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Abstract. It is shown that a periodic elliptic operator on Un has no eigenvalues
off of the set of discontinuities of its spectral density function. The methods
involve operator algebras and are based on a "spectral duality" principal first
introduced by J. Bellisard and D. Testard. A version of the spectral duality
theorem is proved which relates the point spectrum of a certain family of
operators to the continuous spectrum of an associated family.

0. Introduction

A general method for studying elliptic operators on open manifolds involves viewing
such an operator as a longitudinally elliptic operator on a foliated compact manifold
having the original open manifold as a leaf. This is the point of view developed by A.
Connes [4]. We shall use this approach to study properties of the spectrum of such
an operator. Our work is an extension of the ideas and methods introduced by
Bellisard and Testard in [2]. The principal tool is a variant of their "spectral duality
theorem." We prove a version of this theorem which holds for operators on the
orbits of a locally free action of Un on a compact Hausdorff space. The main
application states that a periodic elliptic operator on Un has no eigenvalues, off of the
discontinuities of the spectral density function, when considered as acting on L2(Un).

The paper is organized as follows. Section 1 introduces the necessary operator
algebra and discusses two families of representations of it. In Sect. 2 the basic facts
on operators elliptic along the orbits of the Un action are presented. The spectral
duality theorem is proved in Sect. 3 and the application discussed above to the
spectrum of periodic elliptic operators on Un is covered in Sect. 4.

We remark that it will be quite useful to have a version of the spectral duality
theorem which will hold for more general foliations. The case of a foliation
transverse to the fibers of a principal G-bundle is particularly appropriate, and we
will consider this in a later publication.
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1. The Crossed Product C(X) x Un

In this section we will consider some of the facts needed which involve locally free
actions of Un on topological spaces. Recall that an action is called locally free if each
isotropy group is discrete. If X is a smooth manifold then the orbits of a smooth such
action yield a foliation of X. However, if no assumption is made about X then the
result may not even be a foliated space, (cf. [8]). The analytic facts that we will use are
true in the case of general foliations, not merely W actions, but the proofs are often
considerably more complicated. For this reason we will develop the necessary
analysis in the present generality, guided by the existing theory for foliations of
manifolds, and taking advantage of the simplifications which our setting allows.

Let IR" act on the compact Hausdorff space X. Assume that the action is locally
free and minimal, and that there exists an invariant probability measure on X, m,
with respect to which the action is ergodic. We will denote the action by x -» x + t.
Let ds denote Lebesgue measure on IR", and the product measure, dμ = dmx ds, will
always be used on X x Un.

The crossed product, C(X) xi [R", will be our concern in this section. In the case
that X is a manifold it is the same as the C*-algebra of the associated foliation. Let
CC(X x Un) c C(X) xi Un be the dense subset consisting of functions of compact
support. Recall that the product and involution are defined by

(a*b)(x9ί) = J a(x,s)b(x + s9t — s)ds9 α*(x, ί) = a(x + t, — t)

for a and b in CC(X x Un).

There is a natural representation π:C{X) x> Un-^^{L2{X x U")) defined by

π(a)(ξ)(x91) = j a(x, s)ξ(x + s, t + s)ds9

where ξeL2(X x R"). This representation is faithful and the weak closure of its
image is the von Neumann crossed-product L°°(X) x Un, Under our assumptions on
the action this is a //^-factor and has a unique normalized trace which is given on
CC{X x Un) by the formula

τ(a) = J α(x,0)dm,
x

so that one has

φ * * α ) = j \a(x,t)\2dμ.
XxUn

The representation π decomposes as a direct integral of faithful representations
πx:C{X) xi Un-*&{L2{nn)) which are given by

fer aeCc(X x Un) and /GL 2 (IR"). TO see this, define a unitary operator on L\X x Rn)
by Vξ(x9t) = ξ(x + t9t). Then one easily checks that [Kπ(α)K*](ξ)(x,ί) =
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πx(a)(ξix)(t), where ix:R
n->X xi Rn is given by ίx(ή = (x,ή. Thus one has

