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Abstract. We consider global anomalies for heterotic string theory formulated
on orbifolds. The vanishing of certain characteristic classes in group coho-
mology provides sufficient conditions for the absence of global anomalies. For
abelian orbifolds level matching implies these cohomology conditions, so
suffices for the absence of anomalies. For nonabelian orbifolds level matching
does not suffice, and there are additional constraints. We give some examples
to illustrate these new constraints.

The present paper continues the discussions of global anomalies in string theory
undertaken in [1] and [2, Sect. 4] to further investigate anomalies on orbifolds.1

From a mathematical point of view this study provides a beautiful, explicit
example in the theory of determinant line bundles. But as the results are primarily
of interest to physicists, we begin our introduction from that perspective.

String theories have been under intensive investigation in the last few years due
to their potential for encompassing all known physics. The ultimate aim of the
string theories will be realized only after certain issues are resolved. The most
important question in this regard is how to obtain a four dimensional theory out of
superstrings which are consistent only in ten dimensions.

Physicists have approached this question by assuming that the physical space-
time is actually ten dimensional, six dimensions of which are so tiny that they have
thus far escaped detection (this is the Kaluza-Klein approach). This means that the
space-time is assumed to be the product of four dimensional Minkowski space
times a six dimensional compact manifold M. The main problem then in making
predictions, in the context of string theory, for the so far observable four
dimensional theory, is to determine M. There are severe restrictions on M coming

The first author is partially supported by an NSF Postdoctoral Research Fellowship. The second
author is supported in part by the NSF contract no. PHY 82-15249, and in part by a fellowship
from the Harvard Society of Fellows
1 Following the usual nomenclature in the Physics literature we refer to the quotient M/G of a
smooth manifold M by a finite group action as an "orbifold." Here we restrict our use of this word
to these quotient spaces; we do not consider the more general class of spaces which are locally
quotients of this type
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from string theory, the most well-known of which is preservation of conformal
invariance of the relevant non-linear sigma model (which follows from tree level
equations of string theory). Not all the conditions for consistency of strings
propagating in a space M are known.

Certain choices of M, namely tori (with flat metrics), are simple and possibly
fully consistent; string propagation on them is exactly solvable and the theory
passes all the consistency checks known thus far. In fact tori appear in a very
natural way in the bosonic formulation of the heterotic strings [3]. It seems,
therefore, as a good starting guess to take M to be a six dimensional torus.
Unfortunately, tori do not give rise to a realistic (chiral) four dimensional theory.
However, by considering strings propagating on the quotient of a torus by a finite
isometry group, one obtains potentially realistic chiral string models [4] which
are essentially as easily described and almost as "natural" as the toroidal
compactifications. These quotients are in general not even manifolds, because the
group may not act freely on the torus (i.e., it may have fixed points), and the
resulting space is known as an orbifold. The singularities of orbifolds are harmless
for the description of string propagation, whereas they would be problematic for
the propagation of point particles.

In this context the question arises as to the consistency of strings propagating
on arbitrary orbifolds,2 and in particular the absence of global anomalies, which
would otherwise spoil the consistency of the theory. Absence of global anomalies
in this case means that under global diffeomorphisms of the string worldsheet,
which is a Riemann surface, the computations of physical processes do not get
affected.

The conditions for the absence of anomalies for compactifications on smooth
manifolds were first addressed in [9] where, motivated by some examples [10], it
was suggested that the vanishing of (half) the difference of the integral first
Pontrjagin classes of certain bundles (together with the condition that relevant
bundles be spin bundles) implies the absence of global anomalies. In [2] it was
proved that these conditions do indeed suffice to demonstrate the absence of
global anomalies for smooth compactifications.

The question of global anomalies for orbifolds has been studied in the case
where the Riemann surface is a torus (the 1-loop case) [1], where it was shown that
"level matching conditions" [cf. (1.3), (1.4)] are necessary and sufficient to
guarantee modular invariance at 1-lpop. [In this case modular transformations
are elements of SL(2, Z), describing the action of global diffeomorphisms on the
first homology of the torus.]

In this paper we address the question of global anomalies for orbifolds beyond
one loop, i.e., for arbitrary Riemann surfaces. We will show that the level matching
conditions are both necessary and sufficient for modular invariance to all loops for
abelian orbifolds (tori modded out by abelian isometry groups). For non-abelian
orbifolds the level-matching conditions are still necessary, but they are no longer
sufficient to guarantee modular invariance - new conditions arise. Indeed, as in the
smooth case the modular invariance can be stated in cohomological terms: The

2 Although we only consider (symmetric) orbifolds in this paper, the same cohomology conditions
apply to asymmetric orbifolds [5] in the fermionic formulation [6-8]
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vanishing of the second Stiefel-Whitney classes of the point group representations
together with the vanishing of the difference of one-half the first Pontrjagin classes
suffice to guarantee the absence of any anomalies (Corollary 7.7). For abelian
orbifolds these cohomology conditions are also necessary; the level matching
conditions imply the vanishing of the relevant cohomology class. In the non-
abelian case, motivated by physical reasoning (Sect. 3) and a few mathematical
examples (Sect. 8), we raise a question about the detectability of 4 dimensional
characteristic classes of group representations by surface bundles over a circle.

On the mathematical side Corollary 5.7 is an application of the main theorem
in [2, Sect. 4]. In fact, the earlier computations of the second author [1] were part
of the motivation there. The explicit formulae for the Dirac determinants, and the
transformation laws which result, match the topological considerations perfectly.
Of course, it is the power of the topological methods that they both apply to all
Riemann surfaces simultaneously (i.e., to all orders in perturbation theory) and
also to any curved spacetime, where explicit formulae are usually unavailable. For
example, our main result is true for any quotient space M/G - the manifold M need
not be a torus. The cohomology of finite groups is extremely difficult to compute,
and the characteristic classes of representations are even more mysterious. The
question referred to above, which is born out of a mix of mathematical and
physical intuitions, but owes most to the physics, is phrased in purely mathemat-
ical terms at the end of Sect. 8.

The mathematics herein may be unfamiliar to physicists. An expository
account of determinant line bundles was given in [2, Sect. 1], and some topics
related to integral characteristic classes were treated in [2, Sect. 3] . 3 To treat
orbifolds we introduce equivariant quotients. While this move is somewhat obvious
to the mathematician, it may be unfamiliar to the physicist.4 In Sect. 4 we provide
some motivation for our setup. Out of this discussion emerges a G symmetry on the
space of maps (so ultimately for our flat orbifolds only on the space of
representations). The reader should compare with the considerations of Sect. 3,
where additional reasons for this symmetry are described.

The modifications to [2, Sect. 4] necessary to treat orbifolds are routine. These
are explained in Sect. 5. We specialize the results to the flat orbifolds that form our
main object of study. The underlying symmetry group G is a discrete subgroup of
the Euclidean group in 6 dimensions. This space group is supposed to contain a full
lattice Γ, so that the quotient point group P = G/Γ is finite. Our first result in Sect. 7
states that cohomology conditions on representations of P suffice to conclude that
global anomalies cancel. These conditions are easy to compute for cyclic groups,
where they are simply the level matching conditions discussed above. For
representations of abelian groups the first Pontrjagin class px is determined by
restricting to cyclic subgroups, which proves the sufficiency of level matching
conditions (to all orders) on abelian orbifolds. Next we calculate the value of p1 on
subgroups which geometrically are images of a torus"bΰndle over a circle. In group
theoretic terms, if AeSL(2;Έ) then we form the semi-direct product

3 The accounts in [12, 10] may also be helpful. Witten describes the characteristic class "ip/'
in [12]
4 Note, however, that classifying spaces were already introduced in [1], where they were used to
determine phase ambiguities (discrete torsion) in string amplitudes on orbifolds
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KA=7L K (Z x Z), where the generator acts by the transformation A. This group
carries a canonical 3-dimensional homology class, and for homomorphisms
KA-^P we calculate the first Pontrjagin class on the image of this homology class.
Formula (7.23) duplicates (2.3), which is computed from explicit expressions for the
determinants and the transformation law for the theta function. There is yet a third
derivation of this expression (as the value of a Pontrjagin class) using Chern-
Simons invariants; it generalizes an argument of Witten [11]. We omit it. The
refinements of these formulas necessary to express half the first Pontrjagin class
(for representations which lift to the spin group) are also given.

Although our work is aimed at a very specific physical problem, we hope that
the ideas will find wider application. It seems that the transformation laws for
modular forms are topological. For example, a recent paper of Atiyah [13] relates
the transformation law for the logarithm of the Dedekind eta function to Witten's
global anomaly formula and to topological and group theoretic invariants. The
formulas we obtain here express the transformation law for Klein forms as half a
first Pontrjagin class (e.g. [14]).5 We have similarly expressed a certain transform-
ation of theta functions [cf. (2.3), (7.44), (7.45)]. Clearly there should be a unified
treatment for general transformation laws of modular forms. We remark that our
computations in this paper are made under the assumption that the second Stiefel-
Whitney class vanishes. Without that assumption the global anomaly formula
leads to a computation in K-theory (cf. [15]) which will duplicate the more precise
formulas one sees in books on modular forms. Orbifolds arise in the theory of the
monster group. The moonshine module constructed in [16] can be viewed as a
toroidal orbifold, where the lattice defining the torus is the Leech lattice, and each
point x on the torus is identified with — x. There is probably a connection between
our characteristic class conditions and orientation in "elliptic cohomology," a new
generalized cohomology theory whose main ingredient is a ring of modular forms
[17, 18]. Also, elliptic genera can be explicitly computed on orbifolds.

Expediency demands that we present our work in two stages: physics followed
by mathematics. We hope that this organizational confrontation does not obscure
the harmony and interaction of the two viewpoints. In Sect. 1 we review the setup
for toroidal orbifolds as well as the level matching conditions. In Sect. 2 we show
by direct computation that for cyclic orbifolds the level matching conditions which
were found to be necessary for anomaly cancellations at one loop [1] are indeed
sufficient for the absence of global anomalies on an arbitrary Riemann surface. We
describe a new anomaly for nonabelian orbifolds in Sect. 3. It is detectable by a
computation at one loop - the Riemann surface being a torus - and its meaning is
best understood through either the operator (Hamiltonian) formulation of the
theory, or by the requirement of having well-defined amplitudes at two loops and
the degeneration of the 2-loop surface to two tori. Equivariant cohomology is
introduced in Sect. 4; it provides the proper language to describe anomalies on
orbifolds. In Sect. 5 we describe determinant bundles arising for the heterotic
strings and adapt the arguments in [2] to the orbifold case. The constructions
essentially go through with the relevant cohomology classes replaced by
equivariant cohomology classes. In Sect. 6 we derive the cohomology conditions

5 We are indebted to Glen Stevens and Joe Silverman for pointing out this reference
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from a slightly different point of view, which applies only to toroidal orbifolds. We
hope it provides physicists with a more accessible derivation of the cohomology
conditions. There we also prove that level matching conditions on cyclic orbifolds
suffice to guarantee modular invariance at all loops. In Sect. 7 we undertake
computations in group cohomology. We show that for orbifolds with abelian point
groups, level matching suffices for anomaly cancellation to all loops. We also
derive the explicit formulas mentioned above. We conclude with some examples in
Sect. 8.

1. Review of Orbifolds

In this section we review the setting for orbifolds. Generally an orbifold is a space
which is locally Rd/G where G is a discrete group. More specifically, in
compactifying d dimensions, we consider a subgroup of the d dimensional
Euclidean group (in the Euclidean version of heterotic string), which includes a
subgroup isomorphic to Zd. Such a group G is called a (d-dimensional) space
group. Zd defines a lattice Γ in Rd. Therefore T= Rd/Γ is a d dimensional torus. The
quotient P = G/Γ is a finite subgroup of SO(d) which is called the point group. The
orbifold can be equivalently viewed as T/P. The case of phenomenological interest
in physics is the compactification of the ten dimensional space to four dimensions,
which corresponds to taking d = 6.

To completely specify the heterotic string compactification, we should in
addition describe the gauge bundles which are over the orbifold. We shall assume
that the gauge bundle has holonomy SO(16) x SO(16) for the E8 x E8 theory, and
SO(32) for the Spin(32)/Z2 theory. We need this assumption in order to use the
fermionic formulation of the heterotic string. To specify the bundles is tantamount
to considering homomorphisms G->SO(32) [for the sake of definiteness we shall
consider the Sρin(32)/Z2 theory]. So a general element of the orbifold group can be
written as

where θ is a 6-dimensional rotation, v is a translation in 6 dimensions, and φ(θ9 v) is
an element of SO(32).

