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Abstract. The asymptotic behavior of functions in the kernel of the
perturbed heat operator 87 — @, — u(x) suffice to determine u(x). An explicit
formula is derived using the d method of inverse scattering, complete with
estimates for small and moderately regular potentials u. If u evolves so as to
satisfy the Kadomtsev—Petviashvili (KP II) equation, the asymptotic data
evolve linearly and boundedly. Thus the KP II equation has solutions bounded
for all time. A method for calculating nonlinear evolutions related to KP II is
presented. The related evolutions include the so-called “KP II Hierarchy” and
many others.

L. Introduction

Let u = u(x) denote both a function of xeR? and the operation of multiplication by
that function. This work investigates the inverse scattering problem for the
differential operator

0% —0,—u. (L.1)

There are two main results. First, for small smooth ue L' N L*(R?), the operator is
determined by the leading coefficients of asymptotically exponential functions in its
kernel. That theorem has several parts. Let zeC, write v = v(z) = (z,z2)eC?, and let
m(x, z) be a bounded function such that ¥ = e**m(x, z) is in the kernel of (I.1). Then
for u small in L' nL*R?) there is a unique such m satisfying m(x,z)—1 as
|x]— oo (Theorem 1.II). Hence s is asymptotic to ¢*”. If u has some decay as
|x] = oo, then m has the asymptotic behavior

G, oz)e”" "

X1 +22x, X, +2Zx,

1
m=1+ +o<m> as|x|—»>oo forImz#0. (1.2
Here o and f are bounded functions, with
1
o(z) = z—sgn(Imz) | e~ u(x)m(x, z)dx (L3)
2mi R2

(Theorem 4.1I).
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The coefficient «(z) suffices to determine the J data of the operator, namely the
relationship

om(x, z) = a(z)e* " "m(x,z) = Tm (L4)

(Proposition 1.III). Finally, if u is sufficiently smooth, the scattering data o(z) has
enough decay to guarantee a unique bounded solution m to the d problem (I.4) with
m(x,z)— 1 as |Im z| - co (Theorem 9.III). Hence both m and Tm are determined by
the asymptotic coefficient a(z). But then u is determined by:

u(x) = % 9, | € ulz)m(x, 2)dz A dz (L5)
[

(Theorem 3.1V). The maps u — « and a —u might be called the forward and inverse
scattering transforms, respectively. They behave much like the Fourier transform
and its inverse. If u(x) has n derivatives in L' I?(R?), then a(z) decays like
(1 4 |v(z)])""as |z| = oo (Theorem 4.I11). Likewise, if a(z) decays like (1 + |v(z)[) ™" "2,
then u(x) has n derivatives in L?*(R?) with bounded Fourier transform. (Theorem
9.IV).

The second main result is a functional calculus for evolutions of u. Let teR™ be
thought of as time, let f denote d f/dt, and introduce a time dependence for u(x) by the
Kadomtsev—Petviashvili equation (KP II)

0,(ti + O3u+ud,u)= —d3u. (L.6)
Then d(z) = (23 — z3)a(z), or a(z, t) = a(z,0)exp t[ 23 — z3]. Likewise, if u evolves by
the n'* equation of the KP II hierarchy, then d(z) = (z" — z")a(z). These well-known
results are contained in Lemma V.I. Since z" —z" is purely imaginary, one has
|z, t)] = |z, 0)| for all zeC, t = 0. By the first main result, there is a solution u(x, )
for all time to the initial value problem for the n® KP II evolution, if the initial value
u(x,0) is sufficiently small and regular in L'~ L*(R?) (Theorem V.3).

Conversely, suppose dfi.e., T) is known. Then i is given by Lemma V.2.:

i =l,a1 [mTm, (1.7)

T C
where i(x, z) solves the transpose of the equation solved by m. In particular, if
d(2)eCP(C), and d(z) = (P(2)—P(z))x(z) so that T =[T,¢], then u(x)=
l/nialj(aid)(z))m(x,z)rh(x, z)dz A dz gives the evolution of u. By the first main
result,cits initial value problem for small, regular initial data has a solution at least
for small ¢ > 0.

Extending this functional to ¢(z) = (s — z) " ! yields the n'® evolution equation in
the KP II hierarchy as the coefficient of s™" in the expansion of d,(m(x, s)f(x, s))
about s=oo0. Hence T=[T,(s—z)"'] might be said to generate the KPII
hierarchy. Likewise, ¢(z) =z~ ! yields the nonlinear system

i = 0y(mm),
0=(0%-0,—wm, mx)->1 as |x|- oo,

0=(0?+0,—wm, mx)—>1 as |x|- oo. (L8)
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These are two concisely written examples of the large class of evolutions of u related
to linear evolutions of a.

The inverse scattering method for solving evolution equations is explained in the
classic article [AKNS]. The d method is introduced in [BC] and [BC 2]. Formal
solutions to the KP equation may be found in [FA], [ABF].

The KP hierarchy is defined in [DJKM] and [F], where it is studied for
algebraic reasons. A rather impenetrable functional calculus for another scattering
problem appears in [K].

II. Asymptotically Exponential Solutions to the Perturbed Heat Equation

Consider the heat operator in 2 variables x = (x, x,), perturbed by a multiplicative
potential u(x), and the equation for its kernel:

(0% — 0, —upy =0. (IL1)

One class of solutions to this equation may be specified by requiring that y be
asymptotic to a purely exponential solution to the unperturbed equation. More
precisely, consider the class of solutions ,(x), zeC, satisfying the conditions:

Y (x)=e""m(x,z) for v=uv(z)=(z2%); lim m(x,z)=1 for each z. (I1.2)
[x]— 00
This class contains the kind of solutions one would expect if the perturbation
function u(x) were compactly supported. It is completely determined by the function
m(x, z) on the variety V = {v(z) = (z,z2%)eC*|zeC}. This function satisfies a boundary
value problem in L*(R? x C):

[0y + 2)® — (0, + z%) — u(x)Im(x, z) = 0.
For each zeC, lim m(x,z) = 1. (IL.3)

|x| > o0
Knowledge of m suffices to determine u, but first it is important to know that there is
a unique m for a given u. Standard methods may be applied. Denote by f the Fourier
transform of f, in the distributional sense, which is chosen to agree on the Schwartz
class with the integral

f= j exp[ —2mix-&]f(x)dx, where ¢=(&;,&,)eR?, and dx=dx,dx,.
IRZ ’
(IL4)