L2{X XJ Rn) ^ J L2({x}χ[T)dm

and with respect to this decomposition

F * - ] πx(a)drn.]
x

The representations πx satisfy πx+s=UsπxU _s, where UJ(ή = f(t + s), for
feL2(Mn). Thus, if x and y are on the same orbit σ(πx(d)) = σ(πy(a)), where σ denotes
spectrum. We show that because of the minimality of the action the same is true even
if x and y are not in the same orbit. The minimality implies that there is a sequence
tneUn such that x + tn->y. A direct computation shows that this implies that
σ(πx(a)) c= σ(πy(a)) for any self-adjoint element aeC(X) xi Un. By reversing the roles
of x and y we obtain the desired result. We thus obtain

Proposition 1.1. The representation π is faithful. If the orbit ofx is dense, then πx is
faithful. If the action is minimal, then for any self-adjoint element a, the spectrum,
σ(πx(a)), is independent ofx.

There is a second family of representations of C(X) XJ Un which we must consider.
The representations are parametrized by Un, the dual group of IR". Let seύn. Define
πs:C(X) XJ Un-+£e{L2{X)) by

[πs(α)(fr)](x) = j α(x, t)eι<s'tyh(x + ήdt

for aeCc(X x W) and heC(X). One verifies easily that π s is a *-homomorphism,
which, since Rn is amenable, extends to C(X) xi Un.

We will show that the representation π has a second direct integral decompo-
sition in terms of the πs. Let ^\L2{W, ds)-*L2{Un, ds) denote the Fourier transform.
Then a direct computation shows that

where js:X -> X x Un is js(x) = (x, s). Thus we obtain

®
T2(Y V O " ^ ~ Γ T2ίY V ίcWrlc

±j \Λ. X \K ) = I i_̂  ^A X | 5 j ju5,

and relative to this

(1 (x) ̂ )n(a){\ ® ϊF)* = } πs(a)ds.

Remark. An additional condition is needed to guarantee that the representations π5

are faithful and to relate σ(πs(a)) to σ(πs'(a)). One must require that the action be
effective (i.e. the only element of Un fixing everything in X is the identity), [6]. When
that is the case one has σ(π°(α)) = σ(πx{a)) for all x. Let as(x,t) = eKt's>a(x,t).
Then πx(as) is unitarily equivalent to πx(a). Thus, one has the equalities σ(πs(a)) =
σ(π°(as)) = σ(πx(as)) = σ(πx(a)). This yields the following result.
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Proposition 1.2. If the action ofUn on X is effective, then the representations πs are
faithful and σ(πs(a)) is independent ofseUn.

2. Pseudo-differential Operators along the Orbits

In this section we will consider the operators to which our main results will apply.
They are a class of pseudo-differential operators along the orbits of the Un action.
Since we wish to work in the generality of a group action on a compact Hausdorff
space, we do not assume the existence of local flow boxes. In order to simplify the
presentation we consider a restricted set of operators, which are, however, general
enough for the applications. Note that it is possible to allow pseudo-differential
operators along the orbits which act on sections of vector bundles.

The symbols to be used on IR" are as follows.

Definition 2.1. A function σ:IRΛ x IR"->C is in 9?m if it is smooth and satisfies

where α and β are multi-indices.
If σ e y m then one defines the operator Op(σ):Qco(Kn)->Cco(Kn) by

Op(σ)u(t) = (2πΓn f eKt~s>ξyσ(t,ξ)u(s)dsdξ. (2.2)
M2"

Definition 2.3. An operator A is pseudo-differential of order m'ύA = Op (σ) for some
σe^m. The function σ is the symbol of A. The set of such operators will be denoted
by Ψm. If A = Op (σ) and σ e ^ m for all m then Ae Ψ~ °°. The operator A is elliptic if,
further, there is an R > 0 such that the symbol σ(x, ξ) is invertible and satisfies

If Ae Ψm then it has a kernel

KA{Us) = {2πΓn \ eι<t~sΛyσ(

which is continuous if m 5Ξ — In. Thus, one has

Au{t)= j KA{t9s)u(t)dt.

It is shown by Shubin and Kozlov, [6], that this class of operators extends
continuously to the appropriate Sobelev spaces. We will also have need of the
following theorem proved there.