The simplicity of the construction of the orbifolds allows one to construct the
states in the string theory explicitly. Also, the modification of the path-integral of
the standard theory to give the orbifold theory is very simple. To describe that we
note that the physical fields in the heterotic strings includes left- and right-moving
(holomorphic and anti-holomorphic) fields xμ describing the space-time coordi-
nate, tangents of the space-time coordinates, specified by right-moving fermionic
fields ψμ, and the 32 real (16-complex) left-moving fermionic fields λ1 giving rise to
S0(32) gauge symmetry. When doing a path-integral we have to consider a
Riemann surface with these fields defined on it (describing the immersion of the
Riemann surface in the space-time, and the fermionic currents) and integrate over
all the fields in the theory. In the standard heterotic string before compactification,
one takes the bosonic coordinate xμ to be periodic as we go around non-trivial
cycles of the Riemann surface, and sum over all spin structures of the fermions (i.e.,
pairs of spin structures). In other words, the bosonic variables are sections of a
trivial bundle, and the fermionic variables are sections of spin bundles (tensored
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with trivial bundle). However, when considering the orbifold compactification we
are identifying (x, ψ, λ) with

and so we need not take the boundary conditions on the fields to be periodic. In
fact, the string variables can now be a section of the G bundles (tensored with spin
bundles for fermions) over the Riemann surface, and we have to sum over all
inequivalent G bundles. More explicitly, if we choose a base point for the Riemann
surface, and consider a canonical basis for the fundamental group of the Riemann
surface denoted by ab bb then a G bundle over the Riemann surface is specified by
considering a homomorphism ρ from the fundamental group of the Riemann
surface to the group G. This in turn is specified by the images of the generators of
the fundamental group gi = ρ{a^ and gi = ρ{bi), such that

ΠfeigιgΓ1gΓ1) = l (1.1)
i

We then take the string variables to transform according to g^gi) as we go around
di(bi) cycle.

The question arises as to whether there are any restrictions on G and the
homomorphism φ. In fact there is one important constraint: The global
diffeomorphisms of the surface should not change the path-integral integration.
Since the 2-dimensional quantum field theory describing the heterotic string is
chiral, in general phase ambiguities arise, giving rise to global gravitational
anomalies [19, 11]. In the context of orbifolds, we will have to consider global
diffeomorphisms which preserve the G bundle, and require that the path-integral
does not pick up any phases under such diffeomorphisms.

This question was considered in [1] for the case when the Riemann surface has
genus 1, corresponding to a torus. In that case the G bundle is specified by two
commuting elements (g, h) giving the boundary conditions for string variables. If
we denote the complex structure of the torus by the complex parameter τ, for a
single complex fermion, with boundary conditions twisted by g = e2πiu in the τ
direction and h = e2πiv in the other direction, the (chiral) fermionic determinant is
given by

d{u,v\τ) = e~iπ{uv-u)q{v2'v+ll6)l2^{\~qn~ve2πiu){\ (1.2)
1

where q = e2πιr. The overall phase is ambiguous as has been discussed in [1]. This is
called the Klein form [20]. The global diffeomorphism group of a torus is SL(2, Z),
and under an element of SX(2, Z), the boundary requirement that there be no phase
under this transformation is the following: For each element geG of finite order
g" = 1, we can write θ and φ(θ, υ) in a diagonal basis with eigenvalues e2πiriln, and
e2πiSk/n. The condition is that if n is even,

(1.3)

and when n is odd

2 (1.4)
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(These conditions have also been found to be necessary in constructing units for
modular forms in [14] which is essentially why they arise here.) In the string
Hubert space construction, these conditions guarantee that left- and right-moving
Hubert spaces have infinitely many energy levels matching. We shall refer to these
conditions in the following as the level matching conditions.

In the following sections we show that these conditions suffice to prove global
diffeomorphism invariance (modular invariance) to all orders in perturbation
theory, i.e., for any Riemann surface, in the case where the point group P is abelian.
In particular by explicit computation we prove in the next section that when P is
cyclic, these conditions suffice for modular invariance. In the case that P is non-
abelian, even though necessary, these conditions may not be sufficient to guarantee
modular invariance to all orders. We will show that there is an additional
constraint, which can be phrased in terms of computations done in one-loop,
which for the non-abelian case, may turn out to suffice to guarantee modular
invariance to all orders.

2. Higher Loop Modular Invariance

In this section we will show by using the explicit dependence of the Dirac
determinants on twisting the boundary conditions of the fields on an arbitrary
Riemann surface, that for- cyclic orbifolds level matching conditions are sufficient
to guarantee modular invariance. This generalizes the result of the 1-loop case. By
cyclic orbifolds we mean orbifolds with cyclic point groups. In the following we
will ignore the fact that the space group is not cyclic even if the point group is cyclic
(i.e., we ignore the structure of the space group except for its point group).
However, to show that level matching is sufficient to guarantee modular
invariance in this case can be done for the cyclic point group by taking our starting
point to be the ^-dimensional torus (which is manifestly modular invariant) with
Wilson lines turned on, rather than Rd (see also the discussions in Sects. 6 and 7).

So far as the global anomalies are concerned we can ignore the bosonic
variables, because they contribute a positive quantity to the path integral, and so
no phase ambiguities arise for them. Only the fermionic fields are relevant. As
discussed in the last section, the orbifold modification of the path integral is to
introduce non-trivial boundary conditions for the fields. Each fermionic field on
the Riemann surface corresponds to a section of a spinor bundle. For a Riemann
surface of genus g there are 22g spinor bundles, which are specified, after a
choice of canonical cycles, by a 2g tuple vector (ai5/?£) with at and βi = 0 or 1/2,
and i runs from 1 to g (for a discussion of spinors on Riemann surfaces see [21]
or [22]). The difference of two spinor bundles is the changing of the holonomy
by a ± sign, as we go around the canonical cycles (ai9 bt\ and (αf, /?f) specifies
precisely the difference in the boundary conditions of the spinors referred to a
particular one labeled by (0,0).

Since the standard heterotic string is modular invariant [9], to check modular
invariance for the orbifold case, we simply have to show that the correction to the
standard theory is modular invariant, and as we discussed above, the relevant
correction is the ratio of the fermionic determinant when we impose twisted
boundary conditions to that of untwisted fermionic determinant. We can
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describe the twistings for an abelian group, by the phases e2πiθi and e~2πίφι

which denote how the boundary conditions on the spinor fields get modified
when going around the at and bt cycles respectively (mathematically speaking,
they describe the holonomy of the flat non-trivial bundle, and the spinor fields
are sections of the tensor product of this flat bundle with a spin bundle). The
ratio of the twisted fermionic determinant with spin structure (α,/J) to the
untwisted one has been computed in [22], and is given by6

(2.1)

where in the above formula 9 is the well known theta function (see [23] for a
discussion of it) defined by

I = γeiπ(n + a)Ω(n + ά

[ b ] n
<) + 2πi(n

where Ω is the period matrix of the Riemann surface with respect to the chosen
canonical homology cycles. To check modular invariance we have to see how the
above ratio transforms under global diffeomorphisms acting on the Riemann
surface. In particular we have to restrict to global diffeomorphisms which preserve
the spin structure (α, /?), as well as the flat bundle represented by (θb φi).

A global diffeomorphism acts on the cycles by an Sρ(2g, Z) transformation. We
represent the element of Sp(2g,Z) by

The phase that theta functions pick under modular transformations is well known
(see [24]). In fact

with

Γ W D -Cψ

φ(a, b9 Ω) = [a&Ba + bCAb] - \_2aBιCb + (aDf -

where Md denotes a vector formed from the diagonal entries of M, and ε(T) is a
phase which only depends on T. Also Ω = (AΩ + B)/(CΩ + D). In addition it is clear

6 Strictly speaking the above ratio makes sense only for even spin structures where the
denominator is non-zero. For odd spin structures the phase we compute is still correct, but should
be viewed as the phase which arises in performing modular transformations on the interaction
amplitudes (the argument of the theta function would then not be zero and the theta function does
not vanish)
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from the definition of the theta function that for integers m and n9

Under a modular transformation which preserves both the spin structure and the
boundary conditions, the character of the theta function shifts by integers and so
putting the two phases described above we see that the ratio of the theta functions
picks up the phase

ω = exp [ - iπ(θ(Dί - 2)B(Θ + α) + φ% - 2)BΘ + 20(1 - D*)Aβ - θ(Dί - ί)(AW)j]R,

(2.2)
where

R = exp[- iπ{φCA{φ + β) + βCAφ + 2(α + θ)(l- D<)Aφ+φCiAB*)^ .

To put the phase in the above form we have used

A-BtC-l={l-Dt)A,

which holds, because DtA — BtC=l for any symplectic transformation T. The
above formula generalizes the one discussed in [1] for the genus one case. It is not
difficult to see that even though ω is complicated, ω2 is given by the relatively
simple expression,

ω2 = exp [ - 2ίπ{ -ΘBΘ + φCφ + Θ(A - D*)φ]

= exp[-2iπ-2iπ[0 φ]^ θ j T U J J ' ( 2 3 )

To show this we have made use of the condition the T preserve the flat bundle, i.e.,

(Γ-l) θ. Uomodl.

[In this derivation, it is convenient for the even spin structures to first use an
Sp(2g,Z) transformation to get the spin structure α = j8 = O.] The formulas here
were calculated from the formula for the ratio of Dirac determinants. The results of
Sect. 5 yield a topological expression for these transformation laws. In Sect. 7 we
compute the characteristic classes involved, and the result (Theorem 7.44) agrees
with (2.3). It would be quite interesting to compare (2.2) and Corollary 7.45
explicitly.

Now if we start with an arbitrary twisting of a single element g of the orbifold
group of finite order, by an appropriate choice of the canonical basis (which could
be achieved by a modular transformation), we can assume that the twisting is along
the aί cycle alone, and the fields pick up a gr transformation (for some integer.r) as
they go around the a1 cycle and as they go around other cycles they remain
invariant. Let h = gr, then h has also a finite order, say n. We shall now show that
modular in variance is guaranteed if the level matching conditions are satisfied in
the h sector. We can choose a basis where h acts diagonally. Suppose one of the



358 D. S. Freed and C. Vafa

eigenvalues is given as e2πιθ, where θ = r/n. The phase ω in this case is given by (since

R = ί)

exp [ - fπ(θ(Dί - 2)BΘ + ̂  - 2)Ba + α(Df - 2)BΘ + 20(1 - D^Λβ - θ{ff - ί){Aff)^],

where θ is to be thought of as a g dimensional vector (θ, 0,0,...).
The above phase is the contribution of one fermion. We will have to take the

contribution of all fermions. In addition we recall that we have two types of
fermions, the right-movers, and the left-movers. In the path-integral we will get the
contribution of each determinant, remembering that the determinants of left-
movers is complex conjugate of what we have written above, and therefore
contribute the inverse phase under modular transformations. Also note that the
two groups of fermions may have different spin structure, and we have to consider
modular transformations which respect both spin structures.

We can take the level matching conditions for the case that n is even (the
conditions for n odd can be phrased the same way as the one for n even by a change
of a single twist r-^n — r if necessary, and so a similar argument holds for that case).
We take the eigenvalues of right- and left-movers to be e2πίrί/n and e2πiSh/n.
The condition for level matching implies that £ ^ = Σsfe = 0 mod 2 and

Σ
The condition that the modular transformation preserve the h twisting implies

that Dn=0 modn for z'ΦO and Dίί — ί=Biί=0 modn for all i. Since T is an
Sp(2g,Z) matrix we have DtB = BtD, which implies by the conditions on Bn and
Dn that Bu = 0 moan.

Putting all we have said together one can show that the above phase is identical
to 1, provided the level matching conditions are satisfied. It is also clear that the
level matching conditions are necessary for this general case as well as can be seen
by the corresponding result for the torus and noting that the phase under modular
transformations is independent of the period matrix, and one can consider
modular transformations in the limit that the Riemann surface degenerates to tori.
This completes the argument that in the cyclic case the level matching conditions
are necessary and sufficient to guarantee modular invariance for an arbitrary
Riemann surface (i.e., to all orders in perturbation).