This choice ensures that f — f is an isometry of L([R?) and has norm 1 as a map from
L(R?) to L*(R?). For functions of more variables, f will denote the partial Fourier
transform in the first two real variables, with the other variables considered
parameters. Denote by f the inverse Fourier transform of f:f(&)=f(—¢&).
Applying the Fourier transform to Eq. (I1.3) yields:

[@ni&, + 2)* — 2mi&, + z2) (&, 2) = [um] (&, 2). (IL5)
It is convenient to introduce some notation:
P(&)=¢2—¢&,, sothat V={veC? P)=0}, P, =PQ2nié+v(z)). (IL6)
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For each zeC, there are at most two distinct roots & of P,(&), namely 0 and a root
¢o(z)=Imv(z)/2n which may be parametrized by one complex variable as:

fo(Z)E<_Imz, —2RezImz>=<z’2;iz’ Zz—.zz). (a7

i b1 2mi

It is now possible to prove a basic existence theorem for the perturbed heat
operator:

Theorem 1.IL. Suppose u(x) belongs to both L*(R?) and L*(R?) and is small in the sense
that |ull + ||ull 2 <e. Then there is a unique solution m(x,z)e L*(R? x C) to the
boundary value problem (I1.3).

Proof. Existence follows from the contraction mapping theorem and a technical
lemma. Since the constant function 1 is annihilated by P(0 + v), it is possible to
rewrite Eq. (IL.5) as a Fredholm integral equation:
k ~ [um—-171 4
= u_ + i_
P, P,

To study this map f —([uf]/P,) requires technology:

[m—1] (IL.8)

Lemma 2.II. For each zeC there is a subset E, = R? and a constant C, such that

1

P,

<C,.
P, z

<C, and
L(ES)

L\E,)

Furthermore, the sets E, can be chosen in such a way that C, is a bounded function of z,
and C,—0 as |Imz| - co.

The proof will be found at the end of this theorem. Note some immediate
consequences:

Corollary 3.11.

(i) If teL?> " L™(R?), then (4/P,)e L'(R?) with norm uniformly bounded in z.

(ii) The map f— (4*f)/P, is bounded from L}(R?) to L*(R?), uniformly in z, and has
norm < C(||d]=+ [dll2) S C(ullp + llull2) O

By the contraction mapping theorem in L!(R?), Eq. (IL.8) has a unique solution
[m— 17(&, z) for each z. Its inverse Fourier transform mi(x, z) solves (IL.3).

To show uniqueness, suppose m(x, z)e L*(R? x C) solves (IL3). Then i is a
tempered distribution which is the sum of the integrable function ([um] /P,) and a
distribution supported at 0 and &,(z). Such distributions can only be Dirac masses
and their derivatives, and their inverse Fourier transforms can be explicitly
calculated. Comparing behavior as | x| - oo, it becomes plain that [m — 1]  is the
unique integrable function which solves (IL.8). This completes the proof of the
theorem. [

It remains to establish Lemma 2.II.

Proof. Start by transforming P,(¢) into ¢ — (Im z)? + i¢, by the (almost) isometric
change of variable:
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1 1

Ei==—[& —Imz], ¢ =—[& +2& Rez+2RezImz].
2% 2n

(The Jacobian is evidently (1/2m)2.) Observe that for any 6,0 < < 1, one has the

following inequality:

|£2 —(Im2z)?| 2 max{|& —Imz|, | +Imz|}Pmin{|¢ —Imz|, | +Imz|}?~°
=(1& |+ Imz|y’min{|¢; —Imz|, [&; +Imz[}27?
2 |Imzfmin{|¢é, —Imz|, [&; +Imz|}27°

This leads to the crude estimate:

1 c c
< — + — .
PO ImzP|& —Imz|* 72 +|&,|  [ImzP|E, + Imz|? 72 + &,

Let E=¢(eR%|E,|<1,|&,] <1 and let E,=[E+ (Imz0)]JU[E—(Imz0)]. By
translation, it is clear that the integrability of 1/P,(£) on E, and E¢ is equivalent to the
integrability on E and E° of 1/(|Imz||&, |2 7% + |&,|).

Choosing 6 =0, an application of the calculus shows that || 1/P,(¢)| L1, and
[[1/P (&) Il 2ec) are both uniformly bounded functions of z.

Choosing = 1/2, observe that (|]Im z|*2|&, |32 +|£,]) ! - 0 pointwise almost
everywhere as |Imz|— co. By calculus and the dominated convergence theorem,
I1/(0Im 2] 218, P2 + &) ey =0 and | 1/(1Tm 2|21 &, 12 + &, ) |l 12 >0 as
|Tm z| — c0. But then the same result holds for 1/P,(£) when E is replaced by E,. [

Suppose that u(x) is small in both L!(R?) and L?(R?), so that a unique solution
m(x, z) exists by Theorem 1.I1. The notion of “scattering data” suggests a function,
depending on the energy parameter z, which can be determined by a knowledge of
m(x, z) at points “far away” from the potential. Of course, this makes sense only if u is
compactly supported, but it is possible to generalize this notion of “far away” by
using asymptotic expansions.

Consider as candidates for “scattering data” the coefficients of the leading terms
of the asymptotic expansion for m(x, z) as | x| — co.

It remains to calculate this expansion. One can use the integral equation:

m(x,z)=1+ [ exp [2nix-§][—umd§. (11.9)
R? P.(%)
Since ([um] /P,)e L}(R?), the Riemann—Lebesgue lemma implies that the integral
tends to 0 as |x|— co. However, those places where [um] /P, is discontinuous,
namely the roots of P,, should contribute the slowest decay. This principle gives rise
to the following result:

Theorem 4.I1. Suppose m(x,z) is a solution to Eq. (I1.9) in L*(R? x C), and that
(1 + |x|)|u(x)|e L{(R?) n LA(R?).

Then if Im z # 0, m has the asymptotic behavior

2nix-&o(z) 1
m(x,z)=1+ A2 +oc(z)e ——+ 0|l — ) as |x|— 0.
Xy +2zx, X +22x, [x|
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Here
- 1 ~
w(z) = %m[um] (6o(2),z)sgn(Imz), P(z)= Z;i[um] (0,2)sgn(Im z).