Theorem 2.4. Let A e Ψm, m > 0, be an elliptic self-adjoint pseudo-differential
operator. Then for any φeC?{Rn), φ(A)eΨ~co and KφiA)(t9s) satisfies

for any α, β9 and N.
Our next goal is to extend the preceding theory to operators along the orbits.

Assume Un acts locally freely and minimally on X with invariant measure m.

Definition 2.5. Let S?m(X) denote the set of symbols, σ:X x Un x Un-^C such that
σx = σ(x, , )e<9^m for each xeX. A symbol σ is called invariant if there is a function
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σ*:X x [R"->C such that

Given a symbol, σ, define a family of operators, Λx on L2((R") by Ax = Op (σj. If
the symbol is invariant then USAXU-S = Ax+S. In this case one is able to define an
operator A# on L2(X x Un) by

t) = (2n)~n J eKt-sΛ)σ\

As before, using the operator Vf(x, s) = /(x + s, s), one sees that

FΛ#F* = ] Axdm{x).

Suppose now that σe£fm(X) satisfies the condition that σxe^m, ra>0, and
x->σ#(x + ί,s) is a continuous function from X to C°°([R2"). Assume also that the
following estimates hold:

(x + t9s)\£CaP(l + \s\Γm (2.6)

with Caβ independent of x, and

\{c*r\x9s)\^C\sΓ" (2.7)

for \s\ §; R > 0. Thus, each operator Ax = Op(σx) will be elliptic. If A# is self-adjoint,
then each Ax will be as well.

It was noted in Theorem 2.4 that if φeC?(Un) then φ{Ax)eΨ~™. We now
consider the analogous situation for A#.

Theorem 2.8. Let A# be a self-adjoint elliptic pseudo-differential operator with σ#

satisfying (2.6) and (2.7). Then for any φeC0(U)9 φ(A#)eC(X) xi Un. In particular, for
zeC\U, the resolvent (A# -z)~ι belongs to C(X) x> R\ IfφeC?(W\ then φ{A#) is in
the trace ideal.

Proof. The kernel KAχ(s,t) of φ(Ax) satisfies KA (s,t) = KAχ(s + r,t + r). This
implies that one has the inequality, for φeC™(M\

t,s)\ ύ CaβN(l + \t - s\yN (2.9)

with CaβN independent of x. Thus the kernel for φ{A#) satisfies

aβN

again with CaβN independent of x. This implies that if ̂ eCc°°(ίR) then φiA^) is in the
trace ideal. By approximation we see that ifφeC0(R), then φ(A#)eC(X) xi Un. Π

Remark. This result is the analog of a theorem of Alain Connes and John Roe to
the effect that applying a function in CQ(U) to a longitudinally elliptic operator
yields a result in the foliation C*-algebra. Unfortunately, our theorem does not
follow from theirs since we do not assume that we are working with a foliation. This
generality is needed for future applications to almost-periodic Schrodinger
operators. On the other hand, we work with a rather restricted class of operators and
foliations obtained from locally free Un actions are relatively well behaved.



432 J. Kaminker and J. Xia

Proposition 2.10. Let A# be a self-adjoint elliptic pseudo-differential operator with σ#

satisfying (2.6) and (2.7). Let

be the spectral decomposition of A**. Then, for any bounded Borel set A a U, E^(Δ)
belongs to the ideal of elements of finite trace in U°(X) xi IR".

Proof. Since φ(A*)eC(X) xi Un c Γ ( I ) xi Un for φeC0(U)9 each E\Δ) is in
L°°pO x) W. For a given bounded Borel set A <= U, let φeC?{U) be such that φ ^
χΔ, where χ^is the characteristic function of A. Then φ(^l#) Ξ> £#(zi). According to
(2.8), φ{A#) has finite trace. Therefore τ(En(A)) < oo. Π

One further concept must be introduced before proving the spectral duality
theorem. If A is a self-adjoint operator affiliated to a semi-finite von Neumann
algebra Ψ* with trace τ, then the spectral density function of A is defined to be
NA(λ) = τ(EA(λ)). It is also called the "integrated density of states" in the
mathematical physics literature [9], or the "state density" [10]. It is closely related
to the notion of rotation number for Schrδdinger operators on IR with continuous
potential [5]. The main fact we need is that if λ0 is a point of discontinuity of NA(λ)
then λ0 is an eigenvalue of A. We will show in Sect. 4 that certain operators have
purely continuous spectrum off of the set of discontinuities of their spectral density
functions. It is indeed possible that NA(λ) has points of discontinuity. On the other
hand, to give a feeling for the possibilities we consider an example where NA(λ) is
continuous.

