties of the generators GM. We consider the Hubert spaces

2tf M = L2 ( R, /— e~~?~~ dx};34? = ̂ 1 with the scalar products denoted by (,)M

V V 2 π /
and (,) respectively. The generators GM have to be considered as (unbounded)
operators on the Hubert spaces 2tfM, but it is more convenient to transform all
operators into one standard Hubert space, JΓ, by the unitary isomorphisms

/M;

The images of the generators under these isomorphisms are

"-1

(GMφ) (x) =-L J dye-T X-M(x,y) (φ(y) -
•

2^ VI/M.
, (4.1)
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where
'M-lV 2 M-l M+l1 Γ/

~Λ
2 |_\2

-2 - — - j= xy
\2]/Mj 2 L\2j/M/ 2J/M 2]/M

ϋi
i — j - l ̂  ^ I / 1 / I /

2π V/M/ |/2π

Here KM denotes the integral operator on ffl having Jί^ as kernel function and ΓM

denotes the multiplication operator by the function y I —== ). y (x) can be computed

-y\ and y-= = -= $ dye tfM(x,y) . (4.3)

explicitly. Essential facts are that: 1) it is continuous; 2) it has a global minimum

/2
with value / — at x = 0 and 3) it grows linearly for large values of x. It is easy to see

V π

that KM is a self adjoint Hubert-Schmidt operator, with Hubert-Schmidt norm

(In fact, it is of trace class Ip for/» §-.) Consequently the generators GM are self-
adjoint on a common domain

The following identity is easy to check :

φ(x)}2 . (4.4)

GM being the generator of a self-adjoint strongly continuous contraction semi-
group, the fact that it is non-positive is not surprising. From the preceding formula
one can also see that 0 is a nondegenerate eigenvalue of GM, thus the stationary
Markov process Vt

M is also ergodic [see N (1964)].
It is worth mentioning (although it is of no use for our purposes) that

MGM^^L as M-»oo ,

where -̂̂  stands for convergence in the strong resolvent sense and L is the
generator of the standard Ornstein-Uhlenbeck velocity process η^ (cf. Sect. 2b)
This fact was crucial in the proofs of H (1971) and D-G-L (1981). Knowing the

/2
spectrum of L (nondegenerate eigenvalues at the points — 4 /— n, weN) one

v π

const
can guess that the operators GM have gaps of order - in their spectrum at

M
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left to the eigenvalue 0, but, unfortunately, strong-resolvent convergence does not
imply convergence of the spectrum. We shall prove in another way the following.

Lemma 4.1 (Gap-Lemma). If 1 :g M < oo,

(In the present lemma σ and σess denote spectrum and essential spectrum,
respectively.)

Proof. GM being a compact perturbation of — ΓM, by Theorem XIII. 14 of R-S
(1978) we have

= ( -QO, - /-
V V πJ

consequently it is enough to show that there are no eigenvalues in the interval

2
_ 9 o I = 7M . Soon we shall prove

Lemma 4.2. If φ σess and

GMφ = λφ , (4.5)

then φ is differentiable with φ' e Jf and

(4.6)

This lemma plus the non-positivity of GM provide the desired result.

Proof of Lemma 4.2. For λ> — I —, (4.5) is equivalent to
π

Differentiating the right-hand side with respect to x after some tedious calculations,
using Schwartz's inequality one finds bounds on φ'(x), showing that, indeed,
φ'£.tff. The details are standard and we omit them. More illuminating is the proof
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of the identity (4.6). To do this we have to introduce - besides tfu - two auxiliary
kernels

/M-flV 1 Γ/M-lY , (Af-l)(Af+l)
i(x, v)= —:= exp — - —= ^—2 p= xy

\2]/M) P 2LV21/M; (21/M)2

-2

/M-iV 2Ί ,.
—— y*\ δ(x-y) .

V21/M/ J

The following identities hold:

_ 3 _ Γ _£. .„, ,1 M-l
δΛ

and

M-4-1

(4.8)

Now differentiating both sides of (4.5) with respect to x and using (4.7), after a
partial integration we find

f dye-^ JίrM(x, y) (φ'(y) -φ'(x)}-

J
2π

\+λ

We take now scalar product of both sides of this identity, with φ'. After a new
integration by parts in the second term/of the left-hand side, the equation takes the
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form

M — 1 — 1 *2+y2

^ ίί dxdye—τ-X ufry) {φ'(y) -φ'(x)}2

' tf dxdy

Using (4.8), (4.4) and observing that

JJ dxdye-i^r-(X+y)^(x,y) {φ(y) -φ(x)}2

we obtain exactly (4.6). Thus Lemma 4.2, and hence Lemma 4.1 are proved.
In the rest of this section we will be concerned with the subspace (of codimen-

sion 1)

1 -χ2

\ώce 2 φ(x) =

orthogonal to the constant functions. As a consequence of the previous lemma the
generators GM are invertible on this subspace and

\ l = c = ~ . (4.9)

In the sequel let
φeje , φ(x) = x .