Proof. Fix zeC with Im z #£ 0. Write 1 = ¢o(&) + ¢ () + ¢ (£), a smooth nonnega-
tive partition of unity, where ¢,=1 in a neighborhood of 0, ¢, =1 in a
neighborhood of &,(z)=((Z—z)/2ni, (z% —z2)/2ni), and ¢, = 1 in a neighborhood of
oo. Observe that ¢, and ¢, are compactly supported, and ¢, is supported away
from the zeros of P,. Then, since m(x, z) is a solution of Eq. (I1.9), the following is an
equation in L!(R?):

[um]” [um]A [um]” [um]”
P, P. bo + P. ¢+ P,

mevsl ][] <[]

Each of these terms may be estimated in turn. To do this, introduce the derivations

b

[m—17 =

Thus

1[0 0 ~
0 %(5?"’22@):()(:1 +22x2) .

1/ 0 0 o -
6—%<E+22 é) (% +22x,) . (I1.10)
Case . By the decay condition on u,[um] has at least one derivative in
L*nL®. A simple calculation shows that d(¢./P.) belongs to L?. Thus
A([um] /P.) ) = (0Lum]")(¢/P.) + [um] 0((¢/P,)) belongs to L', and by the
Riemann-Lebesgue lemma, (([um] /P,)¢.,) =0(1/|x|) as |x|->o0.

Case0. Since Imz #0, 1/(x, +2zx,) is smooth and bounded in the set |x|> 1.

There,
[um] 1 ([ lum] ¥
( ¢°) Xy +22x2\a|: P, ¢°]>'

Since @ is a derivation and [um]” has one derivative in L?> n L™, another application
of the Riemann—-Lebesgue lemma shows

fum] Y 1 b0
< P, ¢0>_x1+22x2<[u ]5( >>+0<, ')

Now d(¢/P,) is a distribution which may be computed by standard regularization
methods. It differs from an integrable function by the compactly supported singular
part

1 R
%[um] (&,2)sgn(Im 2)6(&).
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Recognizing f(z) from its definition, one concludes:

wum]” Y _ B@) 1
(T¢o>=m+0<m> as |x|— oo.

Case 1. As in case 0, one may write

[l N_ 1 AN
(e )=o) +o{i) o e

Here again d(¢,/P,) is a distribution which differs from an integrable function by

1 ~
%[um] (&, z)sgn(Im z)d¢, )

As before, the little o swallows the integrable part, leaving what is recognizable as

[um]” Y _ a(z)e?x % 1
( P, ¢1>_ xy +2Zx, o Eiva
Putting all terms together yields the result. This completes the proof except for the
calculation of d(¢p,/P,) and d(¢,/P,), which turns out to be useful later. Observe that
both ¢,/P, and ¢,/P, are integrable. Thus by dominated convergence, they may be

regularized by multiplication with r, =1 —exp[ — | P,|?/¢2]. Also, the choice of 8
and 0 insures that lim d(¢,/P,)r, and lim d(¢,/P,)r, both exist in L!(R?). Then in the

=0 e—0
sense of distributions, one can take limits:

z z &0 z &0

((Il;()) integrable + — Po lim or,, 5(%) = integrable + %lim or,. (IL11)
But the rightmost terms are straightforward to calculate:

ﬁlim6r5=—4ni¢o[l 3 3 Pz]limé f"()exp[ |P,|?/%],

z &0 CO(Z) z_|e~0

— 1 P
ﬁlim5r£=~4ni¢1[1—M§]r St expl—|P,2/e?] (IL12)
z€e~0 &1 Pz 6—’08

At this point, it is useful to single out the evaluation of these limits as a lemma:

Lemma 5.I1. In the sense of distributions, as ¢—0,

é; exp[— | P,|?/e*]— — #sgn(lm 2)0 50295 (I1.13)
#exp[ |P,2/e2] > — #sgnam 2)d,. (IL.14)

Proof of Lemma 5.11. Equations (I1.13) and (I1.14) are translates of each other
because of the identity:

P&+ &o(2)) = PAQ). (IL.15)
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The rest of the calculation is an exercise in change of variable and dominated
convergence. [

Observe that [1—(P,/P)¢ /(& —Ed(z))] is continuous at 0, and that
[1—(P,/P,) (&, — E(2))/¢,] is continuous at &y (z). Each is equal to 1 at those points.
Applying the lemma to Eq. (IL.12) gives

by .. _ 1 b1 .. _ 1
P_zll—r»r; or, = 3 sgn(Imz)d,,, Fz—ll_t}g or, = o sgn(Im z)d,. (IL.16)

Using this result in Eq. (I.11) completes the proof of Theorem 4I1. [

III. Calculating the Asymptotic Behavior via 0,
Suppose ¥(x, z) is an asymptotically exponential solution to P(0)y = uy. Write

w(x,z)qx.u(z)[l ) +oc(z)e2’""“§°‘z)+0< 1 >] -

X, +2zx, x;+2zx, x|

It can be shown that if u(x) evolves in time to satisfy the Kadomtsev—Petviashvili
equation,

01(sh + ud u + d3u) = — d%u, (ITL.2)
then a(z) and f(z) evolve according to the equations
i(z) = (- 2%)u(z), Pz)=0. (IT1.3)

These evolutions are trivial to solve: a(z, t) = a(z, 0) exp t[z3 — z*] and B(z, t) = B(z, 0).
Hence it is a matter of great interest to reconstruct the potential u(x) from « and S,
since that would lead to a solution of the KP equation.

An observation of R. Beals and R. R. Coifman [BC] has shown that the
asymptotic data «(z) determines the relationship between ¢ and d;y. But knowing
this relationship amounts to knowing ¥ and consequently u.

Write Y(x, z) = e*"m(x, z) with m bounded. Then m satisfies P(0 + v)m = um. This
is an analytic family of differential equations in the parameter zeC, where v = (z, z2).
Denote by 0; the derivative with respect to the conjugate of this parameter. Then

P(@ + v)0;m = ud,m. (ITL4)

Using the existence—uniqueness theorem for this equation, one has d;m = Tm where
T is some linear operator. Call the map u — T the Forward Scattering Transform. It
may be calculated as follows:

Proposition 1L.III. Suppose ||ull.: + ||ull2 is small, so that m(x,z) is the unique
solution to

PO+ v)ym=um, meL®(R? x C), lim m(x,z) = 1.

|x|—c0

Then d,m(x, z) exists and is bounded on R* x C, and in fact may be written as
0m(x, z) = a(z) exp [2mix- &y(2) Jm(x, 2) = Tm (ITL.5)
with a(z) = (— 1/27i) sgn(Im z) [um] (€o(2), 2).
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Proof. Write Gm(x, z) = ([um] /P,) = | (2™%¢/P (&) [um] (¢, 2)dE. Then m=1+
RZ
Gm. By Theorem LII, |G||;»_,;» can be made smaller than one by insisting that
lullp + ||ull.> be small. Then one can write
m=(I—-G) 1, (ITL.6)

Hence ,n=(I — G)~'(9,G)m. But since ([um] /P,) is integrable, dominated conver-
gence allows regularizing G and then differentiating under the integral:

(0,G)m =lim jez"""@az-(E) [um] (&, z)d¢, (ITL.7)
e 0 g2 P,
where r, = 1 —exp[ — | P,|?/e%].