3. Non-Abelian Orbifold Anomalies

In this section we discuss the anomalies that arise in the non-abelian case. We will
see that some new conditions, in addition to the level matching conditions, are
needed to guarantee modular invariance in this case.

In the analysis for the 1-loop case, the case of torus, one looks at the pairs of
elements (g, h) of the orbifold group which commute and consider changing the
boundary conditions on the torus by twisting by g and h in the time and space
directions respectively (which we call the two directions corresponding to the two
cycles of a canonical basis for the first homology). This pair determines a flat non-
trivial bundle over the torus. Then one computes the partition function and
considers all the SL(2, Z) transformations which preserve the bundle (i.e., the
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boundary conditions),

(g,h)^(gah\gchd) = (g,h). (3.1)

The requirement of level matching guarantees that there is no phase under such a
transformation. This condition applies to both abelian and non-abelian orbifolds.
But the fact that only commuting pairs appear in the discussion, may suggest that
we have not probed the non-commutativity of a non-abelian group at 1-loop. So it
would seem necessary to carry out the analysis for more than 1-loop, so that the
boundary conditions (that the product of commutators be identity) allow non-
commutativity. However, it is rather difficult to do an explicit computation for a
non-abelian group beyond one loop.

Could we get extra conditions for non-abelian orbifolds somehow by a 1-loop
computation? So far we have mainly discussed the path integral formulation of
orbifolds. There is, in addition, a Hamiltonian formulation, which involves the
construction of operators acting on certain Hubert spaces. To describe the Hubert
space of strings on orbifolds [4], it is convenient to consider the string states in the
covering space (the torus) on which we have a sector (a subspace of the Hubert
space) for each twisting by a group element. This means that the strings in a g
sector consists of loops on the torus which are closed only up to a g action. In
addition, we have to consider group invariant states for the loops on the torus to
obtain string states on the quotient. This means that we have to operate by the

projection operator — Σ c on the string states. The Hubert space structure of a
N ceG

non-abelian orbifold group differs greatly from the abelian case. In the non-
abelian case to form group invariant states one takes a linear combination of states
from sectors g and all other sectors conjugate to it, i.e., cgc~γ. This is because if we
consider a string state in the g sector, operating by the group element c on that
string, takes the g sector to the cgc~γ sector.

Let us rephrase the anomaly discussed above, in the language of operators on
the Hubert space: Level matching conditions not being satisfied in the g sector
means that we cannot assign an unambiguous phase to the path integral with (g, 1)
twisting of the torus. The ambiguity of the phase of the path-integral means that
the phase of the operator g is ambiguous in the identity sector [(g, 1) in the operator
formulation can be represented by ΎτgqHLqHR with HL and HR corresponding to
the left- and right-moving Hamiltonians in the identity sector, and q = e2πι\ where
τ defines the modulus of torus and g represents the twist operator corresponding to
the group element g acting on the Hubert space].

Summing over all twisted group elements in the τ direction has the effect of
projection onto the G-invariant subspace of the Hubert space. Now we see that the
condition that (g, h) has no phase ambiguities, means only that the part of the
group invariant projection consisting of elements g commuting with h, which
therefore do not change the h sector, have well defined phases. We should in
addition see whether there are any phase ambiguities for the group elements c
which do not commute with h and therefore do change the h sector.

The phase of (the operator) c being well defined means that any computation
done in one sector should be equal to the conjugate computation done in the
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conjugate sector. This implies, in particular, that

path integral (g, h) = path integral (cgc~ \ chc ~1).

We can see this in the path integral in two ways: One way is to argue from the
viewpoint of the target space, that if we have a particular space-time world sheet
corresponding to (g, h) boundary conditions on the torus, and if we act on the
whole world sheet by c, then the resulting world sheet has not moved in the
orbifold, and so the result of the computation should not change. However,
operating by c in the path integral gives a torus with new boundary conditions
(cgc~Λ,chc~*), and we obtain the above result.

The other argument which is probably more to the point and intrinsically two
dimensional, relies on invariance under local diffeomorphisms of the surface and
factorization (degeneration) of the two loop amplitude. Consider the two loop
amplitude, specified by (g, h; c, 1) which denotes the twisting on the four canonical
cycles. Note that these twistings are well defined because they satisfy (1.4):

g/ιg~1/ι~1c l c " 1 Ί = l .

However, the computation should not depend on the choice of the base point (the
intersection point of the homology cycles) which has been used to define the
bundle, i.e., it should be invariant under local diffeomorphisms. In particular, we
can take the base point around the cycle which corresponds to the c twisting back
to the starting point. In this way the twistings have all changed by conjugation
with c, i.e., we have (cgc'1, chc'1; c, 1) twisting. So we must have

path integral (cgc ~1, chc ~1 c, 1) = path integral (g, h c, 1).

Now we can pull the two handles away and factorization forces

path integral (cgc~1,chc~1) = path integral (g, h).

Could there be new conditions because of the above requirement? We can
simply define the contribution of (cgc~1, chc'1) to be equal to that of (g, h). Would
we run into any contradictions? In fact we may. Similar to the abelian case, if
(cgc'1, chc'1) could be obtained from (g, h) by a modular transformation, we have
no choice of phase. The phase of (cgc~Λ,chc~Λ) would be dictated from the
requirement of modular invariance. In other words we should demand that for any
pair of commuting elements (g, h\ under all modular transformations which give a
set of conjugate boundary conditions (i.e., a conjugate bundle), that is under all
elements of SL(2, Z) satisfying

ft 1,cΛc- 1), (3.2)

the path integral should not pick a phase. The condition (3.2) is in general not easy
to meet for any commuting pairs of a non-abelian group: pairs conjugate to a given
commuting pair, do not usually lie on the subspace generated by the pair as is
required if (3.2) is to be satisfied. However, for many non-abelian groups (3.2) does
get satisfied for some pairs. In fact we will give examples of this in Sect. 8, in which
not only (3.2) is satisfied for some pairs, but also that we get phases from the
corresponding modular transformation, even though the theory we start with has
level matching conditions satisfied for all sectors.
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Similar to the phase formula computation done in the previous section, we can
compute the change of phase in this case. Since g and h commute we can choose a
basis in which they are both diagonal. If cgc'1 and chc~ι satisfy (3.2), they must
also be diagonal in this basis, and since they are conjugates they must have the
same eigenvalues as g and h respectively [it could also be that some of the
eigenvalues go to their inverses (note that we are writing only one complex
eigenvalue for each conjugate pair), in which case a similar formula can be
derived]. This means, that cgc~x is the same as g up to a permutation of
eigenvalues, and similarly for chc~ι and h. Let us denote this permutation by P.
We denote the eigenvalues of g and h by e2nιua and e2nιva respectively (absorbing the
spin structures into the twist of the fields), with a running from 1 to the dimension
of the representation. Set

EMC ί)-«
Then the phase is given (by a computation similar to the one done in [1] which can
be easily generalized to all loops similar to the last section) by

TΊtlγί+bξ + ba

ιb2e-iπ(b<lva-bίua) β 4)

a

In some cases this phase is not one and renders the theory inconsistent.
The question arises as to whether there are additional conditions coming from

higher loops. In principle there could be. However, one would also think that the
consistency of the operator formulation should suffice for the consistency of the
whole theory, because we can formulate all the interactions, at least in principle, in
the operator language. In other words, the consistency of the higher loops may
follow from the existence, and the consistency of the operator formulation. Having
a well defined Hubert space is one of the main obstacles in formulation of the
operator formulation of the theory. The above conditions, which allow a
consistent G-invariant projection on the Hubert space, may be sufficient to
guarantee a well-defined Hubert space for the orbifold. This physical intuition
motivates our question at the end of Sect. 8, as to whether the anomalies discussed
above are the only global anomalies for orbifolds. On the other hand, there may
also be other physical criteria needed for the consistency of string theory (cf., the
discussion at the end of Sect. 8).

4. Equivariant Geometry

The space times we consider are quotient spaces of a smooth manifold M by a finite
group action. String Theory involves maps of Riemann surfaces into M/G. To
grasp the ideas involved start with the case of a free group action. Then the
quotient space is a smooth manifold, and any map φ: X-+M/G lifts to a map of the
simply connected cover φ:X-±M. This is simplest when X is a circle (the simply
connected cover X = 1R). Physicists are familiar with this example in connection
with the Hamiltonian formulation of string theory on orbifolds (Sect. 3). Now each
lift φ yields a homomorphism ρ: π^X^G which encodes the information necessary
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to reconstruct φ [cf., (4.1)]. Pictorially, we have

X—+ M

\

X-^M/G.

The group G acts on the space of lifts with geG sending <φ, ρ> to <g o φ9 gρg'1}. In
the other direction a pair <φ, ρ> determines a map φ: X-+M/G. Note that pairs
related by an element of G determine the same map to M/G. Therefore, the space of
maps from X to M/G is the space of pairs <φ, ρ> up to equivalence under the G
action. Now if the group action is not free, then the quotient space is not a smooth
manifold. The equίυarίant quotient construction provides for any group action a
smooth space MG which plays the role of M/G: A pair <φ,ρ> determines a map
φG:X-*MG.7 Furthermore, the geometric data used to define the fermionic
(Dirac) operators extends to MG. This justifies our use of these spaces in our
mathematical formulation. In this section we quickly review the yoga associated to
these equivariant matters. The reader may refer to [25,26] for additional material
about equivariant quotients.

There is a universal example of a G action which is unique up to homotopy
equivalence. It is a contractible space EG on which G acts freely. The quotient
BG = EG/G is called the classifying space of G.

Examples. (1) If G = Z then EG can be taken to be the real line R, on which the
integers act freely by translation. The quotient BG^S1 is the circle.

(2) The circle group G=U(ί) acts freely on the unit sphere S00 in an infinite
dimensional complex Hubert space. Furthermore, that sphere is contractible, and
the quotient 5(7(1) = <CP°° is the infinite complex projective space.

(3) Let H be a subgroup of G. Then H acts freely on any model for EG, so
BH = EG/H. In particular, for H = Z/nZcU(l) a cyclic group we have
B(Έ/nΈ) = Ln is an infinite lens space, the quotient of S00 by the Έ/nΈ action.

(4) It is clear that B(G1xG2) = BGίxBG2. It follows from (1) that the
classifying space of a lattice is a torus. More generally, if G = GA ix G2 is a semi-
direct product8, then BG is a fiber bundle over BGX with fiber BG2. For example, if
A e SL(2; Έ) then we can form the group KA=Zκ(ZxZ) with 1 e ΊL acting by A on
ZxZ. The classifying space BKA is a 2-torus bundle over a circle glued together by
A (acting as a diffeomorphism of the torus).

Notice that in each of our examples the classifying space can be approximated
by a smooth finite dimensional manifold. Thus the classifying space of the circle
group is approximated by a large finite dimensional complex projective space. For
finite groups this also holds: Any finite group can be embedded in a unitary group
(as a permutation group, via the left regular representation), and the universal
space for the unitary group can be approximated by a large finite dimensional
Stiefel manifold (generalizing the sphere). The quotient is a smooth manifold which
approximates the classifying space of the finite group. The discrete groups we

7 Up to homotopy equivalence (which is harmless for our purposes)
8 This means that there is an action of Gγ on G2, and the multiplication in G is defined by

<gl> g2> * <gί, g'2> = <gl ' g'l, g2 ' gl(g'2)>
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consider are semidirect products of a finite group and a lattice, so their classifying
spaces can also be approximated by smooth manifolds. If we are willing to work
directly with infinite dimensional spaces, then it is clear that the classifying spaces
involved are themselves smooth manifolds.

If M is a smooth manifold on which G acts smoothly, then G acts freely on the
product EG x M. The equivariant quotient is defined by MG = (EG x M)/G. This is a
smooth manifold which fibers over the classifying space BG = EG/G with fiber M.
For M a point with the trivial G action we just obtain the classifying space itself.
Thus in the equivariant theory the classifying space BG plays the role of a point.
When G acts freely MG fibers over M/G with contractible fibers EG. In that case the
equivariant quotient is homotopy equivalent to the usual quotient. Furthermore,
the geometric structures we will consider on the equivariant quotient are
"constant" in the EG directions, and so agree with geometric structures on the
ordinary quotient. We could have achieved this with any free G action, but we use
the universal free G action to retain all of the information encoded in the G action
on M. (The reader might contemplate what happens if we use instead the simplest
free G action, namely left multiplication on G.) For this reason the equivariant
quotient is the proper generalization of the ordinary quotient.