Suppose that we have an action of U on X. Let d/dt denote differentiation along
the flow. Let q0,..., qkeC(X) be real valued functions which are smooth along the
flow and satisfy \qk(x)\ ̂  δ > 0 on X. Consider the operator

on L2(X x R). Then we have

Proposition 2.11. The spectral density function of A, NA(λ), is continuous.

Proof. Since \qk\ ̂  δ > 0, A is elliptic and φ(A)eC{X) x U whenever φeC0(U). We
must show that E{{λo}) = 0 for any fixed λoeU, where E denotes the spectral
resolution of A. Let 1 ̂ φ w ^ 0 be a sequence of functions in CC°°([R) such that
φm(λ0) = 1 and lim φm = δλo. Let Ax denote A restricted to an orbit. For each m

and ,

(ψm(Ax)f){t) = J am(x + U s - t)f(s)ds = J am{x + ί, s)f(s + t)ds9

u u
where am is the kernel of φm(A#) which, according to Theorem 2.7, represents an
element of C(X) xi M".

Let Tr denote the type 1^ trace on if (L2{U)) and let χr be the characteristic
function of (—r,r). Then the operator χrφm(Ax)χr is trace class and

Tr (χrφm(Ax)χr) = Tr (φm(Ax)χr) = } am(x + s9 O)ds.
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Hence,

r

ίΊΐ(χrφm(Ax)χr)dm(x) = J j am(x + s,0)dsdm(x)
X X -r

= 2rτ(φm(A*)) ^ 2rτ(E*({λ0})) = 2r(N(λ0 + 0) - N(λ0 - 0)).

On the other hand, if Ax = \λdEx

λ, then Ex({λ0}) is an operator of rank at most
2k. This is because the eigenvalue problem (Ax - λo)φ = 0 has only 2k solutions,
(which may or may not be square integrable). Since φm(Ax) -> Ex( {λ0}) strongly, and
Tr is a normal trace, we have

2k ^ J Tτ{χrE
x({λ0})χr)dm(x) = lim J Ύv(χrφm(Ax)χr)dm(x) ^ 2rN(λ0).

X m->oo X

Since r is arbitrary, we have JV(λ0) = 0.

3. The Spectral Duality Theorem

The idea behind the spectral duality theorem is the use of the two direct integral
decompositions of L2(X x Un). If A is an operator on L2(X x Un) then spectral
properties of the family As are "dual" to those of Ax. Roughly, if the As have pure
point spectrum, then the Ax have purely continuous spectrum. These notions were
first developed by Bellisard and Testard in [2]. In their setting, Un was allowed to be
a general locally compact abelian group H, X was required to be a compact abelian
group and the action was given by a homomorphism of H into X. The present
version does not require X to be a topological group. Although we work with IR", the
proof goes through for a locally free action of a general locally compact abelian
group.

Throughout this section we shall view C(X) xj Un as contained in the
von Neumann algebra U°(X) x Un. Note that the direct integral decompositions

VAV* = J πx(A)dm(x) and (1 ® &)A{\ ®&*) = ] πs(A)ds for AeC(X) x. W can be
u

extended to elements of L°°(X) x Mn. This is because C(X) x Un is strongly dense in
L°°(X) x. W. Thus, for each BeU°(X) x Un, VBV* commutes with multiplication by

Θ
φeC(X\ if the Hubert space L2(X x Un) is decomposed as J L2({x} x Mn)dm(x).

X
Θ

Therefore VBV* has a direct integral decomposition J Bxdm(x\ where, for a.e. xeX,
x

Bx is a bounded operator on L2(Un). For the same reason, for any BeU°(X) xi Un,
Θ

has a direct integral decomposition j Bsds corresponding to

e
j L2(X x {s})ds = L2(X x Un). Clearly, x i -^^ and 5H>^S are strongly measurable.