It is straightforward to verify that

0P =TS expl - |P. 1Y) )

Lemma 5.1I1. shows that this tends to
-1
o sgn(Im z)d;, ).

Hence (0;G)m(x, z) = a(z) exp[2mix-£y(z)], where a(z) is defined by the statement of
the proposition. Thus d,;m = a(z)(I — G)~* exp [2mix-£y(z)], since G commutes with
multiplication by functions of z alone. It merely remains to calculate

(I — G)~texp[2mix-&y(2)]. (111.9)

Call this function n(x, z). It is bounded because the exponential is bounded and I — G
is invertible on L®. It satisfies the equation

PO+ v)n=un, n(x,z)~exp[2nix-Ey(z)] as |x|— o0.
But then n' =nexp[ —2mix-£y(2)] satisfies
PO+ o0 =un’, n'(x,z)->1 as |x|-o0. (II1.10)

There is a unique solution to this equation, which has already been named m(x, 2).
Putting the parts together yields

am(x, z) = a(z)m(x, 2)exp[2miéy(z)'x]. O (IIL.11)
One easy consequence is an estimate on «(z):

Corollary 2.IIL If|u| 1+ ||u]l .2 is small, théfunction ofz) is bounded. More precisely,
there is a bounded function C, verifying lim C,=0 such that
Imz]—

lulle:

. 1I1.12
Clule + Tl (IL.12)

#(2) S

Proof. |az2)| = |[um] (o(2), 2)| < || [um] ||y < [lum || < | u] i [lm]| = by various
famous inequalities. But m = (I — G)~! 1 and Corollary 3.1l implies that || G || =_
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S C,(llullp: + llull;2), where C, is bounded and tends to 0 as |Im z| tends to co. Then
lmll e <[1—C,(l|ullp: + llull2)]~ ! and the corollary is proved. []

Although the asymptotic behavior of m(x, z) as | x| — oo involves more than just
of(z), the other features turn out to be unnecessary for the recovery of m or u.
Introduce:

Definition 3.111. The scattering data o(z) associated to a small potential u(x) by the
perturbed heat operator is the function defined by

az) = E—n—i sgn(Im z)[um] (£4(z),z) zeC.

Abusing notation, the continuous linear map 7:L® — L® determined by a(z) shall
also be called scattering data. Here

Tm(x, z) = a(z)m(x, Z)exp[27ix-Ey(2)]. [T

This abuse of notation is legitimized by the observation that this operator T, which
agrees with 0, on asymptotically exponential solutions of the perturbed heat
equation, is essentially multiplication by the leading asymptotic behavior of m.

The function «(z) behaves much like the Fourier transform of u. In particular, if u
is smooth then o has rapid decay in some directions. More precisely:

Theorem 4.I11. Suppose that |ul|: + || ull. 2 is small and that for some multi-index
Y =(y1,72) one has:

Y [0"uleL! n[A(R?).
¥y

Then

1

|MZ)I_O(I+|Imz|"+|RezImz|“>' (IL13)
Proof. Note that |Imz|=mn|f}(z)] and |RezImz|=mn|E3(z)|. Since |au(z)|=
|[um] (¢4(2),2)| this theorem is a consequence of the statement:

For all y' <y, [um] (£,2)|eL°(R? x C). This will be true exactly when [um]
decays, which is to say um is smooth. Since u is smooth to order y by hypothesis, it
remains to show that m inherits this smoothness. This is easily established by
induction. Suppose §"'meL® for all y <y. Then

Om=0"—G) "1 =[01I-G) 'N=01I-G) '[",Glm.  (IIL14)

By Leibniz’ rule, [07,GIm= ), <;},>(6V‘ ¥'G)(0"'m). Each operator 0""Y'G is con-
y<vy

tinuous from L to L* because of the smoothness of u, while each term §”'m belongs

to L* by the induction hypothesis. Finally, (I — G) ™! is bounded on L” because u is

small in L' nI2. Thus d’m is bounded. [

Corollary 5.I1. Suppose that |u||: + ||u| .2 is small and that u(x) has two continuous
derivatives in L' "I*(R?). Then the scattering data a(z) belongs to the weight space
I*(|Im z|dzZ A dz) and is bounded.
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Proof. Boundedness is a consequence of Corollary 2.III. By Theorem 4.I1I,

o) < — -
1+|Imz|*+|RezImz|

With this estimate and a change of variables,

|[Imz|dz A dz
I <
“06(2)‘ Imz|dz Adz < c§(1+|1mz|2+|RezlmZ|2)2
dxdy
~e i< O

As constructed, the forward scattering transform u — T, or u — o, is continuous
near 0 as a map from a Sobolev subspace of L' n [*(R?) to L N L*(|Im z|dZ A dz).
Later it will be shown to be a bijection between subsets of these Banach spaces.

Suppose that u(x) is a small potential in the sense of the preceding corollary.
Then the heat operator perturbed by u has the associated scattering operator T, and
its unique solution m satisfies 9;,m = Tm. The general solution is given by the
Fredholm integral equation:

m = “entire” + CTm. (ITL.15)

Here “entire” denotes a function of x and z which is entire holomorphicin z, and C is
the Cauchy integral operator, which agrees on the Schwartz class with

Cf(z)= jf © df dc. (I1L6)

The fact that m is a solution of the heat operator determines “entire,” and it can be
shown that the equation has a unique solution. This requires some technical results.

Lemma 6.IIL. Suppose Tf(x,z) = u(z)e?™ < f(x, 2) with a(z)e L*(|Im z|dZ A dz) and
bounded. Then CT is continuous from L*(R? x C) to itself and yields functions with
some decay in z:

ICTf(x,2)| = C(l|all = + NIl L2qumap) | f N0

where C, is a bounded function of z and 1lim C,=0.