The equivariant cohomology of the G-space M is defined to be the ordinary
cohomology of the equivariant quotient. We write H%(M) = H*(MG) to express this
relationship. Note that H%(M) is a module over the equivariant cohomology of a
point H%(pt) = H*(BG\ since MG fibers over BG. When G is discrete we can identify
H*(BG) with the group cohomology H*(G).

Now suppose that E-^M is a vector bundle over M and that we are given a lift
of the G action to E. Then EG-^MG is a vector bundle over MG which plays the role
of the quotient bundle. The restriction of EG to a fiber M oϊMG-+BG is the original
vector bundle E. The characteristic classes of EG in H%(M) are the equivariant
characteristic classes of the bundle E. When M is a point, a G-vector bundle
amounts to a representation ρ of G, and its equivariant characteristic classes live in
H*(BG). They are the characteristic classes of the representation ρ.

To simplify our review of equivariant geometry, assume that G is a discrete
group. The general principle in this: Any G-invariant geometric structure on"M is
promoted to a (partial) geometric structure on MG. As a first example consider a
metric on M which is invariant under the group action. This pulls back to a partial
metric on EG x M via projection onto M. As the pulled back partial metric is
invariant under G, it passes to a partial metric on the quotient MG, i.e., to a metric
along the fibers of MG-+BG. If a G-vector bundle E-^M is endowed with a G-
invariant metric, then the same discussion shows how to construct a metric on
EG-+MG. A G-invariant connection on E lifts to a connection on E-^EGxM,
which is flat in the EG directions. The connection is invariant under the action of
the discrete group G and so passes to a connection on the quotient EG-+MG. For
unitary connections we can apply the Chern-Weil homomorphism to construct
closed differential forms on MG which represent the equivariant cohomology
classes of E. Differential forms on M which are G-invariant pass to differential
forms on the equivariant quotient. Of course, the Chern-Weil forms on the
equivariant quotient come in this way from the G-invariant Chern-Weil forms
on M.
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We turn now to orbifolds. The orbifolds we consider are of the form M/G,
where G is a discrete group acting smoothly on the smooth manifold M.9 In String
Theory we need to define what we mean by a map of a Riemann surface into the
orbifold. More generally, we define a map ρ: X-+M/G from an arbitrary smooth
manifold X into the orbifold10 to be a smooth map φ:X^>M of the simply
connected cover of X into M together with a homomorphism ρ:π-*G of the
fundamental group π = π1(X) into G satisfying

φ(σ h) = ρ{h)~iφ(σ), σeX, hen. (4.1)

(In String Theory, when X is a Riemann surface this amounts to having string
variables which are transformed by ρ as one travels around the nontrivial cycles of
the surface.) The representation ρ defines a map ψ.X^BG (up to homotopy
equivalence), which lifts to a G-equivariant map ιp\X-+EG. Thus
ψxφ:X-+EGxM is G-equivariant and so passes to a map φG:X-^MG.
Conversely, given φG: X-+MG, we determine a map φ: X-+M/G by composition
with the projection MG->M/G. We identify two maps into MG if there is an element
of G which conjugates one into the other. Namely, conjugation by an element of G
defines a map BG^BG, since conjugation is a group homomorphism, and this lifts
to MG-^MG. We define the space of maps Map(X, M/G) to be the quotient of
Map(X,MG) by this action. Of course, the latter space is too big, due to flabbiness
in the BG direction, but it will suffice for our topological applications. The reader
should check that this definition works correctly when G acts freely on M.

In the String Theory setup M carries a metric and there are bundles E-+M with
metrics and connections; all of the data is assumed to be G-invariant. Associated to
a map of the Riemann surface φ:Σ-+M/G are certain Dirac determinants. The
preceding considerations show that any of the lifted maps φG:Σ-*MG defines the
same Dirac determinants, using the induced bundles and geometric data over the
equivariant quotient MG. This is our starting point for a mathematical treatment
of global anomalies on orbifolds.

5. Anomalies and Determinant Bundles

The relationship between anomalies and the determinant line bundle, first describe
by Atiyah and Singer [27], has been thoroughly discussed in recent literature. The
space of bosonic fields Y in some theory parametrizes a family of chiral Dirac
operators D. Path integral quantization requires that the action be integrated over
both the fermions and the bosons. Fermionic integration yields detD, which must
then be integrated over the Bose fields Y. But detD comes naturally as a section of a
line bundle ££-+ Y. Since Y is presumed to have a measure, we must make sense of
detD as a function on Y to perform the integration. The obstruction to this is the
nontriviality of J£ - the anomaly. The determinant line bundle carries a natural
metric [28] and unitary connection [29]. Now the anomaly question becomes
geometric: Does if admit a global nonzero section which is covariant constant?
The obstructions are also geometric. The local anomaly is the curvature of

9 Alternatively, they are of the form T/P for a finite group P
1 0 In String Theory X = Σ is a Riemann surface
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and the global anomaly is the holonomy. Roughly speaking, one result in [30]
states that the families index theorem holds on the level of differential forms: the
curvature of j§? is obtained by plugging appropriate differential forms into the
usual index formula. The holonomy formula was first derived by Witten [11]; it
involves a certain limit of ^-invariants. These issues are reviewed in [2, Sect. 1].

The geometric family of Dirac operators is specified by certain data. There is a
parameter space Y and a family Xy of manifolds parametrized by y e Y which fit

together into a smooth fibering Z—+Y. The fibers Xy are compact Riemannian
manifolds with a spin structure consistently defined over the family. We need to
parallel transport spinor fields between fibers, and so specify horizontal comple-
ments to the vertical directions. Any external fields in the theory are represented by
sections of a Hermitian vector bundle £->Z with connection. Finally, we must
specify the exact combination of Dirac operators which occur.

In [2, Sect. 4] heterotic strings on smooth spacetimes were considered. (Global
anomalies for these theories were first considered by Witten [9].) We recall the
basic result, altering the discussion slightly. Here we use the SO(32) theory (rather
than the E8 x Es theory), and real manifolds and real vector bundles (as opposed to
complex manifolds and complex vector bundles).11 As compensation we take the
square root of the complex Dirac determinants defined in the theory. This is
justified by the fact that on a two dimensional Lorentz manifold the Dirac
operator is real (there are Majorana-Weyl spinors), whereas the Riemannian Dirac
operator is complex. On the other hand, the Riemannian operator is complex
skew-adjoint, and this allows us to define a canonical square root of the
determinant. The holonomy theorem of [30] can be refined for this square root.
We use this implicitly below.12

The basic data for the heterotic string is the following.

Data 5Λ. (1) Σ, a closed Riemann surface.
(2) Met(Σ), the space of metrics on Σ.
(3) Spin Str(I), the set of spin structures on Σ. It is a finite set of 22g elements for

a Riemann surface of genus g.
(4) The spacetime M, a smooth oriented manifold of dimension 10 with a fixed

Riemannian metric.
(5) F, a rank 32 oriented real vector bundle over M. It is equipped with a metric

and compatible connection.
(6) HeΩ3(M), a 3-form which satisfies

Here %Pi(Ω) denotes the Chern-Weil 4-form — ^ T r Ω 2 associated to the skew-

1 1 Although complex spaces were used in [2, Sect. 4], a proper treatment of the E8 x E8 theory
uses real spaces and square roots as we do here. This requires some modifications (for example to
the bordism calculations) which we leave for the reader's enjoyment
1 2 The idea for this square root arose from a conversation with Ed Miller. A complete account of
the square root will appear in [15]. The basic idea is that if V is a 2r dimensional complex vector
space and T: F-> F* a nonsingular skew-symmetric map, then T can be identified with an element
ωτeΛ2V*. The complex Pfaffian Pfaff(T) = ω r

τ edetF* satisfies Pfaff(T)®2 = det(T). The two
dimensional Dirac operator is complex skew-adjoint
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symmetric curvature matrix Ω. [In the physics literature (5.2) appears as
dH = ΎrR2-ΎΐF2 up to constants.]

(7) Map(Σ,M), the space of smooth maps from Σ to M.
From this data we form the family of Riemann surfaces

= Met(Σ) x Map(Σ,M) x (SpinStr(Σ))2 x Σ/Ώiϊϊo{Σ)

Y = Met(Σ) x Map(Σ, M) x (Spin Str(Σ))2/Diff0(2;).

Here we have divided out by the obvious action of Diffo(Γ), the connected
component of the diffeomorphism group; it acts trivially on the spin structures. If
we fix spin structures α, β and restrict to the corresponding components of 7, then
we can divide out by the group Όiϊίaβ(Σ) of diffeomorphisms preserving the triple

, of spin structures. The combination of Dirac-type (fermionic) operators which
arises in the heterotic string is 1 3

^ Γ 1 . (5.4)

In this expression L^Z is the complex line bundle consisting of (vertical) tangent
vectors along the Riemann surfaces, and Da L is the chiral Dirac operator (relative
to the spin structure α) coupled to L. This is the (complex) Rarita-Schwinger
operator. The family of operators described in (5.4) gives rise to a determinant line
bundle JS? and connection V^\

The physical connection requires a slight modification (due to the "torsion
field"14 Hμvρ). Let e\Z-*M denote the natural evaluation map. Define a 1-form ω
on Y by

(2ϊ)

In other words, ω is the integral of H over the image of the Riemann surface in
spacetime. The physical connection is V{se) — ω.

The conditions for the cancellation of all local and global anomalies involve the
four dimensional integral characteristic class λ associated to the Spin group which
satisfies 2λ = pί. The second Stiefel-Whitney class w2 is defined for real vector
bundles E. If E is oriented and w2(E) = 0, then E admits a spin structure. The
characteristic class λ(E) is independent of the spin structure.

Theorem 5.5 [2, Theorem 4.15], The following are sufficient conditions for the
cancellation of global anomalies:

(i)

(ii) λ(M) = λ(V).

However, we may have to adjust H (by a closed 3-form) to cancel all global
anomalies.

Notice that over the reals (ii) is the cohomological content of (5.2). Condition (i)
is equivalent to the assertion that M and V admit spinors.

1 3 In the notation of Sect 1, Da TM operates on the ψ fields and Dβ v operates on the λ fields
1 4 One can view H as the torsion of a non-Riemannian connection on TM
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We can make a more precise statement. A loop in the configuration space
determines a 3-manifold K which fibers over the circle. It is constructed by gluing
the ends of Σ x [0,1] together using a diffeomorphism of Σ, and it comes equipped
with an evaluation map e:K-^M. Then there is a cohomology class
μeH3(M; IR/Z) determined by λ{M\ λ(V), and the H field such that the pairing
<[K],e*μ> computes the holonomy of the determinant bundle around the
loop. In particular, the holonomy depends only on the class of [X] in H3(M).

The preceding setup is easily modified to accommodate orbifolds. Let G be a
discrete group acting on a smooth manifold M. We do not assume that G is finite,
although in our examples the singularities of M/G are of finite type. The basic data
(5.1) must be modified to account for the group action.15 Thus in (4) we assume
that the action of G on M preserves the Riemannian metric. Further, we must be
given a lift of the G action to the bundle V in (5). The latter should also preserve
metrics and connections. Finally, the G action should preserve the 3-form H in (6).
With these assumptions we can construct the equivariant quotient MG together
with a partial metric, in other words a metric on the equivariant tangent bundle
(TM)G->MG. Also, the equivariant bundle VG->MG comes equipped with metric
and connection. Finally, the 3-form H passes to a 3-form on MG satisfying (5.2) for
the equivariant Pontrjagin forms.

The most significant modification comes in (7). As discussed in Sect. 4 we use
Map(Γ, MG) as the space of maps into the orbifold. Now the group G acts as an
additional discrete symmetry conjugating these maps. Thus the union of the
components of configuration space for String Theory on M/G corresponding to
spin structures α, β is

Met(Σ) x Map(i;,MG)/Diffα>β(Σ)xG. (5.6)

The Riemann surface Σ fibers over this configuration space, and the total space of
that fibration maps to MG by evaluation. The combination of determinants (5.4) is
a section of a line bundle over (5.6) (after appropriate modifications for zero
modes), the line bundle is endowed with a connection, and as before the anomaly is
the holonomy of the connection. Theorem 5.5 applies directly to this situation to
yield

Corollary 5.7. The following conditions in the equivariant cohomology of M are
sufficient to guarantee the cancellation of global anomalies on the orbifold M/G:

(i)

(ii)

Here wG and λG are equivariant characteristic classes. However, we may have to
adjust H (by a G-invariant closed 3-form) to cancel all global anomalies.