It can be shown that if J / is a norm separable C*-subalgebra of L°°(X) xi Kn, then
there is a set 5 e X of measure 0 such that for each xeX\S, B^BX defines a C*-
algebra homomorphism. The same holds true for Bh+Bs. If it happens that Be
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C(X) XJ Mn, then Bx = πx{B) and Bs = πs{B). Since these decompositions are spatial,
s-lim Bm = B in L°°(X) xi 1R" implies that s-lim Bmx = Bx almost everywhere
m-»oo m-> oo

and s-lim Bs

m — Bs almost everywhere.
m-* oo

We must extend this to self-adjoint operators affiliated to U°(X) xi [Rn. First,
note that if A is a self-adjoint operator in L 0 0 ^ ) xi IRW with spectral decomposition
A = \λdEλ, then for almost every xeX, (respectively, almost every selR"), {Eλx} =
{(Eλ)x} (respectively, {Es

λ} = {{Eλf}) is a resolution of the identity. In the

Θ Θ
decompositions VAV* = j Axdm(x) and (l(g)^)A(l ®3P*)= j Asds, one has Ax =

χ u"

\λdEλx almost everywhere, and As = \λdEs

λ almost everywhere. If one only
assumes that A is affiliated with U°{X) XJ Mn, then by the usual approximation, it is
still true that Ax = \λdEλx and As = \λdEs

λ.
Before proving the theorem, we will describe Ax and As if A is a self-adjoint

differential operator along the orbits. In what follows α will denote a multi-index,
α = (α 1 , . . . ,α w ). Let ba be real valued functions in C(X) which are smooth in the
direction of the flow. Consider the operator on L2(X x Un) given by

where ίJ" = £?.../$?•, and βjf(x,r)= -i(df/dφ + ί,r + ί)| ί = 0). If

ε|ξI, then X is affiliated to L°°(X) xι Un by Theorem 2.8. The operators Ax associated
to A are given by

where D« = (- ifid/dt^- id/dtn)*". Finally, Λ5 = X&α(x)(5 + 5)α, where
(5 + s)α = (5X + 5 l Γ - ( 5 B + sny» and β/(x) = - i(df(x + ί ) / ^ )Uo

The following is the main result of the paper.

Theorem 3.1. Let A = \λάEλ be a self-adjoint operator affiliated to L^(X) XJ W with
the property that for each bounded Borel set S a [R, E(S) belongs to the trace ideal of
LCO(X) xi Un. Let F be the set of discontinuities of the increasing function τ(Eλ — Eo). If
A c U\F is a Borel set such that for almost every seUn, As has pure point spectrum on
Δ, then for almost every xeX, Ax has purely continuous spectrum on A.

For the operator A described explicitly above, the theorem states that, if for
almost every se(R", £bα(x)(i5α + s) (as an operator on L2(X)) has pure point
spectrum on a Borel set A a U\F9 then Σba(x + )Da (as an operator on L2(Un)) has
purely continuous spectrum, on Δ, for almost all xeX.

If A is bounded from below, (e.g. if A is a Schrodinger operator), then F is the set
of discontinuities of the spectral density function, NA(λ) of A.

Let us make a remark on the algebra L°°(X) XJ Un before we start the proof of the
theorem. If an operator BeL^(X) xi !RM is of Hilbert-Schmidt class in the sense that
τ(B*B) < oo, then B is represented by a square-integrable kernel on X x Un, i.e.
{Bξ)(x, ί) = J b(x, s)ξ{x + s, t + s)ds with beL2{X x Un). To see this, note that ^ 2 =



Spectrum of Operators 435

{KeU°(X) x Un:K is represented by a square-integrable kernel} is a strongly
dense ideal in L™{X) xj W. Indeed, if KEL^{X) XI Un is represented by keL2(X x Un),
then for DeL°°(X) * (RM, DX is represented by V-1DVkeL2(X x Rn), where (Vf )(x,t)
= /(x, — t). Let {zm} be a countable approximate identity in ̂ 2 For an operator B of
Hilbert-Schmidt class, the strong convergence of Bιm to B implies that there is a
sequence of convex combinations of the Bim's, which are operators in ^2> that
converge to B in the Hilbert-Schmidt norm. Therefore B is also represented by a
square-integrable kernel.