{Imzj— o0

Proof. Taking absolute values inside immediately shows

CTF =1 1ie] 52 2]

dal A d(] (I1L.17)

Changing variables as follows will provide ready-made estimates:

ago
(&1, ¢2)

A simple calculation shows that [ao{|==[al», and that [a°{] 2 =

_ | (IT1.18)
T '

{Q) =75 —indy,

251
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7™ ot |l 2z Meanwhile, the integral to be estimated is transformed into

laot(®)]
2
e

dé.

But this is bounded by C,(||aol || .. + ||@°{llz2) as in Lemma 2.I1, hence it is bounded
by

Cllell = + ol zgumzy)- - O

Corollary 7.IIL. If T is given with a(z) small enough in L* n L*(|Im z|), then CT is a
contraction of L*(R? x C). O

Returning to the original problem, suppose m(x, z) is the unique solution to the
perturbed heat operator. Then both m and CTm are bounded, so Liouville’s theorem
guarantees that “entire” in Eq. (IIL.15) has no z-dependence. Hence one can rewrite
the equation with some bounded function g(x) replacing “entire”:

m(x, z) = q(x) + CTm(x, z). (I11.19)
Applying the original operator P(d + v) to this m yields:
um = P(0 + v)m = P(0 + v)q + P(0 + v)CTm. (IT1.20)

Since CTm is an absolutely convergent integral, it may be differentiated in the
parameter x. This helps justify two formal calculations, which are tagged for future
reference:

Lemma 8.111.
(i) [P0 +v), T]=0,
1
(i) [P@+v),Clf(x,2)= 561 [ f(x,2)dZ A dz. This is independent of z. []
C

Using this lemma, one obtains:

um = P(0 + v)q + CT(P(0 + v)m) + [P(0 + v), CT]m

1
=P0+v)qg+uCTm+ Eal [ Tmdz A dz. (I11.21)
C

Expanding P(0+v)q shows that the only term which grows as |z|— oo is 220,q.
Hence 0,9 = 0. Taking this into account, rewrite the equation as:

m(x,z) — 1 =q(x,) — 1 + CTm(x, z). (I11.22)

Fix x,, and let ¢ > 0 be given. Let z be chosen with |Im z| so large that | CTm(x, z)|
< (¢/2). For this z, choose x; so large that |m(x, z) — 1| < (¢/2). Thus |g(x,) — 1] <&,
and since ¢ and x, were arbitrary, g(x) = 1. The following theorem sums up the
preceding argument:

Theorem 9.ITL. Suppose that u(x) is small in L' n L*(R?) and that 0’ue L} n L*(R?) for
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all |y] £2. Then the unique solution m(x, z) to the equation

[0% + 220, — 0, — u(x)Im(x,z2) =0 lim m(x,z)=1

[x[= o0
is also the unique solution to the equation
m(x,z) =1+ CTm(x, z),

where T is the scattering data associated to u by the heat operator. [

IV. Recovering the Potential from the Scattering Data

The usefulness of the inverse scattering method hinges on two observations. First, any
small scattering operator T of the form in Lemma 6.III determines a unique solution
m(x,z) to m =1+ CTm which also solves the perturbed heat Eq. (IL.3) with some
potential u(x). In fact, this inverse transform T —u is an analytic Banach space
valued map defined on a neighborhood of 0 in a weighted-norm subspace of
L* N I?(|Im z|dZ A dz). Second, rather trivial flows of T correspond to interesting
nonlinear evolutions of u, some of which will be catalogued in the next chapter. The
trivial flows have solutions bounded and small for all time, so that by continuity of
the inverse map, one obtains global existence theorems for the nonlinear flows of u.
Define the “translated” derivatives:

0 0 5
=—+7z = , . Iv.1
o, +2z, D, 8x2+2 zeC (Iv.1)

Then the heat operator which annihilates m can be written:

[D? — D, — u(x)]m(x,z) = 0. (Iv.2)

D,

These translated derivatives commute with T in the sense below:

Lemma 1IV. If f(x,z) has one continuous x derivative, and T has the form
Tf(x,z) = afz)e?™*%@ f(x, ), (IV.3)

then [D, T]1f=[D,, T1f=0.

Proof. A simple calculation. [

It is also of value to calculate the commutators of the translated derivatives
D,, D, with the Cauchy integral operator C. Since both d/0x, and 0/0x, commute
with C, it suffices to calculate [z", C]. More precisely:

Lemma 2.IV. Suppose f(x, z)is a Schwartz function over R* x C, and let C denote the
Cauchy integral operator in the z-variable. Then

[z C1f(x,2) = -2%;: #0074, 0 A (IV.4)

[D1,Clf(x,2)= ki()(Z)a';—k[zk’ Clf(x,2). (Iv.5)
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Proof. Part (IV.5) is the binomial theorem. Part (IV.4) follows from the identity
Zn Cn = (Z _ C)nil chn—k_l.

k=0
This reduces [2", C1f = (1/2mi) [ (z" —{")(z—{)~ ' fdT A d{ to the desired form. [
(o}

Schwartz-class regularity is not necessary for either of the preceding lemmas—it
is invoked to smooth out the exposition. The formulas to be derived will have
obvious regularity requirements, which will be much weaker. Note that these
lemmas imply Lemma 8.III.

Returning to the original discussion, suppose that T is an operator of the form in
Lemma 1.IV. The following might be called the inverse scattering theorem.