For the flat orbifolds introduced in Sect. 2 the conditions in Corollary 5.7
reduce to conditions in group cohomology. Recall that for these orbifolds M = R 1 °

1 5 It may be helpful for the reader to follow these constructions in the case where G acts freely on
M. Then the equivariant constructions are superfluous and can be replaced by direct
consideration of M/G
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and G is a subgroup of the 6 dimensional Euclidean group Euc(6). Let

ρ:G->Euc(6) (5.8)

denote the inclusion; it is an affme representation of G. The group G contains a full
lattice subgroup Γ (isomorphic to ΊL% so that the quotient G/Γ is a finite group P
contained in SO(β). Let T denote the torus R6/Γ. Thus there is an exact sequence

1 - > Γ - > G Λ P - > 1 . (5.9)

The orbifold M/G is

R 1 0 / G - R 4 x T / P . (5.10)

Now since IR10 is contractible, the equivariant quotient MG is homotopic to the
classifying space BG. Furthermore, by (5.9) there is a fibration BG-+BP with fiber
BΓ a 6 dimensional torus. The representation ρ defines a 6 dimensional Euclidean
bundle over MG ~ BG which, after summing with a trivial rank 4 bundle, is the
equivariant tangent bundle. Its (stable) characteristic classes, the equivariant
characteristic classes of M, are the characteristic classes of the representation ρ in
H*(BG) = H*(G). The vector bundle V is determined by a representation

φ:G-+SO{32); (5.11)

the equivariant characteristic classes of V are the characteristic classes of φ. Both
M and V are flat bundles, so we can take the 3-form H in (6) to be zero.

Corollary 5.12. For these flat orbifolds the global anomalies cancel if the following
conditions on the characteristic classes of the representations ρ and φ hold:

(i) w2(ρ) = w2(0) = O;

(ii) λ(ρ) = λ(φ).

We will analyze these conditions in Sect. 7. Here we simply indicate the
relationship of the more abstract setup of this section with the physical discussions
of Sects. 1-3. We must describe loops in the configuration space (5.6). Since
MG = BG, a map from Σ to MG is determined topologically by a representation
σ:πxΣ->G. The space H o m ^ Γ , G) of such representations is discrete, so a path in
this space is constant. Thus a loop in the configuration space consists of a fixed
representation σ; two conformal structures related by a diffeomorphism φ of Σ
preserving the pair of spin structures α, β; and an element c e G such that if φ^ is the
induced action of the diffeomorphism on πxΣ, then

σ o φ ^ c σ c " 1 . (5.13)

This data yields a 3-manifold K fibered over the circle (with typical fiber Σ) and a
flat G bundle over K.

For Σ a torus the fundamental group π ^ ^ Z x Z . Fix an identification. Then a
representation σ is simply a choice of two elements g,heG which commute.
Furthermore, φ% acts on πίΣ = Hί(Σ) preserving the intersection form, so that φ%



Global Anomalies on Orbifolds 369

is an element of SL(2; Έ). Relative to our fixed basis of the homology it is

represented by a matrix ). Equation (5.13) is equivalent to
\b d)
gahb = cgc~1, gchd = chc~1. (5.14)

This agrees with (3.2). When c = 1 we recover (3.1). Note that even for abelian point
groups the space group can be nonabelian, so we may have to consider (5.14) with
nonzero values of c.

For a Riemann surface Σ of genus g, let Γ denote the mapping class group
π0 Diff (Σ). Then there is an exact sequence

Here Sp(H^) is the group of automorphisms of HXΣ which preserve the
intersection form. Under an identification H^^Έ29 via a canonical basis, this
group is identified with Sp(2g;Z). The elements of Γ which act trivially on
homology comprise the Torelli group. Suppose G is an abelian group. Then a
representation σ: n^-+G is a choice of 2g elements gt , ht in G. A diffeomorphism φ
preserves σ if the action φ* on homology, which is represented by

Ά C\
eSρ(2g; Z), satisfies a condition we write symbolically asB Dj

gAhB = g, gchD = h. (5.16)

6. Another View of Orbifold Anomalies

In this section we discuss the sufficiency conditions for the absence of global
anomalies on orbifolds. Whereas in the last section we were concerned with
anomalies on arbitrary orbifolds, in the present section we will focus on toroidal
orbifolds which have been studied in connection with finding simple models for
compactifϊcation. Our approach is somewhat different from the previous section,
but at the end we obtain the same necessary conditions for absence of anomalies.16

In particular, we show that the vanishing of w2 (the second Stiefel-Whitney class) of
the representation, and the vanishing of pl9 implies the absence of global
anomalies, up to a potential Z 2 anomaly which is not captured by the Pontrjagin
class. We also describe a characteristic class for spin bundles, which captures the
full anomaly, including the potential Z 2 .

In this section we will first show how, so far as anomalies are concerned, the
question reduces to the point group and its (properly defined) representation. The
reader should compare this with a more mathematical argument given in Sect. 7
(Corollary 7.7). Then we will use properties of classifying spaces to compute
anomalies and derive sufficiency conditions for its absence, In addition we will
show that for cyclic orbifolds level matching suffices to prove absence of global
anomalies, by a topological argument similar to the one discussed in [9] (we
generalize the argument in [9] from Z 2 to Zn). The more general assertion for

1 6 Our main aim in this section is to provide physicists with a more accessible derivation of the
cohomology conditions which were derived in Sect. 5, at least for the toroidal orbifolds
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abelian orbifolds is proved in Sect. 7 using group cohomology (cf. Corollary 7.18).
Some of the arguments below already appear in [9]. However, we discuss them
here in the context of orbifolds and generalize some of them.

In Sect. 1 we have noted that an orbifold is defined by a space group whose
elements can be written in the form

The point group P consists of rotations θ, such that (#, *, *) is in the space group.
Consider the elements of the form

(ί,v,φ{v))9

which define the lattice Γ. Γ defines the underlying torus by the vectors v and φ(v)
define the Wilson lines turned on the torus (Wilson lines are flat connections).
Consider the gauge fields A which are in the Cartan subalgebra of the group which

generate this Wilson line. This means that φ(v) = Qxp[ —i\A\. Now it is well

known that there are no anomalies for the standard heterotic strings [9], as well as
its toroidal compactifications with Wilson lines turned on [31, 32]. So we can
consider what changes we make in the path integral compared to this and check
whether the correction factor has any anomalies. To this end we note that so far as
the global anomalies are concerned only the fermions are relevant, the NSR
fermions and the gauge fermions. The NSR fermions transform as θ, and the gauge
fermions as φ(θ, v), for each element g. In comparison to the toroidal compactifi-
cation we see that g has the added effect of θ on NSR fermions, but $(θ,v)

= exp [i J A) φ(θ, v) on gauge fermions. It is easy to show that if (0, v9 φ(θ9 v)) and
\ o /

(θ, w, φ(θ, w)) are both in the group, then

φ(θ, v) = e x p l i ^ A j φ(θ, v) = e x p l i ^ A J φ(θ, w ) = φ(θ, w ) ,

which implies that φ is independent of the shift vector and can be written as </)(θ). In
this way we reduce the anomaly question to the point group P given by the
representation

In the computations for the anomaly the phase coming from the left-mover gauge
fermions appear with the opposite sign from the right-mover NSR fermions. Apart
from that they are identical, and so we shall treat only one of them (or one can
think of both at the same time remembering that we have an indefinite (Lorentzian)
signature in the expressions below for the anomalies).

We first review the definition of the first Pontrjagin class pγ of a group
representation. As discussed in the last section, for any finite group G and a real
representation of it there corresponds a vector bundle over the classifying space
BG, and the characteristic classes of the bundle are cohomology classes in H*(BG)
= H*(G). In particular for each representation we have w2£H2(G,Z2) and
pίeH4(G,Z). Since the cohomology classes are pure torsion [i.e., the order of
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H*(G) is finite], by universal coefficient theorem H4(G,Z) is isomorphic to
homomorphisms

H3(G,Z)->£7(1).

This means that for any element (for example pλ) in H4(G, Z), and any closed three
dimensional cycle K representing an element in H3(G, Z) we can compute a phase
e2πιθ, or equivalently a real number θ well defined up to addition of integers. We
denote this by writing

For applications to string theory it is convenient to give an expression for θ in
terms of differential forms. To do this we consider a representation of G by special
orthogonal groups. This means we have a homomorphism

G-+SO(d).

Now suppose this representation admits a "lift" to Spin(d). This means that there is
a homomorphism G-»Spin(d), which combined with the standard projection
Spin(d)->SO(d) gives the above homomorphism. This lift exists if and only if w2 = 0.
We view G as a subgroup of Sρin(<i) via this homomorphism. This implies that
there is a map BG-+B Spin, where B Spin denotes the classifying space for the spin
groups. This means that we can think of K as sitting in B Spin via this map. Since
H3(B Spin, Z) = 0, this implies that K can be viewed as the boundary of a four
dimensional space17 B in jBSpin. We recall that any classifying space comes
equipped with a universal bundle, and a universal connection. We will use the
universal spin connection on B Spin to define θ. Let F denote the curvature of this
connection. Then18

1 .

This expression can be equivalently viewed as the definition ofp1 (see [2, Sect. 3] to
see that it is equivalent to the more standard definition of Pontrjagin class). Note
that θ is well-defined up to an addition by even integers, because the difference in θ
due to two different choices of B amounts to the integration of the instanton
density over a closed four dimensional manifold, which is even for real
representations. However, px is defined only modulo integers. So we see that θ
defined by this integral is finer than px in that it contains an additional Z 2

information. This means that there is a finer characteristic class of the B Spin called
λ, given by \θ9 which is well defined up to an addition of integers (for a more
standard description of this characteristic class accessible to physicists see [12]).

Now we will describe global anomalies on orbifolds. The absence of anomalies
means that under global diffeomorphisms respecting the bundle (up to conjuga-
tion) and the spin structures on the surface, the path-integral should not pick a
phase. To compute global anomalies we consider a one parameter family of

1 7 Here we use the stronger fact that Ωψn(B Spin) = 0, and therefore we choose B to be a spin
manifold
1 8 Here we must assume that the map K^>B Spin pulls the universal connection back to the flat G
connection on K
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Riemann surfaces, parameterized by t e [0,1], and identify the Riemann surfaces
over t = 0 and t = 1 by the global diffeomorphism. In this way we obtain a three
dimensional space which we call K. Since the global diffeomorphism respects the
bundle and the spin structures, we get in addition a G bundle over K, and K admits
the two spin structures inherited from the Riemann surface. The phase that the
measure picks is e~iπη, where η is the relevant (generalized) eta function of the
relevant operators in string theory. To compute η we use the property of classifying
spaces, in that any space with a bundle and connection can be viewed as sitting in
the classifying space, with the connection induced from the universal connection of
the classifying space (mathematically this means that every bundle and connection
can be obtained by pulling back the universal bundle and connection over the
classifying space, by a map to the classifying space). In this way we can view K as
sitting in BG or, more conveniently, in B Spin. Here we are assuming that w2 = 0
which is equivalent to the mod 2 condition on the group elements of even order.
This can also be understood because the actual gauge group is Spin(32), and the
space time also admits spinors. Non-trivial cobordism arguments given in [12]
applied to this case show that K can be viewed as the boundary of a four
dimensional space B with spin structures and bundles*extended over B.

We are finally in a position to compute η. By the Atiyah-Patodi-Singer index
theorem [33], for any operator D on X,

= index(D)-fInd(ί)),
B

where index (D) is an integer denoting the index of the operator D on B and Ind(D)
is the index density of the operator D which is a polynomial in curvature of the
relevant bundles (note that the operator D should be extendible over B to use the
above formula).19 Since the toroidally heterotic strings are free from anomalies, we
should see what changes in the computation oϊη. In fact all that changes is that we
get a different contribution from the chiral Dirac fermions corresponding to the
representation of the point group discussed above. We have

η = Aη=--^$FΛF = θmod2Z,

The first expression determines η up to addition of an even integer, so we see
that the total phase e~iπη is

-iπpi[K]

The + sign in the second equality is because /^[K] is defined only up to addition of
integers. This shows that if px = 0 the anomaly is reduced to at most a Z 2 anomaly.
But if the other invariant called λ vanishes, the anomaly is totally absent (putting in

1 9 We can derive the above formula for the phase of the Dirac determinant by the computation
done in [34] by enlarging our space, as we have done here, to consider Spin(J) connections, so that
the global anomaly reduces to a local anomaly computation as has been done for the global SU(2)
anomaly [35]. Note that in this way we can bypass the identification of the phase with eta and the
APS index theorem and directly obtain the phase
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the right-movers implies that the difference of λ between the two representations
should vanish, and that w2 of each of the representations is trivial).