We start the proof with two lemmas.

Lemma 3.2. Let BeC{X) a W and let ηeL2{Un) be such that ήeL2(Un)nL1(Un),
where ή(s) = j η(t)eκ$'°dt. Then, for almost every teUn

j \{Bxη){t)\2dm(x) = f J ̂ -^ήisjήffl < B% BSΊ }dsdsf.
x

Proof. Since Bm-^B strongly implies Bmx -> Bx strongly for almost all x and Bs

m -> Bs

strongly for almost all 5, it suffices to prove the identity for BeCc(X x W). Suppose
that B is represented by b(x, t). Then we have Bx = πx(B) and Bs = π(B% and

^\(πx(B)η)(t)\2dm(x)

+ ί, s)ιy(ί + s)ds)(Jfe(x + ί, s')»/(ί + s')dsf)dm(x)

= f [f (f 6(x + t, *)*

This completes the proof. Π

Lemma 3.3. Let BeL^iX) xi Un be an element of Hilbert-Schmidt class. Then
\\BS11|2, considered to be a function of s, is integrable on U and

J | |β s l | | 2 ds = τ(£*β).

Proof. Let /eL2(ίR") and let F(x, t) = /(ί). From the definition of 5 s , one obtains
[(1 ® ̂ )BF](x, s) = (£sl)(x)/(s), where / is the Fourier transform of / . Therefore
j II £ s l II21 /(s) |2ί/s = IIBF \\2. Since B is Hilbert-Schmidt it is represented by a square-
integrable kernel b(x, t). Thus, || BF\\2 = JJ| JZ?(x, 5)/(ί - s)ds\2 dtdm{x) and
τ(£*£) = jj|fc(x,s)|2rfsdm(x). Let φmeL2((RM) be such that

l iϊ\\S

0 otherwise'
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The operators defined by convolution with the φm act as an approximate iden-
tity on L2(Un). Hence lim | |BΦ m | | 2 = lim JJ|Jb(x,s)φm{t-s)ds\2dtdm{x) =

m-> oo m-*oo

$\\b(x,s)\2dsdm(x) = τ(B*B), where Φm(x,ί) = φm(t). On the other hand,

l i m \ \ B Φ m \ \ 2 = l i J 2 2 J 2

Proof of Theorem 3.1. For the operator ,4 = jME^let {E-^. λeR} and {Es

λ:λeU} be
the spectral resolutions of Λx and ,4s, respectively. Recall that (Eλ)x = Eλx for almost
every x and (Eλ)

s = Es

λ for almost every s. Given a Borel set Ω9 denote EX(Ω) =
J d £ λ i X ( = (£(fl))x almost everywhere) and ES{Ω) = j dEs

λ(= (E{Ω))S almost every-
Ω ' β

where). Let A be the Borel set in the statement of the theorem. To prove the theorem,
it suffices to show that there is a set N a X of measure 0 such that the Borel measure
μηίX(Ω) = (Ex(ΩnΔ)η,η} has no atoms whenever xeX\N and ηeC™(Un). This is
equivalent to showing that for the same x and η,μVfX x μη,x(@) = 0 [12], where 3)
is the diagonal of A x A. This will follow if one proves that §μηx x μηx($))dm(x) = 0
whenever ηeC?(Rn).

There is a sequence of finite Borel partitions {^m}, of A such that ^ m + 1 is

finer than 0>m and one has ^ = f) [ (J S x S]. Since μ ^ x μη,x{
s) =

(Ex(S)η,ηy2 for S czΔ, it suffices to show that lim /„ = 0, where

By changing the order of integration and using Cauchy's inequality, one obtains

CΣ

Applying Lemma 3.2, one has

)\\ Σ

The factor | ^] <v>l in the integral is bounded by 1. Hence, the dominated
Se0>m

convergence theorem implies

lim / m g \\η\\\

where μs>s' is the Borel measure on Ax A whose value on a rectangle U x V is
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<£ s (l/)l,£ s ' (K)l>. We now wish to show that for each fixed s', $\ή(s)\\μs>s'
{@)\ds = 0. Let £> = {λeA:Es'({λ})l ΦU). Then it is easy to see that