Theorem 3.IV. If T is given by a function o(z) that is small in L* n L*(|Im z|dzZ A dz),
then the unique solution to m = 1 + CTm solves the perturbed heat equation P(0 + v)m
=um for a potential u(x) which may be represented by the formula:

u(x) = %6 L g Tm(x,z)dzZ A dz. (IV.6)

Proof. Corollary 7.III and the contraction mapping theorem guarantee a unique
solution tom = 1 + CTm. Applying P(0 + v) to both sides as in Eq. (II1.21) and using
Lemma 2.1V yields:

P(0 + v)m = CTP(3 + v)m + %(ﬂj Tm(x, 2)dz A dz. (Iv.7)
R

This last term—call it u(x)—has no z-dependence. Thus
P@+vm=u(x)(I —CT) "1 =u(x)m. O (IV.8)

Of course, the integral representing u need not make sense without additional
hypotheses on a(z). There is no problem if « is of the Schwartz class, but something
much less drastic works, too. To develop these hypotheses, it is convenient to
construct instead the Fourier transform (in x) of the function m(x, z) — 1:

[m—11 =[CTm—- 1T +[CT1T. (IV.9)

It is time to point out that the function z — £(z) and & — {(£) defined in Egs. (IL.7) and
(IT1.18) are inverses of each other. Thus

2zrix-Eo(d)
[CTITE )—[—75 f"‘@——"——

[

dl A dg jl‘(f, z)

~

I P T (9 T _ 2miao{(§)
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Likewise, if f is in the Schwartz class,

2mix-&o(8)
(O Do dq

[CTIT(,2) =[

2ni

_ 10
T 2midz—¢

If the L'(R?) norm of f(¢, z) is a bounded function of z, then so is the L'(R?) norm
of R,f(£ z). This may be seen by integrating Eq. (IV.11) first in £ Under the
hypothesis that « is small in L® n L*(|Im z|), the map f— R, f is a contraction of
L}(R?)for every zeC. Likewise, (2mia o {(£)/P,(¢)) is in L'(R?) uniformly in z. Thus Eq.
(IV.9) has a unique solution [m — 1]7(¢, z) in LY(R?) uniformly in z. But its inverse
Fourier transform m(x,z) must be the unique solution to m=1+ CTm. This
fact strengthens Theorem 3.IV with the expected result that for each zeC,
lim m(x,z)= 1.

x| =00

Using Egs. (IV.10) and (IV.11), it is possible to write down the Fredholm integral
equation for [m — 17" more explicitly:

J€—&o0),0dl A dl =R, f(&2).  (IV.11)

[m— 177 = 2”’“((§f)’ +R(Im—17)(E2). (IV.12)
Defining:
oIl o A r2gamzy = MAxX(C) [ o | = + foxe Ll 2], (Iv.13)

where C, is the coefficient in Lemma 2.I1, and recalling the integrability of (a«°{/P,)
and the boundedness of R, on L'(R?), it is possible to give an explicit estimate:

1O — 17,2, )_M (IV.14)

llocll o2 Imz))

Observe that this is independent of z. Thus, if K_;,_, denotes the operator
“convolution in & by —[m — 1] (¢,z),” it can be estimated uniformly in z:

[l o ||L°°nL2(IImZI) for 1<p=<oo. (IV.15)
1= [lotll o~ r2(1ma) -

This estimate will be used to bound #(¢) in L?*(R?) and L*(R?). From Theorem
3.1V, one obtains a Fredholm integral equation for :

POIm—1T(& 2) = [um] = ax[m— 171 2) + ()
=& =K_p,_13@)(&,2) + PO [m — 1T (£, 2). (Iv.16)
It is a remarkable feature of scattering theory that the z-dependence of the right-
hand side of (IV.16) cancels itself out. However, Eq. (IV.15) and results below will
yield estimates on # that are independent of z.

It remains to estimate P,[m — 1] in L? and L®. This may be done from Eq.
(IV.12) multiplied by P,:

P,[m—17 =2miaol + P,R[m—17. (IV.17)

K- [m—11 Il LP(R%)- LP(R? p-S
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This is yet another Fredholm integral equation because of the following technical
lemma:

Lemma 4.0V. Suppose f(&,z) is in the Schwartz class over R? x C. Then two identities
hold:

Raf = R(a/P,)(P I (IV.18)
P.Rip,)f =R, 2) — (R LS (Iv.19)
Proof. For Eq. (IV.18), observe:
N
RuralPf) =51l ok Pt = 600 16 - 00, D2

e P&

The result follows from identity (I1.15): simply cancel the two polynomlals. Likewise,
Eq. (IV.19) follows from the identity:

PO _ L1
C=0P(d z-L -

Thus, defining the operator M, by the right-hand side of Eq. (IV.19), one can write:

P,[m—17 =2miael + M(P,[m—17"). (IV.20)

Unfortunately, M, is not continuous on L? n L®(R?) without further restrictions on
a(z). These restrictions may be stated as membership in an appropriate subspace of
N LX(|Imz|dz A dz), as defined below:

Definition 5.1V. Let k be a nonnegative integer, and write
=1+ &N
Then the k'™ weighted subspace of L® n I*(R?) may be denoted by
Wk = WKL nLA(R?) = { f(§)eL® n LAR?): (D f(YeL® n L*(R?)}.

This is a Banach space with the norm

k (k .
I fllwe = j;0<j ) [<EXf( L®AL2R?)

Here
||f”L°°r\L2(R2)= [ fllpe+ 11l O

Definition 6.1V. The k'™ weighted subspace of L®IL*(|Imz|dz A dz), denoted
wE= WHL® nL*)(|Imz|dZ A dz), consists of those functions «(z) for which
ocOC(é)eW"(L‘” L*(R%). This is a Banach space with the norm letll e =
faelllwe. O

Definition 7.1V. If f(£,z)eL®(R? x C), introduce the maximal function
(&) =esssup| f(&,2)]. (Iv.21)

zeC
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Then define the k™ weighted mixed norm subspace
= Wo(L*(R? x €)= {feL*(R? x C): (&) f*(¢) is
essentially bounded for all 0=<;<k}.
This is a Banach space with the norm

£ lwe, = max [KEY f*(E) | omyy O

0<j<k

Abusing notation, define (f(£))* = | f(&)|. Then it is clear that W* c W* , with
If lwe, < Il £l Likewise, since (1/<&>?) belongs to L*(R?) with norm less than 2,
one can say that W**2 c W* in the sense that if fe W*'2, then f*e W*. A crude

comparison of norms shows:

k k+2
1+imes 3 ()| L

Returning to the original problem, one obtains a bound for M, on these subspaces:
Lemma 8.IV. If acW§ and feW¥,, then

M, few*

poiy SIS e (V2

and
I Ml o, < 4l ]
Proof. Equation IV.19 and the triangle inequality give
M llwr S 21 RS -

The binomial theorem yields the inequality:
k
K2 ( )<¢ EYICE Y,

Thus

[CEYR,f(E 2 )|5—£ W?