We will now show that when G is cyclic level matching conditions suffice to
guarantee absence of global anomalies. A different proof of this by computations in
group cohomology appears in Sect. 7. We take G = Zn. Over K we have a Zn

bundle. Consider G C (7(1) = SO{2) by mapping the generator of G to e2iπ/n. The Zn

bundle over K admits a flat (7(1) gauge field. This means that the connection has
appropriate holonomies about the cycles of K. Suppose the representation of (left-
moving) fermions is given by e2πiri/n, with i = 1,..., k and its complex conjugate (the
dimension of the real representation is 2k). The twisted Dirac determinants is the
same as that of k untwisted (complex) Dirac fermions which are coupled to the (7(1)
field with the k fermionic (7(1) charges given by rt + atn for arbitrary at (we can add
any multiple of n to the charge without changing the holonomy). We will use below
our freedom in choosing any at. As we mentioned above, the only difference in
computation of the global anomaly for the measure in the orbifold case is that of
fermionic determinants. So if the η computed on K for this representation of
fermions with the flat (7(1) gauge field is the same as that with a different
representation, which does not have any twists on K, then there will be no
anomalies. A representation of (7(1) which has no twists on K corresponds to
having charges which are multiples of n. The difference in the computation of the

e-iπη for t w o different representations is simply given by computing the ratio of

e-iπβ for t k e t w o r e p r e s e n tat ions (if the w2 vanishes, which is identical to the mod2
conditions). This phase is therefore zero if FΛF is identical for the two
representations. This can be arranged if

(if necessary we can add equal number of representations to both sides which have
charges a multiple of n). We immediately see that the condition above cannot be
satisfied unless £ rf = 0 modn (and modln for even n). These are precisely the level
matching conditions. If these conditions are satisfied it is indeed possible to find ax

to satisfy the above equation, and so the anomalies cancel because of the above
argument. This shows that level matching suffices to prove absence of global
anomalies to all orders for a cyclic group.

Now let us consider an arbitrary finite abelian group. Any finite abelian group
can be written as the product of finite number of cyclic groups ZΠl x ... x Znι with nt

dividing ni+ί [36]. Let us consider the case when 1 = 2. In that case we can repeat
the above procedure, except that we have to introduce two (7(1) fields. F A F in this
case contains three types of terms F1ΛF1,F1ΛF2, and F2ΛF2, where F1 and F2

are the curvatures of the two (7(1) fields. Let the respective eigenvalues be rj,rf.
The conditions that have to be solved to prove no anomalies are now given by

\ + alnJirf + afn2) = 0 modnin2
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The first and third conditions can be satisfied only if there is level matching for the
generators of Zni and Zn 3 respectively. The second condition can be satisfied only if
there is level matching for the product of the generators of the two groups.

Even if these conditions are satisfied, it may still not be possible to solve the
above equations. We could redefine the generators to try to find solutions to the
above equations if one set of generators do not give solutions to the above
equations. However, we will not pursue this approach further. In Sect. 7 we will
compute the relevant characteristic classes in group cohomology which implies
that these conditions are sufficient even for the product of cyclic groups.

We emphasize that the arguments we used here to prove absence of global
anomalies for the cyclic case are very particular to the abelian nature of the
orbifold point group. In the non-abelian case we have the abstract formulation of
the absence of anomalies captured by the characteristic classes λ and w2.

7. Computations in Group Cohomology

The conditions in Corollary 5.12 are stated in terms of the infinite discrete space
group G. We begin our analysis by replacing the representations ρ, φ with
associated representations ρP, φP of the finite point group P. Then we evaluate the
characteristic classes w2 and λ on abelian groups. For representations of abelian
groups we prove that these classes are completely detected by cyclic subgroups. In
physical terms this says that the level matching conditions for each sector
guarantee anomaly cancellation for abelian point groups. (Later in this section we
prove that level matching is necessary for anomaly cancellation with any point
group.) Then we calculate these characteristic classes on groups KA formed by
adjoining an automorphism A e SL(2; Έ) to Έ x Z. Topologically, such a group is a
torus bundle over a circle. The formulae we obtain are related to the transform-
ation law for the theta function (2.2).

Consider first the inclusion representation ρ:G-»Euc(6). Recall that for the
Euclidean group there is a split exact sequence

1 ->R6->Euc(6) έ S0(6)-> 1. (7.1)

Since R 6 is contractible, the induced map Bk:BΈuc(6)-+BSO(6) is a homotopy
equivalence. Now there is a commutative diagram

G—J—+P

i k |ρp ( y 2 )
Euc(6) Λ SO(6)

and an induced diagram on classifying spaces. The commutativity of (7.2) yields
Proposition 7.3. For any characteristic class v of SO(6), we have v(ρ)=7*v(ρP). In
particular, this applies to w2 and λ.

The representation φ:G-*SO(32) requires a slightly more involved
argument.20 Observe that since Γ is abelian, we can assume that φ(Γ) lies in the

} This argument simplifies if (5.9) is a split extension
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usual maximal torus of SO(32). Fix an identification Γ ^ Z 6 , and write an element
of Γ as aγex +... +a6e6 (aιeZ) relative to this choice of basis. Then there exist
numbers θj such that φ maps Γ to block diagonal matrices

φ{aiei+ ... +a6e6) = dmg(R(a1θ{+ ... +a6θ{))j=u_l6, (7.4)

where R(θ) is the 2x2 matrix representing rotation by 2πθ. We extend to a
representation of/^ = Γ ® R ^ R 6 by letting a1 in (7.4) be real numbers. Define the
group GR as the fiber product of P and G over S0(6) by the maps ρP and j ; it is the
pullback of the group extension (7.1) via the map ρP. There is a commutative
diagram

(7.5)

1 -> R 6 -> Euc(6) £ 50(6) -* 1.

Note that the splitting map in (7.1) pulls back to the splitting P^G^. Now each
element geG^ can be written as v g for some yefR, geG. We define φR(g)
= φ(v)φ(g). [Recall that (7.4) defines φ(v).] An easy check shows that this definition
is consistent. Thus we obtain a representation φ^: GR->SΌ(32). Finally, compos-
ing with the splitting map we obtain a representation φP: P->SO(32) of the finite
point group P.

Proposition 7.6. For any characteristic class v of SO(32), we have v(φ)=j*v(φP).

This follows from the commutative diagram (7.5).
Propositions 7.3 and 7.6 combine with Corollary 5.12 to yield

Corollary 7.7. The global anomalies cancel on the orbifold ]R10/G if:

(ii) KQP) — Mφp)

We remark that this result holds for both abelian and nonabelian point groups.
These conditions were also derived in Sect. 6.

Next we derive explicit formulae for the characteristic classes w2 and λ for
representations of cyclic groups. These correspond to the level matching
conditions of Sect. 2. For infinite cyclic groups the situation is trivial, as is already
implicit in the preceding discussion. We state the result explicitly to emphasize that
the level matching conditions for elements of infinite order are vacuous.

Proposition 7.8. Let τ: Z-+0(d) be a representation of an infinite cyclic group. Then

The result is immediate from the fact that H*(Z) = H*(S1) vanishes for * ;>2.
The integral cohomology of a finite cyclic group Z/nZ is generated by an

element x e H2(Z/nZ) with nx = nx2 =... = 0. In particular, H4(Z/nZ)=Z/nZ with
generator x2. Now H2{Z/nZ; Z/2Z)^Z/nZ®Z/2Z with generator ic, the mod2
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reduction of x. This group vanishes for odd n and is cyclic of order 2 for even n.

Proposition 7.9. Let τ : Έ/nΈ-+O(d) be a representation of Έ/nΈ. By conjugation we
can assume that τ maps into the maximal torus of 0(d). Let the generator map to an

element with rotation angles Inir-Jn, j= 1,2,..., - . Then

I (Σrj)*> for n even;

0, for n odd. ( 7 1 0 )

// w2(τ) = 0, then λ(τ) is well-defined, and

(iΣήW, if Σr2 is even;
> (7.11)

r* + n\x2

9 \f Σr2 is odd.
3 )

Here r,- are determined modn. For n odd, multiplication by 2 is invertible, and
(7.11) is the formula for the inverse, which we denote \ *. For n even, when w2(τ) = 0,
then Σr)- Σ r</ = 0 (mod2), and \Σr] m Z/wZ is unambiguously defined.

Proof. Recall that the classifying space for ΈjnTL is the infinite lens space Ln. Let
ξ->Ln be the tautological complex line bundle; its total Chern class is 1 -\-x. The
characteristic classes of τ are the characteristic classes of the bundle ®jξrj->Ln. By
the Whitney sum formula its total Chern class is

(Σ
\J<k

Since w2 = c1 (mod2), we obtain (7.10). Also, Pi = cf — 2c2, from which

j<k

Now we must compute λ{τ). Recall that

2 ^ τ ) = P l ( τ ) . (7.12)

When n is odd λ(τ) is uniquely determined by (7.12), and is given by (7.11). For n
even there are two classes - {^Σrj)χ2 a n ^ i ( Σ r ] + n)χl ~ which satisfy (7.12), and
we need further argument to eliminate the latter. Now τ is a complex represen-
tation, and since w2(τ) = 0 there is a lifted representation τ in the double cover of

U ί - I. However, there are two possible lifts, corresponding to two possible lifts

of the generator of Έ/nΈ. The double cover of the unitary group has a two
dimensional integral characteristic class μ satisfying 2μ = c1 and λ = 2μ2 — c2. Now
for n even,

/ 1 ~ or
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depending on the lift. But in either case,

from which

as claimed.
The next proposition shows that for representations of abelian groups these

characteristic classes are determined by restricting to finite cyclic subgroups.

Proposition 7.13. Let τ : H-*O(d) be a representation of a finitely generated abelian
group H. Set v = w2or λ. Suppose that for each finite cyclic subgroup i: ΈjnTL c> H
the characteristic class i*v(τ) vanishes. Then v(τ) = 0.

Proof Fix an isomorphism H^ ΊLS xZ/n1ΈxΈ/n2% x ... xZ/n tZ. By Propo-
sition 7.8 the class v(τ) dies on Έs. Therefore, we restrict our attention to the torsion
subgroup of H. Then τ is the realifϊcation of a complex representation which
decomposes into a sum of one dimensional representations indexed by a ί-tuple of
integers (r^r 2 , ...,r ί). Denote the generator of H2(Έ/nιZ) by xt. The total Chern
class of τ is

ήx2
... + ήχt). (7.14)

We see immediately that

The restriction of w2(τ) to Z/nfe is /̂ VjAjC;, which vanishes by hypothesis.
\j )

Therefore, w2(τ) = 0. Now from (7.4) we compute

W - Σ

By restricting to Έ/n^L we find that the first term vanishes. To see that the second
term is also zero, we restrict to the cyclic subgroup C generated by the product of
the generators oϊZ/nhZ and Z/n ί 2Z. Its eigenvalues are {r)1 + r)2}p so that by (7.11)
the restriction of λ(τ) to this subgroup is

where y is the generator in H2(C). The first and last terms vanish, since by
hypothesis λ(τ) restricts to zero on Z/nhΈ and Έ/ni2Z. Hence the middle term is
also zero. It follows that the second term in (7.15) vanishes, completing the proof
that λ(τ) = 0.

The reader may find it instructive to compare this proof with the analogous
argument in [1]. There it was seen that the modular invariance of the torus with
boundary conditions (g, h) requires level matching not only in the g and h sectors
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but also in the gh sector. The cohomological analogue of this is seen in the above
computation.