Hence,

Since ^czΔczU\F, we have, according to Lemma 3.3, J||£S({A})1 \\2ds =
τ(E({λ})) = 0. Therefore, for a fixed s\ |μ s ' s ' (^) | = 0, almost everywhere. This
completes the proof. •

4. Applications

In this section we apply the previous theory to some geometric examples. As a
first step we obtain a criterion for an operator to have pure point spectrum.

Proposition 4.1. Let S and T be commuting essentially self-adjoint operators with
the same domain. If S has pure point spectrum, with each eigenvalue of finite
multiplicity, then T has pure point spectrum.

Proof Assume that there is a basis consisting of eigenvectors for S. Since S and
T maps each eigenspace into itself. By diagonalizing T on each eigenspace one
obtains a basis consisting of eigenvectors for T. •

Now, let Rn act locally freely and minimally on the closed manifold V. This is
determined by a Lie algebra homomorphism of Lie (Un) into $£{V\ the Lie algebra
of vector fields on V. Assume that a Riemannian metric has been fixed on V and
that the action is via orientation preserving isometries. Then the normal boundle
to the orbits, JV#", has a holonomy invariant Riemannian metric and a unique
torsion free connection, V, which preserves that metric. This data allows one to
define a transverse signature operator

Dy:Ω+-+Ω~

as in [7], where Ω± are the eigenspaces of the Hodge operator on C00(/i*(iV#')).
It is a 1st order differential operator on V which is invariant under the Un action
and elliptic transverse to the orbits.

Next, consider a self-adjoint invariant elliptic operator on Un. If one views it
as an element of the universal enveloping algebra tf(Lίe Un)), then its image in
U(2C{V)) defines an operator D\C™{V)-+C™(V\ elliptic along the orbits. Let
Q) = D (χ)v/ denote the extension of D to Ω + . Since Dy is invariant under the action
of Un, it commutes with 2.

We shall apply the previous theory to ®. Since 2 acts along the orbits, it yields
I on L 2 (F x W\ and it is given, as in Sect. 2, by an invariant symbol. Thus, we
may consider Q)s and Q)x. Each §s has the property that it commutes with Dy and
that 3s + D%Dy is self-adjoint and elliptic. By Proposition 4.1 ( J s ) 2 , and hence
§)\ has pure point spectrum for each s. Thus, by the spectral duality theorem we
obtain
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Theorem 4.2. The operator D(x)v/ has purely continuous spectrum off the disconti-
nuities of the spectral density function NB(λ).

A variant of the above example having some independent interest goes as
follows. Let D:COO([RΠ)->COO([R") be a self-adjoint periodic elliptic differential
operator of order k. Thus, there is a lattice ΓaUn such that Dy = D for any γeΓ.
Let oc:Γ-+Tk be an embedding of Γ as a dense subset of a torus obtained by
choosing independent irrational numbers α 2 , . . . , αfe and setting (x(x1, ...,xk) = (eiπx\
eίπ0C2X\...,eiπcckXk). Then F = [ R " x Γ T " is a compact manifold acted upon locally
freely by Un, and D induces an operator D o n F which is elliptic along the orbits.
This operator yields D on L2(V x Rn) such that the symbol of D is invariant in
the sense described in Sect. 2. Thus the theory applies. The operators 5 s are all
invariant under the action of T" on V9 hence they commute with the Laplacian
Δτn, (cf. [1]). One then has D s + (Δτn)k/2 self-adjoint elliptic and commuting with
5 s . As before, we deduce that Ds has pure point spectrum. Thus, Dx has purely
continuous spectrum off the discontinuities of N(λ)9 for almost all x. However, in
the present case, each of the operators Dx is the same as the original operator D,
so one obtains

Theorem 4.3. Let D be a periodic elliptic operator on Un. Then, off of the
discontinuities of the spectral density function, D has no eigenvalues with eigen-
functions in L2(Un).
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