One can easily show that
2

MGMφ^> — 2 0 as ^-»°° (4.10)

and, using (4.9) and (4.10)

(MGMγlφ-+-^-φ as Λ/-»oo . (4.11)

Relations (4.9), (4.10), and (4.11) will be the basic ingredients used in the
calculational details of the forthcoming proof.

Proof of Theorem 3.1. The proof goes through a martingale approximation. The
circle of ideas has been developed in G-L (1978), K-V (1986), D-G (1986). Our
case (ii), however, is not covered by the results obtained there because we have a
double array. In fact, the gap condition (4.9) will ensure the necessary momentum
estimates uniformly in M.

Let

)=x , UMφM=--=φ .
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Our position process is

Case (i): Qt

M is an additive functional of an ergodic Markov process whose
generator is invertible on the subspace orthogonal to the constant functions, thus
the Theorem of G-L (1978) works. The limiting variance is

The lower estimate for σM follows from straightforward calculations, while the
asymptotics for M-+OO follows from (4.11).

Case (ii): Let

ΨM= -~ MGMφM .

We write the position process in the form

Qt

M = N
where

We shall prove that if 1 <ζM(A}<ζA, then

NM(A)

I At => W(σ]

]fA

by Theorem 5.1 of H (1982);

γM(Λ)

II. ^=-^0
VA

by Doob's inequality;

in. -
VA

as an indirect consequence of Lemma 1.12 K-V (1986); and finally

IV.

as a direct consequence of the same lemma. In what follows we give the basic ideas of
the proof of steps I and III trying, however, to avoid calculational details. The proof
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of points II and IV is a straightforward calculation - here we give no details. We
emphasize that, in the calculations, only L2 manipulations and estimates are
involved, relations (4.9), (4.10), and (4.11) being at any moment at hand.

I. The conditional variance process associated to the martingale NM [cf. H
(1982)] is

where

Using the fact that UM(f-g)=UMf- UMg, we have

and after some calculations one finds

-2\2 4M2 1 v2

 v 3x
y

IM
y v

Hence
+£2 and || ξM || 2M< const.

Having these, it is an easy task to prove

*
\ ^ /

Thus the conditional variance converges in probability to σ2 t. For applying
Helland's theorem we have to estimate the largest jump oϊN^t

(A\ too. But this is an
easv task because

= s u p \ΔN»™\==- - - s u p
A t^A 2 A t^A

and by standard arguments

P r o b J M sup \ΔVt

M\>c )<£ίΓαcy

\ 0<ί<l /

with some positive constants B, α, y (see the collision rules). Hence

1
sup

in any reasonable sense.in any reasonable sense.
For obtaining III, first observe that, applying Lemma 1.12 of K-V (1986) to the

function

9M(χ)=Q*p ]/M\χ\ j
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we find

Prob (sup ]/M\Vt

M\>c}^B e-c

V<M /

with some positive constant B, independently of M. Since

Prob

^2Prob (sup ]/M(A)\Vt

M(A)\^η' A

^2BM(A) QXV-η

(In the second inequality the stationarity of the process Vt

M was used.) Modulo some
calculational details, Theorem 3.1 is proved.

5. The Coupling Lemma

The present section consists of two subsections. In the first one we give the standard
coupling of the mechanical and Markovian velocity processes Vt

M respectively Vt

M:
In the second one we show that the two normalized position processes, A ~1/2QAt(A}

and A ~1/2 QAΪ(A\ realized in this way are sufficiently close to each other to produce
the same asymptotic law, provided M(A) 5>A*+ε. This result, combined with point
(ii) of Theorem 3.1 proves Theorem 2.1.

5a. The coupling is, in principle, similar to that used in D-G-L (1981) (for their
exposition, the reader should read Sect. 5 of that paper, too), but its realization here
slightly deviates from theirs. We consider illuminating to give an intuitive
phenomenological description rather than a very formalized one.