Recall from Sect. 2 that an element g e G of finite order n satisfies the level
matching conditions if the rotation angles Iπirjn, 2πisk/n of ρ, φ satisfy

(forrceven), (7.16)
2 (7.17)

We can also define level matching conditions for elements of P using the
representations ρP and φP. We combine Corollary 7.7 and Propositions 7.9 and
7.13 in

Corollary 7.18. Suppose the point group P is abelian. Then the global anomalies on
the orbifold 1R1O/G cancel if each element of P satisfies the level matching conditions
(7.16) and (7.17).

Note that this result is valid whether or not the sequence (7.1) is split, i.e.,
whether or not the point group sits inside the space group. In case (7.1) is split it
suffices to check the level matching conditions for all elements of finite order in the
space group G. Our topological approach proves (7.18) for Riemann surfaces of
arbitrary genus. Corollary 7.18 encompasses the results of Sects. 2 and 3. The
necessity of the level matching conditions will be discussed below (cf. [1]).

We turn now to arbitrary nonabelian point groups. For complex represen-
tations one can check the vanishing of w2 on cyclic subgroups.

Proposition 7.19. Let τbea complex representation of a finite group P.21 Then w2(τ)
vanishes if the restriction of τ to each cyclic subgroup has vanishing w2. In particular,
if QP and φP factor through complex representations, then 7.7(i) is satisfied if the
level matching condition (7.16) holds for all elements of P.

Proof For complex representations w2 has an integral lift cx in second
cohomology. Furthermore, c1(τ) = c1(detτ), where detτ is the one dimensional
representation obtained by taking the determinant. Let Pab = PI[P,P~] be the
abelianization of P. Then since detτ factors through Pab, and every element of Pab

lifts to P, Proposition 7.13 applies to yield the desired conclusion.
Our next task is to give explicit formulae for the global anomaly in the

situations contemplated at the end of Sect. 5. There we first considered a one-
parameter family of flat G bundles over a torus. However, in view of Corollary 7.7
it suffices to consider flat P bundles instead. Let T denote the fundamental group of
the torus; it is isomorphic to Έ x ΊL. A flat P bundle over a torus is determined by a
representation σ: T-+P. Now suppose that for some ΛeSL(2; ΊL) and some ceP
we have σ°A = cσc~1 [cf. (5.13)]. This data determines an extension of σ to a
representation σκ :KA-+P of the semi-direct product KA=Έ x T, which is a flat P
bundle over the classifying space of KA. Now since P is a finite group, its rational
cohomology vanishes, and so the Bockstein homomorphisms

β: H'-ψ; Q/Z)->Jf(P) (7.20)

2 1 More generally, take τ to be a real representation whose integral third Stiefel-Whitney class
W3(τ) vanishes
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are isomorphisms. We denote the unique lift of veH\P) by vQ/2ζeiΓ ~\P; Q/Z).
Assume that condition (i) in Corollary 7.7 is satisfied.22 Then the results of [2] (cf.
the discussion following Theorem 5.5) show that the global anomaly around this
one-parameter family of tori is given by

* σκ)- λ^{φpo σκ))[_KA-\ eQ/Z. (7.21)

To evaluate (7.21) we give explicit formulae for the first Pontrjagin class of a
representation of KA. We first treat one dimensional complex representations.
Observe that the elements of finite order in (7(1) form the group Q/Z. We write
ΰ G Q/Z for the corresponding element e2πίu e (7(1), where u is any rational number
lifting ΰ. Let A* denote the transpose of A.

Theorem 7.22. Suppose τ: T-> (7(1) is a representation mapping every element of T to
a finite order element in (7(1). Assume that τ°A = τ,so that τ lifts to a representation
τκ of KA. Fix an identification T^ZxZ and suppose the generators map to

. Choose lifts u,ve(S± and set

Then s, t are integers, and

fz (7.23)

The following lemmas will aid us in the proof of Theorem 7.22.

Lemma 7.24. Suppose H is a discrete group, and τ: H-+(Q/Z C (7(1) a one dimensional
complex representation sending elements of H into elements of finite order. Then the
image of τ under Yίom(H,(QJZ)-^Hί(H;(Q/Z) maps via the Bockstein
β:H\H; (tyZ)->H2(H) to the first Chern class c^τ).

Proof. The map τ factors through a homomorphism τ:H^Z/nZ for some n.
Under the Bockstein isomorphism β.H^Z/nZ d^/Z^H^Z/nZ) the generator
xeH2(Z/nZ) corresponds to the inclusion map in ΐίom(Z/nZ,(S)JZ)
^H\ZlnZ\ Q/Z). As x is the first Chern class of the inclusion Z/nZ c> (7(1), the
lemma follows.

Next we relate the cohomology of KA to the cohomology of T. In what follows
we will use T, KA to denote both the group and the associated classifying space.
Recall from Sect. 4 that the classifying space of T is a torus and the classifying space
of KA is a torus bundle over the circle. Let the circle be covered by two connected
open arcs (overlapping in two disjoint open arcs), and lift to a covering of KA. The
Mayer-Vietoris sequence (or spectral sequence) for this covering yields the
following exact sequences:

>H\T)-^->

(7.25)

• # 2 ( T ) — - + H \ K A ) >0. (7.26)

2 2 If not, then we are forced into a more delicate calculation in K-theory
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Here i: T-+KA is the inclusion (of a fiber). These sequences hold for Z, Q, and Q/Z
coefficients.

As in the previous lemma we identify τ in Theorem 7.22 with a cocycle in
C1^; Q/Z) and with the associated cohomology class. Choose a rational cochain
T G C 1 ( Γ ; Q) whose reduction modZ is τ. We claim that (1 — A*)τ is closed, i.e.,
δ((l — A*)τ) = 0. To see this view A as a diffeomorphism of the torus; then the
induced action on cochains commutes with the differential. Since det^4 = l, it
follows that I—A* is zero on 2-cochains, from which <5o(l—^4*)
= (1 — detv4*) o(5 = 0, verifying our claim.

Lemma 7.27. In the situation of Theorem 7.22, we have

i*(τκ) = τ ; (7.28)

Cί(τκ). (7.29)

Proof. Equation (7.28) simply asserts that the representation τκ restricts on T to
the representation τ. Now (ί—A*)τ is an integral cocycle, because τoA = τ by
hypothesis. However, we use rational coefficients to compute <5*((1— A*)ΐ).
Following the definition of the connecting homomorphism, consider the 2-cocycle
δτeC2(T; Q). Since 1— 4̂* acts trivially on 2-cochains, this lifts to a 2-cocycle
c e C2(KA; (Q). But c is actually an integral cocycle, because its reduction modZ is
<5τ, which vanishes. To deduce (7.29) we use the commutative diagram

( v 3°)

Let τκeCγ{KA\ Q) be a lift of τκ mapping to f under /*. Then (7.30) implies

i*(δτκ) = δτ. (7.31)

Furthermore, both δτκ and δτ are integral cocycles, whence (7.31) holds over the
integers. Now (7.29) follows from Lemma 7.24 and the definition of the Bockstein
homomorphism.

Proof of Theorem 7.22. First, since τκ is a one dimensional representation, p^τ^
= c^Tg)2. Now τκ factors through a finite cyclic group, so we can factor τκ through
the projection KA^>KA onto KA=Έ/mΈ\κA(Έ/nΈκΈ/nΈ) for some m, n. By
Lemma 7.24 we have c^IΈ(τκ) = τκ [cf. (7.20)], whence

(7.32)

since the Bockstein β respects cup products. It follows that p?/

Let d*:H3(KA)-^H2(T) be the adjoint of 5* in (7.26); then δ*[lCi4] =
Therefore, by (7.32) and Lemma 7.27,

(7.33)
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/ —\ / \

Relative to our chosen basis we have τ = I _ ] and (1 — A*)τ= ( I, whence
\vj \t

as claimed.
The next result extends Theorem 7.22 to higher dimensional representations.

Formula (7.36) agrees with (3.4) after squaring the latter.

Theorem 7.34. Let τ : Γ-> U{β) be a homomorphism whose image consists of finite
order transformations. By conjugation we can ensure that τ(T) consists of diagonal
matrices. Assume there exists a permutation πoni letters such that τoA = π°τoπ~1,
and denote the resulting representation of KA by τκ. Fix an identification T^ΈxΈ,
and suppose the generators map to d i a g ^ ), d i a g ^ ). Choose lifts w ^ e Q and set

ή ( ( (7.35)

Then Sp tj are integers, and

ψjVj-tjUj. (7.36)

Proof. Consider the one dimensional representation detτκ. The generators map to
Σΰp Σ ^ eQ/Z, and Theorem 7.22 implies

(c^κ)2)mίKA-] = Mdetτ^f l\KJ = £ skVj-tkUj. (7.37)
j,k

To calculate c§ ιπ(τκ) we use the following device. Let A : T-» Ύ£ be the diagonal
inclusion, and define η: T*-±U{ί) as the homomorphism carrying the j t h pair of
generators into diag(0, ...,ΰβ ...,0), diag(0, ...,ϋj9 ...,0); then τ = A*η. Now the
transformation A = A®π~1 on T*=T®Z* preserves η by hypothesis: ηoA = η.
Thus η extends to a representation η^ oϊ^K2=Z\κAT^, and A extends to an
inclusion A : KA-»ίΓ^ Furthermore, τκ = A^η^. Most importantly, η^ splits into a
direct sum of one dimensional representations ηκ=(Brl(i) The Whitney sum
formula and the naturality of the Bockstein imply

cT(nώ= Σ JnW-cM?)- Σ
j<k j>k

or

= .Σ cTin^) -cfyf) • (7.38)

The arguments of the previous theorem extend to show

T φ ^ = skvj-tkuj. (7.39)

Finally, (7.36) follows easily from (7.37)-(7.39) and p1 = c2

ί-2c2.
Theorem 7.34 is easily modified to accommodate real representations

τ: T->O(d). Since Tis abelian we may assume that τ(T) is contained in the maximal
torus of O(d). But now π is an element of the Weyl group of O(d), which consists of
permutations and sign changes. The modification for sign changes comes in (7.35),
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where if a sign change occurs in the / h diagonal block, we replace ί π 1 ( j ) J with

71 1 ( J ) ) . The proof proceeds via complexification.

Next, we calculate the more refined characteristic class λ. The reader should
compare with (3.4), which is the transformation law for Klein forms. The only issue
here is the determination of a sign.

Corollary 7.40. // in the situation of Theorem 734 we have w2(τκ)
= 0, then

Proof. For convenience we treat one dimensional representations, and so adopt
the notation of Theorem 7.22; the higher dimensional case is similar. Recall from
the proof of Proposition 7.9 that since w2(τκ) = 0, τκ lifts to a representation τκ in
the double cover of the unitary group. It has a two dimensional integral
characteristic class μ with 2μ = cί and λ = (μ^c1) — c2. Now τκ restricts to a lift τ of

τ. Since cψz(τ)=(U ), we must have μm(τ)= UU + δ \ where δ,ε = 0 or 1
W 2\v + εJ

Furthermore, since τ extends to a representation of KA, the vector

-(1 — A*) I _ consists of integer entries. This implies
2 \v-\-ε/

(7.41)

That such a choice of δ, ε is possible follows from (7.25) and (7.29), using the fact
that ^(T^ΞΞO (mod2). Now by (7.33) we have (in Q/Z)

t) ~ (1 - A*)t) [T]

i{sv - tu). (7.42)

It remains to show
(mod 2). (7.43)

Consider the Z/2Έ quadratic form q M S j) = s +1 + si on the two dimensional

Z/2Z-\Qdor space H\T; Έ/2Z). It is the unique quadratic refinement of the
intersection form with Arf invariant 1. Furthermore, it is preserved by all
AeSL(2;Z). [This is equivalent to the statement that the distinguished spin
structure on the torus is preserved by all AESL(2;Z).'] Hence for any
veH^T; TLj2TL\ we obtain (in ΈβΈ)

q{{\ + A*)v) = q(v) + q{A*v) + υΆ*v = 2q(v) + vΆ*v = vΆ*υ.

Setting v = I J we obtain the desired equality (7.43).

Following these ideas we have the following computation for higher genus
Riemann surfaces [cf., the discussion surrounding (5.15)].
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Theorem 7.44 Let Σbea Rίemann surface of genus g, and suppose τ: πtΣ-+1/(1) is a
representation whose image lies in Q/Z. Assume that τoφ = τ for some φ e Diff Σ. Let
φ # denote the induced action on the fundamental group. Then τ lifts to a
representation τκ of K = Έ\xφ#π1Σ. Now since (7(1) is abelian, τ factors through a
representation z:H^-+U(l), and τ is preserved by AeSp(H^\ where A is the
transformation on homology induced by φ. Fix a canonical basis for HXΣ, and
suppose the generators map to ύpv5e<S±]TL. Fix lifts w ^ e Q and set

Then

Note that this expression agrees with (2.3), which was calculated from the
transformation law for the theta function.