<350

=27 S llw, ZO<])

df n dt

fE=&40.0

SR — eolty*11(6 — DN

ae{(§)<E)

P |

J‘2

R

k
<20 f s ;0(]. ) 1<EYao O onuzar

=270 f s lzlys. OO

Using Eq. (IV.20) and the contraction mapping theorem in W*_, one obtains the
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estimate:

2n oo fwk,

— T V.23
1 —dn ol (V2

|P.Im — 1T [ <

Comparing norms with Eq. (IV.22) and observing that || f ||, ..2g2 = || f llwo, one
obtains (for k =2):

727 || ot || 2

. (IV.24)
1—dnllaly;

| P.[m— I]A”Lc"mz,zmz) =

This estimate is uniform in z. Putting it together with Egs. (IV.15) and (IV.16) yields
I1P.[m— 17 I 2w < ( 1= lloll 2 r=gama )( T2nocllwe >
)

1—1 K_[m_xj*” L2AL®(R? 1 -2 ”Lzr\Lm(ﬂmz[) 1 —4nlof w?

I on2 =

(Iv.25)
This result may be summed up as follows:

Theorem 9.IV. Suppose that a(z) is bounded and that [1 + (Im z)? + (Re z Im z)?]a(z)
is small in L® " L*(|Im z|dZ A dz). Then there is a function u(x)e L*(R?) with bounded
Fourier transform, such that a(z) is the scattering data associated to u.

Proof. The decay condition implies that oeW?, as well as that
aeL® N [*(|Imz|dz A dz). Form the scattering operator T and let m(x,z) be the
unique solution to m = 1 + CTm guaranteed by Theorem 3.IV. This m is a solution

to Eq. (IV.2), P(0 + v)m = um, with u(x) given by (1/in)d, | Tm(x,z)dz A dz. By Eq.

[

(TV.25) and Plancherel’s theorem, u is small in L?(R?) and has small bounded Fourier
transform. By the proof of Theorem 1.I1, this guarantees that there is exactly one
solution m, to Eq. (IV.2) that has the property that [m, — 17" is integrable. This fact
allows the extension of the forward scattering transform to the ball {ue*(R?):
lull2+ |4 <e} by using Tom, =(0/0Z)m,. This extension is well defined and
agrees with Definition 3.III on the ball {ue LAR?):||u||.+ [ullp <1}

Now m solves Eq. (IV.2), and by Eq. (IV.14) it also has the property that
[m — 1] eL}(R?). By uniqueness, m = m,, and therefore the (extended) scattering
operator T, associated to u is the same as 7. [

V. Evolutions of the Heat Operator

The preceding discussion leads to a method of solving the initial value problem for a
large class of nonlinear evolution equations. For certain functions K, described
below, one seeks a solution u = u(x, t) to the problem

d

Eu =K(u), u(x,0)=uy(x). (V.1)
If t > u(x, t) is continuous on ¢ = 0, then u(x, t) is called a global solution. Otherwise,
one might hope that for some 7 > 0, the map ¢ — u(x, t) is continuous for 0 <t <.
This is a local solution.
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Considering u to be a potential for the heat operator reduces the question of
existence of a solution to the perhaps simpler existence problem for another
evolution equation:

forward

u(x, O) scattering a(z, 0)

inverse

u(x, £) E2ering o7 ) (V.2)

In fact, for certain functions K, if u evolves like Eq. (V.1), then a = o(z, t) satisfies a
linear evolution equation.

Continuity for the forward and inverse scattering maps means the continuity of
all the maps represented by arrows connecting two descending chains of Banach

spaces:
(aeL® A (R} = (2eL*(C)}
U] / U]
{ueL' n ¥R} N {aeW?}
V| >/ U]
{0*ue L' n LA(R?) for |v| <2} {aeW};}
vl /< vl
{0*ue L' " IS*(R?) for |v| < 3} ~ {aeWE}
o) / vl
{LueL!' " L*(R?) for |v*| < 4} {aeW?}

U| u|
: : (V.3)

Solid arrows represent the forward scattering maps—their “slope” is 1 by
Theorem 4.IT1. The dashed arrow represents the inverse scattering map—its slope is
determined by Theorem 9.IV. The weighted-norm spaces W§ are described by
Definition 6.IV.

These Banach spaces are natural for the potentials and scattering data related by
the perturbed heat operator. Theirs are the topologies which underlie the notion of a
continuous evolution ¢ — u(-,t) or t — (-, t).

One class of nonlinear evolution equations that have global solutions by this
method is the Kadomtsev—Petviashvili hierarchy. As defined by Date, Jimbo,
Kashiwara and Miwa [DJK M], this is the set of compatibility conditions between
the perturbed heat operator L= 0, — 0, — u(x) and a list of evolution operators
B,;n>3.

B = 04+ (00 + 000 + 40,1+ 0,00 (Vi)
In other words, the n™® evolution equation in the KP hierarchy is the Lax equation:
d
—L=[B . V.
L=[BuL] (V.5)
Since (d/dt)L = — (d/dt)u, the left-hand side of Eq. V.5 is a differential operator of
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degree 0. The right-hand side has degree n — 2 because of the special form of B,. Thus
one obtains n—1 equations for the n unknown functions (d/dt)u(x), u(x),
v3(x), ..., v,(x). In principle, one can solve this system by writing v, ..., 0, in terms of
u and its derivatives, ultimately obtaining (d/dt)u = K ,(u) for some function K, of u,
its derivatives and its antiderivatives. This inconvenient calculation is much
facilitated by the no-worse-than bilinear right-hand side of (V.5).

But all such evolutions K, correspond to trivial evolutions of the scattering data.
To see, this consider an asymptotically exponential solution ¢ to Ly =0, with u
small. Suppose that y evolves so as to satisfy (d/dt)y = B,. Then one can write
Y = m(x, t, z)e"? T ¥22* *12" where m(x, t, z) is bounded in all variables. Thus m satisfies
the system below:

[(0; +2)* = (0, +2%) —u(x)Im =0,

gt—m =—z"m+(0, +zy'm+ gu(x)(f)1 + 2" 2m o+ v (x)m. (V.6)

In this way the evolution of u results in an evolution of m, hence of the asymptotic
behavior of m.