In the mechanical model, the process Vt

M is driven by two mechanisms.
a) Markovian part: collisions with fresh light particles never seen in the past; and
b) non-Markovian part: recollisions. More exactly: let

nM — nM nM —ΠM

= inf . — ?_ . WM+ = sup
t — S -oo<s^ί t — S

By Lemma 1 of Sz-T (1986), wfί± are finite μM-a.s. and

μM ({ I wf f ± | >c})< const exp (-α(|/Mc/)

for some positive constants α and β. The variables wf* ± and Vt

M are measurable with
respect to the σ-algebra J%~~ generated by the past history of the Brownian particle
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{VS

M : -acxs^t] and satisfy

The Markovian part of the driving mechanism consists of fresh light particles
having velocities v φ [ w f ί ~ , w f ί + ] which hit the Brownian particle following a
Poissonian law with instantaneous rate

M| y

After the collision - governed by the rules (2.1) - each light particle remains in the
system waiting for possible recollisions.

The non-Markovian part consists of recollisions with old light particles which
have velocities VE[W^~ ,wfί + ].

The description - in the same terms - of the driving mechanism of the Markov
processes Vt

M was actually given in Sect. 3: fresh light particles collide with the
Brownian particle following a Poissonian law with instantaneous rate

and recollisions are excluded.
For the coupling we should realize the two driving mechanisms jointly in such a

way that the two processes suffer collisions with as many common light particles as
possible.

For this reason let us define four instantaneous rates of incoming light particles.
All of them depend on the variables (F,M, Vt

M, w^~, wf* + v). Whenever possible,
the notation of this dependence will be ignored.

βl =min (ρMech(F,M, wf ~, wf+ υ\ ρMark(F,M t;) - 11 WM- ) ,

The joint driving mechanism is described below.
1. Common Collisions. Fresh light particles of velocity vφ[w™~, w^ + ] hit

simultaneously both Brownian particles in a Poissonian way with instantaneous
rate ρ1 .

2. Compensations. Fresh light particles - having vφ [w?*", w™ + ], too - come to
the mechanical (respectively Markovian) Brownian particle following a Poissonian
law with instantaneous rate ρ2 (respectively ρ3).

3. "Slow" Incoming Particles, a) Old light particles with v e [w™~ > w™ + ] come to
recollide with the mechanical Brownian particle.

b) Fresh light particles with ve[w™~, wf*4"] hit the Markovian Brownian
particle following a Poissonian law with instantaneous rate ρ4.

We hope that after some meditation the reader will be convinced of the fact
that the processes Kt

M and Vt

M having initial values V™ — V^ distributed accord-
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ing to dFM and driven by the mechanism described above are exactly those which
we need.

Without giving further formal details, we shall denote the probability space
on which the coupled processes (Vt

M, Vt

M) are realized by (^M,PM). (One can
think of (^M,PM) as ^M = £Mx3M with 3M being some measurable space
and PM(Bx3M) = μM(β).}

5. Closeness of the Paths. We shall prove the following

Lemma 5.1 (Coupling Lemma). If M(A)$>A^ + ε, then for any η>0 and ΐ>Q

. (5.1)

Remark. The following inequalities are evident
At'

>ηpM(A)ί <

-1/2 M(A} _

To have a "good coupling" i.e. to have (3.2), it is necessary and sufficient to show
that the smallest probability of this chain converges to zero. Unfortunately, with
our present method, we are able to handle only the second expression. As one can
find after understanding the dynamics of the proof, Lemma 5.1 is sharp in this

context that is: if M(A ) = O (\/A), then the assertion of the lemma does not hold.
(But the coupling may still be "good" - and we expect, actually it is "good" for

!) On the other hand, for M(A)^>A5 , we are able to prove that the
largest probability above still converges to zero (this fact may be useful if one also
wants to bound the decay of the velocity autocorrelation function).

Proof of the Coupling Lemma. We shall consider t = i and M(A) a fixed function
satisfying the condition of the Lemma. The proof will go as follows : we shall
consider two large sets J^, mA c tyM(A} with probabilities tending to one and a
random process δ™(A\ se[Q,A] satisfying

Finally we shall prove

_L j ώ δ M W ) Ji^o . (5.3)
]/A o

Let

and

»A= s u p \ V \ < c 4 r s u p
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#A = {largest absolute jump of VS

M(A} or FS

MU) in the interval

se[Q,A] is less than d(A )}.