To express the formula for ΛQ/Z(τκ) [i£] we need to find a quadratic refinement q
of the intersection pairing on Σ which is fixed by φ. The existence of such a q is
guaranteed by [21, Lemma 5.1]. (The relationship between spin structures and
quadratic forms is reviewed in [37].)

Corollary 7.45. In the situation of Theorem 7.44 let qbe a quadratic refinement of
the intersection pairing on H^ which is preserved by φ. Then if w2(%) = 0, we have

We remark that in the setup of Sect. 5 the diffeomorphism φ actually preserves
a spin structure, hence a quadratic form. It would be interesting to exhibit
explicitly the equality of this formula to (2.2), which is the transformation law for
the theta function.

The necessity of the level matching conditions for the absence of global anom-
alies in Corollary 7.18 is a consequence of these formulae. For simplicity we assume
that w2(ρP) = w2(φP) = 0, i.e., that (7.16) holds.

Corollary 7.46. For any G the level matching conditions (7.17) are necessary for the
cancellation of global anomalies on R 1 0 /G.

Proof. Let g e P be an arbitrary element, say of order n. Then in (5.14) we choose

h = 1 and ( I = ( I. Let 2πirJn, iπisJn be the eigenvalues of ρP, φP. Then
\b dj \0 I/

rjn\_( 0

so that by Corollary 7.40 the global anomaly (7.21) reduces to

iΣ(rj+Sj) + iΣ(ή-si)/n (modi). (7.47)

But (7.47) vanishes if and only if the level matching condition (7.17) hold for g.
This is exactly the proof which appears in [1].
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8. Nonabelian Examples

In this section we describe some examples. In the previous sections we have already
discussed the case where the point group is abelian. Here we consider non-abelian
point groups. We show an example of a non-abelian point group with represen-
tations satisfying level matching conditions, but which nevertheless suffer from
global anomalies. Also, we give some non-abelian examples where level matching
conditions are sufficient to guarantee modular invariance.

1. Extra-Special p-Group. Consider a group G generated by three elements g, A, c
defined by the following relations

cgc 1= chc ι= (8.1)

We will consider the case of p = 5 to be specific (but what we shall say applies do

any odd p ^ 5). Let us consider a five dimensional representation of G described by

1

h =

1

c —

(8.2)

where α = e2πi/5. Let us take this to act only on the gauge fermions. It is easy to see
that level matching conditions are satisfied for all elements in the group
(j> 2 = 0 mod 5). If we consider the torus with twisted boundary conditions given
by (A, g), by the arguments in previous sections it should give the same path integral
result as (chc~1,cgc~1) = (gh,h). This means that under modular transformation
τ->τ + l which is represented by the SL(2,Z) matrix

1 0

1 1

the path integral result for (A, g) should not change. Using the formula given in
Sect. 3, we see that the phase for this transformation is given by (— l)eιπ/5 and
therefore the theory is inconsistent due to global anomalies (if one is bothered by
the existence of the zero modes of the determinant, we can always consider
antiperiodic boundary conditions in the τ direction).

The cohomology of G is computed in [38]. The result for the four dimensional
cohomology is

H4(G)^Z/pZ@Z/pZ@Z/pZ®Z/pZ.

The generators are easily described. First, there is a surjection G^Z/pZxZ/pZ
obtained by sending g to 1. Now H\Z/pZ xZ/pZ)^(Z/pZ)3 maps injectively to
H\G\ which accounts for three of the generators. Notice that these generators are
detected on cyclic subgroups (generated by A, c, and he). Since an appropriate KA

maps the fundamental class onto the generator of the third homology of a cyclic
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group [cf., (7.46)], these three generators are realized by some KA. We claim that
the remaining generator is realized by the KA described in the previous paragraph.
For the calculation there shows that the fundamental class of KA maps nontrivially
to H3(G), to an element of order p. But the first Pontrjagin class of the
representation (8.2) vanishes when restricted to the cyclic group generated by h, c,
or he. So KA represents the remaining generator of H3(G\ and all of H\G) is
detected completely by the groups KA.

2. Dihedral Group of Order 8. Now we will consider an example which has already
come up in physics, and that is the non-supersymmetric E8 theory [39]. In the
fermionic formulation, this corresponds to modding out the gauge degrees of
freedom by a dihedral group of order 8, denoted by D4, which is the symmetries of
the square (see, for example, [32]). We will show that in this case the level matching
conditions are sufficient to guarantee modular invariance. The representation of
this group which comes up in physics, is sixteen copies of the standard two
dimensional real representation of D4 acting on the square which is the subgroup
of S0(32). In fact, the minimum number of representations necessary for level-
matching is 8, so let us consider that case. The group D4 is generated by two
elements r,θ, with r2 = θ4 = ί, and rθr~1 = θ~i. Consider the commuting pair
(r, θ2). We can conjugate these with the element θ, and we get

θ(r9θ
2)θ'1=(rθ2

9θ
2)9

so there is a potential for anomaly under τ-»τ +1, but this time it is easy to check
that there is no phase picked up. So eight copies of the representation passes the
consistency check.

From the cohomology point of view the arguments of the previous paragraph
assert that under the inclusion of the union of cyclic subgroups into D4, the
induced map on H4 is injective. In other words, all of H4(D4) is detected on cyclic
subgroups. This is easily seen from [40, p. 192].

3. Quaternion Group of Order 8. A more instructive example is the quaternion
group Q = {± 1, + /, ± 7, ± k}. For any representation of Q the only thing to check
at one loop beyond level matching is that, for example, (/, — i) gives the same
contribution as ( — i, ί) (by conjugation by j). But that is manifest because the two
boundary conditions can be obtained from the SL(2; Έ) matrix which is minus the
identity. That does not act on the modulus of the torus, and so there is no problem
with modular invariance at one loop. It is not difficult to see that all the potential
problems with anomalies at one loop are of this type, and so we cannot get any
further condition apart from level matching.

Now it is well-known that H\Q)^ΈβΈ [41, p. 254]. Q contains cyclic
subgroups of order 4, and any inclusion Z/4Z c» ΈβΈ induces an injection on H3.
So twice a generator of H3(Q) is represented by some KA. On the other hand, the
generator is not so represented (Proposition 8.5 below). Hence the nontrivial
element of order 2 in H\G) cannot be detected by any KA.

Let τ denote the nontrivial 2 dimensional complex representation of Q into
SU(2). (The i,j,k map to Pauli matrices.) Now cι(τ) = 0 since detτ is the trivial
representation.
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Proposition 8.3. λ(τ)= — c2(τ) has order 8 in H4(Q)^ZβZ.

Proof. Set A = I 1 and define a map e: i ^ - > β which takes ft \-+j, f2i-» j " * ,

/ι—>i. Here / 1 ? / 2 are the generators of ZxZ and / generates Z in
KA = ZMA(ZXZ). In the notation of Theorem 7.34 we can take M1 = 1/4,
1^=—1/4, u2= —1/4, ϋ 2 = l/45 and π is the transposition l<->2. Hence s1 = 0,
ίi = l, s2 = 0, £ 2 = — 1 . So from Corollary 7.40 we compute <AQ/z(τ),e^[X^]>
= —1/4. By the arguments in the preceding paragraph e^[KA~\ is divisible by 2 in
H3(Q). It follows that λ(τ) has order 8.

Of course, this means that Pi(τ)= — 2c2(τ) has order exactly 4.
Consider the representation 4τ. By Proposition 8.3 we have λ(4τ) = 4λ(τ) is the

nontrivial element of order 2 in H\Q). Since the image of [KA~\ under any
homomorphism KA-^Q is divisible by 2, this image pairs trivially with λ(4τ). Hence
4τ is an example of a representation with λ φ 0 yet not detectable by a torus bundle
over a circle. (The representation 2τ provides a similar example for p^) Therefore,
the characteristic class λ (or pγ) is not always detectable by some KA. Hence we
have shown

Proposition 8.4. There exists a representation of a finite group for which the
characteristic class λ is nonzero, yet evaluates to zero on the image of any KA.

We would like to know whether (in this example) λ is detected by a Riemann
surface bundle over the circle, but we could not determine it. Our best result in that
direction i s 2 3

Proposition 8.5. Let π denote the fundamental group of a Riemann surface Σ of
genus g, and φ an element of the mapping class group. Then φ acts as an
automorphism of π, and we form the semίdirect product Lφ — Zxφπ. Its classifying
space is a 3-manifold whose fundamental class we denote \_Lφ~\. Suppose e:Lφ-±Qisa
homomorphism and e maps π into some Z/4ZCQ. Then 4e^Lφ] =0 in H3(Q).

Note that the hypothesis on e is always satisfied if Σ is a torus.

Proof. Write Lφ as the split extension

l ^ π - > L φ ± > Z - ^ l (8.6)

and <2 as the extension

1. (8.7)

The map e:Lφ-^Q induces /:Z->Z/2Z, via the splitting in (8.6), and our
hypotheses imply that e is a map of group extensions. (We can assume that / is
nontrivial; otherwise, e maps Lφ into Z/4Z and the proposition follows
immediately.) The argument now proceeds by comparing the homology spectral
sequences of (8.6) and (8.7).

Because BZ = S1 and Bπ — Σ are manifolds of dimensions 1 and 2, respectively,
the spectral sequence Elq = Hp(Z,Hq(π)) => E™q = GrHp+q(Lφ) is concentrated in

! This argument was worked out jointly with John Morgan
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the rectangle O^p^l , 0^gg2. Hence H3(Lφ) = E?2 = E2

12 =
filtration on H3(Lφ) induced by the spectral sequence is

387

. Note that the

(8.8)

0 Z.

The spectral sequence E/2

q = Hp(Z/2Z,Hq(Z/4Z)) => E'£ = Gr Hp+q(Q) is more
complicated. The action oiZjlZ on Z/4Z is nontrivial, and the invariants in low
dimensional homology are JΪ1(2/42)Z/2Z = Z/2Z, H3(Z/4Zf/2Z=Z/4Z. Hence the
Έ2 term starts off

3

2

1

0

Z/4Z

0

Έ/2Έ

Έ

0

0

ΈβTL

Έ/2Έ

1

Έ/2Έ

0

2

Z/2Z

3

Since H3(Q) = ZβZ we see that d'2\Ef2

0-^E'22 is an isomorphism. Hence
E'0

ΰO

3=Z/4Z, EΪ3 = 0, £2°ϊ =2/22, £3? = 0. The induced filtration on H3(Q) is then

C F i C F'3 = H3{Q)

(8.9)

The argument is now clear. The map e%:H3(Lφ)-+H3(Q) preserves the
filtrations. Then from (8.8) and (8.9) it follows that the image of e^ lies in
Z/4ZC H3(Q), and so consists of elements of order at most 4.

Unfortunately, we were unable to determine whether the generator of H3(Q) is
represented by a surface bundle (of genus > 1) over a circle.

Motivated by the constraints in constructing the Hubert space (Sect. 3) and the
examples above, we formulate the following question: can all global anomalies be
detected at 1-loop? In other words, if for a given finite group P and representation τ
[with w2(τ) = 0] we can find a map K = Z\xφπ-+P (where π is the fundamental
group of a Riemann surface and φ an outer automorphism) for which A(τ)[X] φθ,
then can we also find a map KA = Z ix A(Z x Z)->P for which λ(τ)[KA~\ Φθ? Here
BK is a Riemann surface bundle over a circle and BKA is a torus bundle over a
circle.

In this paper we have derived sufficient conditions for the absence of global
anomalies. We can ask whether these cohomology constraints are also necessary
for the absence of global anomalies. We strongly suspect that the answer is no. In
fact, the example of the quaternion group discussed above most likely provides a
definitive answer. However, we can ask whether other physical principles (beyond
anomalies) necessitate these cohomology conditions. We understand that work of
Killingback potentially answers this question in the affirmative. The new physical
ingredient is factorization of the amplitudes. Factorization entails understanding
how the determinant bundle behaves at the boundary of moduli space.
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