Lemma V.1. Suppose m~ 1+ (z)/(x, + 22x,) + a(z)e*™**@/(x, + 22x,) as |x|
— 00, and that m evolves in time according to the equation

m=00+vm—Qum+ Y c(x)@+0v)m,

[v|<degQ

where Q is a constant-coefficient polynomial and the c, are test functions. Then
¢=[0(0)—Qw)]x, =0 (v.7)
“Proof”. On the one hand,

3 . 2mix-&(z,
B(2) +oz(z)e ’+0<L>' V8)

=x1 +2zx, Xy +2zx, | x|

On the other hand, since each c, is a test function, only the constant coefficient
terms appear in the asymptotic behavior of m:

m=[0(0 + v) — Q(v)Im +o<—1—) as |x|—o0.

x|

Now

Q(a+v)[ G ]_ QW) +0< i )

Xy +2zx, | x, +2zx, | x|
a(z)eZnixf(z) Q(ﬁ)a(z)eZm'x-{(z) 1
0 = — . V.9
A +U)[ X, +22x, x, + 2Zx, to | x| (V9)

One makes the usual claim that if the remainder is o(1/|x]|), then so are its
derivatives. Thus [Q(d + v) — Q(v)]Jo(1/|x]) = o(1/]x]). Comparing the leading
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oscillatory and non-oscillatory terms of (V.8) and (V.9) as |x| - co completes the
proof. [

In particular, the case Q(@ + v) = (9, + z)® corresponds to the KP equation, and
Q0 + v) =(0, + z)" to the rest of the hierarchy.

One might observe that Q(v) need not be a polynomial. Thus it is useful to
construct a functional calculus for the scattering transform which will relate
evolutions of « to evolutions of u. The first step is to construct the tangent map which
sends infinitesimal generators of flows of « to infinitesimal generators of flows of u.
But since

1
u(x) =—0, [ Tm(x,z)dz A dz,

Tl c
one has
i =20, [(Tm) =0, [[T(I —CT)"'1]
c [
=0,[U—-TCO)*Tm=0,[[I—C'T) 1Tm=0,[mTm,
Cc [ C
m=I-CT) '1=(I-CT)~ 11 (V.10)
with T= — T, since C' = — C. Here, the superscript ¢ denotes transposition with
respect to the inner product on (R? x C) defined by
(D, Y>= zj O(x, 2 (x, z)dx dx,dzZ A dz. (V.II)
R“xC
With respect to this inner product, #= — d. The function #i(x,z) satisfies the

transposed equation P(— 0 + v)# = umi, as shown below.
First note that [P(—d+0v),T]=[P(@+v),T]'=0, and thus that
P(—d+v)m=P(—0+v)(I—CT) 11 =(1I—CT) '[P(— 0 +v), C1Tm = dirn,

where i = i#i(x) = [P(— 0 + v), C1T# = (1/mi)d, | — Trdz A dz. But i(x) = u(x), since
C

[—=Tm=[(I—TC)"*T1={Tm. One can transpose T with respect to “half” the
C [5 [

inner product because its action on the x-variable is so trivial.
This yields the tangent map:

Lemma V.2.
1 .
u(x,t) = Eé‘ 1 [ m(x, 2)Tm(x, 2)dz A dz,
(>

where
P(0+vym=um, P(— 0+ vyi=um

or alternatively,

=
1

~3
=
O

om=Tm, 0
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Pick a function ¢(z) and consider the initial value problem
Wz, t) = [$(z) — p(2) ]z, 1), oz, 0) = at(2). (V.12

This corresponds to T=[M 4> T'], where M, designates the operation of multiplic-
ation by ¢.
The corresponding evolution of u is given by

1 ~
= l,aljm[M¢, TImdz A dz =—0, [ ¢[mTm + (Ti)m]dz A dz,
T ¢ m ¢
1
i = —0, ] O0Am)dz A dz. (V.13)
c

Now iffor all zeC, Re[¢(z) — ¢(2)] < 1, then the solution to (V.12) remains bounded
in each W¢ for all ¢. If in addition Re[¢(z) — ¢(2)] =0, then | a(z, 1) | we= oo wh for
all ¢t. These bounded evolutions of & correspond to bounded evolutions of u, and
include all the evolutions in the KP hierarchy, as will be shown below:

Let ¢(z) =(s—z)~! for seR. Then Re[¢(z) — p(2)]=0 and T = [M,,T]is a
bounded evolution. The corresponding evolution of u(x) is

1 —1
U =E‘31£4’65(”~’m) =—551 ([:(az(s—z)'l)rhm

= %61 f mid(z)ii(x, z)m(x, z)dZ A dz = 0,(fi(x, s)m(x, s)).
C

Hence u(x) solves the nonlinear system

= 0,(mm), (0%+ 250, —0)m=um, (0%—2s0,+ dym=um. (V.14)

0
Butsince (s —z) ' = ), z"~!/s" (whenever |s| > |z|) this system is equivalent to
n=1

the KP hierarchy as follows.
Consider the algebra of formal power series in s~ ! with coefficients in a ring R.
Let 4, be the linear functional on this algebra defined by

ik< ) :—Z)=rk+3, r.€R. (V.15)
n=0

Then J(s—z)"'=2z*"2 and the k™ evolution in the KP hierarchy which
corresponds to T =[z**2, T, may be written as

T=W[(—2)"1,T]. (V.16)

Since 4, is linear and commutes with everything in sight, it provides another way of
writing the corresponding evolution of u:

A = 2,0, (m(x, s)m(x, s)). (V.17)

But both it and m can be expressed as asymptotic series in s~ * with coefficients in the
ring of smooth functions, up to order k + 2 if T has sufficient decay. The coefficients
can be determined recursively by the relations in (V.14):



Inverse Scattering and Evolution Equations 89

m(x, s) = ZO ,,fx)’ Myx)=1, 20,M,,(x)="[u(x)— 0%+ 0,1M,(x). (V.18)

m(x, )Z "(x), Mo(x)=1, 20,M,,,(x)=[—u(x)+ 03+ 0,]M,(x). (V.19)

Writing down the formula for the k'™ evolution in the KP hierarchy amounts to
solving for M,, M, n < k + 3 in terms of u(x), multiplying together the two series for
m,m, and then picking out the coefficient of s 7%~

Because of the boundedness of the evolution (V.14), one obtains a global
existence theorem for the whole KP hierarchy:

Theorem V.3. Suppose uy(x) has small derivatives up to order k + 7 in L' nL*(R?).
Then the k'™ evolution equation in the KP hierarchy has a solution u(x, t) for all t =0
with u(x, 0) = u(x) and u is uniformly bounded for all t in the space of L? functions with
bounded Fourier transform.

Proof. Count the derivatives of u needed to insure the continuity of all maps. [
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