By standard arguments we have PM(A}(&A)-+ί, and PM(A}(^A)-^1. [In the proof,
which we omit, of these assertions, the following facts are used: FS

MU), VS

M(A\ and

WM(A)± are stationary processes of typical order ~M(A)~1/2, and the jumps of
¥S

M{A) and FS

M(A} are of typical order ~M(A}~\ cf. the collision rules (2.1).]
For the further work we need a more detailed analysis of the driving mechanism.
1 . Common collisions. From the collision rules (2.1), one finds that the effect on

V — V of a collision with a common light particle is

A very important fact is that, on the set $A, the total instantaneous rate of common
collisions satisfies for all 1 e [0,^4],

& =f f Λρ^floO (5.4)

with α being a universal constant. One can check this relation by simple calculation
using that, on^A,\wfί(A}±\<c(A) for all te[Q,A]. Thus, this part of the mechanism
has a contractive effect on |F— F|, with constant rate.

2. Compensations. From the collision rules and the compensation rates we find
that

sign /I (VS

M(A} - VS

M(A}) = -sign (V™(A} - V™(A})

for each jump caused by this part of the driving mechanism. (Here and in the sequel
Afs means the instantaneous jump of the function / at the moment s.) Thus,
collisions with compensational light particles either draw the two velocity processes
closer to each other or change the sign of the difference process. Only the second
effect can be harmful from our point of view. But on C6A the largest sign-changing
jump of this kind is less than A ~ (1 +ε)/2.

3. For collisions of the third kind, from the collision rules we have on 3&A,

(and the same for \ΛVS

M{A}\}.
Now we construct the majorizing process δA promised above. Let the process δA

be constructed in the following way : δA is pure jump starting from zero δA = 0, and
driven by the following rules :

1. Whenever a jump of For V caused by the third driving mechanism occurs
(collisions with atoms coming with velocity ve [w^", wf*+], δA suffers an upwards
jump

S ~M(A)

2. Whenever a common collision occurs, δA suffers a downwards jump

AδA- - _ - _ SAOs ~ s~ '
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Let

It is an easy task to check that (5.2) is preserved after each collision.
Assertion (5.3) remains to be proved. In fact we shall prove

0 (5.5)

L ] °
if

The germ of the forthcoming proof is the following picture valid on 0SA : assume,
for simplicity, that M(A) = Aγ; δA is composed of two effects: additions of order

_3I

Aε 2 with "average" rate below O(A2ε y) and contractive multiplications by
M(A) — \ 2
- ̂ 1 -- with rate uniformly above α > 0 (see (5.4)). The evolutions of the
M(A) + ί Ay

additive terms can, of course, be separated and, as a consequence of the fact that
contractions occur sufficiently uniformly, they decay exponentially resulting that
their sum is o(A1/2) only, provided y > j + ε.

Let τ f be the moments of upwards jumps of the process 5* in the time interval

where

NA = number of recollisions in [0,^4],

NA = number of collisions of the third type of the Markovian process in [ 0 9 A ] .

Further let

NA[s, t] = number of common collisions in [s, t] .

We have

4,04) / 2
s M(A) ί:£

Thus

A

On the set

where NA (NA) is the number of collisions of the mechanical (Markovian) Brownian
particles with incoming light particles having velocity less than c(A\ and

™

n



Brownian Particle in Ideal Gas 61

Thus

(56)

_

provided M(A)^A* +\ On the other hand, by (5.4), on $A,

where N3 [t, s] is a Poissonian process with constant rate α, and hence

2

ί <
ί

' is a stationary random process depending in a relatively simple way on the
Poisson process N3. By some standard arguments concerning Poisson processes it
is not hard to show that

γM(A)\ ™± 0 (5 ?)

ε~ SUP I Λ-f A\ ** /^ϊw o<t<A \M(A) J

We omit the details of this step. Now by combining (5.6) and (5.7), (5.5) is obtained,
and hence the proof of the lemma.
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Notes added in proof.

1. In the corresponding multidimensional model the Brownian particle is spherical having
radius R, Here the cases when M(A) ^co are treatable in an analogous way as for d=l, with
some additional geometrical considerations involved. In the results R enters trivially as a rescal-
ing factor Rd~^ of the time parameter of the limiting process. [However, this is no more true for
M(4) = 0(l).] Case 5 (in the diffusion scaling) is trivial, too. Case 4 was treated in D-G-L (1981).
Finally, a complete analogue of Theorem 2.1 can be proved with the limiting variance being

.
2. Concerning the super-heavy Brownian particle (Case 5 : M(A) > A, d= 1), by an application

of a theorem of Kurtz, [essentially the same method as that used in H(1971)], we find the correct
asymptotics

where y~M(A) VQ*(A) has a standard Gaussian distribution and ξA converges in distribution to a

Wiener process of variance 4

depending on the dimension.

/2
Wiener process of variance 4 / —. If d> 1, a similar statement holds with a limiting variance




